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ABSTRACT: This paper presents a computationally efficient and highly accurate numerical method for analyzing
the elastic buckling of columns and plates. The proposed generalized differential quadrature method (GDQM)
proposes a simple numerical approach to determine the weighting coefficients for derivative approximations
without any restriction on the choice of grid points. It will be shown here that the GDQM is very easy to use
and implement numerically. During the solution procedure, different boundary conditions can be easily incor­
porated. Applications of the GDQM to the buckling analysis of columns and plates have shown that accurate
critical buckling loads can be achieved using considerably fewer grid points; thus, less storage and computing
time are required during computation. The numerical results obtained, wherever possible, are compared with
those from existing literature in order to verify their accuracy.

INTRODUCTION

There is a great deal of research on the buckling analysis
of columns and plates. Apart from some simple structure
shapes and boundary conditions, numerical methods must be
used in the analysis. The commonly used numerical techniques
such as the finite-element and finite-difference methods are
well developed. However, a large number of grid points are
usually required to obtain accurate solutions. Thus, they are
computationally expensive.

The differential quadrature method was first introduced by
Bellman and Casti (1971) and Bellman et al. (1972) for solv­
ing partial differential equations using considerably fewer grid
points. This method is based on the idea that the derivative of
a function with respect to a coordinate direction can be ex­
pressed as a weighted linear sum of the function values at all
mesh points along that direction. However, there are some ma­
jor drawbacks to the original differential quadrature method
that restrict its wide applications. These drawbacks are related
to the determination of the weighting coefficients for the par­
tial derivative approximation. In the literature, two approaches
have been used to obtain the weighting coefficients. One ap­
proach is to solve a set of algebraic equations, which satisfy
exactly the linear constrained relation for all polynomials of a
degree less than or equal to N - 1. This set of equations has
a unique solution because the matrix elements are composed
of a Vandermonde matrix. Unfortunately when the number of
grid points N is large, the Vandermonde matrix becomes ill­
conditioned and the inversion of this matrix becomes difficult.
Moreover, a set of N X N linear algebraic equations has to be
solved for each order derivative even when the equations are
solvable. The other approach is to compute the weighting co­
efficients by a simple algebraic formula, but with the coordi­
nates of grid points chosen as the roots of an Nth-order shifted
Legendre polynomials. This means that if N is specified, the
distribution of grid points is fixed even for different physical
problems or different boundary conditions. This also creates a
major drawback and restricts the application of the differential
quadrature method, since some practical problems may need
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more grids near the boundary, while some others may not.
Obviously, both methods originally proposed to determine the
weighting coefficients in the differential quadrature method
have some major drawbacks. This may be one reason why the
differential quadrature method is not widely used.

To overcome these drawbacks, a generalized differential
quadrature method (GDQM) is introduced here (Shu and Rich­
ards 1992; Du et a1. 1994). In the GDQM, a simple algebraic
formula is obtained to calculate the weighting coefficients of
the first-order derivative without any restriction on the choice
of the grid points. Further, a recurrence relationship was de­
rived to determine the weighting coefficients for the second­
and higher-order derivatives. For the multidimensional cases,
each direction can be treated individually, in a manner similar
to the one-dimensional (lD) case.

As a result, the GDQM has overcome the possible ill-con­
ditioning problem of the original differential quadrature in ob­
taining the weighting coefficients. In addition, it avoids solv­
ing for the weighting coefficients from a set of algebraic
equations. The expressions for the determination of weighting
coefficients are so compact and simple that they can be easily
implemented in formulating and programming because of their
recurrence feature. This method is not only computationally
efficient, but also can easily handle various boundary condi­
tions. All these features are convenient, to the generalized dif­
ferential quadrature, for solving practical problems in struc­
tural analysis. Thus, the method is potentially applicable to a
wide class of structural problems.

Similar simple algebraic formulas were also obtained by
Quan and Chang (1989) to calculate the weighting coefficients
of the first- and second-order derivatives. More recently, an
important development was published in a paper by Bert et a1.
(1993). The paper shows that the weighting coefficients for
the first-order derivative can be obtained from the differenti­
ation of Lagrangian polynomials, and that a recurrent simple
matrix relationship can be used to determine the weighting
coefficients for the second- and higher-order derivatives. The
GDQM differs from the approach presented by Bert et a1.
(1993) in two aspects. First, the approach by Bert et a1. obtains
the weighting coefficients Cjj (i.e. i =j) for the first-order de­
rivative by directly differentiating the Lagrangian polynomials,
while the GDQM presents a straightforward way to calculate
these weighting coefficients. Second, the weighting coeffi­
cients of higher-order derivatives are calculated by matrix mul­
tiplications in the approach presented by Bert et a1. (1993),
which requires N multiplying operations to obtain each
weighting coefficient. In the GDQM introduced here, the de­
termination of the weighting coefficients of higher-order de­
rivatives requires fewer operations as compared to the matrix
multiplication approach, especially when N is large.
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Thus, from (6), the coefficient c::) can be obtained from
c~\}(i * j). That is

Let (1) be satisfied by all the test functions gi(X), then the
following simple algebraic expression can be obtained to de­
termine the weighting coefficients for the first-order derivative:

(1) M(')(x,) &. ~ • 5
c" = 10rl~J (a)

~ (Xi - Xj)' M(')(xj )

(I) M(2)(X/) & •• 1 2 N (5b)
c II = 2. M(I)(Xi) ,or I, J = , , ... ,

Eq. (5) is a simple expression for computing c:;) without
any restriction on the choice of the coordinates of grid points
XI' It is obvious that once the grids (Xi) are chosen, M(1)(x;) can
be easily obtained from (4). Hence, c~l) can be determined for
i * j. However, for c::>, the determination of the coefficients
is based on the calculation of the second derivative of M(x),
which is slightly more difficult to obtain. Instead of using (5b),
a more convenient relationship is obtained and used to cal­
culate c:? By using the Taylor series expansion, the following
relationship exists for c~\}:

In this paper, the proposed GDQM is applied to solve the
buckling problems of plates and columns with internal support
and various flexural rigidities. It will be shown that accurate
results can be obtained by using considerably fewer grid
points; thus, it needs considerably less computing effort. The
applicability and accuracy of the GDQM are demonstrated
throughout the numerical examples.

GENERALIZED DIFFERENTIAL QUADRATURE
METHOD

The differential quadrature method (DQM) is based on the
idea that the partial derivative of a function, with respect to a
space variable at a given discrete point, can be expressed as a
weighted linear sum of the function values at all discrete points
in the domain of that variable.

Here, a one-dimensional function u (x, t) is taken as an il­
lustrative example. For multidimensional cases, each dimen­
sion is treated individually, similar to that in the ID case. A
differential quadrature approximation of the mth-order deriv­
ative of the function u (x, t) at the ith discrete point on a grid
is given by

N

U~m)(XI' t) = .2: c~m)u(Xj, t) for i = 1, 2, ... , N,
j=l

N

2: C~I) = 0 for i = 1, 2, ... , N
}-I

(6)

N = number of grid points; and M(l)(x) = first derivative of
M(x), which is given by

where U~m)(XI' t) =mth order derivative of u(x, t) with respect
to x at XI; N =number of discrete grids; and c~m) =weighting
coefficients for the mth-order derivative approximation.

The most important part of the differential quadrature tech­
nique is the determination of the weighting coefficients for any
order partial derivative. As mentioned in the introduction, two
existing approaches have been used to determine the weighting
coefficients in the literature. Both of them have some draw­
backs. The first approach may encounter an ill-conditioning
problem when the number of grid points becomes large. To
quantify this ill-conditioning problem, weighting coefficients
have been calculated for equally spaced grids for various num­
bers of grid points N. Numerical calculations showed that the
maximum number of grid points that can be used is N = 22.
Once the grid number is greater than 22, the set of linear
algebraic equations is found to be singular and cannot be
solved. The second approach imposes restriction on the choice
of the grid points. This leads to a major restriction on this
method to problems in structural analysis, since all sorts of
boundary conditions could appear and different mesh grids
may be needed for different boundary conditions and structure
geometry.

In this section, a GDQM is introduced to overcome the
aforementioned drawbacks (Shu and Richards 1992; Du et al.
1994). To find a simple algebraic expression to calculate the
weighting coefficients without restricting the choice of grid
meshes, let us choose the Lagrange interpolated polynomial as
the set of test functions g(x)

M(x) .
gl(X) = (I) forl=I,2, ... ,N (2)

(x - XI)' M (x,)

(m) [ (m-I) C;;-I) ] . .
c ij =m' CII 'Cij--- forl*J,m=2,3, ... ,N-l,

Xi - xj

Similarly, the weighting coefficients for second- and higher­
order derivatives can be determined by replacing the test func­
tions in (2) into (1). Consequently, a recurrence relationship
has been found for the mth-order weighting coefficients c:t

(8)

(9)

(7)
N

(I) - ~ (I) f, . - 1 2 Nc jj - - L.i C Jj or 1 - , , ••. ,

}=I. i.i

N

(m) __ ~ (m) f, . - 1 2 Neli - L.i C ij or 1 - , , ••• ,
j_l. j;ti

i, j = 1,2, ... , N

Therefore, (8) and (9), along with (5a) and (7), give a con­
venient and general form to determine the weighting coeffi­
cients for the first through N - Ith order derivatives. There
is no restrictions on the coordinates of the chosen grid points.
There is no need to solve for the weighting coefficients from
a set of algebraic equations. Further, this set of expressions
for the determination of the weighting coefficients is compact
and simple and very easy to be implemented in formulating
and programming because of its recurrence feature. All these
features make it convenient for the generalized differential
quadrature for solving practical problems in structural analysis.

Extension of the method to two-dimensional problems is
straightforward. Each dimension can be treated individually as
a ID case, assuming there are N. grid points in the x-direction,
x .. ... , XNxo and Ny grid points in the y-direction, y" ... , YNy'

The nth-order partial derivative of u(x, y) with respect to x
and the mth-order partial derivative of u(x, y) with respect to
y at Xi' Yj can be discretized as

where c<;;') = weighting coefficients for the mth order deriva­
tive, which can be derived from the (m - l)th order weighting
coefficients C ~m- \).

The calculation of c :~) can be obtained from the relationship
similar to that in (7), that is

(l)

(3)

N

M(x) = TI (x - Xj)
}-I

m = 1, 2, ... , N - 1

where

N

M(I)(Xi) = TI (x, - Xj)
}-1. j,u

(4)

Nx

U:")(Xi' Yj) =2: c:;)u(x" y), n = 1, ... , Nx -

,,",I

(lOa)
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TABLE 1 Convergence of GDQM for Columna at X•• 1

Pinned or fixed

FIG. 1. Column with an Internal Support

P

!

(16a,b)
N

WI = 0; 2: e\?'~ = 0
J-I

N N PL2

W - o· ~ e(2) •W - o· "1"'T~ e(2) W - -- W
"b-'£..t N.) )- ,C1£..t") )- El N

J-I J-I 0
(l6e-e)

1. Fixed-pinned (F-P)

[A]{W} = A[B]{W} (l3)

where A = -PL2/Elo; and {W} = [Wh W2, ... , WNr:
The buckling load can be obtained by solving the foregoing

eigenvalue problem together with appropriate boundary
conditions.

Two different sets of boundary conditions are considered
here. The first set is a column with a fixed base and an internal
pinned support. The second set is a column with a pinned base
and an internal pinned support (Fig. 1). The boundary condi­
tions for each case are as follows:

Fixed base-internal pinned (F-P)

W(O) = 0; W'(O) = 0 (14a,b)

W(Xa ) =0; W"(1) =0; EIW"(Xa ) = -PL2W(1) (14e-e)

Pinned base-internal pinned (P-P)

W(O) = 0; W"(O) = 0 (l5a,b)

W(Xa ) =0; W"(I) =0; EIW"(Xa ) = -PL2W(l) (15e-e)

where ()' = derivative with respect to the spatial coordinate
X; and Xa = location of the internal support (Fig. 1).

Using the GDQM, the boundary conditions for each case
can be discretized as

(I-X,.)L

(EI)
x

GOO GOO Goa
Boundary (N= 7) (N= 9) (N =11)

(1 ) (2) (3) (4)

Pin-pin 10.061 9.8642 9.8697
Fix-pin 19.778 20.255 20.187
POp [EI =(l + X)] 14.478 14.518 14.511
pop [EI =(1 + X)2] 19.709 20.810 20.805
F-P [EI =(l + X)] 40.376 29.142 29.441
F-P [Ei =(l + X)2] 49.295 43.798 41.968

or

APPLICATION OF GDQM TO COLUMN BUCKLING

for i = I, ... , Nx, j = I, ... , Ny (lOb)

The weighting coefficients e:;) and eJ;) can be detennined by
using (5a), (8), and (9) for x-direction and y-direction dis­
cretization, respectively.

(l7a,b)

N

~ e(2)·W = 0
£..t 1) )
J-I

2. Pinned-pinned (P-P)

N N pU
W =o· ~ e(2)·W =0'1!1~ e(2)W =-- W

nb , £..t N.) ) , £..t "l) El N
J-I J-I 0

(l7e-e)

The buckling load for each set of boundary conditions can
be obtained by combining the discretized governing (12) with
the discretized boundary condition (16) or (17), respectively.
To impose the boundary conditions on the governing (12),
first (16a-d) or (17a-d) are used to solve for Wh W2 , W"b'
WN in terms of the remaining variables W3, W4, ... , W"b-I'
Wnb-2, ... , WN.\. The expressions for Wh W2, W"b' WN in terms
of the variables W3, W4, ... , Wnb-h Wnb-2, ... , WN• 1 are then
replaced into (12) to eliminate the variables WI' W2, W"b' WN ,

and only the discretized equations at the points i = 3, 4, ... ,
nb-l, nb + I, ... , N - 1 from (12) are to be used. Eqs. (16e)
or (17e) for each boundary condition case can be taken into
account by substituting the equation for the discretized gov­
erning equation at the grid point (nb-l) in (12). Finally, the
buckling load of columns can be obtained by solving the ei­
genvalue problem of the remaining (N - 4) X (N - 4) matrix.

First, the convergence of this method is studied. The buck­
ling loads for a column with the internal support at Xa = 1 are
calculated for each base support case. For this special internal
support location Xa = I, (16e) or (17e) are no longer needed.
Thus, the boundary conditions are relatively simpler. Calcu­
lations are performed for columns of various flexural rigidity
distributions using a number of grid points. Results obtained
are presented in Table 1. The analysis is carried out by using
equal space grids. As observed, the convergence of the solu­
tion is excellent. Accurate results can be achieved by using

(lla)

m = 1, ... , Ny - 1

Ny

(m)( ) _ ~ (m) ( ).
U y Xi' Y) - £..t e)k U Xi, Yk ,

...1

This section presents the application of the GDQM to col­
umn buckling.

The governing equation of a column is given as

d
2
(d

2
W) d

2
W- EI- =-PL2 _

dX.2 dX.2 dX.2

d4W JET d3W dTET d 2W PL2d2W
1!1 dX.4 + 2 dX. dX.3 + dX.2 dX.2 = - El

o
dX.2 (lIb)

where X =x1L; W =w/L; L =length of the column; and EI =
EIIElo =nondimensionalized flexural rigidity.

On applying the generalized differential quadrature in (1) to
(11) at each discrete point on the grids, a set of algebraic
equations is obtained:

N dEl N dTET N
1!1~ e(4)·W + 2-~ e(3)·W + --~ e(2)·W
~ I)) dX. ~ I) ) dX.2 ~ I) )

PL2 N

= -- 2: e(2)·W·
Elo J-I I) } (12)

for i = I, 2, ... , N.
It can be written in a matrix form
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1.00.80.6

EI=(l+x)n

0.40.2
O'------L_L---'------Jl..-...J----l_-'------'-_-'----'
0.0

40

using a number of equal-spaced grid points. The results for
both base support cases are tabulated in Table 2. It is obvious
that more grid points have to be used to obtain accurate results
for columns with internal support due to the added free bound­
ary condition at the top end. Normally, 20 points are required
to obtain an accurate solution if equal-spaced grids are used.
This implies that an eigenvalue problem of a 16 X 16 matrix
has to be solved to extract the accurate buckling loads. The
computing time required for this case is less than 2 s on an
IBM compatible PC-486. The accuracy can be improved by
using nonuniform meshes with finer grids close to the bound­
aries. The results obtained using 13 nonuniform grid points
are also presented in Table 2. The nonuniformly spaced grid
points are chosen as X = 0.0,0.05,0.1,0.25,0.35,0.45, 0.5,
0.55, 0.6, 0.7, 0.9, 0.95, 1.0. Using only 13 points, we can
obtain very good results. The computing time on an IBM com­
patible PC-486 is less than 1 s because we only have to solve
an eigenvalue problem for a 9 X 9 matrix after imposing the
boundary conditions.

To demonstrate the accuracy of this method, results are ob­
tained for columns with a support located at Xa = I, for which
some analytical and approximate solutions are available for
comparison. The results are presented in Table 3 along with
the analytical and approximate solutions available in the lit­
erature. The comparison shows that accurate results can be
achieved by using considerably fewer grid points. For all the
cases shown, very accurate results can be achieved by using
just nine points. This means we only need to solve the eigen­
value problem of a 5 X 5 matrix. The computing time for all
these cases is less than 1 s on an IBM compatible PC-486.
Obviously, good accuracy can be achieved with a very small
computing effort.

Extensive calculations are finally performed to show the ef­
fect of the location of the internal support Xa on buckling loads
for various columns. The first one is for columns with a fixed
base. The second one is for columns with a pinned base. The
location of the internal support is varied from 0.1 to 1. Three

10

Xa

FIG. 3. Critical Loads of Fixed-Base Columns with Internal
Support for Various Support Locations X. and Flexural
Rigidities

"0 30
at
.Q
1ii
.~-.;:

0
() 20

0.2 0.4 0.6 0.8 1.0

F-P F-P p.p p.p
N uniform (1 + X)2 uniform (1 + X)2

(1 ) (2) (3) (4) (5)

11 9.1349 17.031 4.5741 9.5818
13 5.0223 11.402 4.3017 8.1556
15 3.9961 8.1674 4.4290 8.9427
17 4.6029 10.240 4.3820 8.6866
19 4.4006 9.6574 4.3960 8.7645
21 4.4683 9.8777 4.3895 8.7266
23 4.4636 9.8742 4.3903 8.7286
13 4.4524 9.9114 4.3956 8.6914

Nonuniform grid

Boundary GOO GOO
~ Exact Reference (N= 9) (N =11)
(1 ) (2) (3) (4) (5)

pop uniform 9.8696 (lang 9.9438 (Newberry 9.8642 9.8697
et aI. 1989) et aI. 1987)

pop (l + X) - 14.3 (Swenson 14.518 14.511
1952)

15.31 (Bert 1984)
pop (l + X)2 20.792 (Bleich 27.455 (Bert 20.810 20.805

1952) 1984)
Fix-pin uniform 20.142 (lang 20.497 (Newberry 20.255 20.187

et at. 1989) 1987)

TABLE 2. Convergence of GDQM for Columns at X. =0.5

TABLE 3. Comparison with Existing Results for Columns at
X.=1

Xa

FIG. 2. Critical Loads of Pinned-Base Columns with Internal
Support for Various Support Locations X. and Flexural
Rigidities

just nine points, for which only an eigenvalue problem of a 5
X 5 matrix has to be solved. The computing time on an IBM
compatible PC·486 for all these cases is less than I s.

The second part of the convergence study is to consider a
column with the internal support located at Xa =0.5. For this
support location, the boundary conditions are more complex
due to the added free boundary at the top end (Fig. 1). Again,
the buckling loads are computed for each base support case
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TABLE 4. Buckling Loads of Square Plat.s

TABLE 5. Comparison of Buckling Loads from FEM and GOQ

(22a)

(22b)

(24b)

(24a)

Nx Nx Ny Ny

~ (2)u, _ ~ (2lu, _ ~ (2lu, ~ (2)u, 0
£oJ Cit "'1;1 - £oJ CNt"'1;I - £oJ Cit rrlt = £oJCNt rrlk =
..1 ..I ..1 tool

~ ~ ~ ~

~ (nu, _ ~ (llw: _ ~ (I)u, ~ (Ilu, 0
£oJ Cit "'1;1- £oJ CNt 1;1- £oJ CU"'/I< =£oJ CNt"'lt =
.t-I "I ..I "I

CONCLUSIONS

for i = 1, 2, ... , Nx and j =2, 3, ... , Ny - l.
For a plate with all four edges simply supported (S-S-S-S),

the boundary conditions are

W(X, 0) = W(X, 1) = W(O, Y) = W(I, y) = 0 (23a)

a2w a2w a2w a2w
ay2 (X, 0) = ay2 (X, 1) = ax2 (0, Y) = ax2 (1, Y) = 0 (23b)

Applying GDQ (10) to the boundary conditions (23)

aw aw aw aw
ay (X, 0) = ay (X, 1) = ax (0, Y) = ax (1, Y) = 0 (21b)

Applying GDQ (10) to the boundary conditions (21)

for i = 1, 2, ... , Nx and j = 2, 3, ... , Ny - l.
Similarly, the buckling loads for rectangular plates can be

obtained by solving the eigenvalue problem in (20) together
with the appropriate boundary conditions in (22) or (24).

In the present analysis for rectangular plates, two different
sets of boundary conditions, with four edges clamped and four
edges simply supported, are considered. Numerical results are
obtained using a number of grid points to study the conver­
gence of the solution. The results are presented in Table 4
along with exact values for comparison. Good convergence of
the solutions are observed from the table. For the simply sup­
ported plate (S-S-S-S), 7 X 7 grid points can produce quite
accurate results. The results are obtained by solving an eigen­
value problem of a 9 X 9 matrix, for which the computing
time on a PC-486 is less than I s. For the clamped plate (C­
C-C-C), good results can be achieved by using 9 X 9 grid
points. This requires a solution of an eigenvalue problem of a
25 X 25 matrix. The computing time on a PC-486 is less than
2.5 s for this case.

Buckling loads for simply supported square plates, obtained
through the finite-element method and the generalized differ­
ential quadrature method, are also presented in. Table 5 for
comparison. The finite-element solutions from Zienkiewicz
(1977) and Allen and Bulson (1980) are obtained by using a
rectangular plate element. As observed, good result can be
obtained by using a 10 X 10 mesh in the finite-element
method. For the 10 X 10 mesh, the dimension of the resulting
system matrix is 243 X 243 for plates with four edges simply
supported. For the 6 X 6 mesh, the dimension of the resulting
system matrix is 75 X 75 for plates with four edges simply
supported. For the 6 X 6 mesh and 8 X 8 mesh shown in the
table, the dimension of the resulting system matrix are 75 X
75 and 147 X 147, respectively. On the other hand, accurate
results can be achieved by using 9 X 9 grid points in the GDQ.
The dimension of the resulting system matrix in the GDQ
solution is only 25 X 25 for this case. The required computing
time on a PC-486 is less than 2.5 s. The dimension of the
resulting system matrix for 7 X 7 grid points is only 9 X 9.
The required computing time is less than 1 s.

In this paper, a generalized differential quadrature method
was introduced to study the column buckling with an internal
support and varying flexural rigidity and the buckling prob-
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x

y

2 3 • 5 Nx=7

Error Error Error
Boundary Exact 7x7 (%) 9x9 (%) 11 x 11 (%)

(1 ) (2) (3) (4) (5) (6) (7) (8)

5-5-5-5 39.4784 39.8652 0.98 39.4678 0.027 39.4786 0.00
C-C-C-C 99.3869 94.2733 5.1 97.1653 2.2 99.8377 0.45

FEM mesh 6 x 6 8x8 10 x 10 Exact
(1 ) (2) (3) (4) (5)

FEM result 38.3633 38.8173 39.0838 39.4784
GDQ grid 7 x 7 9 x 9 llxll -
GDQ result 39.8652 39.4678 39.4786 -

APPLICATION OF GDQM TO BUCKLING OF PLATES

FIG. 4. Grid of Rectangular Plat.

NxN 2

= D
xa L C:;lWI;I i = 1, 2, ... , Nx, j = I, 2, ... ,Ny (20)

.t-I

types of flexural rigidity distribution EI of columns are con­
sidered, i.e., EI = (I + Xr, where n =0, I, and 2. The results
are presented in Figs. 2 and 3 for pinned-base and fixed-base
columns, respectively. The results show that the critical load
value increases significantly with the increase of Xa and flex­
ural rigidity EI.

Ny=7

6

5

4

3

2

1

The governing equation for the buckling of a thin rectan­
gular plate under uniaxial load Nx is given as

a4w a4w a4w a2w
D- + W-- + D-=N - (18)

ax4 ax2al al x ax2

where D = flexural rigidity of the plate.
On nonnalizing (18), it becomes

a4w a4w a4w N,.a2 a2w
ar + 2~2 aX2ay2 + ~4 aY = D ax2 (19)

where ~ = alb; X = x1a; Y = ylb; a = length of the plate; and
b =width of the plate.

By applying the generalized differential quadrature approx­
imation (10) to (19) at each discrete point on the grid (Fig.
4), we have

where Nx, Ny =number of grid points along the X-direction
and Y-direction, respectively (Fig. 4).

The boundary conditions for a plate clamped on all four
edges (C-C-C-C) are

W(X, 0) = W(X, 1) = W(O, Y) = W(1, Y) = 0 (21a)

J. Eng. Mech. 1996.122:95-100.
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lems of rectangular plates. This method proposes a very simple
algebraic formula to determine the weighting coefficients re­
quired by the differential quadrature approximation without
restricting the choice of mesh grids. Numerical calculations
showed that accurate results can be achieved using consider­
ably fewer grid points and much less storage and computing
time. The solution procedures and programming are very sim­
ple and easy. In addition, boundary conditions are easily in­
corporated into the solution procedure. It can be concluded
that due to its superb accuracy, efficiency, and convenience,
GDQM has great potential for wide use in structural analysis.

APPENDIX I. REFERENCES

Allen, H. G., and Bulson, P. S. (1980). Background to buckling. McGraw­
Hill Book Co., Inc., Berkshire, England.

Bellman, R. E., and Casti, J. (1971). "Differential quadrature and long­
tenn integration." J. Math. Anal. and Applications, Vol. 34, 235-238.

Bellman, R. E., Kashef, B. G., and Casti, J. (1972). "Differential quad­
rature: a technique for the rapid solution of nonlinear partial differential
equations." J. Computational Phys., Vol. 10, 40-52.

Bert, C. W. (1984). "Improved technique for estimating buckling loads."
J. Engrg. Mech., ASCE, Vol. 110, 1655-1665.

Bert, C. W., Wang, X., and Striz, A. G. (1993). "Differential quadrature
for static and vibration analyses of anisotropic plates." Int. J. Solids
and Structures, Vol. 30, 1737-1744.

Bleich, F. (1952). Buckling strength of metal structures. McGraw-Hili
Book Co., Inc., New York, N.Y.

Du, H., Lim, M. K., and Lin, R. M. (1994). "Application of generalized
differential quadrature method to structural problems." Int. J. Numer.
Methods in Engrg., Vol.. 37, 1881-1896.

Jang, S. K., Bert, C. W., and Striz, A. G. (1989). "Application of differ­
ential quadrature to static analysis of structural components." Int. J.
Numer. Methods in Engrg., Vol. 28,561-577.

Newberry, A. L., Bert, C. W., and Striz, A. G. (1987). "Non-integer-

100 I JOURNAL OF ENGINEERING MECHANICS I FEBRUARY 1996

polynomial finite element analysis of column buckling," J. Struct.
Engrg., ASCE, Vol. 113, 873-878.

Quan, J. R., and Chang, C. T. (1989). "New insights in solving distrib­
uted system equations by the quadrature method-I analysis." Compo
and Chemical Engrg., Vol. 13, 779-788.

Shu, C., and Richards, B. E. (1992). "Application of generalized differ­
ential quadrature to solve two-dimensional incompressible Navier­
Stokes equations," Int. J. Numer. Methods in Fluids, 15,791-798.

Swenson, G. W. Jr. (1952). "Analysis ofnonunifonn columns and beams
by a simple D.C. network analyzer," J. Aeronautical Sci., Vol. 19,
273-276.

TImoshenko, S., and Woinowsky-Krieger, S. (1959). Theory ofplates and
shells, 2nd Ed. McGraw-Hili Book Co., Inc., New York, N.V.

Wang, C. M., and Liew, K. M. (1991). "Buckling of columns with over­
hang," J. Engrg. Mech., ASCE, 117(11),2492-2502.

Zienkiewicz, O. C. (1977). The finite element method, 3rd ed. McGraw­
Hill Book Co., Inc., New York, N.Y.

APPENDIX II. NOTATION
The following symbols are used in this paper:

cijm) = weighting coefficient for the mth order derivative ap-
proximation;

EI = flexural rigidity of column;
!i!P = reference flexural rigidity of column;
Elo = nondimensionalized flexural rigidity;

L = length of column;
N = number of grid points;
P = axial load acting at the end of column;

u (x, t) = a one dimensional function;
u~m)(x, t) = mth order derivative of u(x, t) with respect to x;

W = nondimensionalized transverse deflection;
w = transverse deflection of column;
X = nondimensionalized coordinate;

X. = location of internal support of column; and
x = coordinate system.
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