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This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams rein-
forced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are
assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs)
distributions including uniform and three types of functionally graded distributions of CNTs through the
thickness are considered. The rule of mixture is used to describe the effective material properties of the
nanocomposite beams. The governing equations are derived through using Hamilton’s principle and then
solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical
buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of
several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness
ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load
are investigated. The results indicate that the above-mentioned parameters play a very important role on
the free vibrations and buckling characteristics of the beam.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Exceptional electronic and mechanical properties of carbon
nanotubes, such as the extremely high elastic modulus, tensile
strength, aspect ratio and low density, make them excellent
candidate for the reinforcement of polymer composites [1e4]. The
mechanical properties of carbon nanotube reinforced composites
(CNTRCs) have been extensively investigated experimentally,
analytically and numerically. Hu et al. [5] evaluated the macro-
scopic elastic properties of carbon nanotube-reinforced composites
through analyzing the elastic deformation of a representative
volume element under various loading conditions. Using molecular
dynamics (MD), Han and Elliott [6] simulated the elastic properties
of polymer/carbon nanotube composites. Wan et al. [7] investi-
gated the effective moduli of the CNT reinforced polymer
composite, with emphasis on the influence of CNT length and CNT-
matrix interphase on the stiffening of the composite. These
researches demonstrated that the incorporation of nanotubes in
the polymer matrices can lead to significant enhancements in the
composite properties even at very low volume fractions of CNTs. In
actual structural applications, CNTRCs, as a type of advanced
. Eng. Dept., Razi University,
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material, may be incorporated in the forms of beams, plates or
shells as structural components. It is thus important to explore
mechanical responses of the structures made of CNTRC. Wuite and
Adali [8] found that the stiffness of CNTRC beams can be improved
significantly by the homogeneous dispersion of a small percentage
of CNTs. Vodenitcharova and Zhang [9] investigated the pure
bending and bending-induced local buckling of CNTRC beams.
However, the experimental and numerical studies concerning
CNTRCs have shown that distributing CNTs uniformly as the rein-
forcements in the matrix can only achieve moderate improvement
of the mechanical properties [10,11]. This is mainly due to the weak
interface between the CNTs and the matrix where a significant
material property mismatch exists.

Shen [12] for the first time suggested that the nonlinear bending
behavior of CNTRC plates can be considerably improved through
the use of a functionally graded distribution of CNTs in the matrix.
Functionally graded materials (FGMs) are inhomogeneous
composites characterized by smooth and continuous variations in
both compositional profile and material properties and have found
awide range of applications in many industries [13e15]. Reviewing
the literature on FG-CNTRC, it is inferred that the literature is
mostly devoted to analysis of plates and shells made of FG-CNTRC
and relatively very few research works have been done on CNTRC
beams [16e22]. Ke et al. [23] analyzed the nonlinear free vibrations
of FG-CNTRC Timoshenko beams with symmetric and
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Nomenclature

Ecnt11 ; Ecnt22 ; Em elastic moduli for CNT and matrix
E11,E22 elastic moduli for a nanocomposite
Gcnt
12 ;G

m shear modulus for carbon nanotube and matrix
Vcnt , Vm volume fractions of carbon nanotube and matrix
Wcnt mass fraction of carbon nanotube
hi carbon nanotube efficiency parameteres
U, W axial displacement and transverse deflection
u0;w0;U;W axial displacement and transverse deflection of

any point in the mid-surface and their
dimensionless forms

L,b,h length, width and height of the beam
x,z,t,x,z,s cartesian coordinate variables, time and their

dimensionless forms
sxx,sxz normal stress and shear stress
A11,B11,D11,A55 beam stiffness components
a11,b11,d11,a55 dimensionless beam stiffness components
I1,I2,I3 inertia terms
I1; I2; I3 dimensionless inertia terms
KW, KS, kw, ks Winkler and shearing layer elastic coefficients

of foundation and their dimensionless forms
u,P dimensionless natural frequency and critical

buckling load
N number of grid points
Aij,Bij the weighting coefficients for the first and second

order derivative
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unsymmetrical distributions of CNTs along the thickness direction
using Ritz method and direct iterative technique. Recently, Yas and
heshmati [24] investigated dynamic analysis of functionally graded
nanocomposite beams reinforced by randomly oriented carbon
nanotube under the action of moving load by using EulereBernoulli
and Timoshenko beam theories and based on the
EshelbyeMorieTanaka approach.

This study presents the free vibrations and buckling analysis of
nanocomposite beams resting on elastic foundation. The nano-
composite beam is reinforced by the SWCNT and has different
boundary conditions. The CNTs are assumed to be uniformly or
functionally graded distributed through the thickness direction and
the material properties are estimated through a micromechanical
model in which the CNT efficiency parameter is estimated by
matching the elastic modulus of CNTRCs observed from the
molecular dynamics (MD) simulation results with the numerical
results obtained from the rule of mixture. Theoretical formulations
based on Timoshenko beam theory are used to account transverse
shear deformation and rotary inertia. The generalized differential
quadrature method is used to solve the governing equations of
motion to obtain the natural frequencies and critical buckling load
of the CNTRC beams. One important parameter in the design of
composite pressure vessels and piping reinforced with CNTs is to
find and select suitable distribution of CNTs for maximum natural
frequency or critical buckling load. In this study we considered this
issue and found the effect of different types of CNTs distributions
for beam structure which can be extended for pressure vessels too.

2. Material properties of CNTRC beams

The uniform distribution (UD) and functionally graded distri-
butions (FGeL, FGe> and FGeX) of carbon nanotubes in the
thickness direction of the composite beams (z axis direction) are
shown in Fig. 1. In this figure the density of CNTs within the area is
constant and the volume fraction varies through the thickness of
the beam. We used an embedded carbon nanotube in a polymer
matrix. Thus there is no abrupt interface between the CNT and
polymer matrix in the entire region of the beam. It is assumed the
CNTRC beams are made of a mixture of SWCNTs and an isotropic
matrix. The rule of mixture is employed to estimate the effective
material properties of CNTRC beams. According to rule of mixture
model the effective Young’s modulus and shear modulus of CNTRC
beams can be expressed as [12]

E11 ¼ h1VcntEcnt11 þ VmEm (1a)

h2
E22

¼ Vcnt

Ecnt22
þ Vm

Em
(1b)

h3
G12

¼ Vcnt

Gcnt
12

þ Vm

Gm (1c)

where Ecnt11 , Ecnt22 and Gcnt
12 indicate the Young’s moduli and shear

modulus of SWCNTs, respectively. Em and Gm represent the corre-
sponding properties of the isotropic matrix. The CNT efficiency
parameters hi(i ¼ 1,2,3), are introduced in Eq. (1) to consider the
size-dependent material properties and will be calculated later by
matching the elastic moduli of CNTRCs predicted by the MD
simulations with the numerical results obtained from the rule of
mixture. Vcnt and Vm are the volume fractions for carbon nanotube
and matrix respectively which are related by Vm þ Vcnt ¼ 1. Simi-
larly, Poisson’s ratio y and mass density r of the CNTRC beams can
be expressed as:

y ¼ Vcnty
cnt þ Vmy

m ; r ¼ Vcntr
cnt þ Vmr

m (2)

where ycnt,ym are the Poisson’s ratios, and rcnt,rm are the densities of
the CNT and matrix, respectively. The different distributions of the
carbon nanotubes along the thickness direction of the nano-
composite beams depicted in Fig. 1 are assumed to be as follows:

UD� : Vcnt ¼ V*
cnt (3)

FG�L: Vcnt ¼
�
1þ 2z

h

�
V*
cnt (4)

FG� X : Vcnt ¼ 4
jzj
h
V*
cnt (5)

FG�> : Vcnt ¼ 2� 4
jzj
h
V*
cnt (6)

where V*
cnt is the volume fraction of CNTs that is calculated from:

V*
cnt ¼ Wcnt

Wcntþðrcnt=rmÞð1�WcntÞ
(7)

Wcnt is the mass fraction of CNTs
3. Theory and formulations

3.1. Equations of motion

The analyzed physical system is a CNTRC beam of length L, width
b, thickness h, with arbitrary boundary conditions along the x ¼ 0
and L edges, as shown in Fig. 2. The beam is resting on an elastic
foundationwhose supporting action is described by Pasternak-type

relationship p ¼ KwW � Ks
v2W
vx2

, in which p is the foundation



Fig. 1. Configurations of the carbon nanotube-reinforced composite beams.
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reaction per unit area, W is the transverse deflection of the beam,
Kw and Ks are Winkler and shearing layer elastic coefficients of the
foundation. When Ks ¼ 0, the foundation model reduces toWinkler
type. According to Timoshenko beam theory, the displacements of
any point in the beam along the x- and z-axes, denoted by U(x, z, t)
and W(x, z, t) respectively as follows [25]:

Uðx; z; tÞ ¼ u0ðx; tÞ þ zJðx; tÞ; Wðx; z; tÞ ¼ w0ðx; tÞ (8)

where u0 and w0 are displacement components at the mid-surface
of the beam, alsoJ is the section normal vector rotations about the
y-, and t denotes time. The linear normal strain εx and shear strain
gxz are associated with the displacements via

εx ¼ du0
dx

þ z
dJ
dx

; gxz ¼ dw0

dx
þJ (9)

The normal stress sxx and shear stress sxz are given by linear
elastic constitutive law as:

sx ¼ Q11ðzÞεx; sxz ¼ Q55ðzÞgxz (10)

where

Q11
�
z
� ¼ EðzÞ

1� n2ðzÞ; Q55ðzÞ ¼ G12ðzÞ (11)

The governing differential equations of motion and the related
boundary conditions can be derived from Hamilton’s principle.

d

Zt
0

�
T �Pþ Yp

�
dt ¼ 0 (12)
Fig. 2. Geometry of a CNTRC beam.
where d represents the variational symbol, T is the kinetic energy of
the beam, P is the potential energy composed of strain energy of
the beam together with the elastic potential energy of the elastic
foundation, and Ƴp is the work done by the axial force Nx0

T ¼ b
2

ZL
0

Zh=2
�h=2

rðzÞ
��

vU
vt

�2
þ
�
vW
vt

�2�
dzdx

P ¼ b
2

ZL
0

Zh=2
�h=2

ðsxεx þ sxzgxzÞdz dxþ
b
2

ZL
0

�
KwW2þKs

�
vW
vx

�2�
dx

Yp ¼ b
2

ZL
0

�
Nx0

�
vW
vx

�2�
dx

(13)

Substituting Eq. (13) into the virtual work statement in Eq. (12)
and integrating trough the beam thickness and then setting the
coefficients of du, dw and dJ to zero lead to the equations of
motion as

du :
vNx

vx
¼ I1

v2u0
vt2

þ I2
v2J

vt2

dw :
vQx

vx
� Kfwþ Ks

v2w0

vx2
þ Nx0

v2w0

vx2
¼ I1

v2w0

vt2

dJ :
vMx

vx
� Qx ¼ I2

v2u0
vt2

þ I3
v2J

vt2

(14)

axial force Nx, bending moment Mx and shear force Qx are stress
resultant, which can be defined as:

8<
:

Nx
Mx
Qx

9=
; ¼

Zh=2
�h=2

8<
:

sxx
zsxx
sxz

9=
;dz (15)

Substituting Eqs. (9) and (10) into Eq. (15) yields,
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Nx ¼ A11
vu0
vx

þ B11
vJ

vx

Mx ¼ B11
vu0
vx

þ D11
vJ

vx

Qx ¼ kA55

�
vw0

vx
þJ

� (16)

k denotes the shear modification coefficient and is taken k ¼ 5/6 in
this paper, the stiffness components and inertia terms are calcu-
lated by:

ðA11;B11;D11Þ ¼
ZL
0

Q11ðzÞ
�
1; z; z2

	
dz; A55 ¼

Zh=2
�h=2

Q55ðzÞdz

ðI1; I2; I3Þ ¼
ZL
0

rðzÞ�1; z; z2�dz
(17)

Substituting Eq. (16) into Eq. (14) leads to the following differ-
ential equations of motion:

A11
v2u0
vx2

þ B11
v2J

dx2
¼ I1

v2u0
vt2

þ I2
v2J

vt2

kA55

 
v2w0

vx2
þ vJ

vx

!
� Kww0 þ Ks

v2w0

vx2
þ Nx0

v2w0

vx2
¼ I1

v2w0

vt2

B11
v2u0
vx2

þ D11
v2J

vx2
� kA55

�
vw0

vx
þJ

�
¼ I2

v2u0
vt2

þ I3
v2J

vt2

(18)

In this investigation different boundary conditions of the beams
such as hingedehinged (HeH), clamped-hinged (CeH),
clampedeclamped (CeC), clamped-free (CeF) are considered.
These conditions are described as:

ClampedðCÞ: u0 ¼ w0 ¼ J ¼ 0

HingedðHÞ: u0 ¼ w0 ¼ Mx ¼ 0

FreeðFÞ: Nx ¼ Qx þ Nx0
vw0

vx
¼ 0 Mx ¼ 0

(19)

In this study we used beam with hinged condition over simply
supported beam, because we need to compare our results with the
similar ones in the literature. By using the following dimensionless
quantities

x ¼ x
L
;
�
U;W

� ¼ ðu0;w0Þ
h

; Nx0 ¼ Nx0

A110
;

�
I1; I2; I3

� ¼
�
I1
I10

;
I2
I10h

;
I3

I10h2

�
; h ¼ L

h
; j ¼ J

ða11; a55;b11; d11Þ ¼
�
A11

A110
;
A55

A110
;
B11

A110h
;

D11

A110h2

�
;

u ¼ UL

ffiffiffiffiffiffiffiffiffiffi
I10
A110

s
; s ¼ t

L

ffiffiffiffiffiffiffiffiffiffi
A110

I10

s
; k1 ¼ K1L2

A110
; k2 ¼ K2

A110

where A110 and I10 are the values of A11 and I1 of a homogeneous
beam made from pure matrix material, the governing Eq. (18) can
be transformed into the following dimensionless form:
a11
v2U

vx2
þ b11

v2j

vz2
¼ I1

v2U
vs2

þ I2
v2j

vs2

ka55

 
v2W

vz2
þ h

vj

vz

!
� k1W þ k2

v2W

vz2
þ Nx0

v2W

vz2
¼ I1

v2W
vs2

;

b11
v2U

vz2
þ d11

v2j

vz2
� kha55

 
vW
vz

þ hj

!
¼ I2

v2U
vs2

þ I3
v2j

vs2

(20)

3.2. Generalized differential quadrature method (GDQM)

In this paper, the generalized differential quadrature method
(GDQM) is used to solve the governing equations of CNTRC beams.
According to GDQ method the rth-order partial derivative of
a continuous function f(z) with respect to z at a given point zi can be
approximated as a linear sum of weighted function values at all of
the discrete points in the domain of z i.e. [26,27]

vrf ðziÞ
vzr

¼
XN
k¼1

cðrÞik f ðzkÞ; i ¼ 1;.;N; r ¼ 1;.;N � 1 (21)

where N is the number of sampling points in the axial direction of
the beam, f(zk) represents the functional value at a sample point zk,
and cðrÞik are the weighting coefficients of the rth-order derivative.
The weighting coefficients for the first derivative (i.e. r ¼ 1) are:

cð1Þij ¼

8>>>><
>>>>:

Mð1ÞðxiÞ�
xi � xj

�
Mð1Þ�xj� isj; i; j ¼ 1;2;.;N

� PN
j¼1;isj

cð1Þij i ¼ j; i ¼ 1;2;.;N
(22)

where

MðxiÞ ¼
YN

j¼1;isj

�
xi � xj

�
(23)

For higher-order derivatives

cð1Þij ¼

8>>>>><
>>>>>:
r

2
4cðr�1Þ

ii cð1Þij �
cðr�1Þ
ij�
xi�xj

�
3
5 isj; i;j¼1;2;.;N; r¼2;3;:::;N�1

� PN
j¼1;isj

cðrÞij i¼ j; i¼1;2;:::;N

(24)

In the present study, the grid points are taken non-uniformly
spaced and are given by the following equation:

zi ¼
1
2

�
1� cos

�
i� 1
N � 1

p

��
; i ¼ 1;2; ::::;N (25)

3.3. Free vibration analysis

The dimensionless governing equations for free vibration of
CNTRC beams can be obtained fromEq. (20) by eliminating the axial
force (Nx0 ¼ 0). In harmonic vibration analysis, the displacements
can be expressed as:
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Wðx; tÞ ¼ wðxÞe�iut

Uðx; tÞ ¼ uðxÞe�iut

jðx; tÞ ¼ JðxÞe�iut
(26)

wherei ¼
ffiffiffiffiffiffiffi
�1

p
and u is the dimensionless natural frequency. By

substituting Eq. (26) into Eq. (20) and then applying the GDQ-rule
expressed in Eqs. (22) and (24) at Eq. (20), the following relations
are obtained:

a11
PN
j¼1

Bijuj þ b11
PN
j¼1

BijJj ¼ �I1u2ui � I2u2Ji

ka55

 PN
j¼1

Bijwj þ
PN
j¼1

AijJj

!
� k1wi þ k2

PN
j¼1

Bijwj ¼ �I1u2wi

b11
PN
j¼1

Bijuj þ d11
PN
j¼1

BijJj � kha55

 PN
j¼1

Aijwj þ hJi

!

¼ �I2u
2ui � I3u

2Ji (27)

where Aij andBij are the first and second order GDQM weighting
coefficients, respectively.

The associated boundary conditions can be handled in the same
way. For example, the dimensionless boundary condition of
clamped-free beams is
u1 ¼ w1 ¼ J1 ¼ 0 at z ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

Nx ¼ a11
PN
j¼1

ANjuj þ b11
PN
j¼1

ANjJj ¼ 0

Mx ¼ b11
PN
j¼1

ANjuj þ d11
PN
j¼1

ANjJj ¼ 0

Qx ¼ kA55

 PN
j¼1

ANjwj þ hJN

!
¼ 0

at z ¼ 1 (28)
Implementing the boundary conditions into Eq. (27) leads to the
following system of algebraic:� ½Sbb�
½Sdb�

½Sbd�
½Sdd�

�� fUbg
fUdg

�
¼ u2

� ½0�
½0�

½0�
Ii
� �� fUbg

fUdg
�

(29)

where {Ud} and {Ub} are as follows:

fUbg¼ ffubg;fwbg;fJbggT ; fUdg¼ ffudg;fwdg;fJdggT (30)
Table 1
Convergence and accuracy of the dimensionless frequency parameters and critical buckl

BC’s N ¼ 5 N ¼ 7 N ¼
Frequency
(kw,ks) ¼ (0.00,0.00) HeH 0.4526 0.4599 0.4
(kw,ks) ¼ (0.05,0.00) 0.5509 0.5570 0.5
(kw,ks) ¼ (0.05,0.01) 0.7053 0.7107 0.7
(kw,ks) ¼ (0.00,0.00) CeF 0.1486 0.1557 0.1
(kw,ks) ¼ (0.05,0.00) 0.3490 0.3521 0.3
(kw,ks) ¼ (0.05,0.01) 0.3473 0.3370 0.3
(kw,ks) ¼ (0.00,0.00) CeC 0.8662 0.8598 0.8
(kw,ks) ¼ (0.05,0.00) 0.9218 0.9157 0.9
(kw,ks) ¼ (0.05,0.01) 1.0267 1.0292 1.0

Buckling
(kw,ks) ¼ (0.00,0.00) HeH 0.052801 0.054305 0.0

CeF 0.011747 0.012312 0.0
CeC 0.180381 0.155643 0.1
in relation Eq. (30), subscripts ‘b’ and ‘d’ refer to the points at the
boundary and in the interior domain respectively. ½Ii� is dimen-
sionless inertia terms matrices. Eliminating the boundary degrees
of freedom, this equation becomes:

�
½S� � u2Ii�	fUdg ¼ f0g (31)

where

½S� ¼ ½Sdd� � ½Sdb�½Sbb�-1½Sbd� (32)

The natural frequencies of the CNTRC beams considered
can be determined by solving the standard eigenvalue problem
Eq. (31).
3.4. Buckling of CNTRC beams

For CNTRC beams under axial compression P, the governing
equations are derived from Eq. (20) by setting the inertia terms to
zero and Nx0 ¼ �P.
a11
v2U

vx2
þ b11

v2J

vz2
¼ 0

ka55

 
v2W

vz2
þ h

vJ

vz

!
� k1W þ k2

v2W

vz2
� P

v2W

vz2
¼ 0;

b11
v2U

vz2
þ d11

v2J

vz2
� kha55

 
vW
vz

þ hJ

!
¼ 0

(33)
ing load FGM beams (L/h ¼ 6, E2/E1 ¼ 5).

9 N ¼ 11 N ¼ 13 Ref. [29]. Ref. [28]

598 0.4598 0.4598 0.4597 0.4543
568 0.5568 0.5568 0.5567 e

105 0.7105 0.7105 0.7103 e

556 0.1556 0.1556 0.1556 0.1547
520 0.3520 0.3520 0.3520 e

367 0.3367 0.3367 0.3367 e

600 0.8600 0.8600 0.8600 0.8494
159 0.9159 0.9159 0.9159 e

293 1.0293 1.0293 1.0293 e

54256 0.054256 0.054256 e 0.054256
12308 0.012308 0.012308 e 0.012588
55542 0.155536 0.155536 e 0.155540



Table 2
Comparisons of dimensionless frequency parameters u ¼ UL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I10=A110

p
CNTRC

beams (L/h ¼ 10).

V*
cnt ¼ 12 UD FG-L FG-X

Present Ref. [21]. Present Ref. [21]. Present Ref. [23].

HeH 1.2581 1.2576 1.2300 1.2296 1.3859 1.3852
CeH 1.4565 1.4556 1.3951 1.3944 1.5394 1.5385
CeC 1.6691 1.6678 1.6073 1.6063 1.7242 1.7230
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Similar to free vibration analysis, by applying the GDQM rule
expressed in Eqs. (22) and (24) into Eq. (33), the following relations
are obtained:

a11
PN
j¼1

Bijujþb11
PN
j¼1

BijJj ¼ 0

ka55

 PN
j¼1

Bijwjþ
PN
j¼1

AijJj

!
�k1wiþk2

PN
j¼1

Bijwj�P
PN
j¼1

Bijwj ¼ 0

b11
PN
j¼1

Bijujþd11
PN
j¼1

BijJj� kha55

 PN
j¼1

AijwjþhJi

!
¼ 0

(34)

Combination of Eq. (34) with the boundary conditions gives the
following system of linear equations:� ½Sbb�
½Sdb�

½Sbd�
½Sdd�

�� fUbg
fUdg

�
¼ P

� ½0�
½Adb�

½0�
½Add�

�� fUbg
fUdg

�
(35)

in relation Eq. (35), subscripts ‘d’ and ‘b’ refer to the points at the
boundary and in the interior domain, respectively and P represent
the buckling load.

After implementation of the boundary conditions, Eq. (35) can
be written in matrix form as

ð½S� � P½A�ÞfUdg ¼ f0g (36)

where

½S� ¼ ½Sdd� � ½Sdb�½Sbb�-1½Sbd�

½A� ¼ ½Add� � ½Adb�½Sbb�-1½Sbd�
Clearly, the lowest positive solution of Eq. (36) gives the critical

buckling load Pcr.
4. Numerical results and discussion

First, in order to confirm the proficiency of the present method,
free vibration and buckling analysis of FG beams with and without
elastic foundation and different boundary conditions are investi-
gated. For this purpose the numerical results of free vibration and
buckling analysis CNTRC beams are presented.

Table 1 presents the dimensionless frequency as well as critical
buckling load of FG beam with different boundary conditions. The
results are compared with similar ones in the literature. As
observed there is good agreement between the results. The
convergence study of the results is listed in Table 1 too. As noticed,
Table 3
First three dimensionless natural frequency u ¼ UL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I10=A110

p
of (HeH) CNTRC beams (

V*
cnt (kw,ks) ¼ (0.00, 0.00) (kw,ks) ¼

u1 u2 u3 u1

0.12 UD 0.9753 2.8728 4.8704 1.0241
FG-L 0.9453 2.6424 4.6675 0.9957
FG-> 0.7527 2.4562 4.4320 0.8150
FG-X 1.1150 3.0814 5.0695 1.1581

0.17 UD 1.1999 3.6276 6.2363 1.2396
FG-L 1.1609 3.3084 5.9498 1.2019
FG-> 0.9155 3.0577 5.6139 0.9670
FG-X 1.3830 3.9293 6.5447 1.4176

0.28 UD 1.4401 4.1362 6.9245 1.4728
FG-L 1.4027 3.8639 6.7618 1.4362
FG-> 1.1202 3.6056 6.4434 1.1619
FG-X 1.6493 4.4752 7.3068 1.6779
fast rate of convergence of the method is evident and it is found
that only 9 grid points in the thickness direction can yield accurate
results. Hence, N ¼ 9 is used in all of the following numerical
calculations.

The material properties of FG beams are : E1 ¼70 GPa, v1 ¼ 0.33,
E2
E1

¼ 5, r1 ¼ 2780 kg/m3, L/h ¼ 6 where E1 and E2 denote Young’s

modulus at the top and bottom surfaces of the beam, respectively.
4.1. Free vibration analysis of CNTRC beams

First, the effective material properties of CNTRCs are deter-
mined. Poly methyl methacrylate, referred to PMMA, is considered
as the matrix, the material properties are assumed to be ym ¼ 0.3,
rm ¼ 1190 kg/m3,Em ¼ 2.5 Gpa at room temperature (300 K).
The armchair (10,10) SWCNTs are selected as reinforcements
with ycnt ¼ 0:19;Gcnt

12 ¼ 17:2Gpa; Ecnt11 ¼ 600Gpa Ecnt22 ¼ 10Gpa;
rcnt ¼ 1400 kg/m3.

The CNT efficiency parameters introduced in Eqs. (1a) and (1b)
are estimated by matching the Young’s moduli E11 and E22 of
CNTRCs predicted from the rule of mixture to those from the MD
simulations given by Han and Elliott. For example h1 ¼ 1.2833 and
h2 ¼ 1.0556 for the case of V*

cnt ¼ 0:12, and h1 ¼ 1.3414 and
h2 ¼ 1.7101 for the case of V*

cnt ¼ 0:17, and h1 ¼ 1.3238 and
h2 ¼ 1.7380 for the case of V*

cnt ¼ 0:28. In addition, it is assumed
that h3¼ h2. These values will be used in all the following examples.

Table 2 lists the dimensionless fundamental frequency of
CNTRC beams, for various boundary conditions (L/h ¼ 10). Again, it
can be observed that there is a very good agreement between the
results.

In Tables 3e6, the effects of the elastic foundation coefficients as
well as different values of CNT volume fraction
V*
cnt ¼ ð0:12;0:17;0:28Þ on the first three dimensionless funda-

mental frequency parametersu ¼ UL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I10=A110

p
of various types of

CNTRC beams are shown for different boundary conditions
including hingedehinged, clamped-hinged, clampedeclamped and
clamped-free. Two foundation models are considered. The stiffness
parameters are (kw, ks) ¼ (0.1, 0.02) for the Pasternak elastic foun-
dation, (kw, ks) ¼ (0.1, 0.00) for the Winkler elastic foundation and
L/h ¼ 15).

(0.1, 0.00) (kw,ks) ¼ (0.1, 0.02)

u2 u3 u1 u2 u3

2.8898 4.8804 1.1144 3.0203 5.0552
2.6607 4.6780 1.0883 2.8013 4.8596
2.4760 4.4430 0.9258 2.6268 4.6338
3.0972 5.0791 1.2386 3.2194 5.2474
3.6409 6.2441 1.3145 3.7444 6.3804
3.3229 5.9579 1.2790 3.4354 6.1002
3.0734 5.6225 1.0612 3.1951 5.7731
3.9416 6.5521 1.4836 4.0375 6.6822
4.1477 6.9314 1.5352 4.2372 7.0523
3.8762 6.7688 1.5002 3.9714 6.8923
3.6187 6.4508 1.2400 3.7208 6.5802
4.4858 7.3133 1.7330 4.5688 7.4280



Table 4
First three dimensionless natural frequencies of (CeH) CNTRC beams (L/h ¼ 15).

V*
cnt (kw, ks) ¼ (0.00, 0.00) (kw, ks) ¼ (0.1, 0.00) (kw, ks) ¼ (0.1, 0.02)

u1 u2 u3 u1 u2 u3 u1 u2 u3

0.12 UD 1.2444 3.0159 4.9342 1.2831 3.0321 4.9441 1.3586 3.1565 5.1165
FG-L 1.1529 2.8472 4.7474 1.1945 2.8643 4.7577 1.2762 2.9957 4.9361
FG-> 1.0331 2.6814 4.5619 1.0794 2.6995 4.5726 1.1705 2.8389 4.7579
FG-X 1.3577 3.1817 5.1092 1.3932 3.1970 5.1188 1.4622 3.3153 5.2857

0.17 UD 1.5602 3.8402 6.3370 1.5910 3.8528 6.3446 1.6523 3.9504 6.4782
FG-L 1.4344 3.6064 6.0765 1.4678 3.6198 6.0844 1.5349 3.7235 6.2232
FG-> 1.2769 3.3772 5.8126 1.3143 3.3915 5.8209 1.3902 3.5025 5.9659
FG-X 1.7188 4.0843 6.6094 1.7467 4.0961 6.6168 1.8020 4.1880 6.7451

0.28 UD 1.8040 4.3112 6.9987 1.8302 4.3222 7.0055 1.8822 4.4081 7.1251
FG-L 1.6933 4.1393 6.8633 1.7212 4.1507 6.8702 1.7772 4.2400 6.9917
FG-> 1.5229 3.9112 6.6127 1.5538 3.9233 6.6199 1.6166 4.0178 6.7459
FG-X 1.9813 4.6030 7.3560 2.0052 4.6133 7.3624 2.0523 4.6939 7.4764

Table 5
First three dimensionless natural frequencies u ¼ UL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I10=A110

p
of (CeC) CNTRC beams (L/h ¼ 15).

V*
cnt (kw, ks) ¼ (0.00, 0.00) (kw, ks) ¼ (0.1, 0.00) (kw, ks) ¼ (0.1, 0.02)

u1 u2 u3 u1 u2 u3 u1 u2 u3

0.12 UD 1.5085 3.1353 4.9979 1.5406 3.1508 5.0077 1.6038 3.2714 5.1779
FG-L 1.4068 2.9997 4.8363 1.4412 3.0159 4.8464 1.5096 3.1420 5.0216
FG-> 1.3180 2.8762 4.6840 1.3546 2.8931 4.6944 1.4282 3.0249 4.8750
FG-X 1.6000 3.2629 5.1514 1.6303 3.2778 5.1609 1.6895 3.3937 5.3264

0.17 UD 1.9144 4.0187 6.4348 1.9396 4.0307 6.4423 1.9901 4.1250 6.5742
FG-L 1.7721 3.8312 6.2139 1.7993 3.8438 6.2216 1.8546 3.9429 6.3578
FG-> 1.6500 3.6565 5.9970 1.6791 3.6697 6.0051 1.7393 3.7740 6.1460
FG-X 2.0498 4.2111 6.6753 2.0733 4.2226 6.6825 2.1200 4.3124 6.8100

0.28 UD 2.1618 4.4556 7.0745 2.1837 4.4663 7.0812 2.2274 4.5498 7.1994
FG-L 2.0504 4.3414 6.9783 2.0735 4.3524 6.9851 2.1202 4.4382 7.1046
FG-> 1.9284 4.1740 6.7728 1.9530 4.1854 6.7798 2.0032 4.2750 6.9028
FG-X 2.3169 4.7051 7.4093 2.3374 4.7152 7.4157 2.3779 4.7943 7.5288
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(kw, ks) ¼ (0.00, 0.00) for the beams without any elastic foundation.
As noticed both Winkler and Pasternak elastic coefficients lead to
increase the dimensionless fundamental frequency parameters
under various boundary conditions. It can also be seen the
dimensionless fundamental frequency parameters increase with
increasing in the volume fraction of CNTs (V*

cnt). It is noticeable the
lowest frequency parameter is obtained by using FG-> CNTRC
volume fractions profile. On the contrary, oriented, straight CNTs
with FG-X CNTRC profile have the maximumvalue of the frequency
parameter. Therefore, graded CNTs volume fractions with
symmetric distributions through the beam thickness have higher
capabilities to reduce or increase the frequency parameter as
compared with uniformly and asymmetric distributions.

It should be mentioned that the UD-CNTRC and FG-CNTRC
beams have the same mass fraction of CNT. Additionally, the
Table 6
First three dimensionless natural frequencies u ¼ UL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I10=A110

p
of (CeF) CNTRC beams (

V*
cnt (kw, ks) ¼ (0.00, 0.00) (kw, ks)

u1 u2 u3 u1

0.12 UD 0.3764 1.7006 3.6648 0.4893
FG-L 0.3193 1.5473 3.4380 0.4469
FG-> 0.2809 1.4266 3.2489 0.4203
FG-X 0.4416 1.8497 3.8777 0.5411

0.17 UD 0.4587 2.1365 4.6614 0.5544
FG-L 0.3866 1.9287 4.3500 0.4963
FG-> 0.3394 1.7685 4.0913 0.4606
FG-X 0.5413 2.3437 4.9706 0.6245

0.28 UD 0.5612 2.4614 5.2446 0.6404
FG-L 0.4761 2.2685 5.0007 0.5673
FG-> 0.4197 2.0993 4.7399 0.5209
FG-X 0.6586 2.6987 5.6150 0.7273
resulting frequency changes due to boundary condition such that
the highest frequencies are obtained for the CeC beams, followed
by CeH and HeH beams respectively and the CeF beam has the
lowest fundamental frequency at every volume fraction. For all
types of beams except the cantilever ones, the fundamental
frequency is higher when resting on a Pasternak foundation than
on a Winkler foundation.

Fig. 3 shows fundamental frequency parameter, u1, of different
CNTs distributions with (kw, ks) ¼ (0.1, 0.02) and V*

cnt ¼ 0:28 versus
slenderness ratio. It can be inferred from Fig. 3 that frequency of FG-
X CNTRC beams are higher than those of beams with other CNTs
distributions. Hence, in the following figures only UD-CNTRC beam
and FG-CNTRC beam of Type X are considered. Also one can see, the
frequency parameter decreases for all types of distribution with
increasing the slenderness ratios.
L/h ¼ 15).

¼ (0.1, 0.00) (kw, ks) ¼ (0.1, 0.02)

u2 u3 u1 u2 u3

1.7290 3.6781 0.4825 1.8115 3.8143
1.5784 3.4521 0.4368 1.6652 3.5922
1.4603 3.2638 0.4083 1.5520 3.4090
1.8759 3.8902 0.5380 1.9549 4.0229
2.1590 4.6718 0.5471 2.2242 4.7775
1.9535 4.3610 0.4860 2.0230 4.4703
1.7956 4.1030 0.4483 1.8698 4.2171
2.3642 4.9803 0.6203 2.4260 5.0825
2.4806 5.2536 0.6359 2.5381 5.3483
2.2893 5.0102 0.5595 2.3491 5.1059
2.1217 4.7499 0.5110 2.1849 4.8489
2.7162 5.6235 0.7256 2.7705 5.7143



Fig. 3. Effect of the slenderness ratio on the fundamental frequency of four types of
CeC. CNTRC beams on a Pasternak elastic foundation.

Fig. 5. Effect of foundation stiffness on the frequency of CeC CNTRC beams.
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The variation of frequency of the nanocomposite beamswith L/h
ratios is shown in Fig. 4 for different CNT volume fraction. It can be
noticed although the frequencies for the beams with FG-X and
uniform distribution of CNTs decrease with the increase of the L/h
ratio, but increase with increasing in the CNTs volume fraction V*

cnt .
Fig. 5 illustrates the effect of the foundation stiffness on the

frequency of CNTRC beams. As observed, the frequency parameter
is increased with the increase of foundation stiffness for both UD
and FG-X CNTRC beams.

Fig. 6 shows effect of the boundary conditions on the vibration
behavior of CNTRC beam resting on Pasternak foundation. It can be
concluded the CeC beams have the highest frequencies and on the
contrary the CeF beams have the lowest fundamental frequencies.
4.2. Buckling analysis of CNTRC beams

In this section, numerical results of buckling analysis of CNTRC
beams are presented. The material and geometric properties are
the same as those for free vibration analyses. Tables 7e10 show
Fig. 4. Effect of CNT volume fraction on the fundamental frequency of CeC. CNTRC
beams resting on a Pasternak elastic foundation.
effects of the elastic foundation coefficients and different values of
CNT volume fraction on the dimensionless critical buckling load of
various types of CNTRC beams for different boundary conditions.

It can be seen that among the four boundary conditions
considered, the clamped-free beam has the minimum values while
the clampedeclamped beam has the maximum values of critical
buckling load. It is intelligible that the critical buckling load of FG-X
CNTRC beam is larger among these four types of beams. It is also
observed, the buckling load of the beams increases when resting on
elastic foundation. It should be mentioned that the effects of ks on
the critical buckling load are more significant than those of kw. It is
also noticed the critical buckling load for all types of CNT distri-
bution and different boundary conditions increases with the
increase of the CNT volume fraction value.

In Table 11 the critical buckling load of different types of CNT
distribution is given for V*

cnt ¼ 0:28. The foundation stiffness
parameters are taken to be (kw, ks) ¼ (0.1,0.02). According to this
table, increasing the slenderness ratio led to buckling load reduc-
tion for each distribution. Also it is observed the FG-X distribution
has the highest critical load.
Fig. 6. Variation of the 1st frequency versus slenderness ratio at volume fraction 0.12.



Table 7
Dimensionless buckling load of (HeH) CNTRC beams (L/h ¼ 15).

V*
cnt UD FG-L FG-> FG-X

(kw, ks) ¼ (0.00, 0.00) 0.12 0.098597 0.092530 0.058770 0.128833
0.17 0.150559 0.140748 0.087704 0.199945
0.28 0.220904 0.209323 0.133755 0.289646

(kw, ks) ¼ (0.1, 0.00) 0.12 0.108729 0.102641 0.0689026 0.138965
0.17 0.160697 0.150858 0.0978362 0.210077
0.28 0.231036 0.219433 0.143887 0.299774

(kw, ks) ¼ (0.1, 0.02) 0.12 0.128729 0.122641 0.088903 0.158965
0.17 0.180692 0.170858 0.117836 0.230077
0.28 0.251036 0.239433 0.163887 0.319774

Table 8
Dimensionless buckling load of (CeH) CNTRC beams (L/h ¼ 15).

V*
cnt UD FG-L FG-> FG-X

(kw, ks) ¼ (0.00, 0.00) 0.12 0.149484 0.126376 0.099567 0.181451
0.17 0.2349942 0.1956625 0.1521840 0.2908679
0.28 0.3253990 0.2815180 0.2233645 0.3991979

(kw, ks) ¼ (0.1, 0.00) 0.12 0.1582075 0.1349723 0.1080482 0.1903661
0.17 0.2436821 0.2042408 0.1606523 0.2997283
0.28 0.3342330 0.2901868 0.2319158 0.4082148

(kw, ks) ¼ (0.1, 0.02) 0.12 0.1782075 0.1549723 0.1280482 0 0.2103661
0.17 0.2636821 0.2242408 0.1806523 0.3197283
0.28 0.3542330 0.3101868 0.2519158 0.4282148

Table 9
Dimensionless buckling load of (CeC) CNTRC beams (L/h ¼ 15).

V*
cnt UD FG-L FG-> FG-X

(kw, ks) ¼ (0.00, 0.00) 0.12 0.213958 0.181823 0.156758 0.245934
0.17 0.344251 0.287861 0.245191 0.403501
0.28 0.455602 0.399275 0.346965 0.532998

(kw, ks) ¼ (0.1, 0.00) 0.12 0.221398 0.189291 0.164233 0.253333
0.17 0.351801 0.295413 0.252742 0.411045
0.28 0.463117 0.406809 0.354506 0.540496

(kw, ks) ¼ (0.1, 0.02) 0.12 0.241398 0.209291 0.184233 0.273333
0.17 0.371800 0.315413 0.272742 0.431045
0.28 0.483117 0.426809 0.374506 0.560496

Table 10
Dimensionless buckling load of (CeF) CNTRC beams (L/h ¼ 15).

V*
cnt UD FG-L FG-> FG-X

(kw, ks) ¼ (0.00, 0.00) 0.12 0.031234 0.021985 0.016790 0.044355
0.17 0.046318 0.032234 0.024572 0.066253
0.28 0.072178 0.050475 0.038680 0.102480

(kw, ks) ¼ (0.1, 0.00) 0.12 0.047542 0.037938 0.032359 0.060903
0.17 0.063385 0.049039 0 0.041095 0.083504
0.28 0.089557 0.067717 0.055745 0.119989

(kw, ks) ¼ (0.1, 0.02) 0.12 0.041901 0.032373 0.026890 0.055221
0.17 0.057736 0.043415 0.035508 0.077847
0.28 0.083912 0.062080 0.050117 0.114348

Table 11
Dimensionless buckling load of (HeH) CNTRC beams (kw, ks) ¼ (0.1, 0.02),
V*
cnt ¼ 0:28.

L/h UD FG-L FG-> FG-X

10 0.387342 0.378099 0.275637 0.467794
15 0.251036 0.239433 0.163887 0.319774
20 0.174117 0.164475 0.111827 0.226701
30 0.102310 0.096524 0.068812 0.132612
40 0.072635 0.068994 0.052399 0.091493
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5. Conclusions

In this paper, based on the Timoshenko beam theory, the free
vibrations and buckling of nanocomposite beams reinforced by
single-walled carbon nanotubes resting on an elastic foundation
have been studied. The equations of motion have been determined
through the Hamilton’s principle. Generalized differential quadra-
ture method is employed to obtain the natural frequency and
critical buckling load of CNTRC beams with or without an elastic
foundation for various boundary conditions. The material proper-
ties have been estimated though the rule of mixture. The numerical
results reveal that the distribution of CNT, foundation stiffness and
volume fraction of CNT have significant effects on the natural
frequencies and critical buckling load of the CNTRC beams. The
obtained results show the beams with FG-X distribution have
higher fundamental frequency as well as critical buckling load in
comparison with other distributions. As simple analysis the cross
sectional geometry of the CNT/PMMA composite beam can be used
to predict which beams will have the highest stiffness/resistance to
bending and buckling, by considering the second moment of area.
The ’X’ distribution is the closest to an I-beam geometry, which has
a higher moment of inertia compared with the other geometries
Also it results both the natural frequency and the critical buckling
load increase with using an elastic foundation or increasing CNT
volume fraction.

The investigation on the effect of boundary conditions reveals
the CeC beam has the greatest natural frequency and critical
buckling load which is followed with CeH, HeH and then CeF
respectively. It is worth noting that the natural frequencies and
critical buckling loads decrease with increasing the slenderness
ratio.
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