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All available data on flow of non-Newtonians in pipes have been correlated on 
the conventional friction factor - Reynolds number plot for Newtonian fluids. 
This correlation, theoretically rigorous in the laminar f low region, was tested with 
data on 16 different non-Newtonian materials covering the 2.1 x 109 range of 
Reynolds numbers from 6.3 X 1 0 - 5  to 1.3 X 105.  Pipe diameters varied from ‘/s to 
12 in. As the correlation does not depend on the type of fluid encountered, it may 
be used with Newtonian and non-Newtonian fluids alike. 

In spite of the great range of the available experimental data, further work is 
necessary in the transition and turbulent-flow regions. No data at all were available 
on thixotropic, rheopectic, and dilatant fluids, and extension of the correlation to 
these materials should prove most illuminative from both theoretical and practical 
viewpoints. 

Workers in the field of rheology 
have long classified non-Newtonian 
fluids as plastic (or Bingham 
plastic), pseudoplastic, dilatant, 
thixotropic, and rheopectic(2,9, and 
1 6 ) ,  and a few others, having 
found the foregoing divisions un- 
satisfactory, have added “general 
non-Newtonian” classifications (12, 
22, and 2 3 ) .  Engineering design 
procedures have then been de- 
veloped on this basis, particularly 
for the first of the aforementioned 
fluid types(4, 10, 12,  and 1 8 ) .  

The classification of fluids into 
those categories constitutes a gross 
oversimplification of the facts. It 
has repeatedly been shown (5, 6, 21, 
and 26) that the classification into 
which a fluid falls, and even the  
numerical values assigned its rhe- 
ological properties, is extremely 
dependent upon the experimental 
conditions under which the meas- 
urements are made. Under certain 
narrow ranges of shear rate, for 
example, a given fluid may clearly 
appear to behave as  a Bingham 
plastic; a t  slightly different rates 
of shear the pseudoplastic rela- 
tionship is closely followed and, 
particularily at high shear rates, 
the same material may appear al- 
most Newtonian. 

The important consequences of 
these facts are  two in number: 
first, large extrapolations of data 
to new conditions are not permissi- 
ble where this system of classifica- 
tion is used and, second (and most 
important), design procedures for 
prediction of pressure drop in pipe 
lines become astronomically com- 
plex if they must be changed every 
time the fluid velocity in a pipe 
line (shear rate) is changed, which 
may be the case if the fluid ex- 
hibits a different type of flow be- 

havior over every new region of 
shear rates. 

It is obvious from the foregoing 
discussion that some method must 
eventually be developed which is 
universally applicable to  all fluids 
--Newtonian and non-Newtonian 
alike. Several attempts to do this 
have been reported in the litera- 
ture(2, 1 6 ,  24, and 28). The second 
of these is limited because of its 
empirical nature and the last two 
require the assumption of equa- 
tions relating fluid shear rate to 
shear stress. This is an eminently 
more useful procedure than the 
arbitrary classification of fluids in- 
to rheological types, but neverthe- 
less these equations do not always 
correlate fluid properties with ade- 
quate precision. In  addition, the 
first and last of these prior-art 
procedures are  of considerable com- 
plexity. Therefore one major pur- 
pose of the present work was to 
provide a design procedure which 
might be completely general and 
rigorous yet as simple in form as 
the standard friction factor- 
Reynolds number correlations for  
Newtonian fluids. 

The second severe limitation of 
these general prior-art methods is 
their unproved ability to predict ac- 
curately the point of onset of tu r -  
bulence. In  a few industries the 
non-Newtonian fluids encountered 
are  invariably viscous pastes and 
this restriction is not important; 
in other industries turbulent flow 
is of common occurrence, particu- 
larily where it is needed to pro- 
duce reasonably high rates of heat 
or mass transfer. The second major 
purpose of the present investiga- 
tion, therefore, was to provide at 
least a tentative criterion for  the 
onset of turbulence and to corre- 

late all the available data on flow 
of non-Newtonian fluids outside 
the laminar flow region. 

Very few of the prior-art publi- 
cations in engineering deal with 
thixotropic or rheopectic fluids. It 
is also necessary to exclude these 
fluids from consideration in this 
work, but, as  pointed out previ- 
ously(l6),  this is not a serious 
limitation a t  the present time. 

DEVELOPMENT OF CORRELATION 

Rabinowitsch (20) developed an  
expression for the rate of shear of 
a fluid which is entirely independ- 
ent of the fluid properties, pro- 
vided thixotropy and rheopexy are  
eliminated. The complete develop- 
ment of this equation was also 
presented in a paper of Mooney 
( 1 7 ) .  Their final expression takes 
the form 

(1) 
D A P  d (8Q/aD3) 
4L d ( D A P I 4 L )  

-__ 

Since the bulk velocity V is equal 
to 4QlnD2, Equation (1) can be 
rearranged as 

(3) 
d In ( 8 V / D )  

d In (DAPI4.L) 

In  order to simplify Equation (3), 
the derivative will be denoted by 
the symbol l in t .  Rearrangement of 
Equation (3)  then gives 

(4) 
3n’+ 1 8V 

1D 4n’ D 
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It must be emphasized that 
Equation (4) is simply another 
form of Equations (1) to (3 )  and 
is therefore an entirely general 
expression of the relationship be- 
tween rate of shear(-duldr) and 
bulk flow rate of the fluid. It is 
preferable to  the original Rabino- 
witsch relationship [Equation (1) ] 
for  two reasons, however: 

1. It is in a simpler, more com- 
pact form. 

2. The derivative n‘ represents 
the slope of a logarithmic plot of 
D h P l 4 L  vs. 8 V l D  and has been 
found to be very nearly a constant 
over wide ranges of shear stress 
for a great variety of non-New- 
tonian fluids. From a calculational 
viewpoint i t  is much easier, there- 
fore, to work with this parameter 
than with the derivative in Equa- 
tion (1). An equation similar to 
Equation (4)  was also developed 
by Schofield ( 2 5 )  . 

The definition of n’ will next be 
rearranged to show the relation- 
ship of this physical property to 
other better known fluid proper- 
ties. 

Since 

1 d In 8V/D 
n’ d In DAP/4L 

one may write (over any range of 
shear stresses for  which n‘ is con- 
stant)  

--= ____ __ 

where I<’ is also a constant. It has 
been found experimentally that  for  
most fluids K and n’ are constant 
over wide ranges of W I D  or 
DAPI4L. F o r  some fluids this is 
not the case, however, and care 
must be taken to ensure that the 
range of integration is small, i.e., 
that  the particular values of K 
and n’ used are valid for  the actual 
8VID or  DAPI4L with which one 
is dealing in a given design prob- 
lem. Conceivably in the limiting 
case different values of K‘ and n’ 
would have to be used for  every 
value of 8VID [in this case Equa- 
tion ( 5 )  would be the equation of 
the tangent to the curve at a sin- 
gle point] but i t  must be empha- 
sized that for  almost all fluids the 
reverse is true and K’ and n‘ are  
constant over wide ranges of 8VID. 

On substituting for  8VID in 
Equatiop ( 5 )  from Equation (4) 
and denoting the shear stress at 
the wall of a pipe (DAPI4L)  by 
T,, one obtains 

(6) 
We are now in a position to ap- 

preciate the significance of the 
physical property n’. If i t  is a con- 
stant with the value of unity, 
Equation (6) becomes 

9 
That is to say, the familiar 

linear relationship between shear 
stress and shear rate of Newtonian 
fluids appears, and K is  obviously 
equal to plg,. If, on the other hand, 
n’ is less than unity (but still con- 
s tant)  one obtains the Ostwald 
equation for pseudoplastic fluids, 
viz., 

Similarily, if n’ is greater than 
unity the fluid is dilatant in char- 
acter, a class of which the common 
starches a r e  outstanding examples. 
(References 2, 9, and 16, among 
others, discuss these various types 
of non-Newtonian fluids in some 
detail.) 

In summary of the preceding 
paragraphs i t  is seen that the co- 
eficient n‘ is that physical property 
of a fluid which characterizes ils 
degree of non-Newtonian behavior: 
the greater the divergence of n‘ 
from unity (in either direction), the  
more non-Newtonian is the fluid 
in question. It is believed tha t  this 
may be the first time that  a quanti- 
tative and rigorous scale has been 
proposed by means of which the 
degree of non-Newtonian behavior 
of all fluids (other than time-de- 
pendent ones) may be established 
and compared. 

Equation (5) is the basic rela- 
tionship for  relating pressure drop 
to flow rate by means of geometric 
parameters and the two physical 
properties of the fluid, K and n’. 
Whereas n’ defines the degree of 
non-Newtonian behavior of the 
fluid, K’ defines its consistency: 
the larger the value of K’ the 
“thicker” or “more viscous” the 
fluid. 

The next step in the mathemati- 
cal development is to relate AP 
in Equation ( 5 )  to the Fanning 
friction factor, in order to enable 
the computation of this parameter, 
and therefore for all fluids the 
Reynolds numbers and flow rates 
at which stable laminar flow no 
longer is found. The usual defini- 
tion(30) of the former may be 
written as 

Substitution of DAPICL from 
Equat.ion ( 5 )  into Equation (9) 
gives 

where 

By letting f = 16/N,, as for New- 
tonian fluids in laminar flow, one 
defines a generalized Reynolds 
number : 

The significance of the forego- 
ing equations cannot be overem- 
phasized. They state that  all fluids 
must follow the usual f vs. N R B  
relationship in the laminar-flow 
region when one uses the general- 
ized Reynolds number defined by 
Equation (12). As the only im- 
plicit assumption in this develop- 
ment is that of no “slip” a t  the 
wall of the pipe, this development 
is completely rigorous and may, 
in fact, be used to check the ac- 
curacy of experimental data. If 
perfect coincidence with the f = 
161N,,, line is not obtained in the 
laminar-flow region, either the 
data or calculations are in error 
or the fluid exhibits evidence of 
thixotropic or rheopectic behavior. 

For Newtonian fluids, n’ =1.000, 
K = $ g o  g reduces to p (the 
viscosity of the fluid), and N,, 
[Equation (12)] reduces to the 
familiar DVpIp, showing that this 
traditional dimensionless group is 
merely a special restricted form of 
the more general one proposed 
here. 

In  order to  make use of these 
relationships, it is necessary to  
obtain K and n’ for  the fluid being 
considered. The easiest and the 
only perfectly rigorous method is 
to measure the pressure drop and 
flow rate of the material in any 
good capillary-tube viscometer and 
to  apply Equation ( 5 )  to these 
data. Since K and n‘ were inde- 
pendent of shear rate for all the  
fluids on which literature data 
were available, pressure-drop de- 
terminations a t  two flow rates are 
theoretically sufficient completely 
to define the physical properties of 
the fluid. (It may be noted in 
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passing that two experimental 
measurements are  the minimum 
number which must be made on 
any non-Newtonian fluid in order 
to define its rheological properties 
adequately, as compared with the 
single measurement which suffices 
for  Newtonians.) From a practical 
viewpoint, however, it is usually 
preferable to take more data be- 
cause of the experimental difficulty 
of obtaining accurate, reproducible 
data on many non-Newtonian sys- 
tems. 

Rotational viscometers are also 
generally satisfactory for  evalua- 
tion of K and n by means of Equa- 
tion ( 8 ) .  [Krieger and Maron(l3) 
have shown how ( -duldr) ,  may 
be obtained from data taken on 

such an  instrument.) It must be 
noted, however, that  K and n can 
be related t o  K and n’ only when 
these properties are  constant over 
a reasonably wide (say, ten-fold) 
range of shear stresses. This has 
not been found to be a significant 
limitation on work to date but may 
be with certain other non-New- 
tonian materials. Accordingly, the 
over-all recommendation is to take 
data with a capillary-tube vis- 
cometer whenever this is con- 
venient. 

TRANSITION FROM LAMINAR 
TO TURBULENT FLOW 

Although deviation from purely 
laminar o r  streamline motion has 
been observed to occur a t  Reynolds 
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Fig. 1A. Friction-factor-Reynolds number correlation for  
non-Newtonian fluids-high range. 

TABLE 1.-RHEOLOGICAL CONSTANTS FOR FLUIDS SHOWN I N  FIGURE 1 
Symbol 

used 
in 

Figure 1 
+ 
0 

0 
0 
8 

v 
n 

A 

0 
D 

v 
0 rn 
b 

X 

Nominal 

stze, 
in. 
1 

W and 1% 

and 1% 
and 1% x, 1% and 2 
and 1% 

8.10 and 12 
and 1% 

Pipe 

4 

:/i and 1% 
K and 1% 
%and 1% 
%i and 1% 

and 1% 
ld and 1% 
%. K, % 

and 2 

Composition of fluid 
23.3% Illinois yellow clay 

0.67% Carboxy-methyl- 
cellulose (CMC) in water 
1.5% CMC in water 
3.0% CMC in water 
33% Lime water 
10% Napalm in kerosine 
4(% Paper pulp in water 
54.3% Cement rock in 
water 
18.6:: Solids, Mississippi 
clay in water 
14.3(% Clay in water 
21.2‘/, Clay in water 
25.096 C a y  in water 
31.9% Clay in water 
36.896 Clay in water 
40.4% Clay in water 
23% Lime in water 

in water 

Rheological constants 
n’ Y 

0.229 0.863 

0.716 0.121 

0.554 0.920 
0.566 2.80 
0.171 0.983 
0.520 1.18 
0.575 6.13 
0.153 0.331 

0.022 0.105 

0.350 0.0344 
0.335 0.0855 
0.185 0.204 
0.251 0.414 
0.176 1.07 
0.132 2.30 
0.178 1.04 

numbers as low as about 1,000 f o r  
Newtonian fluids (19), the forma- 
tion of truly persistent eddies and 
substantial deviation of the veloc- 
ity profile from the parabola of 
the laminar region occur rather 
suddenly over a narrow range of 
Reynolds numbers near 2,100 (14 
and 19). Since the Reynolds num- 
ber has been empirically found to 
define this transition region fo r  
Newtonian fluids, many workers 
have attempted to justify theoreti- 
cally its use as a criterion for on- 
set of turbulence by considering 
the Reynolds number to be a ratio 
of “inertial forces to viscous 
forces.” It has been pointed out 
elsewhere (1  9 )  that  this concept 
seems to be of little theoretical 
value. 

The same is not t rue of the 
Fanning friction factor. As shown 
by Equation (9), it is indeed a 
ratio of forces-the viscous shear 
force (per unit wall area) divided 
by the average main-stream in- 
ertial force (per unit cross-sec- 
tional area).  In the present work, 
therefore, f rather than N,, will 
be generally used as the criterion 
for onset of turbulence. The two 
apparent disadvantages of such an 
approach are  not believed to be of 
great importance: first, the prob- 
lem of an increasing f in the tran- 
sition region (a t  least for  New- 
tonian fluids) must be noted only 
to avoid possible ambiguity, and 
the second shortcoming, that  the 
inertial forces are  average values, 
is common to almost all approaches 
of this type (since the  various 
types of non-Newtonians will ex- 
hibit different velocity profiles, the 
averaging procedure is not uni- 
form). In  view of the unique re- 
lationship between f and A’,, for  
all fluids in the present correla- 
tion, i t  is still impossible ‘to dis- 
tinguish which of these criteria 
is rigorously correct. 

RESULTS 
Figure 1 shows a plot of f vs. 

(Dn’V2-nrply, which has been found 
to correlate all literature data on 
non-Newtonian fluids. Actually not 
all the data points used are  shown 
on the figure; for example, the ex- 
tensive data of Winding et  al. (32 )  
were found to correlate excellently, 
but their fluids were so nearly 
Newtonian (n‘ values of 0.885 to  
0.985, as compared with 1.000 for  
a Newtonian fluid) that  inclusion 
of these data would not have con- 
tributed significantly. The data of 
Wilhelm e t  al.(31) for  3-in. pipes 
were also omitted because of fail- 
ure of this part  of their system 
to give the correct results with 
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Newtonian liquids, and similar 
judgment was used in eliminating 
the data of many other authors. 
As it stands, Figure 1 includes 
data from eight independent in- 
vestigators, covering sixteen dif- 
ferent fluids, the properties of 
which are tabulated in Table 1. 
Pipe diameters varied from l /s t o  
12 in. (100-fold variation) and the 
data cover a 2.1 X 109 range of 
Reynolds numbers from 6.0 X 
to 130,000. The fluid properties 
(K' and n')  were obtained from 
rotational viscometers in the case 
of the CMC and lime slurry data 
of Salt(Z4) and Stevens(Z8) and 
from capillary-tube or pipe flow 
data in all other cases. The curves 
shown in Figure 1 are the com- 
monly accepted relations for New- 
tonian fluids and the data points 
represent measurements on non- 
Newtonians. 

Laminar Region. The scattering of 
the data is significant; although 
most of the laminar-region data 
fall with a10% of the required 
f = 16/N,, line, several points 
deviate by 40% or more. As dis- 
cussed earlier, this scattering must 
be due t o  experimental errors or 
errors in calculation, unless one 
makes the unlikely assumption that 
the fluids exhibited thixotropy or 
rheopexy. Since several of the au- 
thors whose data are shown in 
Figure 1 reported only nominal 
pipe sizes, i t  is likely that incor- 
rect values for diameter were oc- 
casionally used. Sirnilarily, fluid 
densities were not always reported 
accurately. In  view of these possi- 
ble errors the excellence of the 
correlation within the laminar re- 
gion is remarkable. 

Transition Region. If the previous 
discussion of the transition from 
laminar to turbulent flow is indeed 
valid, then the non-Newtonian data 
should begin to deviate appreciably 
from the laminar f = 16/N, ,  line 
a t  approximately the same ratio of 
viscous shear to inertial forces as 
do Newtonian data for  smooth 
pipes, namely a t  f = 0.008. This is 
borne out remarkably well by all 
the data in this region on Figure 
1. Furthermore, because of the 
close resemblance between highly 
non-Newtonian fluids at low shear 
rates and true solids, little eddies 
of the fluid in turbulent motion 
should behave more nearly like 
solid particles and, for example, 
not break up so readily as do the 
eddies of Newtonian fluids. The 
net effect of this difference would 
be a more diffuse transition from 
laminar to turbulent flow, mani- 
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fested by a much greater transi- 
tion region than the 2,000 to 3,300 
range of Reynolds numbers found 
(14 and 27) for Newtonian fluids. 
Whether or not turbulence is fully 
developed below the maximum 
Reynolds number of 130,000 (in 
Figure 1) will have to be shown 
by further experimental work. 
Qualitatively, however, the ex- 
pected diffuse nature and great 
broadness of the non-Newtonian 
transition region have been ex- 
perimentally confirmed by dye-in- 
jection studies (29) although no 
work to date has yet defined the 
actual extent of the transition re- 
gion for these materials. Until this 
is done, our tentative approach is 
to assume that the breadth of the 
transition region increases as n’ 
decreases and that for most of the 
fluids whose f-A;,, data are shown 
on Figure 1 the transition region 
extends approximately to N,, = 
50,000 to 70,000. This assumption, 
although tentative, is supported 
not only by the data of Figure 1 
but also by the data on the less 
non-Newtonian fluids of Winding 
et  al. ( 3 2 ) .  

It is interesting to compare the 
proposed criterion for onset of 
turbulence (i.e., when f first de- 
creases to about 0.008) with the 
criteria suggested by other in- 
vestigators. For Newtonian fluids 
i t  is obviously identical to the 
well-established criterion of N,, = 
2,000. For Bingham plastic non- 
Newtonian fluids, Caldwell and 
Babbitt(4) have given an equation 
which permits the calculation of 
a “lower critical velocity’’-that 
velocity below which flow will al- 
ways be laminar-in terms of the 
pertinent geometric variables and 
physical properties, which they 
checked by application to  twenty- 
five different materials. Rearrange- 
ment of their equation to  enable 
solving for f gives the identical 
criterion (f = 0.008) proposed in 
this paper. Hedstrom ( 1 2 )  sug- 
gested on the basis of extremely 
limited data tha t  flow of Bingham 
plastic non-Newtonians becomes 
turbulent when the various lami- 
nar-region curves (for various 
values of the groupT,D2pg,l-q2 in- 
tersect the line relating f and N,, 
for  Newtonian fluids, This is a 
significantly different criterion 
from the one proposed in this pa- 
per, but inspection of his graphs 
shows that  the experimental data 
more nearly obey the  present cri- 
terion than his. Winding e t  al. (32)  
have presented several criteria: 
one based on apparent viscosities 
a t  zero shear rate, which can obvi- 
ously not apply to  highly non- 

Newtonian fluids, and one for  
fluids to which the Williamson 
equation applies. This latter crite- 
rion, when rearranged into the 
form of a friction factor, again 
gives as the transition point f = 
0.008. The same is also true of 
other criteria, presented by Toms 
(29) and Metzner(lG), which 
make use of Reynolds numbers 
using apparent viscosities which 
are  so defined as to give the cor- 
rect pressure drop when substi- 
tuted in Poiseuille’s low. Ooyama 
and I t o ( l 8 )  presented a criterion 
which is close to the proposed f = 
0.008 but which is hard to compare 
in greater detail. They supported 
their criterion experimentally with 
a small fraction of the data in- 
corporated in the present work; 
hence i t  may be concluded that, a t  
least for these data, their criterion 
gives results identical to those of 
the more general present one. &- 
Millen (15)  presented a criterion 
for Bingham plastic fluids which 
predicts stable laminar flow a t  
nearly three times the velocities 
calculated at the point f = 0.008. 
However, he states that  his cri- 
terion is based on only two experi- 
mental measurements, one of which 
did not leave the laminar region 
except within the accuracy of the 
measurements. Accordingly, the 
discrepancy between his criterion 
and ours cannot be considered sig- 
nificant. A criterion suggested by 
Alves e t  aL(2) is too conservative 
to give the onset of turbulence 
with accuracy. 

In  summary, it has been pro- 
posed that both Newtonian and 
non-Newtonian fluids leave the re- 
gion of stable streamline flow when 
f first drops to a value of about 
0.008 or less or when Dn‘V2-n‘ply 
reaches a value of 2,000 to  2,500. 
All available data support this con- 
clusion, and the many different 
prior-art criteria for  onset of tur-  
bulence in non-Newtonian fluids 
which predict it accurately may be 
rearranged t o  give the single and 
perhaps universal criterion pro- 
posed here. 

Turbulent Region. In view of the 
uncertainties surrounding the 
actual width of the transition re- 
gion, little may be said concerning 
the difference between the accepted 
curve for Newtonian fluids in 
turbulent flow and the experi- 
mental non-Newtonian data in the 
same region of Reynolds numbers. 
However, if one accepts the fore- 
going assumption that fully de- 
veloped turbulence may not occur 
until N,,>50,000 for  some fluids, 
then practically none of the avail- 

able data fall into what is clearly 
the region of turbulent flow. Until 
further work defines the end of 
the transition region with cer- 
tainty, i t  is recommended that the 
usual Newtonian curve be used for 
design purposes [with the form of 
Reynolds number shown in Equa- 
tion (12)] regardless of the mag- 
nitude of N x e .  This procedure gives 
conservative values of pressure 
drop at AT*,>2,100, and since the 
maximum difference between the 
curve and data in this region is 
about 50%, Figure 1 is actually 
very useful even in this “transi- 
tion” flow region as compared with 
methods suggested in the prior 
literature. Winding et  a1.(32) sug- 
gested use of the usual f vs. D V : / p  
chart together with the evaluation 
of the viscosity a t  infinite shear 
rate, but in  large pipes, where 
turbulence may set in a t  low veloc- 
ities, the use of infinite shear-rate 
viscosities would lead to signifi- 
cant errors unless the fluids are 
nearly Newtonian in nature. Wil- 
helm (31 ) , Binder ( 3 ) ,  and Alves 
( 2 )  suggest procedures which re- 
quire empirical viscosity data in 
the turbulent region. It would ap- 
pear that  these may be satisfac- 
tory design methods if one is able 
to obtain the necessary data, but 
they do not permit the design of 
equipment from physical-proper- 
ties measurements alone. Other 
authors(&, 10, 12, and 1 8 )  have 
concerned themselves only with 
Bingham plastic fluids in turbu- 
lent flow; hence their work is 
limited in scope, but the excellent 
results of Winning(l0) and Hed- 
strom (12) merit special considera- 
tion when fluids of this type are  
encountered. 

COMMENTS ON USE OF 
CORRELATION 

Although the development is per- 
fectly general in that K‘ and n’ 
were not assumed to be constants 
(independent of shear rate),  i t  was 
found that for every fluid on which 
pipe-line data were available these 
rheological properties were indeed 
constant within the accuracy of 
the data. Had this not been the 
case, the design procedure to fol- 
low would be somewhat more com- 
plex; both y and n’ would have to  
be evaluated at the correct value 
of shear rate o r  shear stress. With- 
in the laminar flow region this is 
not a serious difficulty as y [Equa- 
tion (11)3 is not a very strong 
function of n‘. Outside the laminar 
region, however, a trial-and-error 
procedure would be involved : after 
calculation of a pressure drop by 
use of Figure 1, it would be neces- 
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Fig. 2. Dependence of velocity distribution upon the Anid property n’. 

sary to calculate T, and to repeat 
this procedure until the calculated 
T ,  is identical to that shear stress 
a t  which n’ and y were evaluated 
in obtaining NRe. 

Because K and n‘ are  very near- 
ly constant for so many fluids over 
shear ranges of practical interest, 
the logarithmically linear relation- 
ship between shear stress and flow 
rate o r  shear rate depicted by 
Equations (5) and (8) constitutes 
perhaps the most useful means 
available for  extrapolation of rhe- 
ological data. Theoretical rheolo- 
gists have long objected to the 
assumption of the validity of Equa- 
tions (5) or ( S ) ,  and Reiner(Z3) 
has given a particularly good re- 
view of their criticisms. Some of 
these, such as the fact tha t  K‘ 
does not have units of viscosity, 
are irrelevant-N,, as defined by 
Equation (12) is still rigorously 
dimensionless. Perhaps the most 
important apparent objection to  
the view that almost all fluids obey 
Equation (5), even when K and 
n’ are  held constant, is the incom- 
patability of this conclusion with 
the reported existence of materials 
which behave as Bingham plastics, 
the “plug flow” of these latter 
materials in tubes having been 
experimentally verified by Green 
(7, 8 and 9) .  However, Figure 2 
shows that  i t  is not necessary, as  
Green(9) states, for  a material to 
be a Bingham plastic in order to  
exhibit pIug flow well within ex- 
perimental accuracy. Indeed, when 
n’ = 0.20 it is seen that  the velocity 
profile deviates markedly from the 
familiar Newtonian parabola and 
is within 1% of a t rue  plug until 

riR becomes greater than 0.4. 
Seven of the sixteen fluids whose 
properties are  tabulated in Table 
1 have values of n‘ well below 0.20. 
For these materials it is therefore 
to be expected that  both Equation 
(5) and the Bingham plastic re- 
lationship between shear stress 
and shear rate apply equally well, 
a situation that  further supports 
the shelving of classical non-New- 
tonian fluid definitions and ex- 
trapolating, when necessary, by 
use of Equation ( 5 ) .  The extent 
to which extrapolation is permissi- 
ble must, however, be carefully 
considered in every case, as the 
rigor of the present treatment de- 
pends on the fact that  n‘ and K 
are  permitted to vary with shear 
stress. In  a sense the variation of 
these properties with shear stress 
is similar to the well-known varia- 
tion of other physical properties 
with temperature or pressure. 

It might appear that  the desig- 
nation of n and K as the true 
physical properties which describe 
a non-Newtonian fluid (a t  a par- 
ticular shearing stress) would be 
preferable to the use of n‘ and K‘. 
The support for  this view arises 
from the fact  that  the former are 
independent of the type of appa- 
ratus in which the measurements 
are made, as  t rue physical proper- 
ties should be, and the  latter are 
not. Actually n and n‘ are  equal 
numerically f o r  many fluids, and 
so this choice is not frequently an 
important one. When they are  not 
equal, the engineering procedure 
recommended here is to  use which- 
ever is more closely related to the 
problem a t  hand-for flow in circu- 

lar pipes this is n’; in other flow 
situations the use of n will un- 
doubtedly be preferable. 

Several important practical con- 
clusions arising from the present 
work require emphasis. It is in- 
structive to rearrange Equations 
(9) and (10) to solve for AP, 
whereby one obtains, for flow in 
the laminar region, 

For Newtonian fluids (n’ = 1.00, 
+{ = p) Equation (13) reduces to  
the usual Poiseuille relationship. 

Since V = 4QlzD2,  

AP = --(-;;->‘a 32 y L 4Q ?’ -__ 1 
s c  D3n’+.  

(14) 
If one wishes to reduce the pres- 

sure drop accompanying a given 
volumetric flow rate Q, it is well 
known that small increases in pipe- 
line diameter a re  extraordinarily 
effective for Newtonian fluids as 
pressure drop varies inversely as  
diameter to the fourth power when 
n’ z 1.00. On the other hand, fo r  
highly non-Newtonian systems n’ 
approaches zero, and fo r  such ma- 
terials it is seen that  pressure 
drop varies inversely as diameter 
to only the first power; so the de- 
signer must go to unusually large 
pipes before the reduction in pres- 
sure drop is appreciable. Increases 
in capacity of an existing plant, 
however, may frequently be ob- 
tained simply by increasing the 
pump speed, as the pressure drop 
is extremely insensitive to  flow 
rate in which n’ is small, As a mat- 
ter  of fact, for the slurry data 
reported by Gregory(l2) (see 
Table 1) n’ is almost zero; i.e., AP 
is very nearly independent of flow 
rate  in the laminar flow region. 
For engineers familiar only with 
the peculiarities of Newtonian 
fluids, these differences are  there- 
fore both a hazard and an ad- 
vantage, but observation of several 
piping systems installed to date 
indicates tha t  the industries con- 
cerned have taken little advantage 
of the insensibility of pressure 
drop to flow rate. These comments 
must be restricted to the laminar 
flow region as too few of the 
present data extend into the region 
of well-developed turbulent flow to  
enable one to generalize for that 
case. 

The second practical conclusion 
depends on the fact that  Figure 1 
constitutes a compilation of all the 
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available pipe-line data on highly 
non-Newtonian systems. As such, 
it clearly shows that  the region of 
laminar flow is of major interest, 
as extremely viscous materials are 
the general rule. However, about 
one third of the data are outside 
the laminar region, and this pro- 
portion may be expected to in- 
crease as turbulence becomes neces- 
sary to produce high rates of mass 
or heat transfer, particularly in 
nuclear-reactor and similar high- 
output applications. 

FUTURE WORK 
The behavior of non-Newtonian 

fluids in both the transition and 
turbulent-flow regions should be de- 
fined more clearly than has been 
possible by use of literature data 
alone. In  particular, the extent of 
the transition region must be clearly 
defined. A particularly instructive 
and critical test of of this correla- 
tion would be its extension t o  the 
turbulent flow of dilatant fluids, on 
which no data at all were available. 
Engineering correlations must also 
be developed at some future date for 
the more complex thixotropic and 
rheopetic systems. 

SUMMARY 
The recommended design procedure, 

supported by all available data, may 
be stated as follows: 

1. Data Required. Rheological prop- 
erties ( K  and n‘) and fluid density 
are needed. The former should be 
measured with a capillary-tube vis- 
cometer but can frequently be ap- 
proximated with essentially the same 
precision from rotational viscometric 
data. Measurements at only two shear 
rates (rotational speeds or flow rates) 
a re  theoretically sufficient although 
more are helpful to justify the ab- 
sence of thixotropy and rheopecty 
and reduce the experimental errors 
which frequently tend t o  be large in 
this type of work. 

2. Calculations. y is obtained from 
K‘ and n’ [Equation ( l l ) ] ,  N,,(Dn’ 
Vz-n‘ply) is calculated, and f is ob- 
tained from the usual friction factor 
-Reynolds number plot. From this 
point the pressure-drop calculation 
is identical to the usual procedure 
for Newtonian fluids. The calculation 
will be rigorous if the Reynolds num- 
ber is below 2,100 or  if f is greater 
than 0.008 (laminar flow) and will 
be conservative in the transition and 
turbulent-flow regions. Outside the 
laminar-flow region, the foregoing 
conclusions may not apply to  fluids 
exhibiting dilatancy. 
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NOTATION 
Note: As the final correlation is 

based on dimensionless groups, any 
consistent set of units may be used. 
The units given in the following 
table merely represent those used by 
the authors. 
du ld r  = velocity gradient or shear 

rate, sec.-l ( - d d d r )  refers 
to the shear rate a t  the wall 
of a pipe 

D = inside diameter of pipe, f t .  
f == Fanning friction factor, de- 

fined by Equation (9), di- 
mensionless 

go = conversion factor, 32.2 ft .  lb. 
mass/ (sec.2) (1b.force) 

K == coefficient in Equation ( 5 ) ,  
(1b.force) (see.%’) / (sq.ft.) 

L = length of pipe or  tube, ft. 
n‘ = exponent in Equation (5),  di- 

mensionless. n’ = 1.000 for  
Newtonian fluids, is between 
zero and unity for pseudo- 
plastic non-Newtonians, and 
greater than unity for  dila- 
tant fluids 

NI2,  = Reynolds number, dimen- 
sionless. Nxe  = Dn’V2-n’p/y for 
all fluids, which reduces to 
DVplp for Newtonians 

AP := pressure drop, 1b.forcelsq.ft. 
CJ =: volumetric flow rate, cu.ft./ 

r = distance or radial distance, f t .  
R = inside radius of pipe, f t .  
T = shear stress, Ib.force/sq.ft. 

T, denotes shear stress at 
the wall of a pipe and T, 
refers to the yield strength of 
a Bingham plastic non-New- 
tonian 

see. 

v = local velocity, ft./sec. 
V = average or bulk velocity, ft./ 

see. 
y = generalized viscosity coeffi- 

cient as defined by Equation 
(11), lb.mass/ (ft.) (sec.2-n’) 

T, = coefficient of rigidity of a 
Bingham plastic non-New- 
tonian fluid, Ib.mass/ (sec.) 
(ft.) 

= viscosity of a Newtonian fluid, 
Ib.mass/ (ft.) (see.) 

p = density of fluid, 1b.masslcu.ft. 
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