
0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 1

Dynamic Core Allocation and Packet Scheduling in
Multicore Network Processors

Muhammad Faisal Iqbal∗, Jim Holt†, Jee Ho Ryoo‡, Gustavo de Veciana§, Lizy K. John¶
∗‡§¶University of Texas at Austin

† Freescale Semiconductor Inc. & MIT Computer Science and Artificial Intelligence Laboratory
{∗faisaliqbal,‡jr45842}@utexas.edu, {§gustavo, ¶ljohn}@ece.utexas.edu

†jim.holt@freescale.com, jholt@csail.mit.edu

Abstract—With ever increasing network traffic rates, multicore
architectures for network processors have successfully provided
performance improvements through high parallelism. However,
naively allocating the network traffic to multiple cores without
considering diversified applications and flow locality results in
issues such as packet reordering, load imbalance and inefficient
cache usage. Consequently, these issues degrade the performance
of latency sensitive network processors by dropping packets or
delivering packets out of order. In this paper, we propose a
packet scheduling scheme that considers the multiple dimensions
of locality to improve the throughput of a network processor
while minimizing out of order packets. Our scheduling policy
tries to maintain packet order my maintaining the flow locality,
minimizes the migration of flows from one core to another by
identifying the aggressive flows, and partitions the cores among
multiple services to gain instruction cache locality.

Our light weight hardware implementation shows improve-
ment of 60% in the number of packets dropped and 80% in
the number of out-of-order packet deliveries over previously
proposed techniques.

Keywords—Network Processor, Load Balancing, Resource Man-
agement.

I. INTRODUCTION

A Network Processor is a special-purpose, programmable
device that is optimized for network operations. A network
processor is generally a multicore processor that can process
network packets at wire-speeds of multi-Gbps. Network pro-
cessors are employed in many demanding network processing
environments like core and edge routers. While the main
requirement in core routers is high capacity to handle huge
amounts of traffic, edge routers require programmability and
flexibility in order to support multiple complex applications
like intrusion detection, firewalls, protocol gateways, etc. A
network processor provides the performance of custom silicon
and programming flexibility of general purpose cores. The
ability of a network processor to perform complex and flex-
ible processing and its programmability make it an excellent
solution for core and edge routers.

A number of network processors exist in the market. These
processors can be classified into two categories. The first
category includes general purpose multicore processors that
are adapted to perform networking functions. Examples of

Manuscript received April 19, 2005; revised January 11, 2007.

such processors are the ThunderX [1], Sun Niagara [2] and
Tilera [3] processors. The second category includes processors
which are specifically designed for networking applications.
These processors are equipped with hardware accelerators
and co-processors in addition to a large number of general-
purpose cores. Examples include the Freescale T4240 [4],
Broadcom XLP [5], EZChip [6], Cisco nPowerX1 [7] and
IBM PowerNP [8]. Both of these categories have a common
attribute: they utilize a large number of cores to achieve
desirable performance by exploiting parallelism. Networking
applications have abundant parallelism because multiple pack-
ets can be processed by different cores in parallel. This packet
level parallelism makes multicore architectures well suited for
networking applications [9]. Network processors with 64 cores
or more have been announced by vendors to handle 100 Gbps
network speed [10], [11]. With increasing traffic rates and
processing demands, the number and complexity of cores in
these processors are on the rise and efficiently managing these
cores has become very challenging. In this work we focus on
dynamic adaptations based on run time traffic behavior in order
to optimize performance and make following contributions.

First, design of a hash based packet scheduler and load
balancer is presented in order to achieve the goals of preserving
flow locality and packet order. A hash based packet scheduler
performs very well in order to achieve these goals because it
schedules packet at the flow level and thereby maintains packet
order and flow locality inherently. A serious impediment to
performance of hash based scheduler is the presence of skewed
flow sizes in network traffic. Such skewed distribution of flow
sizes can result in overloading some cores and may result in
packet loss. To avoid packet loss, a load balancer is designed
that migrates some flows from the overloaded cores to under-
utilized cores. Flow migrations are undesirable because they
result in bad data locality and can result in out of order
packets. The load balancer proposed in this study minimizes
the number of flow migrations by restricting migrations only
to the aggressive flows. We present a low cost hardware to
identify aggressive flows. Second, the design of the scheduler
is extended to support multiple applications in a router where
cores can be dynamically allocated to applications. Further-
more, use of incremental hashing is proposed which is low
cost method that minimizes number of flow migrations when
cores are allocated or deallocated to the services.

In the next section we present architecture of a network

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 2

processor and discuss issues related to packet scheduling
in these processors. The design of the packet scheduler is
presented in Sections III and III-C.

II. BACKGROUND AND MOTIVATION

A. Architecture of a Network Processor
Many architectural variations of network processors exist

in the market. Although vendors differ in specific implemen-
tations, they generally share three main features: 1) Multiple
cores to exploit packet level parallelism, 2) Accelerators for
networking functions and 3) Optimized path for movement of
packet data.

Architecture for a typical network processor is shown in
Figure 1. An incoming packet is received by a Frame Manager
(FM). FM Places the packet payload in a buffer allocated by
the Buffer Manager and places the header, a pointer to the
buffer and some meta data as command descriptors in the input
queue to a processing core. The general purpose core processes
the packet and can offload some of the work to accelerators
e.g., it can put some of the work in the queue for security
accelerator (SEC). SEC performs the required processing and
puts the packet back to the return queue. Eventually, the
general purpose core sends the packet back to the FM via
an enqueue after finishing the processing.

Interconnect

Core
0

IL1

DL1

L2
Core
n-1

IL1

DL1

L2

Queue

Manager

Buffer

Manager

SEC
Table

Lookup

Frame
Manager

Interface

Accelerators

L3 DDR

Packets

Layer 2 - 3

Processing

Layer 4 - 7

Processing

Fig. 1. Typical Architecture of a Network Processor

Network processing can be classified as either Control Plane
or Data Plane. Control Plane is responsible for control and
management processing e.g., maintaining and updating the
routing tables. Control Plane processing may involve execut-
ing routing protocols like RIP, OSPF, and BGP, or control
and signalling protocols such as RSVP or LDP. Data Plane
deals with actual processing involved in packet forwarding.
The data plane execution involves compression, encryption,
address searches, address prefix matching for forwarding,
classification, traffic shaping, network address translation and
so on. In many network processors, the general purpose cores
are responsible for processing both data and control plane
packets. However, in majority of modern high speed network
processors, control plane processing is separated from data
plane processing [4], [12]. When a packet arrives, a packet
classifier in the FM decides whether it is a control or a data
plane packet. Control plane packets take the slow path through
general purpose cores. The data plane packets (Layer 2 or

possibly Layer 3) take the fast path and are not offloaded to
general puspose cores. Fast path processing is handled by the
FM itself.

The FM is equipped with a large number (32-120) of small
cores called I/O Processors (IOP). These IOPs are in-order,
dual issue cores with non coherent memory, and generally do
not have an operating system. When a packet arrives the packet
classifier first identifies whether it is a control plane or a data
plane packet. If it is a L2 or possibly L3 data plane packet,
it is handled in the FM autonomously by IOPs, otherwise it
goes to general purpose cores. This configuration describes a
notional system that represents a class of chips as they look
today and moving into the next 3-5 years. In this work we are
interested in scheduling of data plane packets on IOPs. Since
these packets arrive at a very high rate (100Gbps and even
higher in future), an efficient scheduling of packets on IOPs is
needed in order to gain good performance. The term IOP and
core are used interchangeably in this work.

B. Challenges in Packet Scheduling
The design of scheduler for these applications is very chal-

lenging. First, the scheduler is in the data path and therefore
it should be as efficient as possible. Second, it should meet
the requirements of packet ordering, flow locality and cache
locality.

a) Packet Ordering: Although the internet is designed to
tolerate out-of-order packets, performance of upper layer pro-
tocols, such as Transmission Control Protocol (TCP), greatly
depends on packet ordering. Out of order packets can falsely
trigger congestion control mechanisms and degrade throughput
unnecessarily [13]. Also, applications like Voice Over IP
(VOIP) and multimedia transcoding require that packets arrive
in order because the receiver might not be able to easily
reorder the packets. Hence, it is important to preserve the
order among the packets of a flow. In this work, a flow is
defined as a set of packets that have the same source address,
destination address, source port, destination port and protocol.
If packets from the same flow are processed by different cores,
they can experience different queuing and processing delays,
and consequently, the probability of out of order delivery of
packets increases. Careful scheduling of packets is needed in
the network processors to minimize out of order departure of
packets.

b) Load Balancing: Load balancing is an important
technique to efficiently utilize multiple cores in a network
processor. Packets arriving at the input should be distributed
uniformly to the available processing cores to maximize per-
formance. An unbalanced allocation of load can swamp some
cores. As a result, incoming packets assigned to overloaded
cores will experience large delays and may even result in
packet loss due to limited storage in the network processor.

c) Data Cache Locality: If different cores process packets
of the same flow, the data cache will be used inefficiently as
the same data is copied to multiple caches. Packet processing
needs to access per flow data (state, statistics), as well as
more global data (routing table). If packets of a flow always
go to the same core, locality can be preserved for both local

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 3

and global data. Locality in global data comes from the fact
that different flows may be hot with respect to different parts
of the routing table, i.e., at the lower levels of the tree. The
higher levels are hot to all cores. Furthermore, there are many
statistics that are kept per flow, per port etc. Each packet may
need to update several of these statistics. If multiple cores
work on packets of the same flow in parallel, the per flow
information needs to be kept consistent across these cores
by using synchronization primitives like locks or semaphores.
This results in blocking access and degrades performance. The
scheduler needs to account for flow locality to achieve good
performance.

d) Support for Multiple Services: Modern network pro-
cessors are required to support a rich set of services. For
example, a multi-service edge router may need to support
encryption, decryption, firewalling, intrusion detection and
many other services [14], [15], [16]. The packet processing
cores used in these processors are usually small with a small
instruction cache (i-cache) of size 8-16KB. These caches can
only hold a single program at a time. The performance of
a core will deteriorate due to i-cache misses if it has to
process packets of different application types. In order to
preserve i-cache locality, an efficient resource allocator is
needed to divide the pool of processing cores among multiple
services. If cores are allocated to services statically at design
time based on their worst case requirements, it will result
in unnecessary over-provisioning with high system cost. The
resource allocator needs to be able to dynamically multiplex
cores among services based on runtime traffic requirements in
order to keep the processor provisioning level reasonable.

In the next section, we present a packet scheduler which
balances load among multiple cores while minimizing out of
order packets. In Section III-C, we extend the load balancer
to support multiple services.

III. LOAD BALANCING WHILE MINIMIZING PACKET
REORDERING

In a network processor, load distribution among the multiple
cores is performed by a packet scheduler. A packet scheduler
receives an incoming packet form high speed link with traffic
rate λ and forwards it to one of the cores for processing.
Each cores processing power is µi and the total processing
power of the network processor is µ =

∑
µi. This work

focuses on the scheduler for data plane packets and does
not consider control plane packets. The design of scheduler
for data plane is particularly challenging. First, the scheduler
is in the data path, and therefore, should be as efficient as
possible in terms of latency to handle ever increasing traffic
rates (100 Gbps and even higher in future). Second, it should
satisfy the requirements of load balancing, packet ordering,
data cache and instruction cache locality1. Previous researchers
have presented many load-balancing schemes [17], [18], [19].
These schemes can be classified into two categories:

1This section does not consider i-cache locality. The scheduler presented in
this section is extended in section III-C to make it i-cache aware for multi-
service routers.

• Packet Level Load Balancing: These schemes schedule
each packet independently to achieve uniformity in load
assignment. For example packets may be distributed in a
round robin fashion [17], or an incoming packet is allo-
cated to the least loaded core [18]. These schemes have
two drawbacks. First, these schemes reorder packets very
frequently. Second, these schemes cannot utilize the data
cache efficiently because they send packets belonging to
the same flow to different cores.

• Flow Level Load Balancing: Flow level schemes gener-
ally use hashing to distribute flows to individual cores
[20], [21], [22], [23]. The scheduler hashes one or more
header fields of the incoming packet and uses the result
to decide the target core for that packet. Packets of the
same flow are always mapped to the same core because
header fields are constant for all packets of a flow. Hence
the flow locality and packet order is maintained.

The scheduler presented in this section uses a hash-based
approach because of its simplicity and obvious advantage of
packet ordering and flow locality. This section discusses the
challenges associated with hash based packet scheduler and
presents design of a scheduler that overcomes these challenges.

A. Challenges in Hash Schedulers

Hash based designs are popular choices due to their low
overhead. These designs only need to compute a hash function
to get the target core for a packet. But, there are several
dynamic properties of network traffic that make load balancing
task challenging for hash-based designs.

1) Skewed Flow-bundle Sizes: The quality of hash function
plays an important role in distributing the flows evenly to all
processing cores. All the flows that map to the same core or bin
in the map table are referred to as a flow-bundle. Uniformity of
flow bundle sizes means that the hash function has distributed
flows very effectively to the processing cores. Under ideal
conditions, each flow bundles should have a size of F

M . Where
F is the number of active flows and M is the number of bins
or cores.

Many researchers have worked on designing effective hash
functions for internet addresses [24], [25], [22]. It has been
shown that CRC16 performs very well for internet traffic [24].
Similar results are observed in this study.

2) Skewed Flow Sizes: Even with perfect distribution of
flows to cores, load imbalance can still occur because all the
flows are not of the same size. In fact, it is well known that
network traffic constitutes only few heavy-hitter (high data
rate) flows and many low data rate flows [26], [23]. Figure
2 demonstrates this behavior in real network traffic. The plot
shows the popularity of flows (y-axis) with most popular flow
plotted first (x-axis).

Shi et al. have shown that hashing alone cannot balance the
load under this highly skewed distribution of flow sizes [23]
and can result in overloading some cores. In this scenario,
the load on each core should be monitored and adjusted
dynamically to migrate some load to underutilized cores. Care
must be taken because it is desirable to minimize the number of

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 4

Fig. 2. Distribution of flow sizes in real network traces. Rank 1 is the flow
with the highest flow size.

flow migrations. Flow migrations result in out-of-order packets
and also badly affect data cache performance.

In order to minimize the number of flow migrations, previ-
ous research has made the observation that migrations should
be limited to only top aggressive flows [23]. In this way
load balance can be achieved by minimum number of flow
migrations. However, previous research based its study purely
on offline analysis and kept per flow statistics to identify
aggressive flows. Maintaining per flow statistics has a lot of
overhead and is not possible in realistic designs. Although
many per flow statistics are maintained by software, accessing
those software statistics is very time consuming for a scheduler
that is trying to schedule data plane packets. The data plane
packet scheduler needs to function with minimum software
intervention for good performance.

This research presents the design of a hardware scheduler for
data plane packets. A novel low-overhead hardware technique
to identify aggressive flows is presented. The aggressive flow
detection scheme is based on two-level caching idea of annex-
cache [27] used in general purpose applications. The caching
based aggressive flow detector integrates readily with a hash
based packet scheduler. The complete design and evaluation
of the scheduler is presented in this section.

B. Packet Scheduler Design
The proposed packet scheduler uses a hash based design

which is a natural way of maintaining flow locality and packet
order. The scheduler is called Locality Aware Packet Scheduler
(LAPS). When a packet arrives, its flow identifier is extracted
from the header. Flow identifier is a five tuple consisting of
source and destination IP addresses, source and destination
ports and protocol ID. This five tuple is hashed using CRC16 to
get an index into a map table. The map table2 stores target core
ID where the packet is eventually forwarded. In the presence
of skewed flow size distribution as shown in Figure 2, the
scheduler identifies and migrates the aggressive flows from the
overloaded core to achieve load balance. An efficient scheme
for identifying and migrating aggressive flows is presented.

2Map table is used instead of direct hashing because it allows dynamic core
allocation presented in the next section.

When a core becomes overloaded, i.e., its queue size reaches
a threshold, the scheduler needs to migrate some of the incom-
ing traffic from that core to a less loaded core. This migration
of flows has two drawbacks: One, it makes some cached data
in the source core useless and triggers some cold misses in the
cache of newly allocated core. Two, flow migration makes it
harder to maintain the order among packets of the flow. The
new incoming packets will potentially experience less queuing
delay as compared to older packets that are waiting in the
overloaded core’s queue.

To avoid the above two situations, it is desirable to minimize
the number of flow migrations. If only the most aggressive
flows can be identified and migrated, load balance can be
achieved with minimum disruption, i.e., only a few flows need
to be migrated to achieve load balance. In order to achieve
this, a low cost mechanism is need to identify top aggressive
flows. This research proposes a novel cache based hardware
called Aggressive Flow Detector (AFD) to identify the top
flows. The hardware consists of a small fully associative cache
called Aggressive Flow Cache (AFC). AFC is augmented with
a cache assist called annex cache. Detailed architecture of
annex cache and AFC is presented in Section V-C.

Figure 3 presents the scheduler design. The incoming pack-
ets are hashed to get index into a map table that stores the
target core IDs. On load imbalance, the incoming packet flow
to the overloaded core is migrated to the least loaded core if the
flow is identified as an aggressive flow by AFD. The decision
is recorded in the Migration table. So the future packets of the
same flow are always migrated to the newly allocated core.
The scheduler gives priority to the output of migration table
over the default hash table. If the input queue indicated by the
scheduler is filled up, the incoming packet is dropped.

Fig. 3. Load balancer design

1) Aggressive Flow Detection: The design of Aggressive
Flow Detector is based on annex cache. Annex Cache was
proposed by John [27] to exploit locality in the memory
references in general purpose processor workloads. This study
shows that such a structure can be very useful in to identify
aggressive flows.

The AFD has two main components as shown in Figure
4. One component is a small fully associative cache called
Aggressive Flow Cache (AFC). AFC holds the IDs of top
aggressive flows. All entries into AFC come via annex cache.
Items referenced only rarely will be filtered out by annex cache

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 5

and will never enter AFC. The basic premise is that a flow
deserves to enter AFC only if it proves its right to be in AFC by
showing locality in the annex cache. Annex cache also serves
as a victim cache and provides some inertia before a flow is
excluded from the AFD. Both AFC and annex cache use Least
Frequently Used (LFU) replacement policy.

Tag Counter

Threshold>

Way 0 Way N-1

Tag Counter

Way 0 Way N-1

Tag Counter Tag Counter

Fully Associative AFC

N-way Associative Annex Cache

victimhot flow

incoming
packet

Fig. 4. Structure of Aggressive Flow Detector (AFD)

The design of AFD is slightly different from the one
presented in [27] because in AFD annex cache is bigger
than AFC. A larger AFC is undesirable because the proposed
scheme wants to limit the number of monitored aggressive
flows. Annex cache is a bigger structure that serves as a
qualifying station for large number of flows to demonstrate
their eligibility to be cached into the AFC. When a packet
arrives, its flow ID is checked in both AFC and annex cache.
If it is a hit in AFC, the hit counter is incremented. On a hit
in the annex cache, flow counter is incremented and the value
is compared with a pre-defined threshold. The threshold for
promotion to AFC is the LFU count in AFC. If the hit count
in annex cache exceeds the threshold, the flow is promoted to
AFC. The victim flow from AFC is then placed in the annex
cache. Finally on a miss in annex cache, a flow replaces the
LFU flow of the annex cache.

2) Load Imbalance Detection: Length of the longest queue
is used to detect the load imbalance in the system, i.e., when
the length of the longest queue in the system reaches a
predefined threshold, load imbalance signal is asserted. As long
as the load imbalance signal is asserted, all the aggressive flows
are migrated to the least loaded core. The migrated flows are
forwarded to the new core even after the load imbalance signal
is de-asserted as a result of flow migration.

Most modern network processors have dedicated hardware
units for management of packet queues [4], [28], [8] and a lot
of research has been done on design of these hardware queue
managers [29], [30], [31]. These queue managers implement
different active queue management algorithms (e.g., Random
Early Detection RED) and monitor the queue length as part
of their normal operation. This queue length information can
easily be used by the load balancer to detect the need for
low migration, i.e., it can easily be reported to the packet
scheduler when the queue reaches a threshold. Hence, addi-
tional hardware resources are not needed to monitor queue
length, because queues are already monitored for congestion
control purposes. In this work, it is assumed that hardware
queue manager monitors the queue state and generates the load
imbalance signal.

C. Packet Scheduler For Multiservice Routers

A simple hash based design as presented in III can re-
sult in inefficient i-cache usage. In order to exploit i-cache
locality, LAPS divides the pool of cores among all active
applications or services. In effect, there is a separate map table
for each service. All cores in a single map table always get
packets that require same processing. Hence, i-cache locality
is preserved. The main question is how to allocate cores to
applications? If cores are allocated on compile time, we need
provisioning for worst case traffic requirements of each service
requiring a huge number of cores. Fortunately, all services
do not experience their worst case traffic simultaneously and
hence cores can be multiplexed dynamically among services
to keep the total number of cores reasonable. Many dynamic
allocation schemes have been proposed in the past. In this
work we adapt the policies presented in [32] to integrate it
with hash load balancer. We further make it flow aware so
that the number of flow migrations are minimized on dynamic
allocation and deallocation of cores. LAPS utilizes incremental
hashing (also known as Linear hashing) to minimize number
of flow migrations on dynamic adaptation.

1) Allocation of Cores to Services: LAPS keeps a list of
cores that are marked as surplus cores by other services
(Section III-C2). When a service becomes overloaded, LAPS
looks through the list of surplus cores and finds the core that
has been marked extra for the longest period of time and
allocates this core to fulfill the demands of requesting service.
This policy makes sure that the deallocated core has the least
utility for the victim service. The core ID is added to the list
of allocated cores for the requesting service.

2) Release of Cores by Services: When input queue to a core
becomes empty, a timer starts. When the timer reaches idleth,
the core is marked surplus by adding it to a list of extra cores.
The core still remains allocated to the same service. In case,
the same service needs more resources in near future (before
the core is put to deep sleep state by the power management
scheme), this core can be unmarked and removed from the
list of surplus cores without incurring the overhead of context
switch. If the core is actually allocated to another service, it is
removed from the bucket list of the victim service. Other core
IDs will be shifted to take the place of this ID. The bucket size
b is decremented by 1 and the hash function is also changed
accordingly. This may result in some flow migrations but the
performance overhead is tolerable because this service is only
lightly loaded anyway. The value of idleth is set to 10us based
on previous research [33].

3) Load Redistribution on Core Allocation: When an ad-
ditional core is allocated to a service, the resource manager
appends the core ID to the end of the hash table for that service,
i.e., hash table size grows by 1. Linear Hashing scheme allows
a hash table to grow one bucket at a time and does not require
rehashing of all flows currently allocated. This makes it useful
for load balancing because it is desirable to minimize the flow
disruption when an additional core is allocated to a service.
The Linear Hashing scheme was introduced by [34] and has
been described in [35]. Following is a brief introduction of
how this scheme works.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 6

4) Initial Assignment of Flows: The linear hashing scheme
has m initial buckets labelled 0 through m− 1, and an initial
hashing function h0(k) = f(k)%m that is used to map any
key k to one of the m buckets, and a pointer p that points to the
bucket to be split whenever new bucket is added. Initial value
of p is 0. An example is shown in Figure 5. In this example,
h0(k) = k%m is used as a hash function for simplicity.

Fig. 5. Initial assignment of flows. m = 4, p = 0, h0(k) = k%4.

5) Bucket Split: When the resource manager allocates an
addition core to a service, bucket 0, that is pointed by p, is
split into two buckets: the original bucket 0 and a new bucket
m. The flows originally mapped to bucket 0 by hash function
h0 are now distributed between bucket 0 and m using a new
hash function h1. Figure 6, shows layout of linear hashing
after the new core bucket has been added to the map table.
The shaded flows are the flows that are moved to the new
bucket. Bucket 0 has been split and and the flows originally in
bucket 0 are distributed between bucket 0 and bucket 4, using
a new hash function h1(k) = k%8. When another additional
core is allocated, i.e., another bucket m+1 is added to the hash
table, the flows mapped to bucket 1 will now be redistributed
using h1 between buckets 1 and m+1. A crucial property of
h1 is that the keys that were mapped to some bucket j by
h0, are remapped to either j or bucket j + m. This is a
necessary property for linear hashing to work. An example
of such hashing function is: h1(k) = k%2m.

Fig. 6. Flow redistribution after allocation of an additional core. p = 1,
h0(k) = k%4, h1(k) = k%8.

6) Round and Hash Function Advancement: After enough
core allocations, all original m buckets will be split. This
marks the end of splitting round 0. During round 0, p went
from 0 to m−1. At the end of round 0, there are 2m buckets in
the hash table. Hash function h0 is no longer needed because
all 2m buckets can be addressed by h1. Variable p is reset to 0,
and a new round namely round 1 starts. A new hash function
h2 needs to be used. Figure 7 shows the state of hash table
at the end of splitting round 0. In general, the linear hashing
scheme uses a family of hash functions h0, h1, h2, and so on.
Let the initial function be h0(k) = f(k)%m, then any later

hash function is hi(k) = f(k)%2im. This way it is guaranteed
that if hi hashes a key to the bucket j ∈ [0..2im − 1], hi+1

will hash the same key to either j or bucket j + 2im. At any
time, two hash functions hi and hi+1 are used. In general, in
splitting round i, hash functions hi and hi+1 are used. At the
beginning of round i, p = 0 and there are 2im buckets. When
all those buckets are split, splitting round i+ 1 starts, p goes
back to zero, the number of buckets become 2i+1m, and hash
functions hi+1 and hi+2 will start to be used.

Fig. 7. Flow redistribution at the end of round 0 (beginning of round1).
p = 0, h1(k) = k%8, h2(k) = k%16

7) Summary and Mapping Scheme: Initially, each service
is allocated m cores, i.e., there are m buckets in the hash
table. At any time the hash table manager has the following
components:

1) A variable i that indicates the current splitting round.
2) A variable p that points to the bucket to be split next.
3) A total number of 2im+ p buckets in the hash table.
4) Two hash functions hi and hi+1. The base hash function

used is CRC16, i.e., f(k) = CRC16(k).
Whenever a packet arrives, the hash scheduler has to map it
to one of the buckets in the map table. The mapping scheme
works as follows:

h(k) =

{
hi+1(k) : hi(k) < p
hi(k) : hi(k) ≥ p

i.e., if hi(k) ≥ p, choose bucket hi(k) because this bucket has
not been split yet in the current round. If hi(k) < p, choose
bucket hi+1(k). The value of p is incremented whenever a new
core is allocated to the service. Use of this incremental hashing
in conjunction with load balancing scheme of Section III-B
allows us to add additional cores to a service with minimal
disruption to the existing flows.

8) Load Redistribution on Core Release: When a core is
reallocated to another service, it is removed from the bucket
list of the victim service. Essentially, a process that is reverse
of load redistribution on allocation takes place. The value of
round i is updated, i.e i = (b/m) − 1, where b is the current
number of buckets in the map table. The value of p is set to
b− 2im. and the hash function is also changed accordingly.

D. Overall Scheme
Figure 8 shows the overall architecture for LAPS. The

bucket list in the mapping table for each service Si is dynamic

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 7

and the dynamic size bi changes with traffic variations. The
hash function for each service is decided based on the size of
its bucket list. Following steps are taken when a packet arrives:

1) If the flow ID hits in the migration table, the packet
is forwarded to the core ID indicated by the migration
table.

2) If the flow ID does not hit the migration table, the map
table is searched using the hash function and the packet
is forwarded to the core indicated by the mapping table.

3) Under load imbalance, the aggressive flows (flows that
hit in AFC) are migrated to the least loaded core
allocated to that service similar to the load balancing
scheme of Section III.

4) When number of cores allocated to a service become
insufficient, the bucket lists are updated. An idle core
is removed from the bucket list of donor service and is
added to the bucket list of overloaded service.

S0 S1 SN-1

Core

Realloc

Mux

Hash

Service
Type

Migration
Table

M
u
x

AGGRESSIVE FLOW
DETECTOR (AFD)

Hit

Incoming

Packet Target
Core ID

Load Imbalance
Detector

Core
Reallocation

Map Table

Fig. 8. Locality Aware Packet Scheduler

IV. EVALUATION INFRASTRUCTURE

A. Traffic Traces
In this work we used real network traces to evaluate the per-

formance of packet scheduler. Following is a small description
of set of traces used in this study.

1) CAIDA Traces: This dataset contains anonymized traffic
traces from CAIDA’s equinix-sanjose monitor [36]. This mon-
itor is connect to OC-192 link. These set of traces are captured
in year 2011 and are of duration of 1 minute each.

Trace Name

Caida 1 20110120-125905.UTC.anon.pcap.gz
Caida 2 20110120-130000.UTC.anon.pcap.gz
Caida 3 20110120-130100.UTC.anon.pcap.gz
Caida 4 20110120-130200.UTC.anon.pcap.gz

TABLE I. LIST OF CAIDA TRACES USED IN THE STUDY

2) University of Auckland Traces: This set of traces, also
known as AUCK-II, is captured at University of Auckland and
captures the traffic between the university and its ISP [37]. All
connections from the university to external world pass through
this measurement point. These traces are of one hour long
duration each.

Trace Name

Auckland 1 20000614-181539-0.gz
Auckland 2 20000614-181539-1.gz
Auckland 3 20000619-183717-1.gz
Auckland 4 20000621-105006-0.gz
Auckland 5 20000621-105006-1.gz
Auckland 6 20000630-175712-0.gz
Auckland 7 20000630-175712-1.gz
Auckland 7 20000703-152100-0.gz

TABLE II. LIST OF AUCKLAND-II TRACES USED IN THE STUDY

B. Workload Model
In order to model the different services running on a multi-

service router we consider a workload similar to the one
presented in Figure 9. This model is based on methodology
presented in [16]. In modern network processors, all tasks of
the same path are scheduled on the same core to reduce the
communication overhead. Hence, in this study we consider
all the tasks on the same path as a single service. Thus our
simulations have four active services in the processors. A
packet is tied to a single core for the life time of its processing.
The incoming packets can be serviced by one of the four

Fig. 9. Example Task graph for an edge router

services represented by different paths of Figure 9. Path 1
describes the path of outgoing packets which are tunnelled via
VPN. Path 2 represents the default handling of packets. Path 3
is the path of incoming packets on edge router that are scanned
for malware and Path 4 is for incoming VPN packets which
are decrypted and scanned for malware.

C. Simulation Infrastructure
For evaluating different scheduling strategies, we developed

a simulation model in SpecC [38]. SpecC is similar to systemC
[39] in its design and philosophy. Different components of the
simulator are shown in Figure 10.

1) Packet Generator: Packet Generator generates traffic
with programmable traffic rates. To generate packets, it reads
the real packet traces. We govern the traffic for each path based
on Holt-Winterz forecasting as suggested in [40]. The traffic
rate is governed by the equation 1.

xi(t) = a+ b.t+ C.S(tmodm) + n(σ) (1)

where xi(t) is the traffic rate for service i, a is the baseline
traffic component, b is the trend component, C is the mag-
nitude of seasonal component S, m is the period of seasonal
component, n is random noise with a standard deviation of σ.
Total incoming traffic is the sum of traffic of each individual
service. The header for each generated packet is taken from

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 8

real network traces. We use a separate packet trace for each
path of the flow graph. The use of real network traces ensures
that realistic flow scenarios are created.

2) Scheduler: The Scheduler module implements the differ-
ent scheduling strategies. Once a decision has been made the
input packets are enqueued into the input queue of the target
core. The queue size is set to 32 packet descriptors for each
queue based on pervious research [19]. A packet is lost when
it is assigned to a queue which is already full.

Trace 

File
Packet

Generator

Rate 

Generator

Scheduler

Core Input 

Queues

Data Plane

Cores

core n-1

core 1

core 0

Output

Buffer

Fig. 10. Simulation infrastructure

3) Processing Latencies: Each packet of a service i, expe-
riences a Processing Delay (PDi) in the core based on the
following equation

PDi = Tproc,i + FMpenalty + CCpenalty (2)

Where Tproc,i is the processing time, FMpenalty is the penalty
due to flow migration and CCpenalty is the cold cache
penalty which occurs when subsequent packet needs different
processing than the previous packet. Tproc,i is derived from
real delays seen by the packets when the packet processing
is implemented in software on a full system GEMS [41]
simulator. The configuration of in-order cores is shown in
Table III.

Frequency Pipeline Branch Predictor I-Cache D-Cache

1GHz 7 stage gshare/BTB 16KB 32KB
2-issue 128 entry each 2 way 4 way

TABLE III. DATA PLANE CORE CONFIGURATION

We executed these packet processing applications and de-
rived a packet processing delay model for each service. TProc

is measured to be 0.5µs for path 2 i.e., IP forwarding. For path
3 it is measured to be 3.53µs. For Path 1 it also depends on
the packet size and is given as

Tproc,path1 = 3.7µs+
PacketSize

64byte
× 0.23µs (3)

Similarly the processing time for path 4 is given as

Tproc,path4 = 5.8µs+
PacketSize

64byte
× 0.21µs (4)

FMpenalty is set to four cache misses (o.8µs) conservatively
(two for routing data and two for per flow data). In reality, a
flow migration can cause a lot more misses depending on how
much per flow data is maintained. Becasue of small I-cache,
these cores can hold instructions of only the last executed
program (e.g., AES encryption used in IPSec requires 16KB).
So whenever a packet of different service arrives at a core,

it will experience cold cache penalty. We set the cold cache
penalty to 10µs which is the cold cache penalty for the smallest
service i.e., IP Forwarding as observed in GEMS simulator.
In practice this penalty will be higher because many services
are larger and a context switch can result in some D-Cache
misses too. For simplicity, we ignore the D-cache misses due
to context switch in this work.

V. RESULTS AND DISCUSSION

A. Throughput Improvement with LAPS
LAPS aims to improve throughput by exploiting locality

in instruction and data caches. Figure 12 shows effectiveness
of LAPS in improving throughput of a sixteen core system.
In this experiment, all four services of Figure 9 are active.
Simulation infrastructure of Figure 10 is used. The traffic
rate generator is configured to increase the traffic gradually
to measure the maximum throughput supported by the system.
Traffic is equally divided among the four services, i.e., Path 1
through 4 of Figure 9. Caida 1, Caida 2, Caida 3 and Caida
4 traces are used for generating packets for Path 1, Path 2,
Path 3 and Path 4. Figure 12 compares throughput of LAPS
with a First Come First Served (FCFS) and Arbitrary Flow
Shift (AFS) scheduler. X-axis shows combined input traffic
rate which is equally divided among all the services and y-
axis shows the traffic rate observed at the output.

Fig. 12. Throughput comparison of different schedulers

FCFS scheduler services packets in their arrival order and
does not consider flow or instruction locality. As a result, it
causes many data and instruction cache misses and results in
the worst throughput among the three schedulers. As compared
to FCFS, AFS reduces some flow migrations and is able
to improve throughput a little. But AFS is still unaware of
instruction locality and results in suboptimal performance.
In comparison to these two schemes, LAPS improves both
flow and instruction locality and results in substantially better
throughput (56% more than AFS and about 100% more than
FCFS). Ideal throughput represents a system with no cache
miss penalties. The plot is obtained by setting the cache miss
penalties to zero. Although such a system is infeasible, it
represents a theoretical maximum which can be achieved if the
system has full knowledge of everything and is able to move
data and instructions into caches before they are needed.

Note that the throughput supported by the simulated sixteen
core system is much less than the industrial system. There are

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 9

(a) Packets Dropped (b) Percentage of Cold Caches (c) Out of order packets

Fig. 11. Comparison of LAP with FCFS and AFS with different traffic scenarios listed in Table VI

two reasons for this: First, the software implementations of
services are taken from open source benchmark suites where
as companies use highly optimized implementations. Second,
the experiments are based on software only implementations
and do not use hardware accelerations.

B. Performance Improvement with LAPS
In this section, we compare the performance of LAPS with

a First Come First Served (FCFS) scheduler and the scheduler
presented in [20]. This scheduler migrates arbitrary flows when
load imbalance is detected. We call this scheme Arbitray
Flow Shift (AFS). For this set of experiments, traffic rate
is governed by equation 1. We experimented with different
sets of parameters for equation 1 and LAPS outperforms other
schemes in all scenarios. We present results with two sets of
parameters listed in Table IV. Set 1 represent the under-load
scenario i.e., the aggregate traffic rate is less than the ideal
capacity of 16 cores. Set 2 represents an overload scenario
i.e., the data rate is more than the capacity of the 16 core
system.

Service a b C m σ

Set 1

S1 1 0.03 0.3 40 0.1
S2 1.8 -.025 0.1 25 0.05
S3 0.5 0.01 0.07 60 0.25
S4 0.3 0.005 0.09 600 0.3

Set 2

S1 1.5 0.002 0.3 100 0.3
S2 1.3 -.02 0.15 25 0.05
S3 1 0.004 0.25 30 0.25
S4 0.7 0.01 0.18 200 0.3

TABLE IV. PARAMETERS GOVERNING TRAFFIC RATE. RATE IS IN
MPPS AND PERIOD IS IN SECONDS

For each service, we use real network traces to generate the
packet. We used different sets of traces listed in Table V. The
combination of sets of equation in Table IV and traces in Table
V creates difference traffic scenarios listed in Table VI. Figure

Group S1 S2 S3 S4

G1 Caida1 Caida2 Caida3 Caida4
G2 Caida5 Caida6 Caida2 Caida3
G3 auck1 auck2 auck3 auck4
G4 auck5 auck6 auck7 auck8

TABLE V. TRACES USED IN EXPERIMENT FOR PACKETS OF
INDIVIDUAL SERVICES

Scenario Parameter Set Trace Group

T1 Set 1 G1
T2 Set 1 G2
T3 Set 1 G3
T4 Set 1 G4

T5 Set 2 G1
T6 Set 2 G2
T7 Set 2 G3
T8 Set 2 G3

TABLE VI. TRAFFIC SCENARIOS USED IN FIGURE 11

11(a) shows packets dropped with three schemes under the
traffic scenarios shown in Table VI. LAPS outperforms FCFS
and AFS in both underload and overload conditions. FCFS and
AFS dsitrubute packets of different services arbitrarily to cores
and suffer from poor I-cache locality (Figure 11(b)). These
schemes drop packets even in underload conditions because
almost 60% of packets suffer from cold cache penalties. On
the other hand, LAPS partitions the cores among services
effectively and enjoys good I-Cache performance. Under over-
load scenarios (T5 through T8), LAPS also suffers from some
cold caches because cores are dynamically switched between
services based on traffic variations.

LAPS maintains data and instruction cache locality and is
able to sustain higher traffic inputr rates. Figure 11(c) shows
the effectiveness of LAPS in preserving packet order under
traffic scenarios of Table VI. FCFS does not care for packet
ordering and hence results in most out of order packets. AFS
reduces these out of order packets but still there are consid-
erable amount of out of order packets due to large number of
flow migrations. LAPS minimizes the flow migrations by only
migrating the top flows and hence result in very few packets
being delivered out of order. Next, we show how our proposed
Aggressive Flow Detector (AFD) helps in identifying the top
flows and helps to achieve load balance with minimum flow
migrations.

C. Performance of Aggressive Flow Detector (AFD)
The proposed AFD has two components: An aggressive

flow cache (AFC), and an annex cache. An annex cache can
be viewed as a preliminary filter where non-aggressive flows
are filtered out from entering the small AFC. Therefore, any
entry in AFC is a considered an aggressive flow. We evaluate
the effectiveness of AFD by varying annex cache size while
setting the size of AFC constant at 16 entries. Since our

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 10

(a) False Positive Ratio in a 16 entry AFC when
Annex Cache size is varied

(b) Effect of window size on accuracy of AFD (c) Effect of packet sampling on performance of
AFD

Fig. 13. Effectiveness of AFD in identifying aggressive flows

AFC size is fixed, we can only detect up to the maximum
of 16 top aggressive flows. A perfectly accurate AFC will
hold the IDs of top 16 aggressive flows. A flow found in
AFC, which is not among the top 16 flows identified by
offline analysis is considered a false positive. Figure 13(a)
shows the false positive ratio (false positives/total entries) in
AFC when annex cache size is varied. As the size increases,
the annex cache can hold more flows to choose a possible
candidate for a promotion to the AFC. In other words, the
pool of aggressive flow candidates increases and the chances of
aggressive flows residing in the cache for the AFC promotion
becomes higher. For Auckland traces, AFC can identify all top
16 flows with 100% accuracy with a 512 entry annex cache.
Caida traces have much more flows active and thus require a
larger annex cache. In Caida 1 and 2 respectively, only 14 and
13 most aggressive flows are correctly identified with a 512
entry annex cache. When we double the size to 1024 entries,
accuracy improved an average of 6.25%. Although there are
2 or 3 false positives in Caida 1 and 2 cases, they are not
random flows that are promoted to the AFC. In fact, when
we consider 20 most aggressive flows as our area of interest,
these false positives fall into the aggressive flow category. Yet,
for consistency of our work, we treat those flows as false
positives. We only looked at the accuracy of our mechanism
at the end of our simulations until now. Since LAPS needs to
peek into the AFC whenever load balancing is required, we
performed another experiment where the accuracy is checked
at every fixed intervals. In Figure 13(b), we performed the
same accuracy evaluation with varying interval steps. In this
experiment, we assumed the fixed 512 entries for the size of the
annex cache. Our mechanism shows above 90% accuracy from
a small step size such as every 1000 packets to large step sizes.
This implies that our AFC will contain the most aggressive
active flows regardless of when it is accessed. In dynamic
scheduling schemes like ours, it is key to maintain a high level
of accuracy across the entire execution. Figure 13(c) shows the
false positive ratio when packets are sampled with a probability
p and not all packets access the AFD. It is interesting to note
that FPR improves initially with sampling. This is because
sampling acts as a filter i.e., the probability of large flows
being sampled is higher than the smaller flows. However, the

performance deteriorates for Caida traces at larger sampling
intervals. Sampling up to 1/1k probability gives better or equal
performance than sampling all packets for all traces. Caida
traces have generally large number of high data rate flows and
hence their performance deteriorates if sampling is increased
too much. Sampling not only improves the accuracy but also
reduces power consumption because now each packet does not
have to access the AFD.

D. Dynamic Behavior of the System
In order to observe the effectiveness of of dynamic resource

allocation scheme, temporal behavior of number of cores
allocated to each service is plotted. Figure 14 shows the
dynamic behavior when two services are active in the system.
Service 1 is the same as Path 1 of Figure 9, i.e., the outgoing
VPN traffic is encrypted using IPSEC encryption. Service 2
is the Path 3 of Figure 9 which corresponds to processing
incoming packets through a firewall. The traffic requirements
of each service are varied over time and the response of the
resource allocation system is observed. Figure 14 shows that
the system is very effective in following the changing traffic
requirements and changes the core allocations to match the
demands of each service very effectively.

E. Opportunities of Migration Without Reordering
The results presented in the previous section show signifi-

cant improvements in minimizing number of flow migrations
and percentage of packets which leave the system out of order.
However, there is still a small percentage of packets which
are out of order (1-2%). Ideally, any out of order packets
should be eliminated. In this section we study, the opportunities
of migrating flows without any risk of packet reorder. Such
opportunities exist because the gap between the packets may
be large enough to allow flows to migrate without any risk of
reordering [42].

To investigate such opportunities a simple experiment is
conducted. Whenever a packet arrives, the opportunity count
is incrementd by 1 if the target queue does not contain any
packets from the same flow. Table VII shows the opportunity
counts for Caida 1 trace. Note that this is a conservative

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 11

(a) Traffic variation over time (b) Number of cores allocated over time

Fig. 14. Temporal behavior of the resource allocator

estimate because even if packets exist in the queue, it is still
possible to migrate without reordering if the existing packets
will be processed before the new incoming packet.

First row shows, when any packet arrives and it is safe to
migrate it without any reordering. The second row shows the
same results when the input queue length of the target core
is greater than the imbalance threshold. This is more impor-
tant than because this is the situation where flow migration
is needed. The thirs row represents the situation when the
incoming packet belongs to the top flow and the target core is
overloaded. This is the situation where our scheme can benefit
by migrating the large flow without causing any reordering.
This is a great opportunity to further minimize out of order
departure of packets. It is possible that current scheme when
moves a big flow does not cause reorder. But the scheme in
itself does not have any such mechanism. It can be further
extended such that when its time to migrate flow, priority
could be given to flows with minimum packets in the system
to minimize reordering. This will help minimize reorderings
but will make the system little more complex. Because now,
we need to store the target cores for the large flows and also
need to keep track of the number of packets belonging to that
flow in the system. Such a system is part of future work.

Flow Type Qlength Total Packets PMO

Any Any 28219211 20385555
Any > qthresh 14068978 9375921
Top > qthresh 619555 252825

TABLE VII. OPPORTUNITIES FOR FLOW MIGRATION WITHOUT
REORDERING

F. Analysis of Flows on Migration
In order to understand the behavior of the system, the

flows allocated to the overloaded core at the instance of flow
migration are analyzed. Figure 15(a) shows the number of
unique flows present in the queue of the overloaded core
when a big flow is migrated from that core. Generally, a large
number (15-20) of flows are present. This indicates that the
overload is caused by a combination of large and small flows
and migrating the large flow is expected to mitigate the load
imbalance. A small number of flows would indicate that the

overload is caused by small number of large flows and there
is a potential that migrating the large flow would result in
imbalance even in the newly allocated core. Figure 15(b) shows
the number of big flows allocated to the overloaded core at
the time of flow migration. From the plot it can be seen that
the imbalance is usually caused by multiple big flows and
migrating one flow is not expected to cause imbalance in the
new core.

Presence of multiple big flows in the queue of overloaded
core opens up the opportunity to further improve the scheme.
For example, when migration decision is made preference
could be given to the big flow which will cause less distortion
in the order of packets, e.g., the flow with less number of
packets in the queue could be preferred over the flow with
larger number of packets. Such a scheme is likely to increase
the complexity of the system becasue now core association of
the flows and their number of packets in the system need to
be monitored. Design of such a system is part of future work.

VI. RELATED WORK

A. Existing Work on Packet Ordering

Previous researchers have adopted two different approaches
to minimize packet reordering in network processors: order
restoration and order preservation.

1) Order Restoration: This technique allows packets be-
longing to a flow to be processed out of order by different
cores and restores the order at the output [8], [19], [18]. At
the input, each packet is tagged with a sequence number and
the packets are allowed to exit the system in strict sequence
order. Per flow tagging is needed in order to preserve order
among packets of the same flow. This requires keeping per
flow information, which is a huge overhead as there can be
millions of flows active at a time [43], [44]. Overhead of per
flow tagging can be reduced by using global tagging. Global
tagging is easy to implement but it is overly restrictive as it
forces order even among packets of different flows and results
in throughput degradation. Order restoration also requires an
expensive synchronization mechanism because multiple cores
may be required to update the ordered list of packets of the
same flow at the same time. This scheme also results in poor
data cache locality because flow locality is not preserved.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 12

(a) Number of flows allocated to over-
loaded core at the time of migration

(b) Number of big flows allocated to over-
loaded core at the time of migration

Fig. 15. Analysis of flows allocated to overloaded core at the time of migration

2) Order Preservation: This technique avoids the overheads
of order restoration by preserving packet order. One example
of order preservation is the batch scheduling scheme presented
by Guo et al. [17]. In this scheme, a batch of packets is
dispatched to cores in a strict round robin manner and is read
from cores in the same order. This scheme does not require
per flow information but requires expensive synchronization
among multiple cores and is not suitable to be implemented for
data plane packets. Furthermore, this scheme assumes that each
packet requires the same application and does not consider i-
cache or flow locality in the algorithm. Another method to
preserve packet order is to use a hash function to distribute
packets to processing cores [20], [21], [22], [23]. This work
adopts hash based scheme and integrates a hash scheduler with
a dynamic resource allocator.

B. Existing Work on Load Balancing

Dittman presented a hash based packet scheduler and load
balancer [20]. When a load imbalance is detected, this scheme
migrates arbitrary flows to an under-loaded core. Such a
scheme blindly migrates flows and can result in a large number
of flow migrations. This scheme is referred to as arbitrary flow
ship (AFS) in this paper. A large number of flow migrations
results in poor data cache locality and causes many out of order
packets. Shi et al. [23] proposed to only migrate the flows that
have high data rates. The load balancing scheme presented
in this work is based on [23] but the proposed scheme
minimizes the overhead of per flow statistics by using a low
cost aggressive flow detector. Furthermore, the load-balancer
presented in [23] does not consider i-cache locality whereas
this research presents a more complete solution that maximizes
throughput by considering instruction and data cache localities
and minimizes packet reordering. Shi et al. also proposed an
adaptive hashing scheme [21] that assures that the weights of
the hashing scheme are modified such that the assignment of
flow bundles to cores is more evenly balanced for biased hash
bundles found in internet traffic. In [22], Shi and Kencl propose
to combine the previous two schemes, i.e., adaptive hashing is
used in conjunction with the migration of aggressive bundles.
This scheme is complementary to the solution proposed in
this research and can easily be integrated with the proposed
scheduler to further improve the performance of hashing.

The load balancer proposed in this research limits the flow
migration only to the aggressive flows. In order to achieve
that, efficient identification of aggressive flows is required.
Detecting and monitoring aggressive flows is an important
part of traffic management and policing. Consequently, there
has a plethora of work on how to calculate flow statistics.
Initial naive proposals to keep counters for each flow [45],
[46] are not scalable when there are millions of flows, which
is common in today’s network environment. There have been
extensive researches on reducing the overheads of keeping per
flow counters [43], [47], [48], [49], [50] to find the accurate
estimate of the rates of aggressive flows. In contrast, the
proposed packet scheduler in this research merely needs to
identify the top aggressive flows without accurately estimating
the rates of all flows. The closest related work is done by Yi
et al. [44] where a single cache is used to identify ”elephant”
flows. Experiments done in this research reveal that a single
level caching scheme can result in large number of false
positives due to many ”mice” flows active at any time. This
research proposes a novel two-level caching scheme to identify
aggressive flows based on annex cache [27]. The proposed
detector effectively eliminates the false positives and integrates
directly with the scheduler.

C. Existing Work on Dynamic Resource Allocation
Many researches have observed the need for dynamic re-

source allocation in network processors [14], [51], [52] and
there have been proposals for runtime resource allocations
in the past [15], [53], but these schemes consider a packet
processing application as a graph where different tasks within
the application form the nodes of the graph. These schemes
consider adjacency between nodes for task scheduling as
packets move between different cores in a pipelined manner
during processing. In contrast, this research considers each
service as a single entity, i.e., a packet is tied to a single
core for the whole processing and graph or pipeline scheduling
is not considered. Wolf et al. [54] observed that the mix
of packets destined for each service varies with time. If
packets of different services are sent to the same core, i-
cache locality cannot be maintained. This results in huge
performance overhead. They attempted to address the issue
of i-cache locality through careful packet scheduling. When
a core becomes idle, their scheme searches for a packet of

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 13

the same application as the previous one. This searching has
a lot of overhead and is not feasible for data plane packets.
Although this scheme considers application locality, does not
consider data locality and packet order. This work presents a
more complete solution to the problem of packet scheduling
and resource allocation in multi-service routers in contrast
to the prior proposals which have focused on the individual
aspects of the problem. A preliminary version of this paper
has appeared as a conference paper [55].

VII. CONCLUSION

We present the design and evaluation of a scheduler for
data plane packets in network processor. The packet scheduler
adopts an efficient dynamic core allocation scheme for multiple
services to improve throughput and to minimize out of order
delivery of packets. A key to reducing the out of order packets
is to eliminate unnecessary flow migrations. The scheduler
achieves this goal by identifying and migrating only aggressive
flows. We present the design of a novel Aggressive Flow
Detector (AFD) based on two level caching scheme which
integrates readily with our scheduler, and also, is very effec-
tive in identifying top aggressive flows with high accuracy.
Furthermore, the scheduler extends the hash based design for
multi-service routers where the cores are dynamically allocated
to services to improve I-Cache locality. Our experiments with
real network traces show that our proposed scheduler improves
the throughput by 60% while reducing the out of order packets
by 80% when compared to previous schemes. The schemes
presented in this paper show promising improvements over
the previous work. Hash based designs of packet scheduler
and resource manager have very low overhead. This makes
the designs very scalable for data rates of 100 Gbps and even
beyond.

REFERENCES

[1] L. Gwennap, “Thunderx rattles server market,” Microprocessor Report,
June 2014.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way
multithreaded sparc processor,” Micro, IEEE, vol. 25, pp. 21 – 29,
March-April 2005.

[3] G. Chuvpilo, D. Wentzlaff, and S. Amarasinghe, “Gigabit ip routing
on raw,” in In Proceedings of the 8th Intl. Symp. on High-Performance
Computer Architecture, Workshop on Network Processors, 2002.

[4] “The Freescale P4240 processor.” ”http://www.freescale.com”, 2012.
[5] T. R. Halfhill, “Broadcom samples 28nm xlp ii.” http:

//www.linleygroup.com/newsletters/newsletter detail.php?num=4901&
year=2012&tag=3, October 2012.

[6] EZCHIP.
[7] CISCO, “Next-generation custom routing silicon processors for the

internet of everything,” 2013.
[8] J. R. Allen, B. M. Bass, C. Basso, R. H. Boivie, J. L. Calvignac,

G. T. Davis, L. Frelechoux, M. Heddes, A. Herkersdorf, A. Kind, J. F.
Logan, M. Peyravian, M. A. Rinaldi, R. K. Sabhikhi, M. S. Siegel, and
M. Waldvogel, “IBM PowerNP network processor: Hardware, software,
and applications,” IBM Journal of Research and Development, vol. 47,
pp. 177 –193, March 2003.

[9] P. Duggisetty, “Design and implementation of a high performance
network processor with dynamic workload management,” Master’s
thesis, University of Massachusetts Amherst, Sept. 2015.

[10] “Tilera 72 core network processor tile-gx72.” http://www.tilera.com.
[11] “Broadcom 64 core processor iBCM-88030.” http://www.dcom.com/

press/release.php?id=s666869.
[12] B. Wheeler, “A new era of network processing.” http://www.linleygroup.

com/cms builder/uploads/ericsson npu white paper.pdf, September
2013.

[13] V. Paxson, “End-to-end internet packet dynamics,” in Proceedings of
the ACM SIGCOMM ’97 conference on Applications, technologies,
architectures, and protocols for computer communication, SIGCOMM
’97, (New York, NY, USA), pp. 139–152, ACM, 1997.

[14] R. Kokku, T. L. Riché, A. Kunze, J. Mudigonda, J. Jason, and H. M.
Vin, “A case for run-time adaptation in packet processing systems,”
SIGCOMM Comput. Commun. Rev., vol. 34, pp. 107–112, January
2004.

[15] Q. Wu and T. Wolf, “On runtime management in multi-core packet
processing systems,” in Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ANCS
’08, (New York, NY, USA), pp. 69–78, ACM, 2008.

[16] X. Huang and T. Wolf, “Evaluating dynamic task mapping in network
processor runtime systems,” IEEE Transactions o Parallel and Dis-
tributed Systems, vol. 19, no. 8, pp. 1086–1098, 2008.

[17] J. Guo, J. Yao, and L. Bhuyan, “An efficient packet scheduling algorithm
in network processors,” in Proceedings of 24th Annual Joint Conference
of the IEEE Computer and Communications Societies. INFOCOM
2005., vol. 2, pp. 807 – 818 vol. 2, March 2005.

[18] L. Shi, Y. Zhang, J. Yu, B. Xu, B. Liu, and J. Li, “On the extreme
parallelism inside next-generation network processors,” in 26th IEEE
International Conference on Computer Communications. INFOCOM
2007., pp. 1379 –1387, May 2007.

[19] R. Ohlendorf, M. Meitinger, T. Wild, and A. Herkersdorf, “An
application-aware load balancing strategy for network processors,” in
Proceedings of the 5th international conference on High Performance
Embedded Architectures and Compilers, HiPEAC’10, (Berlin, Heidel-
berg), pp. 156–170, Springer-Verlag, 2010.

[20] G. Dittmann and A. Kerkersdorf, “Network processor load balancing
for high speed links,” in In Proceeding of Intl. Symp. on Performance
Evaluation of Computer and Telecommunication Systems, 2002.

[21] L. Kencl, Load Sharing for Multiprocessor Network Nodes. PhD thesis,
EPFL, 2003.

[22] W. Shi and L. Kencl, “Sequence-preserving adaptive load balancers,”
in ACM/IEEE Symposium on Architecture for Networking and Commu-
nications systems, 2006. ANCS 2006., pp. 143 –152, Dec. 2006.

[23] W. Shi, M. MacGregor, and P. Gburzynski, “Load balancing for parallel
forwarding,” IEEE/ACM Transactions on Networking,, vol. 13, pp. 790
– 801, Aug. 2005.

[24] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based
schemes for internet load balancing,” in Proceedings of the Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. INFOCOM 2000., vol. 1, pp. 332–341 vol.1.

[25] X. Hesselbach, R. Fabregat, B. Baran, Y. Donoso, F. Solano, and
M. Huerta, “Hashing based traffic partitioning in a multicast-multipath
mpls network model,” in Proceedings of the 3rd international IFIP/ACM
Latin American conference on Networking, LANC ’05, (New York, NY,
USA), pp. 65–71, ACM, 2005.

[26] L. Guo and I. Matta, “The war between mice and elephants,” in Ninth
International Conference on Network Protocols, 2001., pp. 180–188,
2001.

[27] L. John and A. Subramanian, “Design and performance evaluation of
a cache assist to implement selective caching,” in IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
1997. ICCD ’97., pp. 510 –518, Oct 1997.

[28] G. Koren and A. Rosen, “Architecture of a 100-gbps network processor
for next generation video networks,” in IEEE 26th Convention of Elec-
trical and Electronics Engineers in Israel (IEEEI), 2010., pp. 000286
–000290, Nov. 2010.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2560838, IEEE
Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, NO. 1, JANUARY 2016 14

[29] I. Papaefstathiou, T. Orphanoudakis, G. Kornaros, C. Kachris,
I. Mavroidis, and A. Nikologiannis, “Queue management in network
processors,” in Proceedings of the conference on Design, Automation
and Test in Europe - Volume 3, DATE ’05, (Washington, DC, USA),
pp. 112–117, IEEE Computer Society, 2005.

[30] W. Zhou, C. Lin, Y. Li, and Z. Tan, “Queue management for qos
provision build on network processor,” in Proceedings of the Ninth IEEE
Workshop on Future Trends of Distributed Computing Systems, 2003.
FTDCS 2003., pp. 219–224, 2003.

[31] D. Llorente, K. Karras, M. Meitinger, H. Rauchfuss, T. Wild, and
A. Herkersdorf, “Accelerating packet buffering and administration in
network processors,” in International Symposium on Integrated Circuits,
2007. ISIC ’07., pp. 373–377, 2007.

[32] A. Raghunath, A. Kunze, E. J. Johnson, and V. Balakrishnan, “Frame-
work for supporting multi-service edge packet processing on network
processors,” in Proceedings of the 2005 ACM symposium on Archi-
tecture for networking and communications systems, ANCS ’05, (New
York, NY, USA), pp. 163–171, ACM, 2005.

[33] M. F. Iqbal and L. K. John, “Efficient traffic aware power management
in multicore communications processors,” in Proceedings of the Eighth
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems, ANCS ’12, (New York, NY, USA), pp. 123–134,
ACM, 2012.

[34] W. Litwin, “Linear hashing: A new tool for file and table addressing,”
in Proceedings of Sixth International Conference on Very Large Data
Bases, October 1-3, 1980, Montreal, Quebec, Canada., pp. 212–223,
IEEE Computer Society, 1980.

[35] E. Horowitz, S. Shani, and D. Mehta, Fundamentals of Data Structures
in C++. Silicon Pr, 2 ed., 2006.

[36] K. Claffy, D. Andersen, and P. Hick, “The CAIDA anonymized 2011 in-
ternet traces.” http://www.caida.org/data/passive/passive 2011 dataset.
xml.

[37] “The University of Auckland traces.” http://wand.net.nz/wits/auck/2/.
[38] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC:

Specification Language and Methodology. Kluwer Academic Publishers
Boston, MA, 2000.

[39] T. Grotker, System Design with SystemC. Norwell, MA, USA: Kluwer
Academic Publishers, 2002.

[40] J. D. Brutlag, “Aberrant behavior detection in time series for network
monitoring,” in Proceedings of the 14th USENIX conference on System
administration, LISA ’00, (Berkeley, CA, USA), pp. 139–146, USENIX
Association, 2000.

[41] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset,” SIGARCH Comput. Archit. News, vol. 33, pp. 92–99, Nov.
2005.

[42] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” SIGCOMM Comput. Commun.
Rev., vol. 37, pp. 51–62, Mar. 2007.

[43] Y. Lu and B. Prabhakar, “Robust counting via counter braids: An error-
resilient network measurement architecture,” in IEEE International
Conference on Computer Communications, INFOCOM 2009., pp. 522–
530, April.

[44] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi, “Elephanttrap: A
low cost device for identifying large flows,” in High-Performance
Interconnects, 2007. 15th Annual IEEE Symposium on, pp. 99–108,
Aug.

[45] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Analysis of a
statistics counter architecture,” in Proceedings of the The Ninth Sympo-
sium on High Performance Interconnects, HOTI ’01, (Washington, DC,
USA), pp. 107–, IEEE Computer Society, 2001.

[46] W. Fang and L. Peterson, “Inter-as traffic patterns and their implica-
tions,” in Global Telecommunications Conference, 1999. GLOBECOM
’99, vol. 3, pp. 1859–1868 vol.3.

[47] F. Hao, M. Kodialam, and T. V. Lakshman, “Accel-rate: a faster mech-
anism for memory efficient per-flow traffic estimation,” SIGMETRICS
’04/Performance ’04, (New York, NY, USA), pp. 155–166, ACM, 2004.

[48] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, pp. 270–313, Aug. 2003.

[49] M. Zadnik, M. Canini, A. Moore, D. Miller, and W. Li, “Tracking
elephant flows in internet backbone traffic with an fpga-based cache,”
in International Conference on Field Programmable Logic and Appli-
cations, 2009. FPL 2009., pp. 640–644, 31 2009-Sept. 2.

[50] M. Zadnik and M. Canini, “Evolution of cache replacement policies to
track heavy-hitter flows,” in Proceedings of the 6th ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems,
ANCS ’10, (New York, NY, USA), pp. 31:1–31:2, ACM, 2010.

[51] A. Srinivasan, P. Holman, J. Anderson, S. Baruah, and J. Kaur, “Mul-
tiprocessor scheduling in processor-based router platforms: Issues and
ideas,” in In Proceedings of the 2nd Workshop on Network Processors,
pp. 48–62, 2003.

[52] A. Satheesh, D. Kumar, and S. Krishnaveni, “Dynamic adaptive self-
configurable network processor,” in Proceedings of the 2010 Symposia
and Workshops on Ubiquitous, Autonomic and Trusted Computing,
UIC-ATC ’10, (Washington, DC, USA), pp. 160–164, IEEE Computer
Society, 2010.

[53] J. Kuang and L. Bhuyan, “Lata: a latency and throughput-aware packet
processing system,” in Proceedings of the 47th Design Automation
Conference, DAC ’10, (New York, NY, USA), pp. 36–41, ACM, 2010.

[54] T. Wolf and M. A. Franklin, “Locality-aware predictive scheduling of
network processors,” in In Proc. of IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS ’01, pp. 152–
159, 2001.

[55] M. F. Iqbal, J. Holt, J. H. Ryoo, G. de Veciana, and L. K. John, “Flow
migration on multicore network processors: Load balancing while
minimizing packet reordering,” in Proceedings of the 2013 International
Conference on Parallel Processing, ICPP ’13, (Lyon, France), IEEE
Computer Society, 2013.

PLACE
PHOTO
HERE

Muhammad Faisal Iqbal received his bachelors
degree in electronic engineering from Ghulam Ishaq
Khan Institute, TOPI, Pakistan in 2003, and his
M.E in computer engineering from The University
of Texas at Austin in 2009. He received his Ph.D
from the University of Texas at Austin. He is the
founding member of a startup Elaaf Technologoes.
His interests include microprocessor architecture,
power and performance modeling, workload charac-
terization and low power architecture.

PLACE
PHOTO
HERE

Lizy Kurian John is B. N. Gafford Professor of
Electrical Engineering at the University of Texas at
Austin. She received her Ph.D in computer engineer-
ing from The Pennsylvania State University in 1993.
Her research interests include microprocessor archi-
tecture, performance and power modeling, workload
characterization, and low power architecture. She is
an IEEE fellow.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html


