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ABSTRACT 

Experiments have been carried out to determine the minimum fluidization velocity for 

sand particles of irregular shape and size using pseudoplastic liquids in different Perspex 

columns. The effect of different operating parameters, like column diameter, particle size and 

shape, rheological properties of the liquid on minimum fluidization velocity has been 

investigated. It has been observed that as sphericity of the particle decreases, minimum 

fluidization also decreases. Empirical correlation has been developed to predict the minimum 

fluidization velocity as a function of physical and dynamic variable of the system. Statistical 

analysis of the correlation suggests that is of acceptable accuracy. Applicability of the artificial 

neural network modelling using gradient descent and Levenberg-Marquardt algorithm have also 

been successfully tested.  

Keywords: minimum fluidization velocity, non-Newtonian liquid, sphericity, Levenberg-

Marquardt algorithm 

1. Introduction 

Liquid fluidization is used in food processing, hydrometallurgy, biochemical processing, 

water treatment etc. The unit operations that utilize the fluidization technology are coal 

combustion, cracking, reforming in refinery, Fisher Tropsch synthesis, gasification, coking etc. 

The advantages of this technique is the ability to perform number of unit operation like heat and 

mass transfer, leaching, drying, mixing, segregation, granulating etc. When liquid is passed 
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through a fixed bed containing solid particle at low flow rate, then it passes through the voidages 

of the solid without disturbing the bed status. On increase in liquid velocity initially the bed 

particles start to expand, and then the upward drag force become equal to the downward forces, 

i.e. bed weight, this state is called incipient fluidization and the fluid velocity is known as 

minimum fluidization velocity. With further increase in liquid velocity the bed particle will 

expand and the condition is called fully fluidized condition (Richardson, 1971). The 

hydrodynamic characteristics of Newtonian fluids flowing through fixed and fluidized bed have 

been extensively studied and large number literatures are available (Richardson, 1971; Joshi, 

1983; Kuni and Levenspiel, 1990; di Felice, 1995; Jamialahmadi and Müller-Steinhagen, 2000). 

Couderc (1985) has critically examined the existing literature and concluded that value of 

minimum fluidization velocity for Newtonian medium can be estimated accurately (with an 

average error of 10-15%) for all practical cases. 

Non-Newtonian liquids are used in a wide variety of industrial applications. Non-

Newtonian liquids are extensively used in chemical, petroleum, petrochemical, mineral 

processing industries, bubble columns, polymer solution and food industries (Das et al., 1989, 

Chhabra, 1993). Availability of literature on pseudoplastic liquid flow through fluidized bed is 

very less compare to that of Newton liquid flow system (Chhabra, 1993). Srinivas and Chhabra 

(1991) critically reviewed the non-Newtonian pseudoplastic flow through the fluidized bed on 

spherical particles. Sharma and Chhabra (1992) reported the non-Newtonian liquid flow through 

fixed and fluidized bed using non-spherical particles. Chhabra (1993) examined all the 

correlations available and concluded that the estimation of the minimum fluidization velocity for 

non-Newtonian liquids is difficult. Chhabra et al. (2001) and Chhabra (1993) reviewed all the 

existing literature on the non-Newtonian liquid-solid fluidization. Literature review suggested 



  

that the following two approaches are used to predict the minimum fluidization velocity for non-

Newtonian liquid-spherical particle. The approaches are presented in the following equations,  

              (1) 

and  

                 (2) 

Different researchers have defined  and  to fit their own data (Yu et al., 1968; Mishra et al., 

1975; Brea et al., 1976; Kumar and Upadhyay, 1981; Kawase and Ulbrecht, 1985; Jaiswal et al. 

1992). Chhabra (1993) and Chhabra et al. (2001) concluded that for the minimum fluidization 

velocity predict the average error as 20-25% and for creeping flow region it is more than 60% for 

polymer solution and more than 100% for suspension. Whereas for Eq (2), the average error is 

more (Machač et al., 1986; Machač et al., 1993; Machač et al. 2005). Aghajani et al. (2004) 

compared the experimental and published data from the literature for the hydrodynamic 

parameters of fluidized beds for solid-Newtonian and solid-non-Newtonian systems. Broniarz-

Press et al. (2007) reported the experimental result on the effect of properties of the liquid on the 

resistance of flow through fluidized beds. For the solid-non-Newtonian liquid fluidization only 

few experimental data are available for non-spherical particles. Chhabra et al. (2001) reported 

that by applying both approaches for non-spherical particle yield large deviation, hence it has 

very limited application.  

The use of Artificial Neural Network (ANN) are extremely useful for generalization 

purpose in recent years and it is clear from the large number of publications that is available in 

various field like engineering, scientific, climate science, economic, finance etc. The advantages 

of ANN are clearly demonstrated in literature (Bar et al., 2010a, b). From the survey of literature 
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it is clear that the use of ANN yields satisfactory results related to input and output mapping 

without any knowledge of the interim states/steps of algorithm used, i.e., in cases where it 

becomes difficult to find mathematical relationships between the parameters (Lippman, 1987;  

Himmelblau, 2000; Pirdashti et al. 2013). Recently, a number of software’s (Matlab, R, 

Statistica, Neurosolution etc.) are available in the market which can be used for ANN analysis in 

dealing with many complex problems.  

ANNs are used as tools for analyzing complex relationships in complex systems within a 

big framework. If it is trained with small dataset then the unstable behavior in the performance 

may be observed (Bowden 2002). But now-a-days researchers are able to handle small datasets 

either experimental or observational data through ANNs for modelling (Forman and Cohen, 

2004; Herzag, 2006; Bar et al., 2010a; Pasini, 2015; Shaikhina and Khovanova, 2017). The 

present paper deals with the experimental determination of minimum fluidization velocity using 

pseudoplastic non-Newtonian liquids and non-spherical particles. An empirical correlation and 

the artificial neural network modelling has been used for the prediction of minimum fluidization 

velocity. 

2. Experimental  

Fig.1 represents the schematic diagram of experimental setup. It consists of liquid storage 

tank, liquid distribution section, flow rate and measuring devices. The fluidization column is 

made of Perspex and has an internal diameter of 92.3 mm, 72.0 mm and 47.0 mm and height 

1376.2 mm. The entire test section is vertically mountain to prevent vibration. The lower part is 

the liquid distribution section filled with the glass marbles of the size ranging from 1–3 cm in 

diameter for uniform distribution of liquid in the column. The marbles are supported and 

enclosed by 16 mesh stainless steel grid. Pressure trappings are provided to measure pressure 



  

drop of the column. Simple U-tube and/or inclined manometers containing mercury beneath the 

water are used for the measurement for pressure difference across the column. Arrangement of 

purging the solution in manometer line is also provided. Initially experiments have been carried 

out using water to test the apparatus. A scale is fitted on the outer surface of the column to 

measure the bed height. 

A rectangular tank (0.45 m
3
) is used for storage of liquid and is fitted with propeller type 

stirrer for uniform mixing of sodium salt of carboxymethyl cellulose (SCMC) (high viscous 

grade, Loba Chemie Pvt. Ltd., Mumbai, India). Required amount of SCMC has been dissolved in 

tap water by stirring to form homogeneous solution and kept for more than 15 hours for ageing. 

Trace amount of formaldehyde has been added to prevent biodegradation. The liquid is kept at 

constant temperature by recirculation of tap water through a copper coils. A centrifugal pump is 

used to circulate the liquid from the tank. Rotameter RL1 [Transducer and Controls Pvt. Ltd., 

Hyderabad, India, accuracy ±2%] has been used to measure the flow rate and is controlled by a 

bypass valve. The liquid discharge from the test section is returned to the tank. The liquid flow 

rate is also measure by collecting the liquid in certain interval of time at the discharge point. 

Sand particles of different sizes are used as solid particles in the fluidised bed. The size 

and properties of the sand are given in Table 1. Dilute aqueous solutions of Sodium salt of 

carboxyl methyl cellulose (SCMC) is used as non-Newtonian pseudoplastic liquid. Rheological 

properties have been measured in pipeline viscometer and other physical properties have been 

measured using conventional technique. Table 2 shows the rheological and other physical 

properties of the liquids. The sphericity of sand particle is measured by permeability test 

applying the Kozeny-Carman equation (Carman, 1956). Dilute solution of SCMC is a 

pseudoplastic time independent liquid and follow the power law model as 
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In general, shear thinning pseudoplastic liquid calculations are carried out on the basis of 

effective viscosity (μeff), as (Das et al. 1989), 
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In actual experiment, first measured quantity of sand has been introduced in the column. 

The experimental liquid is introduced into the test section by means of pump and then its flow 

rate has been controlled using bypass valve. The pressure drop across the bed has been measured 

using manometer. The extent of bed expansion is estimated from the knowledge of the initial 

height of the bed and the expanded bed height is measured simply with the help of graduated 

scale fixed in the column. For each size of particles, the experiment is repeated number of times 

to ensure the reproducibility of the data. The flow order of the experimental run is determined by 

lot to avoid systematic error. The minimum fluidization velocity has been estimated from the 

intersection of pressure drop flow rate plots in the fixed and fluidised bed regimes.  

3. ANN modeling 

Fig. 2 presents the schematic diagram of ANN used. Considering the popularity of the 

structure of ANN, a three-layered MLP (Multilayer perceptron) is used for the proposed 

modelling (Lippman, 1987). However, depending upon the success of the proposed modelling 

this structure is liable to change. The proposed modelling has also being developed using 

Neurosolution 5.07 software, four well-known transfer functions (TF I — TF IV) and two well-

known algorithms, i.e., gradient descent and Levenberg-Marquardt. 



  

4. Result and discussion  

4.1 Minimum fluidization velocity determination  

The minimum fluidization is defined as the lowest superficial velocity at which 

downward forces become equal to the upward drag force. The actual pressure drop, ΔP, has been 

measured for a liquid velocity, Ul, by subtracting the solid-free pressure drop, ΔPo, from the 

observed pressure drop, ΔPa, in presence of solid. Hence 

                       (5) 

In solid-liquid fluidization, minimum fluidization velocity is determined from the plot of 

pressure drop across the bed versus the liquid velocity as shown in Fig. 3. The figure indicates 

that the pressure drop increases with velocity (A→B) and ultimately reaches a constant pressure 

drop zone (B→C). This (A→B) zone is called static bed zone. The (B→C) zone is the fluidised 

bed zone. The point of intersection of the increasing part of the curve and the constant region 

represents the minimum fluidization velocity. 

4.2 Effect of different parameters on the minimum fluidization velocity 

The plot of ΔP versus Ul for different system are shown in Figs. 4–6. Fig. 4 indicates that 

as the particle diameter increases, the minimum fluidization velocity also increases at constant 

tube diameter and SCMC concentration. The Fig. 5 shows the variation of minimum fluidization 

velocity with the SCMC solution concentration and it is observed that Umf decreases with an 

increase in SCMC concentration. The decrease of minimum fluidization velocity is due to 

decrease in Archimedes number with the increase in viscous force resulting from the increase of 

liquid viscosity, i.e., pseudoplasticity increases with increase in SCMC concentration. Fig. 6 

shows the variation of column diameter on the minimum fluidization velocity and Fig. 7 

indicates the variation of minimum fluidization velocity with the column diameter and both 

a oP P P   



  

figures indicates that the minimum fluidization velocity is independent of column diameter. 

Wicke and Hedden (1952) pointed out that if the ratio of dc/dp ≥ 10 the wall effect is negligible 

for fluidization. In the present case this ratio is much higher hence there is no wall effect on the 

fluidization.   

At the minimum fluidization condition the particles are away from each other and move 

in upward direction due to fluid velocity. As particles move in upward direction, the fluid just 

above the particles moves in the downward direction from all sides. This upward and downward 

motion of the fluid across the particle effectively reduces the fluid velocity in the vicinity of the 

particles and is applicable throughout the bed. Hence, pseudoplasticity of the liquid increases in 

the vicinity of the solid particles, thus the viscosity also increases and hence minimum 

fluidization velocity decreases. As the sphericity of the particle decreases the fluid motion in 

downward direction is more compared to that of the spherical particle, i.e., . Pittyjohn and 

Christiansen (1948) observed that the particles of lower sphericity reduces the settling velocity 

so increases the minimum fluidization velocity and it is only true for solid-Newtonian fluids 

system. 

4.3 Empirical correlation for minimum fluidization velocity  

 The minimum fluidization velocity, Umf , in liquid-solid fluidised beds is a function of 

physical and dynamic variables of the system. The following factors affect the minimum 

fluidization velocity, 

1.   Diameter: particle, dp and the column, dc 

2. Physical properties of the liquid: viscosity, eff  , density, l 

3. Physical properties of the solid: density p and sphericity,  

 4. Acceleration due to gravity: g 

1 



  

Hence, the minimum fluidization velocity can be expressed as,  

 , , , , , ,mf p c eff s lU f d d g                                    (6) 

The use of dimensional analysis the above functional relationship can be reduced to the      

following functional relationship (combining the variable), 

Re , ,c
mf

p

d
f Ar

d


 
   

 

                                          (7) 

The multiple linear regression (MLR) analysis suggested the following correlation,   

0.905 0.0494 0.589 0.091 1.300 0.332Re 0.0204 ( )c
mf

p

d
Ar

d
  

                                  (8) 

For,     0.00071 ≤ Remf ≤  1.02297 

0.0012 ≤ Ar  ≤ 23.8925 

23.15271 ≤ (dc/dp) ≤ 171.5613  

0.5015  ≤ ϕ ≤0.7965 

The value of Remf as predicted by Eq. (8) have been plotted against the experimental values as 

shown in Fig. 8. The correlation coefficient and the variance of estimate of the above equation 

are 0.9856 and 0.0336 respectively, for a t value of 2.00 for 50 degree of freedom at 0.05 

probability level and 95% confidence range (Volk, 1958).   

4.4 ANN performance 

 The analysis is performed using gradient descent (GD) and Levenberg Marquardt (LM) 

training algorithms. Table 3 gives the range of data for ANN analysis. For the hidden layer of the 

GD network the value of learning rate (α) is 0.7 and that of momentum coefficient (μ) is 1. The 

input variables are nʹ, Kʹ, density of liquid, ρl, sphericity of particle,  , particle diameter, dp and 



  

column diameter, dc. The output variable is the minimum fluidization velocity, Umf. There is a 

total of 54 data points. 

 The parameter for optimization has been the minimum cross-validation MSE value 

reached during training and is represented in Table 4. The optimum number of hidden layer 

nodes corresponding to the respective transfer functions (TF’s) is also listed in Table 5. These 

optimum numbers of nodes of the hidden layer is used for final analysis. Fig. 9 shows the 

variation of minimum value of cross-validation MSE with the number of epochs for the LM 

algorithms. The same process applied for the training with GD algorithm.  

 Fig. 10 represents the cross-validation curve for training with the GD algorithm. From the 

curve the minimum MSE can be seen at the maximum allotted 32000 epochs for TFs I, III and 

IV. For TF II it can be said that the cross-validation MSE reaches its minimum before 32000 

epoch mark. However, the limitation of the software (Neurosolution 5.07) cannot permit the 

training to continue beyond 32000 epochs. 

 Fig. 11 represents the cross-validation curve for analysis with the LM algorithm. From 

the curve the minimum MSE's are observed. From the Fig. 11 it can be observed that for TF I to 

TF IV the horizontal straight line indicates non-improvement of MSE value for 100 consecutive 

epochs. The abrupt stopping of training for all the transfer functions can be observed before 

reaching the allotted 1000 epoch as scheduled. In this case the stopping criterion has been based 

on the improved capacity of the training within 100 epochs. For all the cases the training stopped 

due to the application of stopping criterion. 

 Table 5 presents the values of AARE, SD, MSE and cross-correlation coefficient (R) 

related to the analysis for final prediction. Table 5 also confirms the excellent result, i.e., the 

closeness of data. The closeness of data demands χ² test for drawing conclusion. The χ² test 



  

confirms that the transfer function 4 with 7 processing elements (optimum number) give the best 

result using LM algorithm. The excellent correlation is evident from the Fig. 12, which is the 

plot between experimental and predicted values of minimum fluidization velocity. 

 Considering the extremely low values, i.e., 0.005155 for AARE, 0.003659 for SD, 1.59 × 

10
-8

 for MSE and also the R value of 0.999968 suggest that the proposed ANN modelling have 

been very successful. Therefore, the success of this ANN modelling negates the thought of 

restructuring this proposed ANN structure. 

4.5 Comparison of the different method 

 Chhabra (1993) compared the available correlations (Yu et al., 1968; Mishra et al., 1975; 

Brea et al., 1976; Kumar and Upadhyay, 1981; Kawase and Ulbrecht, 1985; Jaiswal et al., 1992; 

Machač et al., 1993) and presented high absolute mean average error (28 – 58%). This result was 

unacceptable. Table 6 presents the absolute mean average error for the minimum fluidization 

velocity by different correlation. The absolute mean average error is defined as 

, ,

1
100%mf Expt mf CalAE U U X

N
                 (9) 

The conventional model, i.e., multiple linear regression, is to recognize parameters that affect the 

object parameter, whereas in ANN models, the possible interpretation of relationships between 

parameters are not possible. Model performance has been assessed by using correlation 

coefficient. The correlation coefficient for MLR model and best ANN model are 0.9856 and 

0.999968 respectively and the ANN model also gives the minimum deviation (Table 6). Hence 

ANN model has slightly higher prediction accuracy. Similar results are also obtained in the 

different fields of ANN application (Baker and Richards, 1999; Elhag et al., 2006; Herzag, 2006; 

Bandyopadhyay and Chottapadhyay, 2007, Youn and Gu, 2010; Thongboonnak and Sarapirome, 

2011; Laxmi and Kumar, 2011; Ayooubi and Sahrawat, 2011; Mehnatkesh et al., 2012, Shi et al., 



  

2013; Tosun, et al., 2016, Heddam, 2016). Youn and Gu (2010) reported that ANN gives better 

accuracy than linear regression for small dataset. 

5. Conclusion  

The hydrodynamic characteristics of normal fluidised bed have been experimentally investigated 

and fluidization with non-Newtonian pseudoplastic liquids using sand has been studied. The 

minimum fluidization velocity increases with the increase in particle diameter but decreases with 

increase in the pseudoplasticity of the liquid. It is independent of the column diameter. It 

decreases with decrease in the sphericity of the sand particle. Empirical correlation has been 

developed to predict the minimum fluidization velocity as a function of physical and dynamic 

variables of the system. Statistical analysis suggests that the correlation is of acceptable 

accuracy. Successful ANN modelling has also been established. 
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d, D diameter, m 
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AARE Average Absolute Relative Error
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  , dimensionless 

Greek letters 

α          learning rate in GD algorithm  

ε          voidage, dimensionless 

ρ          density, kg/m
3
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   Sphericity of the particle, dimensionless 

μ viscosity, kg-m/s 

μ          momentum coefficient in GD algorithm 

2  , dimensionless 

  , dimensionless 

ΔP pressure drop, N/m
2 

Subscript 

a with solid 

c column 

i species 

l liquid 

o solid free 

p particle  

t terminal velocity 

mf minimum fluidization 

eff effective 
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Table 1 Physical property of the sand particle 

Particle 

size 

mesh 

Average particle 

diameter 

dp × 10
3
 

m 

Sphericity 

 

Particle 

density 

ρs 

kg/m
3
 

-30+36 0.538 0.7965 2650 

-25+30 0.651 0.7285 2650 

-20+25 0.774 0.6900 2650 

-16+20 1.0155 0.5900 2650 

-12+16 1.435 0.5610 2650 

-8+12 2.03 0.5015 2650 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Table 2 Physical properties of the SCMC solutions 

Concentration 

of SCMC 

kg/m
3
 

Flow 

behavior 

Index 

n
/ 

Consistency          

index 

K
/
 

/ 2/nNs m  

Density 

ρl 

kg/m
3
 

0.4 0.7443 0.1222 1002.13 

0.6 0.6605 0.3416 1002.87 

0.8 0.6015 0.7112 1003.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Table 3 Range of the experimental data 

 

Measurement type Range 

Input 

parameters 

n
/ 

0.6015 to 0.7443 

K
/
 (

/ 2/nNs m ) 0.1222 to 0.7112 

Density of liquid, ρl (kg/m
3
) 1002.13 to 1003.83 

Sphericity, ϕ  0.5015 to 0.7965 

Particle diameter, dp (m) 0.000538 to 0.00203 

Column diameter, dc (m) 0.047 to 0.0923 

Output 

parameter 
Minimum fluidization velocity, Umf (m/s) 0.0019 to 0.039 

Total number of data points 54 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

Table 4 Optimum numbers of processing elements in the hidden layer and the minimum MSE for 

cross-validation for four different transfer functions 

 

Transfer 

function 

in hidden 

layer 

Algorithm 

Optimum 

number of 

processing 

elements 

minimum 

MSE for 

cross-

validation 

TF I 
GD 6 9.057 × 10

–6
 

LM 7 5.146 × 10
–6

 

TF II 
GD 6 1.524 × 10

–5
 

LM 9 9.558 × 10
–5

 

TF III 
GD 6 4.409 × 10

–5
 

LM 24 2.609 × 10
–4

 

TF IV 
GD 3 8.040 × 10

–5
 

LM 7 7.251 × 10
–7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

Table 5 Performance of the different algorithms for prediction of bed height by the optimized 

neural network 

 

Transfer 

function in 

hidden 

layer 

Measurement  

type 

Algorithm 

Gradient 

descent 

Levenberg-

Marquardt 

TF I 

AARE 0.016457
 

0.005211
 

SD (σ) 0.012262
 

0.002569
 

MSE 3.18 × 10
–8 

2.07 × 10
–8

 

CCC (R) 0.999905 0.999945 

χ² 1.45 × 10
–5

 3.74 × 10
–6

 

TF II 

AARE 0.069486 0.046399 

SD (σ) 0.137254 0.022432 

MSE 1.44 × 10
–7

 4.46 × 10
–7

 

CCC (R) 0.999535 0.998603 

χ² 3.77 × 10
–4

 1.41 × 10
–4

 

TF III 

AARE 0.028462 0.268571 

SD (σ) 0.015389 0.446001 

MSE 1.42 × 10
–7

 5.68 × 10
–6

 

CCC (R) 0.999284 0.989188 

χ² 5.28 × 10
–5

 –0.045460 

TF IV 

AARE 0.026649 0.005155 

SD (σ) 0.036299 0.003659 

MSE 1.49 × 10
–7

 1.59 × 10
–8

 

CCC (R) 0.999493 0.999968 

χ² 5.69 × 10
–5

 2.95 × 10
–6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

Table 6 Performance of correlations based on Umf 

Method Correlation AE (%) 

Aghajani et al. 

(2004)  
2

Re 33.7 0.0408 33.7mf Ar    1.31 

Eq (7) 
0.905 0.589 1.300Re 0.0204 ( )t

mf

p

d
Ar

d
  1.998 × 10

-3 

ANN 

LM algorithm with transfer 

function TF IV with 7 processing 

elements in hidden layer 

8.168 × 10
-3 

 

 

 

 

 

 

 

 

 
 

  



  

Research highlight 

 Non-spherical particles were studied in fluidization using non-Newtonian pseudoplastic 

liquids 

 Variation of operating variables were investigated 

 Minimum fluidization velocity decreases with decrease with sphericity of the particle  

 Empirical correlation to predict the minimum fluidization velocity as a function of 

physical and dynamic variables of the system were proposed 

 Artificial neural network modelling successfully predict the minimum fluidization 

velocity 
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