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a b s t r a c t 

A topic that involves communities with different com peting viewpoints or stances is usually reported by 

a large number of documents. Knowing the association between the persons mentioned in the documents 

can help readers construct the background knowledge of the topic and comprehend the numerous topic 

documents more easily. In this paper, we investigate the stance community identification problem where 

the goal is to cluster important persons mentioned in a set of topic documents into stance-coherent 

communities. We propose a stance community identification method called SCIFNET, which constructs a 

friendship network of topic persons from topic documents automatically. Stance community expansion 

and stance community refinement techniques are designed to identify stance-coherent communities of 

topic persons in the friendship network and to detect persons who are stance-irrelevant about the topic. 

The results of experiments based on real-world datasets demonstrate the effectiveness of SCIFNET and 

show that it outperforms many well-known community detection approaches and clustering algorithms. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the prevalence of telecommunication technologies and the

explosive growth in medium digitization, there are now enormous

amounts of information on the Internet. As a result, people world-

wide can easily obtain information about the latest topics, such

as global economic trends, political events, and sports tournament

results via the Internet. Usually, people are interested in topics

that involve communities with different competing viewpoints or

stances. However, they are often overwhelmed by the large num-

ber of topic documents that cover every detail of different stance

communities. For example, in the topic about the selection of a

new International Monetary Fund (IMF) president in 2011, Google

News 1 collected hundreds of topic documents that reported the

development of the campaign. Although the documents covered

all perspectives on the topic (i.e., from the interactions between

the candidates to the viewpoints of the general public), readers

generally had difficulty assimilating the enormous amount of infor-

mation in the documents. To ease the burden of reading so many
∗ Corresponding author. 

E-mail addresses: d98725003@ntu.edu.tw (Z.-Y. Chen), patonchen@ntu.edu.tw 

(C.C. Chen). 
1 https://news.google.com/ 
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opic documents, several topic mining techniques have been devel-

ped. For instance, Nallapati et al. [35] grouped topic documents

nto clusters, each of which presents a theme of a topic; Feng and

llan [22] extracted informative sentences from themes to sum-

arize a topic; and Chen and Chen [5,6] further organized themes

nd summaries chronologically to depict the storyline of a topic.

he techniques successfully condense the content of a topic. How-

ver, readers still need to invest a lot of time in digesting the gen-

rated summaries if they are not familiar with the topic. 

A topic is basically associated with persons, times, and places

35] . Learning the associations between the persons mentioned in

 set of topic documents (called topic persons hereafter) can help

eaders construct the background knowledge of the topic and di-

est the information quickly. For instance, in the above mentioned

opic about the new IMF president selection, if readers had known

hat Angela Merkel supported Christine Lagarde (i.e., they are de-

ected in the same community), they would have understood why

he said “Christine Lagarde is an ideal embodiment of economics.”

In this paper, we investigate the stance community identifica-

ion problem, which involves clustering topic persons into stance-

oherent communities. For instance, given the documents about

he selection of the new IMF president in 2011, the stance com-

unity identification method discovers communities of persons,

hich represent the camps of the different candidates running

or election, as shown in Fig. 1 . Identifying stance communities of
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Fig. 1. The selection of the IMF president in 2011. 
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opic persons is a new research area, and to the best of our knowl-

dge, only Chen et al. [7,8] have addressed the stance community

dentification problem. They proposed using Principal Component

nalysis (PCA) [4] . Specifically, they examine the signs of the en-

ries in the eigenvector associated with the largest eigenvalue to

ecognize stance communities of topic persons. The method can

nly handle two-stance topics; however, in practice, many topics

nvolve more than two stances. Here, we present a novel stance

ommunity identification method called SCIFNET (Stance Commu-

ity Identification based on Friendship NETwork), which analyzes a

et of topic documents to identify stance communities and the cor-

esponding persons in a topic. First, SCIFNET constructs a friend-

hip network in which the nodes represent topic persons. The co-

ccurrence of the persons in the topic documents, the documents’

tance orientation, and the co-neighboring level between nodes

re leveraged to define the friendship strength between persons

i.e., the edge weights). We model stance community identification

s a community detection task and design an objective function

o evaluate the results. Stance community expansion and stance

ommunity refinement techniques, which are based on the objec-

ive function, are designed to iteratively cluster topic persons into

tance-coherent communities and detect persons that are stance-

rrelevant about the topic of interest. Their convergence proofs are

resented such that the identification result converges to a local

ptimum. Evaluations based on real-world topics demonstrate the

ffectiveness of SCIFNET, and show that it outperforms well-known

lustering and community detection approaches. 

The proposed method has the following advantages over

he current community detection research. First, most iterative

lustering-based community detection methods, such as those in

20,31,48] , would suffer the early merging problems of a node

n a network tending to be merged (clustered) with a commu-

ity simply because it is close to the community’s seed. To get

id of this type of problem, we design the stance community re-

nement which iteratively refines the detected communities. Sec-

nd, nodes in a social (friendship) network can play different roles.

iffering from the overlapping node, bridge node, and hub node

nvestigated in [13,14,21] , the proposed method is able to iden-

ify stance-irrelevant nodes which stand for persons neutral to the

tances of a topic. Finally, since topic persons may have opposing

rientations, the constructed friendship network could have nega-

ive edges. While several community detection methods, such as

13,21,32] analyze network structures to infer communities, our

ethod further examines edge signs to correctly detect stance

ommunities of topic persons. 

The remainder of this paper is organized as follows. In the next

ection, we review related works. Then, we describe SCIFNET in

etail, and demonstrate its efficiency in experimental section. Final

ection contains our conclusions. 
u  
. Related work 

Our research is related to community detection [41] . Given a

etwork of interests, the community detection task involves iden-

ifying sub-networks, each of which represents a coherent com-

unity [12,24,36,39] . For instance, given a social network, com-

unity detection methods identify groups of people with similar

references [41] . The identified communities are useful to compre-

end various social phenomena, such as epidemic spreading [43] ,

nd human interactions [14,15,40,42] . Basically, the methods parti-

ion a network into sub-networks based on the principle that max-

mizes the association between the nodes in each sub-network,

hile minimizing the association between the sub-networks [45] .

n the following sub-sections, we review the existing community

etection approaches, namely, the eigen-based community detec-

ion approach and the iterative clustering approach. 

.1. Eigen-based community detection approach 

One of the techniques used in the eigen-based approach is

pectral clustering, which exploits the eigenvectors of a Laplacian

atrix [18] to find appropriate partitions of a network. The Lapla-

ian matrix of a network is derived by subtracting the adjacency

atrix A from the diagonal matrix D . The entry a i,j in A is 1 if node

 and node j are connected, and 0 otherwise; and the entry d i,i in

 is the degree of node i in the network. Shi and Malik [45] mod-

led image segmentation as a community detection problem. They

epresented an image as a network and employed the eigenvec-

or associated with the second smallest eigenvalue (i.e., the fielder

ector) of the Laplacian matrix to identify significant image seg-

ents. Ding et al. [16] used spectral clustering to cluster a set of

ocuments and constructed a word-document matrix X in which

he entries are the mutual information [33] between the words

nd documents. Then, a document network is constructed by con-

idering each document as a node. The connection between nodes

s represented by the weighted matrix W = X 

T X ; and the network

s partitioned by using the fielder vector of the matrix W . The au-

hors also introduced the Mcut metric to evaluate the partitioned

etwork. The metric is integrated with a linkage-based refinement

echnique to improve the quality of the network partition. 

One limitation of the above methods is that they usually make

alanced cuts when partitioning a network; that is, the communi-

ies detected in the network need to be of a similar size. How-

ver, in practice, communities are of different sizes and magni-

udes, so the balanced cut requirement is irrational [38,51] . To

vercome this limitation, White and Smyth [51] developed a spec-

ral clustering algorithm that maximizes the modularity [39] of a

etwork partition. Specifically, given a network partition, the mod-

larity measures the ratio of the edges within communities to all 
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the edges in the network and subtracts the expected number of

connected nodes from the ratio in the same communities. The

larger the value, the better will be the quality of the network par-

tition. White and Smyth formulated the modularity maximization

problem as a quadratic assignment problem and solved it analyti-

cally by using an eigen-decomposition method. The method con-

structs an eigenvector matrix U K in which the columns are the

eigenvectors of the matrix L Q derived from the modularity max-

imization problem. Then, the row vectors of U K are clustered by

using the K-means algorithm [33] to find an appropriate network

partition. Newman [38] developed an efficient algorithm to detect

communities in a network. Initially, the algorithm treats a node

as a community and constructs a modularity matrix B , where en-

try B i,j denotes the modularity between the community i and the

community j . Next, it examines the signs of the entries in the prin-

cipal eigenvector of B to identify the affiliation of the nodes. To re-

fine the detected communities, i.e., the partitioned sub-networks,

the algorithm then examines the modularity changed by moving

nodes between communities and moves all the nodes that increase

the modularity. Anchuri and Magdon-Ismai [2] investigated signed

networks in which nodes are connected by positive or negative

edges. They modified the modularity to incorporate negative edges

into it and constructed a modularity matrix for a signed network.

Communities are detected by examining the signs in the matrix’s

eigenvector associated with the largest eigenvalue. In addition, a

refinement method based on the modified modularity is developed

to calibrate the membership of the nodes. 

2.2. Iterative clustering approach 

The other community detection approach is iterative clustering.

Girvan and Newman [24] devised an iterative clustering algorithm

that measures the betweenness of edges to detect communities.

The betweenness of an edge denotes the number of shortest paths

between node pairs that run through the edge. The algorithm it-

eratively decomposes a network by removing the edge with the

largest betweenness until a specific number of communities have

been detected. Subsequently, Newman and Girvan [39] utilized the

modularity they designed to enhance the betweenness-based com-

munity detection method. Meanwhile, Newman [37] developed a

modularity-based community detection algorithm called FastMod-

ularity. Given a network, the algorithm first initializes each node

as a community. Then, it iteratively merges communities until the

modularity of the detected communities reaches a local optimum.

The drawback with using the modularity for community detec-

tion is that the measure ignores missing edges in a community.

In other words, it only measures how well the discovered com-

munity structure fits the existing edges [9] . In reality, it is dif-

ficult to obtain all the information about the analyzed network.

Consequently, informative edges may be missing from the network

and that would degrade the community detection performance. To

resolve the problem, Chen et al. [9] proposed a measure called

Max-Min modularity, which considers missing edges to improve

the quality of community detection. Xu et al. [53] also designed

an iterative clustering algorithm called SCAN (Structural Clustering

Algorithm for Networks) for community detection. Initially, SCAN

computes the ratio of co-neighbors between every node pair. A

node is regarded as the core of a community if the number of high

co-neighbor ratios between it and other nodes is also high. The al-

gorithm expands communities from the identified core nodes by

iteratively integrating the nodes’ neighbors into the communities.

It is noteworthy that the algorithm can identify hub nodes, which

function as bridges to different communities. In social network

analysis, hub nodes may play an important role in viral marketing.

Yang et al. [55] developed an iterative bipartition method called

FEC (Finding and Extracting a Community) for detecting communi-
ies in a signed network. The method first conducts a random walk

n the network to measure the probability of reaching a node. Af-

erward, an adjacency matrix is constructed by sorting the nodes

n accordance with their reaching probabilities. The algorithm then

teratively identifies a cutting point in the matrix to bipartition the

etwork such that the positive edges within the partitioned sub-

etworks and the negative edges between the sub-networks are

ense. Chen et al. [10] developed the L measure, which leverages

he internal and external degrees of nodes in a community. A de-

ected community is regarded as good if its L value is large. The au-

hors also designed a two-phase algorithm that expands the com-

unities in a network iteratively. The first phase identifies nodes

hose degrees are higher than the average internal degree of a

ommunity. Then, in the second phase, the identified nodes are

erged into a community if their inclusion increases the commu-

ity’s L value. The results of experiments show that the commu-

ities detected by using L are superior to those detected by using

he modularity. Traag and Bruggeman [46] adjusted the modularity

o include the negative edges of a network, and incorporated the

odified modularity into Potts model [52] to detect communities.

ang et al. [54] integrated the link structure with content analy-

is for community detection. They introduced a popularity-based

ink model to measure the strength of the links between nodes and

mployed an iterative EM process to learn the membership of the

odes. Gao et al. [23] developed a generative model called CODA

Community Outlier Detection Algorithm) to detect communities

nd their outliers in a network. The model uses hidden Markov

andom fields [4] to compute the importance of a network struc-

ure. In addition, the nodes in the network are sorted by an objec-

ive function and low-ranked nodes are labeled as outliers. Eustace

t al. [20] invented a two stage algorithm to detect local commu-

ities. In the first stage, the method randomly selects nodes as the

eeds of local communities. Then it employs the alpha-close func-

ion to expand the communities with their close neighborhood. In

he second stage, the local community begins to merge with the

ther local community which satisfies the threshold of using the

eta-close function, and then merge together to construct the final

ommunities. 

Recently, a number of studies have started to detect communi-

ies with overlapping nodes [14,17,21,31,49,50] . For instance, Wang

nd Li [48] considered a node as a core vertex if the node has

 high degree. They developed a community detection method

hich initializes core vertices as community seeds and then em-

loyed an intimate degree function to iteratively absorb new nodes

nto the communities. If an absorbed node has the same intimate

egree for two (or more) communities, it will be labeled as an

verlapping node of the communities. Li et al. [31] selected core

ertices by using expert-defined rules and employed the absorb-

ng degree to merge new nodes into existing communities. Sim-

larly, a node is deemed as an overlapping node of communities

f the absorbing degrees of the node to the communities are the

ame. Cui and Wang [13] extracted communities with overlapping

odes from a bi-partite network. The authors considered the node

ith the minimum degree as a key bi-community, and used the

ntimate degree to expand bi-communities with overlapping nodes.

otably, communities with overlapping nodes can also be detected

y the matrix decomposition methods [19,21] and the maximal

lique extraction techniques [14,15,32] . 

Our research differs from existing community detection because

he networks analyzed by community detection approaches are

sually pre-defined. In contrast, the friendship networks of topic

ersons in our method are derived automatically from topic docu-

ents. Our research further considers friendship orientations, and

dentifies friendly and opposing associations between topic persons

n the friendship networks. 
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Fig. 2. The system architecture. 
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. Methodology 

We proposed a stance community identification method,

CIFNET, which clusters the persons mentioned in topic documents

nto stance-coherent communities. Fig. 2 shows SCIFNET’s system

rchitecture, which is comprised of three components: friendship

etwork construction, stance community expansion , and stance com-

unity refinement . Specifically, given a set of documents reporting

 topic with K stance communities, SCIFNET first extracts the topic

ersons mentioned in the documents. Then, it constructs a friend-

hip network of the topic persons based on the co-occurrence of

he persons in the documents and the stance orientation of the

ocuments. Next, the stance community expansion process consid-

rs the stance community identification of topic persons as a com-

unity detection task and iteratively expands the K stance com-

unities in the friendship network. In the last phase, the stance

ommunity refinement algorithm improves the identification re-

ult in accordance with an objective function, which measures the

tance coherence of the detected communities. Note that a diffi-

ult issue in community detection is to determine the number of

ommunities in a network and the issue is generally related to the

ptimization research regarding the cardinality of a clustering [33] .

ike many community detection methods (e.g., [16,23,54] ), we as-

ume that the number of stance communities (i.e., K ) is known in

dvance and concentrate on designing effective stance community

xpansion and refinement operations. Also, at the first attempt to

odel topic person stance identification as a community detection
roblem, we simply assume that each person belongs to a single

tance. Later, the selection strategy of stance community cardinal-

ty will be discussed and a modified SCIFNET for detecting over-

apping communities will be also provided. In the following sub-

ections, we describe each system component in detail. We also

how that using the components increases the value of the objec-

ive function such that the stance community identification result

onverges to a local optimum. 

.1. Friendship network construction 

Let D = { d 1 , d 2 , …, d N } be a set of topic documents, and let

 = { p 1 , p 2 , …, p M 

} be a set of topic persons mentioned in D .

he friendship network construction generates a friendship net-

ork G = { P, E }, where the topic persons in P form the network’s

odes; and E = ( p i , p j ) is a set of edges that indicate the friend-

hip orientation of the topic persons (i.e., whether the association

etween the persons is friendly or opposing). Generally, it is diffi-

ult to discover friendship orientations from text. However, Harris

26] observed that text units with opposing meanings seldom co-

ccur in the same context. In addition, Kanayama and Nasukawa

28] showed that text units with the same sentiment tend to oc-

ur (not occur) jointly to make the contexts coherent. Hence, the

orrelation coefficient [29] , which measures the co-occurrence de-

ree of topic persons in D , is probably a good measure for discov-

ring the friendship orientation between topic persons. Neverthe-

ess, we found that topic documents sometimes cover controversial

ssues. In the documents, people with different stances strongly

riticize each other. Thus, only considering the co-occurrence de-

ree of topic persons in D may overestimate the friendship of ri-

als and degrade the performance of stance community identifica-

ion. Intuitively, topic persons who frequently co-occur in stance-

riendly (stance-opposing) documents may have a friendly (oppos-

ng) association. To quantitate the stance orientation of a topic doc-

ment, we adopt Turney and Littman [47] ’s method and compute

he stance weight of a document as follows: 

 w d = 

∑ 

wor d i ∈ d 
log 

⎛ 

⎜ ⎝ 

∏ 

wor d j ∈ F words 

count(wor d i , wor d j ) ·
∏ 

wor d k ∈ Owords 

count(wor d k ) 

∏ 

word 
j 
∈ F words 

count(wor d j ) ·
∏ 

wor d k ∈ Owords 

count(wor d i , wor d k ) 

⎞ 

⎟ ⎠ 

, 

(1) 

here sw d represents the stance weight of document d ; and

words and Owords are, respectively, sets of words with stance-

riendly and stance-opposing semantics compiled by linguistic ex-

erts. The function count ( word i , word j ) returns the number of doc-

ments in which word i and word j co-occur in our topic corpus. Ba-

ically, the equation utilizes pointwise mutual information (PMI)

o compute the stance weight of a document. The stance weight

w d is positive if d ’s content is strongly associated with Fwords ,

nd negative if the content is strongly associated with Owords . We

esign the following stance-oriented correlation coefficient (SOCOR),

hich incorporates the stance weight into the correlation coeffi-

ient: 

ocor 
(

p i , p j 
)

= 

⎡ 

⎣ 

∑ 

d∈ D f riendly 

s w d 
∗( p i,d − p i, f riendly ) 

∗( p j,d − p j, f riendly ) 

+ 

∑ 

d∈ D opposing 

s w d 
∗( p i,d − p i,opposing ) 

∗( p j,d − p j,opposing ) 

⎤ 

⎦ 

/
√ ∑ 

d∈ D f riendly 

[√ 

s w d ∗ ( p i,d −p i, f riendly ) 
]2 + 

∑ 

d∈ D opposing 

[ √ 

| s w d | ∗ ( p i,d −p i,opposing ) 
] 2 

∗

√ ∑ 

d∈ D f riendly 

[√ 

s w d ∗ ( p j,d − p j, f riendly ) 
]2 + 

∑ 

d∈ D opposing 

[ √ 

| s w d | ∗ ( p j,d −p j,opposing ) 
] 2 

, (2) 
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where D friendly ⊆ D is a set of topic documents whose stance

weight is positive; D opposing ⊆ D is a set of topic documents whose

stance weight is negative; and p̄ i,friendly and p̄ i,opposing are the av-

erage frequencies of p i occurring in D friendly and D opposing respec-

tively. Like the correlation coefficient, the range of socor ( p i ,p j ) is

within [ −1,1]. It is zero if the occurrences of p i and p j in D are

independent of each other. However, if p i and p j tend to co-occur

in stance-friendly (stance-opposing) documents, the socor ( p i ,p j ) is

positive (resp. negative). Next, we define the friendship orientation

in terms of the stance-oriented correlation coefficient. 

Definition 1. The friendship orientation: 

The friendship orientation between p i and p j is denoted as

socor(p i ,p j ) and −1 ≤ socor(p i ,p j ) ≤ 1. 

We utilize SOCOR to construct the edge set E . In addition,

to consolidate relationships between topic persons, we define a

friendship orientation threshold θ . An edge ( p i ,p j ) is established if

socor ( p i ,p j ) > θ or socor ( p i ,p j ) < −θ . 

Jeh and Wisdom [27] and Antonellis et al. [3] demonstrated

that the association between nodes in a network is proportional

to their co-neighboring level. In other words, the greater the over-

lap between the neighbors of two nodes, the higher will be the

likelihood that the nodes are associated with each other. In our re-

search, however, edges indicate either friendly orientations or op-

posing orientations. To measure the co-neighboring strength, we

define two types of neighbors, namely, friendly neighbors and op-

posing neighbors. 

Definition 2. The Friendly Neighbors: 

Let p i ∈ P. The friendly neighbors of p i, denoted by �friendly (p i ),

form a set of nodes whose friendship orientations to p i are larger

than θ . Formally, �friendly (p i ) = {p j ∈ P| socor(p i ,p j ) > θ}. 

Definition 3. The Opposing Neighbors: 

Let p i ∈ P. The opposing neighbors of p i , denoted by �opposing (p i ),

form a set of nodes whose friendship orientations to p i are smaller

than −θ . Formally, �opposing (p i ) = {p j ∈ P| socor(p i ,p j ) < - θ}. 

In Definitions 4 and 5 , we employ the Jaccard coefficient to

measure the friendly co-neighboring strength and the opposing co-

neighboring strength respectively. 

Definition 4. Friendly Co-neighboring Strength: 

The friendly co-neighboring strength between p i and p j is de-

noted by γ (p i ,p j ): 

γ ( p i , p j ) = 

| � f riendly ( p i ) ∩ � f riendly ( p j ) | 
| � f riendly ( p i ) ∪ � f riendly ( p j ) | . 

Definition 5. Opposing Co-neighboring Strength: 

The opposing co-neighboring strength between p i and p j is de-

noted by ω(p i ,p j ): 

ω( p i , p j ) = 

∣∣�opposing ( p i ) ∩ �opposing ( p j ) 
∣∣∣∣�opposing ( p i ) ∪ �opposing ( p j ) 
∣∣ . 

Clearly, if two nodes share several friendly (opposing) neigh-

bors, their friendly (opposing) co-neighboring strength is strong.

Finally, we combine the friendship orientation with the co-

neighboring strengths, and define the friendship strength, i.e., the

edge weight, as follows. 

Definition 6. Friendship Strength: 

i  
The friendship strength, denoted by δ(p i ,p j ), represents the

eight of edge (p i ,p j ). 

( p i , p j ) = (socor( p i , p j ) + 1) 
γ ( p i , p j )+ ω( p i , p j ) 

2 + β, i f socor 
(

p i , p j 
)

> θ . 

( p i , p j ) = −(| socor( p i , p j ) | + 1) (1 − γ ( p i , p j )+ ω( p i , p j ) 

2 )+ β, 

i f socor 
(

p i , p j 
)

< − θ . 

For friendly orientations (i.e., socor ( p i ,p j ) > θ ), the friendly and

pposing co-neighboring strengths function as an exponent to am-

lify the friendly relationships between nodes. We utilize a param-

ter β ≥ 1 to ensure that the exponent is not less than 1; and we

dd 1 to a friendly orientation so that the base is greater than 1.

s the enemies of foes may be friends, the friendship strength of

 i and p j is strong and positive if they have a friendly orientation

nd share a lot of friendly and opposing neighbors. If p i and p j 
ave an opposing orientation (i.e., socor ( p i ,p j ) < −θ ), their friend-

hip strength is negative. However, p i and p j may not fight against

ach other if they have many friends and adversaries in common.

he negative friendship strength is thus diminished if the friendly

nd opposing neighbors of p i and p j overlap a great deal. 

.2. The objective function of SCIFNET 

After constructing the friendship network of a topic, we identify

tance communities in the network. 

efinition 7. Stance Communities: 

The stance communities < c 1 , c 2 ,…, c K > form a set of node clus-

ers in the friendship network G such that c m 

⊆ P and c m 

∩ c n = null

or m 
 = n. 

In general, community detection methods partition the nodes

f a network into clusters (i.e., communities) in accordance with

he principle that maximizes the association between the nodes in

ach cluster, while minimizing the association between the clus-

ers [45] . We define the following objective function to identify a

oherent stance community identification result. 

 = arg max 
< c 1 , c 2 , ... , c K > 

K ∑ 

community : m 

[ ∑ 

p i , p j ∈ c m ,i< j, ( p i , p j ) ∈ E 
δ( p i , p j ) 

] 

−
K ∑ 

community : m,n,m<n 

[ ∑ 

p i ∈ c m , p j ∈ c n , ( p i , p j ) ∈ E 
δ( p i , p j ) 

] 

. (3)

To maximize the objective function, the identified stance com-

unities need to maximize the first term of Eq. (3) and mini-

ize the second term simultaneously. In other words, the stance

ommunity identification method seeks a set of stance commu-

ities that maximize the friendship strength within communities

the first term of the objective function) and minimize the friend-

hip strength between communities (the objective function’s sec-

nd term). 

.3. Stance community expansion 

Fig. 3 shows the proposed stance community expansion algo-

ithm, and Fig. 4 provides an example of stance community ex-

ansion. In the algorithm, the symbol P unlabeled represents a set of

nlabeled nodes (i.e., topic persons). Initially, P unlabeled = P ; that is,

ll nodes are unlabeled. The algorithm randomly selects K nodes

s the seeds of stance communities and expands the communities

teratively by merging unlabeled nodes. In each iteration, a set of

nlabeled nodes U that connect directly to a stance community are

dentified (i.e., U = { p i ∈ P unlabeled | ( p i ,p j ) ∈ E, p j ∈ c k , 1 ≤ k ≤ K }). Each 
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Fig. 3. The stance community expansion algorithm. 

Fig. 4. An example of stance community expansion. 
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2 We exclude the case where | Z i | = 1 and the merging score is negative. This is 

because the algorithm will not merge p i with any stance community. 
3 We exclude the case where the maximum merging score is negative because 

the algorithm will not merge p with any stance community. 

 

 

 

ode p i in U is then examined to determine an appropriate com-

unity label for it. Let Z i denote the set of stance communities

hat the unlabeled node p i is connected to directly; that is, Z i = { c k 
 ( p i ,p j ) ∈ E, p j ∈ c k , 1 ≤ k ≤ K }. For instance, Z 4 shown in Fig. 4 com-

rises communities c 1 and c 2 . We compute the merging score for

ach of the stance communities c k in Z i as follows: 

 s i,k = 

∑ 

p j ∈ c k , ( p i , p j ) ∈ E 
δ( p i , p j ) , (4) 

here ms i , k is the score of merging p i with c k . Basically, the merg-

ng score is the sum of the edge weights associated with p i and

tance community c k . Intuitively, merging p i with a community

hat has a positive merging score should produce a stance-coherent

ommunity. When more than one community has a positive merg-

ng score, the algorithm merges p i with the stance community

hat has the maximum merging score. Below, we show that the

tep provides the most benefit for the objective function. Note that

he merging score is negative if most of the nodes in c k have

n opposing friendship to p . Because merging p with a stance-
i i 
pposing community is inappropriate, the algorithm revokes the

erge operation if the maximum merging score is negative. The

lgorithm iteratively expands stance communities until all the un-

abeled nodes in the friendship network are merged or no unla-

eled node has a positive merging score with any stance com-

unity. Then, it returns a stance community identification result

hich will be polished by the stance community refinement algo-

ithm. 

The following cases show how the merge step of the algorithm

enefits the objective function. In the first case, | Z i | = 1 and the

erging score of the connected stance community is positive 2 .

ere, p i is merged with the connected stance community. Because

here is no other connected stance community, the merge oper-

tion will not change the second term of the objective function.

oreover, the operation increases the first term of the objective

unction by the positive merging score, so it benefits the objec-

ive function. In the second case, | Z i | > 1 and the maximum merg-

ng score is positive 3 . Next, we show that merging p i with the

tance community that has the maximum merging score provides

he most benefit for the objective function. 

roof. Let | Z i | = k , and let k > 1. We have a sequence of merging

cores 〈 ms i ,1 , ms i ,2 , …, ms i,k 〉 for the stance communities in Z i . Let

s i ,1 ≥ ms i ,2 ≥ …≥ms i,k and let ms i ,1 > 0. The stance community ex-

ansion algorithm merges p i with c 1 . The inequality ms i ,1 ≥ ms i,n 
olds for any stance community c n in Z i if n 
 = 1. In other words, ∑ 

p j ∈ c 1 
δ( p i , p j ) ≥

∑ 

p j ∈ c n 
δ( p i , p j ) . (5) 

Because Z i has been determined, the summation of 〈 ms i ,1 , ms i ,2 ,

, ms i,k 〉 (i.e., �l = 1 to k ms i , l ) is a fixed value. The inequality

s i ,1 ≥ ms i,n also implies that 
 

l 
 =1 

m s i,l ≤
∑ 

l 
 = n 
m s i,l (6) 
i 
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Fig. 5. An example of stance community refinement. 
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That is, ∑ 

l=2 to k 

∑ 

p j ∈ c l 
δ( p i , p j ) ≤

∑ 

l =1 to k,l 
 = n 

∑ 

p j ∈ c l 
δ( p i , p j ) (7)

or 

−
∑ 

l=2 to k 

∑ 

p j ∈ c l 
δ( p i , p j ) ≥ −

∑ 

l =1 to k,l 
 = n 

∑ 

p j ∈ c l 
δ( p i , p j ) . (8)

By combining Eqs. (5) and (8) , we have ∑ 

p j ∈ c 1 
δ( p i , p j ) −

∑ 

l=2 to k 

∑ 

p j ∈ c l 
δ( p i , p j ) ≥

∑ 

p j ∈ c n 
δ( p i , p j ) 

−
∑ 

l =1 to k,l 
 = n 

∑ 

p j ∈ c l 
δ( p i , p j ) . (9)

�

The above inequality indicates that if the unlabeled node p i is

associated with more than one stance community, the stance com-

munity expansion algorithm will merge p i with the community

that benefits the objective function the most. 

3.4. Stance community refinement 

The stance community expansion algorithm iteratively expands

stance communities from the seed nodes. In some cases, a node

is merged with a stance community simply because it is close to

the community’s seed. However, it may be better to merge the

node with some other community. For instance, node p 5 in Fig. 5

is merged with community c 2 even though it is strongly associ-

ated with community c 1 . Also, the expansion result depends on

the quality of the seeds. To minimize the effect of the above “early

merging ” problem and to lessen the influence of the seed initializa-

tion, we developed the following stance community refinement al-

gorithm. The algorithm refines the communities iteratively. In each

iteration, it identifies a set of boundary nodes P boundary ⊆ P . Each

node in P boundary belongs to a stance community and also connects

to some other stance communities. In other words, P boundary = { p i 
| ( p i ,p j ) ∈ E, p i ∈ c m 

, p j ∈ c n , m 
 = n }. The algorithm re-clusters each

boundary node to the stance community that produces the maxi-

mum merging score. It continues to identify and cluster boundary

nodes until P boundary is empty or the identification result is stable;

that is, no boundary node re-clustering benefits the objective func-

tion value and the value of the objective function converges to a

local optimum. 

Basically, our stance community refinement is a hill-climbing

algorithm in that it iteratively improves the stance community
dentification result. However, to guarantee that a hill-climbing al-

orithm reaches a local optimum, we need to prove that each iter-

tion of the algorithm monotonically increases (decreases) the ob-

ective function value [25,33,44] . Below, we prove that the value of

he objective function increases monotonically in each boundary

ode re-clustering operation. 

roof. Let p i be a boundary node. As a boundary node belongs to

 stance community and also connects to some other stance com-

unities, | Z i | must be greater than 1. That is, | Z i | = k > 1. Let 〈 ms i ,1 ,

s i ,2 , …, ms i,k 〉 be the merging scores of the stance communities

n Z i , and let ms i ,1 ≥ ms i ,2 ≥ … ≥ ms i,k . In addition, let c n ∈ Z i be

he stance community that p i currently belongs to. The inequality

s i ,1 ≥ ms i,n holds. In other words, ∑ 

p j ∈ c 1 
δ( p i , p j ) ≥

∑ 

p j ∈ c n 
δ( p i , p j ) . (10)

Because Z i has been determined, the summation of 〈 ms i ,1 , ms i ,2 ,

, ms i,k 〉 (i.e., �l = 1 to k ms i , l ) is a fixed value. The inequality

s i ,1 ≥ ms i,n also implies that 
 

l 
 =1 

m s i,l ≤
∑ 

l 
 = n 
m s i,l (11)

That is, ∑ 

=2 to k 

∑ 

p j ∈ c l 
δ( p i , p j ) ≤

∑ 

l =1 to k,l 
 = n 

∑ 

p j ∈ c l 
δ( p i , p j ) (12)

r ∑ 

l=2 to k 

∑ 

p j ∈ c l 
δ( p i , p j ) ≥ −

∑ 

l =1 to k,l 
 = n 

∑ 

p j ∈ c l 
δ( p i , p j ) . (13)

By combining Eqs. (10) and (13) , we have ∑ 

p j ∈ c 1 
δ( p i , p j ) −

∑ 

l=2 to k 

∑ 

p j ∈ c l 
δ( p i , p j ) ≥

∑ 

p j ∈ c n 
δ( p i , p j ) 

−
∑ 

l =1 to k,l 
 = n 

∑ 

p j ∈ c l 
δ( p i , p j ) (14)

Similar to the proof of stance community expansion, the above

nequality indicates that the stance community refinement always

e-clusters p i into the community that benefits the objective func-

ion the most. The inequality also implies that ∑ 

p j ∈ c 1 
δ( p i , p j ) −

∑ 

l=2 to k 

∑ 

p j ∈ c l 
δ( p i , p j ) − [ 

∑ 

p j ∈ c n 
δ( p i , p j ) 

−
∑ 

l =1 to k,l 
 = n 

∑ 

p j ∈ c l 
δ( p i , p j ) ] ≥ 0 (15)

The left-hand side of the inequality is equivalent to the vari-

tion in the objective function when p i is re-clustered. Note that

he variation is always non-negative. In other words, re-clustering

he boundary nodes in P boundary increases the value of the objective

unction monotonically. Because the set of possible stance commu-

ity identification results is finite, the stance community refine-

ent algorithm will eventually find a local optimum [25,33,44] . �

.5. Stance-irrelevant topic person detection 

A person mentioned frequently in topic documents may be ir-

elevant to the topic stances. For instance, in the topic about the

012 French Presidential Election, U.S. President Barack Obama, one

f the most influential people in the world, was frequently men-

ioned in the topic documents because journalists liked to ana-

yze his attitude toward the candidates. However, President Obama

howed no preference to any camp. SCIFNET can detect stance-

rrelevant topic persons, which are defined as follows. 

efinition 8. Stance-irrelevant Topic Persons:  
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Fig. 6. The stance community refinement algorithm. 
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Fig. 7. An example of the associations of stance-irrelevant persons. 
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Stance-irrelevant topic persons form a set P irrelevant = {p i ∈ P|

 i 
∈ c k , 1 ≤ k ≤ K}. 

In other words, a topic person is stance-irrelevant if he/she does

ot belong to any stance community. SCIFNET classifies two types

f nodes as stance-irrelevant because they cannot be merged with

 stance community. The first is the set of outliers which have

o connections to other nodes in a network [53] . The nodes are

tance-irrelevant because they do not show connections with any

tance community. The second type comprises nodes that have

onnections with stance communities; however, most of the con-

ections are with communities that have opposing associations

ith the nodes. Because the merging scores of the connected com-

unities are negative, the nodes cannot merge with any stance

ommunity. 

Technically, we can increase the value of the objective function

y merging a node that belongs to the second type with a com-

unity that does not have any connections with the node. For

nstance, merging node p 10 in Fig. 7 with c 2 increases the value

f objective function by 1.5. Even if the node connects to every

tance community, the value of the objective function can still be

ncreased by merging the node with the community that has the

inimum negative merging score. For example, merging node p 16 

n Fig. 7 with c 1 increases the objective function value by 2.1. The

bove strategies increase the value of the objective function be-

ause they reduce the friendship strength between stance commu-

ities, i.e., the second term of the objective function. However, al-

hough the two strategies are mathematically correct, merging a

ode with a community that does not have any connections or

ith the community that has the minimum negative merging score

s irrational. Hence, in this study, we do not merge the second type

f nodes. 

In a future work, we will incorporate other information to han-

le the second type of nodes and refine the detection of stance-

rrelevant topic persons. 

c  
.6. The computational complexity 

In this section, we analyze the time complexity of friendship

etwork construction, stance community expansion, stance com-

unity refinement, and stance-irrelevant topic person detection,

hich are the major components of SCIFNET. We also present the

otal time complexity of SCIFNET. The friendship network con-

truction examines every person pair to measure their stance-

riented correlation coefficients and co-neighboring levels, whose

ime complexities are O( N ) and O( M ), respectively. As there are

 

2 person pairs in a given topic, the overall cost of the friend-

hip network construction is O( M 

3 + NM 

2 ). Generally, the number

f topic documents (i.e., N ) is relatively larger than that of topic

ersons (i.e., M ). Hence, the complexity of the construction pro-

ess is O( NM 

2 ). The stance community expansion is based on the 
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Fig. 8. The modified stance community expansion algorithm for detecting overlapping stance communities. 
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proposed merging score which computes the association of a node

to a stance community. The complexity of the merging score calcu-

lation is O( M ) as it needs to examine every node of the connected

stance communities. Therefore, the overall complexity of the pro-

cess is O( M 

2 ). The stance community refinement is also based on

the merging score, and iteratively refines each node’s stance until

the refinement converges to a local optimum. Letting T be the it-

eration number, the cost of the stance community refinement is

O( TM 

2 ). As mentioned in Section 3.5 , the stance-irrelevant topic

persons are the nodes that have no connection to other nodes in

a friendship network. To detect those nodes, we have to examine

all nodes in the constructed friendship network. The complexity of

the operation is therefore O ( M ). In sum, as mentioned earlier, N

dominates the value of T and M , so the total time complexity of

SCIFNET is O( NM 

2 ). 

3.7. SCIFNET for overlapping stance communities 

In many topics, it is possible that a person belongs to more than

one stance community. Hence, we present a variant of SCIFNET

for detecting overlapping stance communities. Figs. 8 and 9 re-

spectively show the modified stance community expansion and re-
nement algorithms. The main difference to the algorithms men-

ioned in the previous sections is in the way they merge a node.

ather than assigning a node to the stance community that has a

aximum merging score, the modified algorithms merge the node

ith all the communities whose merging scores are above a pre-

efined threshold. Specifically, let variable pms i be the set of stance

ommunities that have a positive merging score with node p i . The

um of the positive merging scores score i is used to normalize the

erging scores. For each stance community in pms i , if the normal-

zed merging score is larger than the merging threshold, we assign

 i to the stance community. In this way, p i can belong to multiple

tance communities. 

.8. The cardinality of stance communities 

Selecting the appropriate number of communities (clusters) is a

ifficult and on-going research issue [33] . In practice, the value of

 can be determined by experts who are familiar with the investi-

ated topic. However, if the number of stance communities cannot

e manually assigned, the following strategy is presented to deter-

ine the cardinality of stance communities. The cardinality strat-

gy initiates the number of stance communities (i.e., K ) with 2. 
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Fig. 9. The modified stance community refinement algorithm for detecting overlapping stance communities. 
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4 Due to the length limitation, we established a web page at http://weal.im.ntu. 

edu.tw/SCIFNET.html which details titles, descriptions, number of documents, and 

stances of the evaluated topics. 
5 http://nlp.stanford.edu/software/CRF-NER.shtml 

 

 

 

ext, it iteratively executes the stance community expansion and

efinement algorithms such that each iteration increases the com-

unity number K by 1. The iteration stops when the remaining

odes (i.e., the nodes belonging to no community) have no posi-

ive merging score or when they are isolated nodes. Then, a stance

dentification result is returned and the corresponding K denotes

he number of stance communities. 

. Experiment 

In this section, we introduce the data corpus used in the exper-

ments; demonstrate the effectiveness of each system component;

nd compare our method’s performance with those of other well-

nown community detection methods and clustering algorithms.

hen, we present a stance community identification result and dis-

uss the stance-irrelevant persons detected by our method. 

.1. Dataset 

Stance community identification is a relatively new research

rea. To the best of our knowledge, there is no official corpus
or the subject; hence, we compiled a data corpus 4 for evalua-

ions. The corpus comprises 30 topics and 4996 topic documents,

ll downloaded from the Google News. The collected topics cover

hree domains, namely sport, business issues, and political elec-

ions; and each topic involves about four competing stance com-

unities. We also asked human experts to manually filter out irrel-

vant documents to ensure that the experiment documents are on-

opic. To extract important topic persons mentioned in the topic

ocuments, we used the well-known Stanford Named Entity Rec-

gnizer 5 , which tags the person names in an input text. The rec-

gnizer extracted 6648 unique person names for all the topics.

e found that a large number of the person names rarely ap-

eared in the topic documents; and the frequency distribution fol-

owed Zipf’s law [56] . In other words, there were very few fre-

uent person names. Moreover, as there is no perfect named en-

ity recognizer, several of the infrequent person names were incor-

ect or ambiguous (e.g., a string intermixed with the name of an

http://weal.im.ntu.edu.tw/SCIFNET.html
http://nlp.stanford.edu/software/CRF-NER.shtml
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Table 1 

The statistics of evaluated corpus. 

# of topics 30 

# of topic documents 4996 

Avg. # of documents per topic 166 .53 

Avg. # of stance communities per topic 3 .97 

# of extracted topic persons 6648 

λ = 50% λ = 60% λ = 70% 

# of evaluated topic persons 459 647 897 

Avg. # of evaluated topic persons per topic 15 .3 21 .57 29 .9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The effect of parameter θ on rand index under λ = 50%. 

Fig. 11. The effect of parameter θ on NMI under λ = 50%. 

Fig. 12. The effect of parameter θ on rand index under λ = 60%. 

Fig. 13. The effect of parameter θ on NMI under λ = 60%. 

 

 

 

organization and the name of a person). To assess our method’s

performance accurately, for each of the evaluated topics, we re-

moved the false person name entities and only evaluated the

first frequent person names whose accumulated frequency reached

λ = 50, 60, and 70 percent of the total frequency of all the ex-

tracted person names. The average number of evaluated person

names under each setting of λ is shown in Table 1 . All the names

represent important topic persons. 

We asked experts to group the evaluated topic persons into

stance communities and establish a reliable ground truth for the

performance evaluation. The kappa statistic which assesses the

agreement between the experts is 74.73% and is good enough to

conduct reliable evaluations. For the performance evaluation, we

used the rand index [33] , an important clustering evaluation met-

ric, because the stance community identification method groups

topic persons into clusters (i.e., communities). There are 1108,234

person pairs in the dataset. The rand index measures the percent-

age of all person pairs that are clustered correctly (i.e., if two per-

sons with the same stance are placed in the same community or

two persons with different stances are placed in different com-

munities). The higher the score of the rand index, the better the

stance community identification performance. In addition, we also

represented the other information-theoretic metric named normal-

ized mutual information (NMI) [33] which calculates the mutual

information between the clusters and the classes, and was divided

by the average of the entropy of the clusters and the classes. This

metric can also reflect the quality of the clustering because it takes

the quality of the clustering and the number of cluster into consid-

eration [33] . Similar to the rand index, the higher the score of the

NMI, the better the quality of the clustering. Because the stance

community expansion algorithm depends on seed initialization, we

randomly initialize our method twenty times. The rand index and

NMI scores of all the evaluated topics over the initializations are

averaged to obtain the overall stance community identification per-

formance. For stance-irrelevant persons detected by the method,

we measure their correctness in terms of the F1 score [33] , which

is the harmonic mean of the detection precision and the detection

recall. The score is widely used to evaluate the overall effectiveness

of a detection system. 

4.2. System component analysis 

4.2.1. Friendship orientation threshold 

First, we consider the parameter θ , which is the threshold of

friendship orientation used to establish the edges in a friendship

network. In this experiment, θ is set between 0.1 and 0.9, and in-

creased in increments of 0.1. Table 2 shows the lists of Fwords and

Owords compiled by two linguistic experts. The stance word lists

are used by the stance-oriented correlation coefficient (i.e., Eq. (2) )

to compute the stance weight of a topic document. The parameter

β , used by the friendship strength calculation (i.e., Definition 6 ),

is set at 1. We discuss β and examine the effects of Fwords and

Owords later. Figs. 10–15 show the rand index and the NMI scores

under different settings of θ and λ. For each setting of θ , we
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Table 2 

The lists of Fwords and Owords . 

Domain Business issues Political elections Sports 

Stance-friendly word - 

Fwords 

support cooperate teammate 

member support like 

push help lead 

agreement member best 

help good good 

share team need 

approve work great 

benefit partner help 

partner advocate together 

consensus friend offend 

Stance-opposing word - 

Owords 

criticize campaign win 

rival opposite lose 

damage rival beat 

rape fraud defend 

fight accusation against 

campaign contest finish 

abuse lost end 

strike beat guard 

reject debate defense 

defend defeat hit 

Fig. 14. The effect of parameter θ on rand index under λ = 70%. 

Fig. 15. The effect of parameter θ on NMI under λ = 70%. 
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Fig. 16. The F1-score/ratio of the detected stance-irrelevant persons under λ = 50%. 

Fig. 17. The F1-score/ratio of the detected stance-irrelevant persons under λ = 60%. 

Fig. 18. The F1-score/ratio of the detected stance-irrelevant persons under λ = 70%. 

t  

r  

q  

f  

c  

a  

i  

t  

n  

f  

a  

p  

t  

fi  

t  

f

 

s  

 

 

xamine stance community expansion and stance community re-

nement techniques (denoted as SE + SR) in terms of the rand in-

ex. We also compare the performance based on stance commu-

ity expansion only (denoted as SE), i.e., without stance commu-

ity refinement. 

As shown in the figures, the two metrics decreases as λ in-

reases. A large λ implies that the stance community identifica-

ion is difficult because the setting would include the infrequent

opic persons in the stance community identification process. As
he construction of a friendship network is based on the occur-

ence of topic persons in the topic documents, including infre-

uent persons would reduce the quality of the network and there-

ore affect the stance community identification performance. Basi-

ally, the two metrics increases as the value of θ increases because

 large θ filters out insignificant friendships between persons to

mprove the quality of the friendship network. When θ is greater

han 0.4, the scores of the metrics drop gradually. Connections can-

ot be established between nodes when θ is large. As a result, the

riendship network is too sparse to represent informative associ-

tions between persons and the stance community identification

erformance is inferior. It is noteworthy that SE + SR performs bet-

er than SE. The result demonstrates that stance community re-

nement resolves the “early merging ” problem and the influence of

he seed initialization in stance community expansion and there-

ore improves the stance community identification performance. 

Figs. 16–18 show the F1 scores of stance-irrelevant topic per-

on detection under different parameter settings. They also show 
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Fig. 19. Comparison of the edge weighting strategies under λ = 50%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Comparison of the edge weighting strategies under λ = 60%. 

Fig. 21. Comparison of the edge weighting strategies under λ = 70%. 
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the corresponding stance-irrelevant person ratio, which is the frac-

tion of topic persons considered stance-irrelevant by our method.

Note that the number of stance-irrelevant topic persons detected

by SE + SR is the same as that detected by SE. This is because stance

community refinement only re-clusters merged boundary nodes,

so using it does not affect the stance-irrelevant topic person de-

tection result. For ease of presentation, we only show SE + SR’s F1

score and the stance-irrelevant topic person ratio. The F1 scores in

the figures are inferior (around 0.2) because the number of stance-

irrelevant topic persons in the evaluated topics is small. Hence, a

misjudgment of the stance-irrelevant topic persons would reduce

the F1 score significantly. The poor F1 scores also indicate that de-

tecting stance-irrelevant topic persons is very difficult. Neverthe-

less, the scores are still superior to those of many of the commu-

nity detection methods evaluated in the following experiments. As

shown in the figures, a small θ value (e.g., θ = 0.1) always pro-

duces a poor F1 score. The reason is that the friendship network

constructed by a small θ contains many weak friendship edges

that cause our method to merge a stance-irrelevant person with

a stance community. Increasing the value of θ would improve the

stance-irrelevant topic person detection performance, but setting

it too high (i.e., higher than 0.5) would yield a sparse friendship

network. Thus, many important topic persons are incorrectly clas-

sified as isolated nodes, which increase the stance-irrelevant topic

person ratio. The corresponding F1 score is inferior because most

of the detected stance-irrelevant persons are false alarms. 

In summary, a large θ increases the ratio of stance-irrelevant

topic persons and decreases the rand index and the NMI scores

of stance community identification. Setting θ at 0.2 generally pro-

duces good scores for both metrics and F1 scores while maintain-

ing a low stance-irrelevant person ratio. Therefore, we set θ at 0.2

in the following experiments. 

4.2.2. Edge weight evaluation 

Next, we discuss the friendship strength (FS), which combines

the friendship orientation (FO) and the co-neighboring Jaccard co-

efficient (JACCARD) to compute the weight of a network edge. We

evaluate the friendship strength by comparing it with its two con-

stituents. In addition, we assess parameter β , which ensures that

the friendship strength’s exponent factor is not less than 1. As

shown in Figs. 19–21 , the metrics’ scores under different settings of

β are very similar. The results imply that the proposed friendship

strength is insensitive to the setting of β . Nevertheless, setting β
at 1 usually yields a superior performance, so we use the setting

in the following experiments. Surprisingly, the identification per-

formances based on the co-neighboring Jaccard coefficient are in-

ferior. This is because the approach tends to underestimate the as-

sociation of topic persons. For instance, if two persons do not have

a common neighbor, the weight of the edge between them is zero
ven if they co-occur frequently in the topic documents. It is note-

orthy that applying the two constituents together (i.e., the pro-

osed friendship strength) achieves the best performance. As the

onstituents measure the association between nodes from differ-

nt perspectives, applying them together identifies the friendship

etween topic persons accurately and therefore improves the sys-

em’s performance. For example, in the sports topic “the 2011 NBA

onference Finals,” if we simply employ the friendship orientation,

he edge weight between Jason Terry and Shawn Marion, who are

eammates of Dallas Maverick, would only be 0.280442. By com-

ining the co-neighboring Jaccard coefficient with the friendship

rientation, the edge weight increases to 1.448904. The improve-

ent corresponds with the results reported by Jeh and Wisdom

27] and Antonellis et al. [3] who demonstrated that the associa-

ion between nodes is proportional to their co-neighboring level. 

.2.3. Stance-oriented correlation coefficient evaluation 

Next, we evaluate the stance-oriented correlation coefficient

i.e., SOCOR defined in Eq. (2) ). The stance-oriented correlation co-

fficient enhances the traditional correlation coefficient (denoted

s COR) by considering a document’s stance weight, which is com-

uted by using Turney and Littman’s PMI method with the stance

ords listed in Table 2 . Here, we compare our stance-oriented cor-

elation coefficient with the traditional correlation coefficient. Tur-

ey and Littman also compiled a semantic orientation word list

nd used it to determine the semantic orientation of a text unit.

o demonstrate the effect of our stance word list, we also compare

he system’s performance using the semantic orientation word list.

SOCOR outperforms COR, as shown in Figs. 22–24 . The results

emonstrate that the stance orientations of topic documents are

nformative for identifying the friendship orientation of topic per-

ons. Notably, SOCOR with the semantic orientation word list is in-

erior. This is because the list is used to identify text units that 
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Fig. 22. Comparison of the correlation coefficient approaches under λ = 50%. 

Fig. 23. Comparison of the correlation coefficient approaches under λ = 60%. 

Fig. 24. Comparison of the correlation coefficient approaches under λ = 70%. 
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Fig. 25. SCIFNET with overlapping communities under λ = 50%. 

Fig. 26. SCIFNET with overlapping communities under λ = 60%. 

Fig. 27. SCIFNET with overlapping communities under λ = 70%. 

Table 3 

The performance of the cardinality strategy. 

λ # of the returned stance 

communities 

The rand index/NMI values of 

identified results 

50% 2 .467 0 .6230/0.4286 

60% 4 .2 0 .6702/0.4430 

70% 7 .2 0 .5582/0.3316 
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onvey positive or negative meanings, and the meanings may not

eveal whether the associations between persons are friendly or

pposing. 

.2.4. Overlapping stance community evaluation 

In this section, we demonstrate the performance of our overlap-

ing stance community identification. Figs. 25–27 show that the

tance community identification performances are inferior when

he merging threshold is high. This is because a high threshold will

ivide the members of the same stance community into different

lusters, which deteriorates the system performance. Although re-

axing the threshold generally improves system performance, a low

hreshold would result in noisy stance communities in which per-

ons belonging to different communities would be merged. It is in-

eresting to note that the performances presented here are inferior

o those in the above experiments. This is because the topics we
valuated do not have overlapping communities. The performances

f the overlapping stance identification thus are poor when topic

ersons are assigned to more than one stance community. 

.2.5. Cardinality strategy evaluation 

Finally, we evaluate the cardinality strategy presented in

ection 3.8 . Table 3 shows the performance of the cardinality strat-

gy and the number of the returned stance communities. When 
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λ = 50%, the number of the returned stance communities is less

than the actual community number, i.e., 4. This is because the

evaluated topic persons under λ = 50% are popular such that they

tend to connect to each other in the constructed friendship net-

work. The strategy thus incorrectly merges stance communities.

When λ increases, less popular topic persons are included in the

friendship network and the network becomes sparse. This sparsity

in turn leads to a high cardinality that affects the stance identi-

fication performance. It is noteworthy that for under λ = 60%, the

strategy returns a good stance cardinality that the corresponding

performances are comparable to those produced by fixing K at 4. 

4.3. Comparison with other methods 

4.3.1. Stance community identification evaluations 

In this sub-section, we compare SCIFNET with 10 well-known

community detection methods: FastModularity [37] , SCAN [53] ,

FEC [55] , CODA [23] , the signed modularity method (SM) [2] , the

seed-based intimate degree method (SID) [48] , the seed-based ab-

sorbing degree method (SAD) [31] , BASH [15] , the maximal sub-

graph clustering coefficient method (MCC) [14] , and the ( α, β)-

close method [20] . The methods require an input network. To en-

sure that the comparisons are fair, all the community detection

methods run on the friendship networks generated by our method

and partition each network into K communities. Note that the

number of communities detected by SM sometimes is less than

K . This is because the method detects communities according to

the signs of the entries in the principal eigenvector. It stops com-

munity detection if the entry signs are all the same. Also note

that SM and FEC are designed for signed networks. FastModularity,

SCAN, CODA, SID, SAD, BASH, MCC, and ( α, β)-close assume the

analyzed networks are unsigned and examine the link structures

to detect communities. Our friendship networks contain negative

edges. To reduce the influence of negative edges on the methods,

we also run the methods on the friendship networks without neg-

ative edges. We use the suffix “-neg” to indicate the result with-

out negative edges. For instance, SCAN-neg stands for the result of

SCAN on the friendship networks without negative edges. In SCAN,

the clustering parameters ε and u are set at 0.5 and 2 respectively,

as suggested by [53] ; the link importance parameter of CODA is set

at 0.2, as suggested by [23] , and the parameter l of FEC is set at 10,

as suggested by [55] . 

We also compare two popular clustering algorithms, namely, K-

means [33] and HAC [34] . Both algorithms represent a topic per-

son as an N -dimensional frequency vector in which an entry indi-

cates the frequency that a topic person occurs in a topic document.

To measure the association of topic persons, we utilize the cosine

similarity [33] which is frequently used to determine the similarity

of frequency vectors. For HAC, we consider four well-known cluster

similarity strategies, namely, single-link, complete-link, average-

link, and centroid-link strategies. In addition to the above meth-

ods, we compare a baseline method that clusters topic persons

randomly. As the clustering results of CODA and K-means depend

on their initializations, we randomize both methods twenty times

and select the best, worst, and average results for comparison. 

Table 4 shows the comparison results. All the compared meth-

ods perform better than the baseline, and our method achieves the

best stance community identification performance. We observed

that HAC and K-means tend to cluster popular topic persons to-

gether. This is because the cosine similarity is the inner product

of two normalized frequency vectors [33] , and it tends to yield a

high similarity score if the calculated vectors contain many non-

zero entries. As popular topic persons occur in many topic docu-

ments, the corresponding normalized frequency vectors contain a

lot of non-zero entries. The clustering methods therefore overesti-

mate the association of popular topic persons and group popular,
ut stance-different, persons together, which degrades the meth-

ds’ performance. The inferior performance of HAC’s single-link

trategy is caused by the above defect because the strategy calcu-

ates the similarity of two clusters (i.e., communities) by examining

he most similar person pair in the clusters. As a result, the strat-

gy merges clusters containing popular persons even if the clusters

epresent different stances. In contrast, our method measures the

ssociation of topic persons in terms of the stance-oriented cor-

elation coefficient and co-neighboring strength. Unlike the cosine

imilarity, the stance-oriented correlation coefficient considers how

he occurrences of two topic persons vary jointly in a set of topic

ocuments associated with stance orientations, thus being able to

orrectly measure the association of popular topic persons. For in-

tance, in the political topic “the 2012 Korean presidential elec-

ion," the friendship strength of Park Geun Hye and Park Jie-won,

ho represented different parties in the election, is −2.11474, but

heir cosine similarity is 0.984483. It is noteworthy that FastMod-

larity, SCAN, and CODA perform better when the negative edges

re removed from the friendship networks. As the methods are de-

igned for unsigned networks, negative edges would distract their

etection results. The FastModularity algorithm merges nodes into

ommunities in terms of the modularity measure, which tends to

erge communities that are connected by several edges. However,

he measure ignores the edge weights of nodes. Many of the con-

ected edges have small weights that impact the merged com-

unity’s coherency and degrade the algorithm’s performance. Our

ethod merges communities in terms of the merging score (i.e.,

q. (4) ). As the score is based on the edge weights (i.e., friend-

hip strengths), the nodes in a community are highly associated.

onsequently, the stance community identification result is bet-

er than that of the FastModularity algorithm. SCAN employs a

accard-like similarity to measure the co-neighboring strength be-

ween nodes and merges a node with a community if their co-

eighboring strength is large. However, similar to FastModularity,

CAN ignores edge weights, which degrades its performance. In ad-

ition to the co-neighboring strength, our friendship strength con-

iders the co-occurrence of nodes in topic documents associated

ith stance orientations. SCIFNET therefore outperforms SCAN sig-

ificantly. The ( α, β)-close method suffers the above problem too

ecause its merge operation depends on the co-neighboring degree

etween a node and a community. As the merge process ignores

dge weights, it may merge inappropriate nodes that deteriorate

ts stance identification result. SID employs a Jaccard-like function

o merge a new node into an existing community. The Jaccard-

ike function is based on the number of common neighbors and

t neglects the weights of the edges. Also, the method does not

rovide a refinement mechanism to avoid the early-merging prob-

em of inappropriately merged nodes. These two defects degrade

ts community detection performance. SAD enhances the selection

f community seeds by means of expert-defined rules. However,

ecause the method still lacks a community refinement operation,

ts stance identification is sensitive to the seed initialization. BASH

nd MCC extract representative cliques from a network as the ini-

ial communities. We found from the experiments that popular

opic persons of different stances normally have high degree and

hey tend to connect to each other. As a result of this, the fully

onnected cliques often group together the popular, but stance-

ifferent, persons that decrease the stance identification perfor-

ance. While CODA integrates edge weights into its clustering ob-

ective function, the weights are based on the cosine similarity

f the frequency vectors. Moreover, the objective function simply

aximizes the sum of the edge weights in each community and

gnores the association between the communities. For this reason,

ODA groups together a lot of popular, but stance-different, topic

ersons. In addition to maximizing the association of nodes within

ommunities, our objective function minimizes the association 

 



Z.-Y. Chen, C.C. Chen / Knowledge-Based Systems 110 (2016) 30–48 45 

Table 4 

The rand index/NMI performance of the compared methods. 

Method λ = 50% λ = 60% λ = 70% 

SCIFNET (Best) 0 .7870/0.6654 0 .7589/0.5721 0 .7496/0.5271 

SCIFNET (Avg.) 0 .7206/0.5502 0 .6963/0.4545 0 .6899/0.4131 

SCIFNET (Worst) 0 .6146 ∗∗∗/0.4105 ̂^^ 0 .5905 ∗∗∗/0.3402 ̂^^ 0 .6169 ∗∗∗/0.3174 ̂^^ 

FastModularity 0 .6240 ∗∗∗/0.4062 ̂^^ 0 .6442 ∗∗∗/0.3324 ̂^^ 0 .6221 ∗∗∗/0.2665 ̂^^ 
FastModularity-neg 0 .5934 ∗∗∗/0.4103 ̂^^ 0 .620 0 ∗∗∗/0.330 0 ̂^^ 0 .5971 ∗∗∗/0.2659 ̂^^ 

SCAN 0 .6228 ∗∗∗/0.4405 ̂^ 0 .6523 ∗∗∗/0.4022 ̂ 0 .6798 ∗∗∗/0.3653 ̂^ 
SCAN-neg 0 .6312 ∗∗∗/0.3960 ̂^^ 0 .6601 ∗∗∗/0.3721 ̂^ 0 .6869/0.3230 ̂^^ 

CODA (Best) 0 .7024 ∗∗∗/0.5169 0 .6 887 ∗∗∗/0.504 9 0 .6694 ∗∗∗/0.4486 

CODA (Avg.) 0 .6606 ∗∗∗/0.2990 ̂^^ 0 .6487 ∗∗∗/0.3052 ̂^^ 0 .6378 ∗∗∗/0.2756 ̂^^ 
CODA (Worst) 0 .6203 ∗∗∗/0.0900 ̂^^ 0 .6128 ∗∗∗/0.0910 ̂^^ 0 .6103 ∗∗∗/0.0836 ̂^^ 
CODA-neg (Best) 0 .7240/0.6248 0 .6977/0.5267 0 .6667 ∗∗∗/0.4551 

CODA-neg (Avg.) 0 .6592 ∗∗∗/0.3369 ̂^^ 0 .6499 ∗∗∗/0.3065 ̂^^ 0 .6374 ∗∗∗/0.2706 ̂^^ 
CODA-neg (Worst) 0 .6009 ∗∗∗/0.0575 ̂^^ 0 .6124 ∗∗∗/0.0877 ̂^^ 0 .6102 ∗∗∗/0.0767 ̂^^ 
SM 0 .6976 ∗∗∗/0.5228 0 .6919/0.4203 0 .6881/0.3734 ̂^ 
FEC 0 .7125 ∗∗/ 0.5420 0 .6805 ∗∗∗/ 0.4 4 49 0 .6469 ∗∗∗/ 0.4055 

SID-neg 0 .6553 ∗∗∗/ 0.5258 0 .6061 ∗∗∗/ 0.4047 ̂ 0 .5223 ∗∗∗/ 0.3429 ̂^^ 
SAD-neg 0 .5768 ∗∗∗/0.4413 ̂^ 0 .5622 ∗∗∗/0.3947 ̂ 0 .5211 ∗∗∗/0.3274 ̂^^ 
MCC-neg 0 .5889 ∗∗∗/0.4655 ̂^ 0 .5522 ∗∗∗/0.4146 ̂ 0 .4863 ∗∗∗/0.3339 ̂^^ 
BASH-neg 0 .5415 ∗∗∗/ 0.3709 ̂^^ 0 .5350 ∗∗∗/ 0.3564 ̂^^ 0 .5136 ∗∗∗/ 0.3032 ̂^^ 
( α, β)-close-neg 0 .5688 ∗∗∗/0.4364 ̂^ 0 .5627 ∗∗∗/4113 ̂ 0 .5409 ∗∗∗/0.2927 ̂^^ 

HAC (Single-Link) 0 .596 8 ∗∗∗/0.4 865 ̂ 0 .5323 ∗∗∗/0.3628 ̂^^ 0 .4545 ∗∗∗/0.2935 ̂^^ 
HAC (Complete-Link) 0 .6916 ∗∗∗/0.5386 0 .6741 ∗∗∗/0.4553 0 .6136 ∗∗∗/0.3691 ̂^ 
HAC (Average-Link) 0 .6979 ∗∗∗/0.5175 0 .6711 ∗∗∗/0.4057 ̂ 0 .6774 ∗∗∗/0.3702 ̂^ 
HAC (Centroid-Link) 0 .6534 ∗∗∗/0.5172 0 .6148 ∗∗∗/0.4202 0 .5741 ∗∗∗/0.3450 ̂^^ 

K-means (Best) 0 .7767/0.6623 0 .7510/0.5654 0 .7478/0.5145 

K-means (Avg.) 0 .7037 ∗∗∗/0.5194 0 .6881 ∗∗∗/0.4283 0 .6831 ∗∗∗/0.3794 ̂^ 
K-means (Worst) 0 .5896 ∗∗∗/0.3514 ̂^^ 0 .5965 ∗∗∗/0.2940 ̂^^ 0 .5896 ∗∗∗/0.2514 ̂^^ 
Baseline (Avg.) 0 .3983 ∗∗∗/0.3487 ̂^^ 0 .3479 ∗∗∗/0.2547 ̂^^ 0 .3085 ∗∗∗/0.1933 ̂^^ 

The results marked with ∗ , ∗∗ , and ∗∗∗ show, respectively, the improvements achieved by SCIFNET 

(Avg.) over the compared methods with 90%, 95% and 99% confidence levels based on the Z- 

statistic for two proportions, and the symbol ̂  , ̂ ^ , and ̂ ^^ indicate the improvements based on 

the one-tailed paired t test [29] . 
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Table 5 

The F1 performance of stance-irrelevant topic person detection. 

Method λ = 50% λ = 60% λ = 70% 

SCIFNET (Best) 0 .358335 0 .373005 0 .363269 

SCIFNET (Avg.) 0 .250637 0 .292517 0 .293951 

SCIFNET (Worst) 0 .037736 0 .102941 0 .178218 

SCAN-neg 0 .259259 0 .287356 0 .298182 

CODA-neg (Best) 0 .288889 0 .325301 0 .316667 

CODA-neg (Avg.) 0 .248889 0 .247590 ∗ 0 .247083 ∗∗∗

CODA-neg (Worst) 0 .177778 ∗ 0 .168675 ∗∗ 0 .183333 ∗∗∗

The results marked with ∗, ∗∗, and ∗∗∗ show, respectively, the im- 

provements achieved by SCIFNET (Avg.) over the compared meth- 

ods with 90%, 95% and 99% confidence levels based on the Z- 

statistic for two proportions. 
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etween communities. Therefore, SCIFNET achieves a superior

tance community identification performance. As shown in Table 4 ,

EC normally performed better than the other compared methods

id; this is because the method is designed for signed networks

nd there are negative links in the produced friendship networks.

evertheless, our method still outperformed FEC significantly. The

M method is also designed for signed networks. We found that

M sometimes cannot produce K communities for an evaluated

opic because the signs of the entries in the principal eigenvectors

re all positive. The method thereby groups persons with different

tances together, but it is also based on the modularity which ig-

ores the edge weights. Our method therefore outperforms the SM

ethod. 

.3.2. Stance-irrelevant topic person detection evaluation 

One function of SCAN and CODA is to detect outliers (i.e., nodes

hat do not belong to any community). Here, we treat the out-

iers as stance-irrelevant topic persons and compare their stance-

rrelevant topic person detection performance. Table 5 shows the

omparison results. Note that CODA uses a clustering objective

unction to rank the nodes in a network and the last γ % nodes

re denoted as outliers. To ensure a fair comparison, we adjusted

% so that the number of stance-irrelevant topic persons detected

y CODA is the same as that detected by our method. 

As shown in Table 5 , the F1 scores of the compared methods

re all inferior because we select frequent topic persons for eval-

ation. All of them are important and influential in the evaluated

opics, so very few of them are stance-irrelevant. Consequently, a

isjudgment of the stance-irrelevant topic persons would reduce

he F1 score dramatically. The inferior performance of the com-

ared methods shows that the detection of stance-irrelevant topic

ersons is difficult and requires further investigation. Contrary to
xpectations, SCAN’s F1 score is higher than our average F1 score.

his is because of SCAN’s high detection recall rate. As SCAN clus-

ers nodes in terms of their co-neighboring strength, many weakly-

onnected nodes are treated as outliers. Consequently, its detection

ecall is high, which benefits its F1 performance. Nevertheless, our

est F1 score is still the best stance-irrelevant topic person detec-

ion performance. 

.3.3. Discussion of seed initialization strategies 

In this section, we evaluate SCIFNET incorporated with three

ell-known seed initialization strategies: Betweenness [24] , Close-

ess [30] , and Degree [11] . Given a network, the betweenness value

f a node is the number of the shortest paths that the node is in-

olved with. The betweenness strategy iteratively selects K nodes

ith the largest betweenness values as the seeds of communities.

he closeness strategy sums the path lengths of a node to all other

odes in a network. The node with the minimum sum is regarded 
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Fig. 28. The stance community identification result of the 2009 NBA Conference Final ( λ = 70%). 

Table 6 

The rand index/NMI performance of the seed initialization strategies. 

Initialization strategy λ = 50% λ = 60% λ = 70% 

Betweenness -refinement 0 .6872 ∗∗∗/0.5128 0 .6748 ∗∗∗/0.4558 0 .6719 ∗∗∗/0.4224 

Closeness -refinement 0 .6718 ∗∗∗/0.5105 0 .6331 ∗∗∗/0.4235 0 .5731 ∗∗∗/0.3513 ̂ 

Degree -refinement 0 .6053 ∗∗∗/0.4689 ̂ 0 .5805 ∗∗∗/0.3983 ̂ 0 .5110 ∗∗∗/0.3429 ̂^ 
Betweenness 0 .7117/0.5212 0 .6889/0.4578 0 .7039/0.4322 

Closeness 0 .7020/0.5187 0 .6719/0.4437 0 .6556/0.3905 

Degree 0 .6905/0.5118 0 .6692/0.4407 0 .6689/0.4261 

The results marked with ∗ , ∗∗ , and ∗∗∗ show, respectively, the improvements achieved by 

using stance community refinement with 90%, 95% and 99% confidence levels based on the 

Z-statistic for two proportions, and the symbol ̂  , ̂ ^ , and ̂ ^^ indicate the improvements 

based on the one-tailed paired t test [29] . 
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as the core of the network because it is close to all the other

nodes. The strategy iteratively selects K nodes with the minimum

sums as the seeds of communities. In the degree strategy, K nodes

with the largest degrees in the network are selected as community

seeds. As mentioned in Section 3.4 , the proposed stance commu-

nity refinement is capable of lessening the influence of inappro-

priate seed initializations. Here, in order to contrast the true ef-

fect of the seed initialization strategies, we evaluate the strategies

with and without using the stance community refinement. Table 6

shows the performances of the initialization strategies and the suf-

fix “-refinement” stands for the results without stance community

refinement. 

The comparison of results demonstrates that using stance

community refinement considerably improves stance identifica-

tion results. Furthermore, the performances differences between

the initialization strategies become minor when the refinement

is adopted. The results reveal that the proposed stance commu-

nity refinement is able to reduce the influence of seed initializa-

tions. Notably, without stance community refinement, the perfor-

mances of the strategies are inferior. This is because the strate-

gies ignore the sign of edges that decrease the quality of the se-

lected community seeds. For instance, we observed that the degree

strategy tends to select popular nodes as the seeds of stance com-

munities. A great portion of the edges connected to the selected

seeds, however, have a negative weight that obscures the expanded

stance communities. The result also reveals that discovering repre-

sentative community seeds in a sign network is challenging and is

worth investigation. 

4.4. An example of stance community identification 

The above experiments quantitatively evaluate the performance

of SCIFNET. In this section, we consider a sports topic, namely the
009 NBA Conference Finals, to assess our stance community iden-

ification result. The topic covers four basketball teams that com-

eted for the title and we consider each team as a stance com-

unity. Fig. 28 shows the constructed friendship network. Stance-

rrelevant topic persons are highlighted in gray; and teammates are

ighlighted in the same color. The blue edges and the orange edges

epict friendly associations and opposing associations respectively.

heir thickness indicates the friendship strength (i.e., edge weight).

s shown in the figure, the friendship network accurately describes

he associations of the topic persons. For instance, the orange

dges always connect persons with different stances. While some

tance-different persons are connected by blue edges, their friend-

hip strength is very weak. It is noteworthy that many orange

dges connect Los Angeles Lakers players and Orlando Magic play-

rs. This is because the two teams reached the finals. A large num-

er of the topic documents report the teams’ matchup and most

f them contain stance-opposing words. As our method utilizes

he stance weight of topic documents to measure the friendship

trength of topic persons, the matchup-related documents help to

apture the opposing orientations of the players. 

The colored zones in the figure represent our stance com-

unity identification results. In this example, many topic per-

ons are grouped into stance communities correctly. Moreover, one

opic person (i.e., Willie White) is accurately classified as stance-

rrelevant. Notably, our method prevents the teams’ franchise play-

rs (i.e., Kobe Bryant, Carmelo Anthony, LeBron James, and Dwight

oward), who are also popular topic persons, from being merged.

he outcome corresponds with the comparison result presented

n the previous section, i.e., the proposed stance-oriented correla-

ion coefficient is effective for measuring the friendship orientation

f popular topic persons. We observed that incorrectly-grouped

ersons often appeared in a few topic documents. For instance,

leveland player Zydrunas Ilgauskas, who only appeared in 12 
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opic documents, was grouped as a member of Orlando Magic.

e analyzed the phenomenon and found that the stance-oriented

orrelation coefficient tends to overestimate the friendship of in-

requent topic persons. This is because the coefficient is based

n the occurrence pattern of topic persons. As infrequent persons

re jointly absent from many topic documents, their friendships

re overestimated. It is remarkable that Jerry West, an ex-Lakers

layer, is grouped as a member of Cavaliers. Jerry West was named

Mr. Clutch” because he made a lot of game-winning shots dur-

ng his playing career. In Game 2 of the NBA conference finals,

avaliers player LeBron James made an incredible game-winning

hot. Many documents reported the event and tried to place him

n a par with Jerry West. Their names thus co-occur frequently

n the topic documents so they are grouped together. Interest-

ngly, Venus Williams, a famous tennis player, is included in the

xperiment. During the matchup of Orlando Magic and Cleveland

avaliers, Venus Williams was playing in the 2009 French Open.

e observed that several topic documents collected from Google

ews were sports recaps that covered the NBA conference finals as

ell as the results of the tennis tournament. Consequently, Venus

illiams was incorrectly classified as a member of Orlando Magic.

he result suggests the analyzed topic documents need to be pure

nd on-topic. Diverse or noisy documents must be filtered out to

nhance the result of stance community identification. 

. Concluding remarks 

The Internet has become a crucial medium for disseminating

nd acquiring the latest information about topics. However, users

re often overwhelmed by the enormous number of topic docu-

ents. Basically, times, places, and persons are the key elements

f topics. Knowing the associations of topic persons can help read-

rs construct the background knowledge of a topic and compre-

end numerous topic documents quickly. In this paper, we de-

ned the problem of stance community identification, which in-

olves grouping important topic persons into stance-coherent com-

unities. In addition, we presented a stance community identifica-

ion method called SCIFNET that constructs a friendship network of

opic persons from topic documents automatically. We developed

he stance-oriented correlation coefficient to measure the friend-

hip orientation of topic persons. The friendship orientation is then

ombined with the co-neighboring strength of the topic persons

o measure their friendship strengths. Stance community expan-

ion and stance community refinement techniques based on the

esigned objective function are used to identify stance communi-

ies of topic persons and identify stance-irrelevant topic persons.

e also proved the techniques make the identified stance com-

unities converge to a local optimum. The result of experiments

n real-world topics demonstrate the effectiveness of SCIFNET and

how that it outperforms many well-known community detection

nd clustering methods. Besides, the performance of our method

s not sensitive to the parameter β and setting β = 1, and θ = 0.2

enerally achieves a superior stance community identification re-

ult. 

The experiments suggest some interesting areas for future re-

earch. For instance, although the proposed stance-oriented cor-

elation coefficient is effective in identifying the friendship ori-

ntation of popular topic persons, it is affected by the frequency

parseness problem of infrequent topic persons. Because infrequent

opic persons are jointly absent from a lot of topic documents,

he stance-oriented correlation coefficient may overestimate their

riendship strength. Reducing the weight of documents when in-

requent persons are jointly absent would resolve the overestima-

ion problem. Moreover, considering off-topic documents may in-

lude irrelevant persons in the stance community identification

rocess and degrade the system performance. Therefore, effective
ff-topic document elimination approaches should be developed

o improve the stance community identification performance. Al-

hough we presented a simple strategy to select the appropriate

luster number, there is still room to improve the strategy. For in-

tance, incorporating the number of stance communities into our

bjective function is one of our future research directions to auto-

atically determine the appropriate value of K . In our experiment,

he input topic documents were collected manually. To help Inter-

et users comprehend emerging topics, we are integrating SCIFNET

ith techniques of topic detection and tracking [1] , which auto-

atically detect and track topic documents from different infor-

ation sources (e.g., news agencies). 

cknowledgement 

This research was supported in part by MOST 103-2221-E-002-

06-MY2 from the Ministry of Science and Technology, Republic of

hina. 

eference 

[1] J. Allan , J. Carbonell , G. Doddington , J. Yamron , Y. Yang , Topic detection and

tracking pilot study final report, in: Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop, 1998, pp. 194–218 . 

[2] P. Anchuri , M. Magdon-Ismai , Communities and balance in signed networks: a
spectral approach, in: Proceedings of the International Conference on Advances

in Social Networks Analysis and Mining, 2012, pp. 235–242 . 
[3] I. Antonellis , H.G. Molina , C.C. Chang , Simrank ++ : query rewriting through link

analysis of the click graph, in: Proceedings of the VLDB Endowment, 1, 2008,
pp. 408–421 . 

[4] D. Barber , Bayesian Reasoning and Machine Learning, Cambridge University

Press, New York, 2012 . 
[5] C.C. Chen , M.C. Chen , TSCAN: a novel method for topic summarization and

content anatomy, in: Proceedings of the 31st annual international ACM SI-
GIR Conference on Research and Development in Information Retrieval, 2008,

pp. 579–586 . 
[6] C.C. Chen , M.C Chen , TSCAN: a content anatomy approach to temporal topic

summarization, IEEE Trans. Knowl. Data Eng. 24 (2012) 170–183 . 

[7] C.C. Chen , Z.-Y. Chen , C.-Y. Wu , An unsupervised approach for person name
bipolarization using principal component analysis, IEEE Trans. Knowl. Data

Eng. 24 (2012) 1963–1976 . 
[8] C.C. Chen , C.-Y. Wu , Bipolar person name identification of topic documents

using principal component analysis, in: Proceeding of the 23rd International
Conference on Computational Linguistics, 2010, pp. 170–178 . 

[9] J. Chen , O.R. Zaiane , R. Goebel , Detecting communities in social networks using

max-min modularity, in: Proceedings of the SIAM International Conference on
Data Mining, 2009, pp. 978–989 . 

[10] J. Chen , O.R. Zaiane , R. Goebel , Local Community Identification in Social Net-
works, in: Proceedings of the International Conference on Advances in Social

Network Analysis and Mining, 2009, pp. 237–242 . 
[11] A. Chin , M. Chignell , A social hypertext model for finding community in blogs,

in: Proceedings of the 7th Conference on Hypertext and Hypermedia, 2006,

pp. 11–22 . 
[12] A. Clauset , M.E.J. Newman , C. Moore , Finding community structure in very

large networks, Phys. Rev. E 70 (2004) 066111 . 
[13] Y. Cui , X. Wang , Uncovering overlapping community structures by the key bi–

community and intimate degree in bipartite networks, Physica A 407 (2014)
7–14 . 

[14] Y. Cui , X. Wang , J. Li , Detecting overlapping communities in networks using

the maximal sub-graph and the clustering coefficient, Physica A 405 (2014) 
85–91 . 

[15] Y. Cui , X. Wang , J. Eustace , Detecting community structure via the maximal
sub-graphs and belonging degrees in complex networks, Physica A 416 (2014)

198–207 . 
[16] C.H.Q. Ding , X. He , H. Zha , M. Gu , H.D. Simon , A min-max cut algorithm for

graph partitioning and data clustering, in: Proceedings IEEE International Con-

ference on Data Mining, 2001, pp. 107–114 . 
[17] Z. Ding , X. Zhang , D. Sun , B. Luo , Overlapping community detection based on

network decomposition, Sci. Rep. 6 (2016) 24115 . 
[18] W.E. Donath , A.J. Hoffman , Lower bounds for the partitioning of graphs, IBM J.

Res. Dev. 17 (1973) 420–425 . 
[19] J. Eustace , X. Wang , J. Li , Approximating web communities using sub-space de-

composition, Knowl. Based Syst. 70 (2014) 118–127 . 
20] J. Eustace , X. Wang , Y. Cui , Community detection using local neighborhood in

complex networks, Physica A 436 (2015) 665–677 . 

[21] J. Eustace , X. Wang , Y. Cui , Overlapping community detection using neighbor-
hood ratio matrix, Physica A 421 (2015) 510–521 . 

22] A. Feng , J. Allan , Finding and linking incidents in news, in: Proceedings
of the 16th Conference on Information and Knowledge Management, 2007,

pp. 821–830 .  

 

http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0022


48 Z.-Y. Chen, C.C. Chen / Knowledge-Based Systems 110 (2016) 30–48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[23] J. Gao , F. Liang , W. Fan , C. Wang , Y. Sun , J. Han , On community outliers and

their efficient detection in information networks, in: Proceedings of the 16th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, 2010, pp. 813–822 . 

[24] M. Girvan , M.E.J. Newman , Community structure in social and biological
networks, in: Proceedings of the National Academy of Sciences, 99, 2002,

pp. 7821–7826 . 
[25] J. Han , M. Kamber , Data Mining: Concepts and Techniques, Morgan Kaufmann,

2006 . 

[26] Z. Harris , Distributional structure, Word 10 (1954) 146–162 . 
[27] G. Jeh , J. Widom , SimRank: a measure of structural-context similarity, in: Pro-

ceedings of the 8th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2002, pp. 538–543 . 

[28] H. Kanayama , T. Nasukawa , Fully automatic lexicon expansion for domain-ori-
ented sentiment analysis, in: Proceedings of the Conference on Empirical

Methods in Natural Language Processing, 2006, pp. 355–363 . 

[29] G. Keller , Statistics for Management and Economics, Cengage Learning, 2008 . 
[30] X. Liu , J. Bollen , M.L. Nelson , H.V. Sompel , Co-authorship networks in the digi-

tal library research community, Inf. Process. Manag. 41 (2005) 1462–1480 . 
[31] J. Li , X. Wang , J. Eustace , Detecting overlapping communities by seed commu-

nity in weighted complex networks, Physica A 392 (2013) 6125–6134 . 
[32] J. Li , X. Wang , Y. Cui , Uncovering the overlapping community strcuture of com-

plex networks by maximal cliques, Physica A 415 (2014) 398–406 . 

[33] C.D. Manning , P. Raghavan , H. Schütze , Introduction to Information Retrieval,
Cambridge University Press, New York, 2008 . 

[34] T. Mitchell , Machine Learning, McGraw-Hall, Maidenhead, 1997 . 
[35] R. Nallapati , A. Feng , F. Peng , J. Allan , Event threading within news topics,

in: Proceedings of the 13th ACM International Conference on Information and
Knowledge Management, 2004, pp. 446–453 . 

[36] M.E.J. Newman , Scientific collaboration networks: I. Network construction and

fundamental results, Phys. Rev. E 64 (2001) 016131 . 
[37] M.E.J. Newman , Fast algorithm for detecting community structure in networks,

Phys. Rev. E 69 (2004) 066133 . 
[38] M.E.J. Newman , Finding community structure in networks using the eigenvec-

tors of matrices, Phys. Rev. E 74 (2006) 036104 . 
[39] M.E.J. Newman , M. Girvan , Finding and evaluating community structure in net-

works, Phys. Rev. E 69 (2004) 026113 . 
[40] M. Oussalah , B. Escallier , D. Daher , An automated system for grammatical anal-
ysis of Twitter messages: A learning task application, Knowl. Based Syst. 101

(2016) 31–47 . 
[41] S. Papadopoulos , Y. Kompatsiaris , A. Vakali , P. Spyridonos , Community detec-

tion in social media, Data Mining Knowl. Disc. 24 (2012) 515–554 . 
[42] G. Petrovi ́c , H. Fujita , SoNeR: social network ranker, Neurocomputing (2015) . 

[43] G. Ren , X. Wang , Epidemic spreading in time-varying community networks,
Chaos 24 (2014) 023116 . 

[44] S. Russell , P. Norvig , Artificial Intelligence: A Modern Approach, Prentice Hall,

New Jersey, 2003 . 
[45] J. Shi , J. Malik , Normalized cuts and image segmentation, IEEE Trans. Pattern

Anal. Mach. Intell. 22 (20 0 0) 888–905 . 
[46] V.A. Traag , J. Bruggeman , Community detection in networks with positive and

negative links, Phys. Rev. E 80 (2009) 036115 . 
[47] P.D. Turney , M.L. Littman , Measuring praise and criticism: inference of seman-

tic orientation from association, ACM Trans. Inf. Syst. 21 (2003) 315–346 . 

[48] X. Wang , J. Li , Detecting communities by the core-vertex and initimate degree
in complex networks, Physica A 392 (2013) 2555–2563 . 

[49] Z.-X. Wang , Z.-C. Li , X.-F. Ding , J.-H. Tang , Overlapping community detection
based on node location analysis, Knowl. Based Syst. 105 (2016) 225–235 . 

[50] J.J. Whang , D.F. Gleich , I.,S. Dhillon , Overlapping community detection using
neighborhood-Inflated seed expansion, IEEE Trans. Knowl. Data Eng. 28 (2016)

1272–1284 . 

[51] S. White , P. Smyth , A spectral clustering approach to finding communities
in graphs, in: Proceedings of SIAM International Conference on Data Mining,

2005, pp. 76–84 . 
[52] F.-Y. Wu , The Potts model, Rev. Mod. Phys. 54 (1982) 235–268 . 

[53] X. Xu , N. Yuruk , Z. Feng , T.A.J. Schweiger , SCAN: a structural clustering algo-
rithm for networks, in: Proceedings of the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2007, pp. 824–833 . 

[54] T. Yang , R. Jin , Y. Chi , S. Zhu , Combining link and content for community de-
tection: a discriminative approach, in: Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2009,
pp. 927–936 . 

[55] B. Yang , W.K. Cheung , J. Liu , Community mining from signed social networks,
IEEE Trans. Knowl. Data Eng. 19 (2007) 1333–1348 . 

[56] G.K. Zipf , Human Behavior and the Principle of Least Effort, Addison-Wesley,

Cambridge MA, 1949 . 

 

 

http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0044
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0044
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0044
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30229-5/sbref0056

	SCIFNET: Stance community identification of topic persons using friendship network analysis
	1 Introduction
	2 Related work
	2.1 Eigen-based community detection approach
	2.2 Iterative clustering approach

	3 Methodology
	3.1 Friendship network construction
	3.2 The objective function of SCIFNET
	3.3 Stance community expansion
	3.4 Stance community refinement
	3.5 Stance-irrelevant topic person detection
	3.6 The computational complexity
	3.7 SCIFNET for overlapping stance communities
	3.8 The cardinality of stance communities

	4 Experiment
	4.1 Dataset
	4.2 System component analysis
	4.2.1 Friendship orientation threshold
	4.2.2 Edge weight evaluation
	4.2.3 Stance-oriented correlation coefficient evaluation
	4.2.4 Overlapping stance community evaluation
	4.2.5 Cardinality strategy evaluation

	4.3 Comparison with other methods
	4.3.1 Stance community identification evaluations
	4.3.2 Stance-irrelevant topic person detection evaluation
	4.3.3 Discussion of seed initialization strategies

	4.4 An example of stance community identification

	5 Concluding remarks
	 Acknowledgement
	 Reference


