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a b s t r a c t

Recently, Wireless Sensor Networks (WSNs) have attracted lot of attention due to their pervasive nature
and their wide deployment in Internet of Things, Cyber Physical Systems, and other emerging areas. The
limited energy associated with WSNs is a major bottleneck of WSN technologies. To overcome this major
limitation, the design and development of efficient and high performance energy harvesting systems for
WSN environments are being explored. We present a comprehensive taxonomy of the various energy
harvesting sources that can be used by WSNs. We also discuss various recently proposed energy pre-
diction models that have the potential to maximize the energy harvested in WSNs. Finally, we identify
some of the challenges that still need to be addressed to develop cost-effective, efficient, and reliable
energy harvesting systems for the WSN environment.
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1. Introduction

The notion of a widely interconnected, adaptive, and dynamic
ubiquitous computing environment has been proposed for dec-
ades [1]. Only recently has Wireless Sensor Networks (WSNs)
technology started to receive recognition as a key enabling tech-
nique for the emerging pervasive computing areas [2]. The fusion
of sensing and wireless communication has led to the develop-
ment of WSNs. Due to their rapid growth, WSNs have been pro-
posed for a plethora of applications, including environmental
monitoring [3], fire detection [4,5], object tracking [6], vehicular
adhoc networks [7], and body area networks [8,9]. As a result,
commercial use of WSNs is expected to increase dramatically in
the very near future.

Generally, a WSN is composed of a large number of static sensor
nodes with low processing and limited power capabilities that often
communicate over unreliable, short-range radio links [10–12].
Additionally, sensor nodes have limited storage capacity, batteries,
and multiple on-board sensors that can take readings, such as
temperature and humidity. Sensor nodes are deployed in an ad-hoc
manner and cooperate with each other to form a wireless sensor
network [13,14]. Since the communication range of sensor nodes is
limited, they often adopt hop-by-hop communication to exchange
data. Typically, a powerful base station, known as a sink, is also an
integral part of a WSN [10]. The sink mediates between the sensor
nodes and the applications running on a WSN. Currently, WSNs are
also beginning to make extensive use of mobile elements, which are
used to transport data from one place to another opportunistically
[15] or to plan their movement [16,17]. Fig. 1 depicts a commonly
used WSN scenario for various applications.

A sensor node typically consist of three basic subsystems: (i) a
sensing subsystem to acquire data, (ii) a processing subsystem for
processing data locally, and (iii) a wireless communication sub-
system for communicating data. Also, a power source (usually a
battery with a limited energy budget) is used to power the sensor
nodes subsystems. Furthermore, for most of the applications, it is
very difficult, if not impossible, to recharge the batteries due to the
deployment of the nodes in difficult and hostile terrain or due to
the large number of nodes deployed in the environment. Despite
these constraints, the applications running on WSNs require the
sensor nodes to be functional and to fulfill their requirements for
several months or even years. These requirements highlight the
need to extend the lifetime of WSNs by prolonging the life of their
sensor nodes either by applying different energy minimizing
techniques or providing energy harvesting mechanisms for the
sensor nodes.
Sink
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Fig. 1. A typical WSN scenario.
Among the three subsystems of a sensor node, the commu-
nication subsystem consumes more energy on average than the
processing and sensing subsystems [10]. Generally, the sensing
subsystem consumes the lowest amount of energy depending on
the type of sensor used (e.g., for temperature and light). However,
in some cases, the sensors may consume a substantial amount of
energy (e.g., when using a Global Positioning System (GPS) module
[18]). In order to address the power consumption of the processing
and storage subsystem, many operating systems have been
developed such as TinyOS [19] and Contiki [20]. The main objec-
tive of such operating systems is to provide the required I/O ser-
vices in an energy efficient manner [21]. Since the communication
subsystem consumes the most energy, many approaches proposed
in the literature aim to minimize the communication cost. Some of
these approaches include the use of in-network processing [22],
location awareness [12], data prediction, or to send data when
needed [23] to reduce the communication costs. To save additional
energy, the sensor nodes may go into a sleep mode by disabling all
their subsystems (i.e., duty cycling) when they have no task to
perform [14]. However, if the sensor nodes must wake up from the
sleep mode frequently, then the energy savings may not be opti-
mal since having the sensor nodes transition to and from sleep
mode also requires energy. Table 1 compares the energy con-
sumption of some of the widely used sensor node platforms.

Mobility in WSNs can also help to reduce energy consumption
if mobility incurs low overheads [17,30]. Generally, mobility
expends more energy on the mobile node, i.e., motors and other
hardware require more energy. The main assumption of mobile
WSNs is that the mobile nodes do not have energy constraints.
They traverse the network and return back to the sink to recharge.
Moreover, for some applications, mobility may be inherent in the
network (e.g., moving people or cars).

Thus, various mechanisms can be implemented to consume
less energy. In any case, energy consumption is a critical issue in
WSNs that must be addressed properly.

The rest of the paper is organized as follows. Section 2 reviews
why energy harvesting is important for WSNs. The classification of
energy management in WSNs is presented in Section 3. Section 4
discusses recently proposed energy prediction models for energy
harvesting. Future opportunities and challenges are discussed in
Section 5. Finally, we present some concluding remarks in Section 6.
2. Motivations for energy harvesting in WSNs

It is a well-known that one of the major problems WSNs face is
energy [31,10,12,2,32]. When the energy of a sensor node is
depleted, it will no longer fulfill its role in the network unless
either the source of energy is replaced or some harvesting
mechanism is introduced to fill the energy gap. The major existing
energy source used by the sensor nodes is battery power, but
many problems are associated with batteries. First, the current
leakages that consumes the battery even if not in use. Second,
extreme weather conditions may break down the batteries,
resulting in chemical leakages that can cause various environ-
mental problems [33]. Finally, the battery's energy density is
limited, and that may hinder the sensor node operation over a
long period of time [34]. There are many WSN application sce-
narios where the lifetime of the sensor node ranges from months
to several years based on the application requirements. Therefore,
the lifetime of the sensor nodes must end several years before
their batteries drain and they become idle due to the lack of power
supply. To work uninterrupted in most cases, sensor nodes require
a continuous power supply, whether that supply is in an active
mode to transmit and process data or an inactive mode when
sensor nodes go to sleep as shown in Fig. 2.



Table 1
Energy consumption of widely used sensor node platforms.

IRIS [24] MicaZ [25] IMote2 [26] SunSpot [27] Waspmote [28] WiSMote [29]

Radio standard 802.15.4/ZigBee 802.15.4/ZigBee 802.15.4 802.15.4 802.15.4/ZigBee 802.15.4/ZigBee/6LoWPAN
Microcontroller ATmega 1281 ATMEGA 128 Marvell PXA271 ARM 920 T Atmel ATmega 1281 MSP430F5437
Sleep 8 μA 15 μA 390 μA 33 μA 55 μA 12 μA
Processing 8 mA 8 mA 31-53 mA 104 mA 15 mA 2.2 mA
Receive 16 mA 19.7 mA 44 mA 40 mA 30 mA 18.5 mA
Transmit 15 mA 17.4 mA 44 mA 40 mA 30 mA 18.5 mA
Idle – – – 24 mA – 1.6 mA
Supply 2.7–3.3 V 2.7 V 3.2 V 4.5–5.5 V 3.3–4.2 V 2.2–3.6 V
Average – 2.8 mW 12 mW – – –

power subsystem

wireless communication 
subsystem

radio
program data memory

processing subsystem

sensor

sensor

sensor

ADC

ADC

ADC - Analog to Digital Convertor
SPI - Serial Peripheral Interface
I2C - Inter-Integrated Circuit

data
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SPI

I2C
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Fig. 2. Sensor node architecture with battery as main source.
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Fig. 3. Architecture of energy harvesting wireless sensor node.
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Generally, the failure of a few nodes is not a significant problem
for the proper functioning of a WSN, but the loss of those nodes
certainly affect performance and overhead. Eventually, the net-
work cannot overcome the loss of the nodes or fulfill the appli-
cation's desired requirements. Over time, the connected nodes will
drain the energy stored in the storage elements. The sensors,
processing, communication, and data transmission frequency of
the sensor nodes greatly impact the lifetime of the battery. All of
these factors encourage the use of energy harvesting in WSNs. A
WSN should be self-powering, long lasting, and almost
maintenance free.

Accordingly, energy harvesting can be described as a mechanism
used to generate energy from a networks ambient surroundings to
provide an uninterrupted power supply for a specific sensor node
and for the overall WSN. Furthermore, we can categorize two types
of energy harvesting systems: (1) where ambient energy is directly
converted to electrical energy to power the sensor nodes (no bat-
tery storage is required as depicted in Fig. 3(a)), and (2) where the
converted electrical energy is first stored before being supplied to
the sensor node as shown in Fig. 3(b). For the time being, WSN
applications will continue to use disposable and long-lasting bat-
teries. That being said, for applications requiring high power over
the lifetime of the network, the energy harvesting techniques will
enforce the usage of rechargeable batteries. The greatest potential,
however, rests in a new class of battery-free nodes enabling appli-
cations that previously would have been possible due to the
maintenance cost of repeated replacement of batteries.

Energy harvesting is ideal for applications that need to survive
for longer time periods, i.e., those that are deployed once and then
always available, such as environmental monitoring applications
[35–37]. Other applications that can benefit from energy har-
vesting are those that require the transportation of large amounts
of data to the sink, as is the case in multimedia applications WSNs
[38], structural monitoring data [39,40], etc. Essentially, all types
of WSN applications can benefit from energy harvesting
mechanisms to prolong the lifetime of the networks.
3. Classification of energy harvesting techniques in WSNs

For energy harvesting various energy sources have been con-
sidered. To choose an energy harvesting source, one of the main
criteria is to determine whether or not it can provide the required
power level for the sensor node. In general, power dissipates
during voltage conversion, and the dissipation increases as the
input/output ratio of the voltage increases. Therefore, it is impor-
tant to ensure that the generated power is at a suitable voltage and
current level. In order to achieve the desired power level, either
the source of the energy is increased or the energy harvesting
device is scaled accordingly. For example, in the case of Radio
Frequency (RF), increasing the power of the source will fulfill the
desired demand. Furthermore, increasing the PhotoVoltaic (PV)
cell area will collect more light, resulting in the generation of more
power. However, in certain circumstances, the sources/converters
cannot be scaled so easily. For example, energy derived from
industrial vibrations cannot generally be scaled up without
increasing the vibration effect on the machine, which may not be
desirable. Thus, while it may be possible to scale up the harvesting
device, many WSN applications require nodes to be small and
lightweight. Accordingly, the power density metric is used widely
by the researchers to compare different energy harvesting tech-
niques [41]. Therefore, developers must keep this tradeoff in mind
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Fig. 4. Taxonomy of energy harvesting sources in WSNs.
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Fig. 5. Generalized RF energy harvesting system for WSNs.
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when selecting an appropriate energy harvesting system for a
particular application.

We classify the energy harvesting sources into two broad
categories: ambient sources and external sources. Ambient sources
are readily available in the environment at almost no cost. On the
other hand, external sources are deployed explicitly in the envir-
onments for energy harvesting purposes. These categories are
further subdivided as shown in Fig. 4.

3.1. Ambient sources

3.1.1. Radio Frequency-based energy harvesting
For RF-based energy harvesting, received radio waves are

converted to DC power after conditioning as shown in Fig. 5.
Converting the RF signals into DC power can be achieved through
several approaches, such as single-stage vs. multistage, depending
on the desired application requirements (i.e., power, efficiency, or
voltage). The source power, antenna gain, distance between source
and the destination, and energy conversion efficiency are some of
the factors that impact the amount of power harvested. Typically,
RF to DC conversion efficiency is between 50% and 75% over a
100 m range of input power [42].

RF energy harvesting has two models: the sensor nodes can use
two radios, one for RF harvesting and the other for communicating
with other sensor nodes, or the sensor nodes can employ only a
single radio that can be used for both purposes. In order to opti-
mize the solution, it is better to have a single radio for a WSN
scenario. This also helps to reduce the software complexity and
overall size of the code.

In WSNs, intentional sources (e.g., the sinks) transmit power or,
in other words, the application has control over the availability of
power. The intentional sources can provide power continuously,
on a scheduled basis, or on demand and can be used to provide
power to activate sensor nodes or to keep the sensor nodes fully
charged. Furthermore, the sensor nodes can anticipate and provide
the basis for RF energy harvesting for other sensor nodes in the
surrounding area. The intermediate sensor nodes can act as
sources of power on a regular or sporadic basis, but they generally
cannot be controlled since continuous data transmission is not
suitable for WSNs. In WSNs, RF energy harvesting also takes
advantage of one-to-many wireless power distribution; in such
distribution, a transmission from one sensor node can provide
power to all nodes that receive or listen the transmission. It should
be noted that regulations regarding safety and health concerns do
limit the output power of RF [43].

The RF energy harvesting can be used in multiple ways to
implement a power system [44], such as (a) direct power (no
energy storage), (b) battery-free energy storage (i.e., super-
capacitor), (c) battery-recharging, and (d) battery activation. When
the harvested power is very low, there is a need to increase the
power to ensure that the sensor nodes can operate properly. In
[45], a Multistage Villard Voltage Multiplier (MVVM) circuit is used
to provide direct power after harvesting. A MVVM circuit is used to
boost the achieved power to desired power levels using RF har-
vesting. In [46], a Multistage Dickson Charge Pump (MDCP) is used
to enhance the power gathered using RF harvesting and to store
the energy in a capacitor. In [47], the authors seek to improve upon
MDCP by introducing a smart voltage regulator to enhance the
efficiency of RF–DC conversion. The Cockcroft–Walton Multiplier
(CWM) is used in [48] and a multistage CWM is used in [49] to
increase the harvested power.

Radio Frequency IDentification (RFID) tags can be viewed as a
very basic RF energy harvesting solution available on the market. In
passive RFID systems, the RFID reader sends the RF signals to query
an RFID tag, and the tag responds with its identification by powering
itself from the inductance of the loop antenna [50,51]. The Wireless
Identification and Sensing Platform (WISP) [52,53] demonstrates
one possible means of integrating RFIDs with WSNs and utilizing RF
energy harvesting. Recently, STMicroelectronics developed contact-
less memories with RF energy harvesting capabilities [54] to
exchange data across Near Field Communication (NFC) enabled
smartphones and RFID systems as shown in Fig. 6(a). Similarly, Texas
Instruments developed the TMS37157 device (Fig. 6(b)) for short
range, battery-free, two-way communications [55]. The device
operates by scavenging the RF energy transmitted from the base
station and working at 2.4 GHz. Powercast produces RF energy
harvesters for charging both batteries and capacitors [56] with a
maximum efficiency of 75% (as shown in Fig. 6(c)). In [57], an
ambient RF energy harvesting sensor node was developed (as
shown in Fig. 6(d)). For sensor node operation, a minimal RF input
power of �18 dBm (15.8 μW) is needed. In [58], the authors
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Fig. 7. Generalized solar energy harvesting system for WSNs [62].
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proposed a new model of RF energy harvesting that uses multiple
antennas to increase the amount of energy harvested. They also
demonstrated how one could power the commercially available
Mica2 sensor node with their RF energy harvester using MVVM as
shown in Fig. 6(e).

RF energy harvesting can be used both indoors and outdoors
for a number of WSN applications. Applications include agri-
cultural monitoring [59], smart homes, structural health mon-
itoring, location tracking, and environmental monitoring. For
indoor applications, RF energy harvesting has more potential since
interiors often have either low-light conditions or no light, making
solar energy harvesting methods unreliable. Similarly, thermal
gradients and vibrations are also not likely to be available indoors.
Thus, RF energy harvesting is an appropriate choice for indoor
WSN applications.

In order to make full use of RF energy harvesting, the protocols
running on sensor nodes need to be aware of adapted energy
harvesting mechanisms to derive an optimal solution. In [60], the
authors discuss a duty cycle approach for RF energy harvesting
sensor nodes and propose an adaptive scheme based on the
available harvested energy. In [61], the authors proposed a data
delivery scheme, that takes into consideration RF energy har-
vesting, is proposed. The data delivery scheme aims to optimize
the usage of the small amounts of harvested energy through a
sink-synchronized protocol. The design has been implemented
and experimentally validated utilizing commercially available RF
energy harvesting devices.

3.1.2. Solar-based energy harvesting
Given its abundance in the environment, solar energy is an

affordable and clean energy source that could eliminate the
impending energy problem in WSNs. Due to the limitations of
solar energy harvesting systems during the night, developers must
ensure the highest possible efficiency during daylight hours to
guarantee the viability of solar power. The photovoltaic effect can
be observed when certain semiconductor materials are exposed to
sunlight and convert solar rays into DC power. A solar cell is a
semiconductor electrical junction device that is usually composed
of silicon. When sunlight strikes a solar cell with appropriate
energy, the electrons and holes are separated, and electrons start
to move towards the attached load via an input and output reg-
ulator. Generally, solar energy harvesting uses a harvest-store-
utilize system with different options for storage, i.e., super-
capacitors, batteries, or a combination of both, as shown in Fig. 7. A
solar system can produce outputs from μW to MW depending on
the surface area of the solar cell and the amount of illumination. In
[63], the authors reported on the efficiencies of different solar cells
at various illumination levels. For a typical outdoor (bright and
sunny) illumination level of 500 W=m2, efficiencies vary from
approximately 15% to 25% for polycrystalline silicon and amor-
phous silicon cells respectively [64]. For typical indoor illumina-
tion levels of 10 W=m2, efficiencies vary from approximately 2% to
10% for amorphous silicon and crystalline silicon/gallium indium
phosphide respectively.

Generally, solar energy harvesting is more appropriate in outdoor
environments, but some indoor environments, such as hospitals,
stadiums, and industrial buildings, may benefit from it as they
typically have more lighting than other indoor environments [65].

There are several implementations of solar energy harvesting
sensor nodes that are different from each other based on the type
of solar panels, battery type, and complexity of the circuit for
recharging. The Indoor Router Node (IRN) [65], Battery Less Solar



Fig. 8. Solar energy harvesters for WSNs.

Table 2
Characteristics of various solar harvesting sensor nodes [71].

Node Solar
panel size
(inxin)

Solar
panel
power
(mW)

Energy
availability

Storage type Sensor
node

IRN [65] 3.75�2.5 400 – Capacitor MicaZ
BLSH [66] 44�44 50 – Capacitor Tmotesky
MSIL [67] Any panel – – Capacitor Humidity

sensor
LTSN [68] 4.5�3.5 1200 2100 Battery Fleck1
HydroWatch [62] 2.3�2.3 276 139 Battery TelosB
Heliomote [70] 3.75�2.5 190 1140 Battery Mica2

thermocouples

cold plate

thermal-DC 
convertor

hot plate

Power
Conditioning

Fig. 9. Generalized thermal energy harvesting system for WSNs [62].

Table 3
Characteristics of various thermal harvesting sensor nodes.

Node Seebeck temp.
(hot/cold) °C

Thermal
power (mW)

Storage type Sensor
node

Room heater
TEG [85]

55/21 150 Both ZigBee

Flex TEG [92] 22/16 100 – Custom
Wearable TEG

[93]
36/30 0.026 Battery Custom

SPWTS TEG [94] – 0.02 – Custom
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Harvester (BLSH) [66], Micro-Scale Indoor Light (MSIL) energy
harvesting system [67], Long-Term Solar Powered Node (LTSN)
[68], HydroWatch [62,69], and Heliomote [70] are examples of
some platforms (Fig. 8) that use the harvest-store-utilize archi-
tecture with either battery, super-capacitors, or both as the sto-
rage. A comprehensive review of solar based sensor nodes is
presented in [71]. Table 2 summarizes the characteristics of var-
ious nodes and shows that existing nodes use different sizes of
solar panels to generate more power for charging either the
capacitor or batteries. Furthermore, existing solutions can be
applied to commercially available off the shelf sensor nodes.

Due to their wide availability, solar energy harvesting systems
are used in various WSN applications [72–75]. Many approaches
for data transmission adapt to solar energy harvesting mechan-
isms by changing the transmission range [76], scheduling the
transmissions [77], synchronizing communication [78], routing
[79], and adapting MAC [80]. Several approaches [81,82] can
optimize both the energy management and lifetime of the net-
work, which is the primary objective of the WSNs. Whether it is
duty cycling [83] or a mobile WSN [84,73,82], the approaches need
to adapt to the solar energy harvesting mechanisms.

3.1.3. Thermal-based Energy Harvesting
As shown in Fig. 9, converting heat energy into electrical

energy using Seebeck effect requires a load to be attached across
the heated and cold faces of a Thermo Electric Generator (TEG) for
thermal energy harvesting. Many large scale devices exist (e.g.,
generation of electricity from heating radiators [85]). On a smaller
scale, the major interest is generating power from human body
temperatures. A thermoelectric harvester has a long life, stationary
parts, and highly reliable characteristics. However, the low effi-
ciency (5–6%) of thermal harvesting is a major hindrance for its
widespread adoption. Recently, with the development of new
thermoelectric materials and efficient modules, more than 10%
efficiency has been achieved [86–89]. Micro-fabricated devices can
achieve power densities of 0:14 μW=mm2 for a 700 mm2 device
[90] and 0:37 μW=mm2 and 0:60 μW=mm2 for 68 mm2 and 1:12
mm2 devices, respectively [91], for the temperature difference of
5 K which can be typically achieved in wireless body area net-
works. However, for higher temperature differences (for example,
if a building has heaters) principally the power density can be
scaled by the square of the difference in temperature [64].

Table 3 provides insight into various thermal energy harvesting
nodes. For existing commercial sensor nodes, the power TEGs
generate is clearly not sufficient at a low difference of tempera-
tures. In [85], thermal energy is obtained from the room heaters to



Fig. 10. Thermal and flow energy harvesters for WSNs.
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control the ZigBee-based node used to monitor the temperature of
the room as shown in Fig. 10(a). Flex TEG [92] and Wearable TEG
[93] are examples of WBAN (Fig. 10(b) and (c)). A Self-Powered
Wireless Temperature Sensor (SPWTS) [94] can power itself when
the temperature rises (Fig. 10(d)).

Furthermore, in [98], the energy harvesting is done using
pyroelectric cells based on Lead Zirconate Titanate (PZT) and Poly-
Vinylidene Fluoride (PVDF) films to run a low power RF trans-
mitter [99]. Generally, due to a low pyroelectric coefficient, the
PVDF cells produce less energy [100].

3.1.4. Flow-based energy harvesting
Flow based energy harvesting generally use turbines and rotors

that convert rotational movement into electrical energy using
electromagnetic induction principal [101,95] as shown in Fig. 11.

3.1.4.1. Wind-based energy harvesting. Although wind energy is
also freely available and provide a good alternative power source
(1200 mWh/day) [71], the turbines are generally bulkier than is
required for WSNs. AmbiMax [95] uses wind energy harvesting
along with solar energy harvesting as shown in Fig. 10(e). The
rotor frequency is supplied to a Frequency–Voltage (FV) converter
to produce the voltage. AmbiMax has a length 200 mm and a blade
radius of 155 mm, which is significantly larger than the form factor
of sensor nodes. In [101], an anemometer shaft turns an alternator
along with a pulse buck–boost converter in order to convert the
rotation motion into voltage. In [102], a micro turbine used under
low wind speed conditions harvested sufficient energy to ensure
the proper operation of a TI eZ430-RF2500T sensor node. A DC–DC
boost converter with resistor emulation is used to achieve an
average electrical power of 7.86 mW at an average wind speed of
3.62 m/s. In [103], a similar approach using a buck–boost converter
and optimal power point tracking circuit is used for wind energy
harvesting. In [96], Vertical Axis Wind Turbines (VAWT) harvest
energy using a boost DC–DC converter as shown in Fig. 10(f).

The Air-Flow Harvester (AFH) in [97] (Fig. 10(g)) consists of a
two-stage architecture: a passive-Schottky-diode full-wave recti-
fier and a buck–boost converter, which recharges a supercapacitor
used as a local energy buffer. The airflow transducer used in this
work is a small, plastic, four-bladed, horizontal axis, micro-wind
turbine, which produces a sinusoidal power signal whose ampli-
tude and frequency is dependent on the air speed.

A novel method to harvest wind energy using PZT piezoelectric
material is proposed in [104,105]. In [104], the harvested energy of
917 μJ powers the RF transmitter to transmit 5 12-bit words in 100 ms.

3.1.4.2. Hydro-based Energy Harvesting. Hydropower (waterpower)
harnesses the energy of moving or falling water. Currently, several
small (350-120OW) commercial off the shelf units can be installed
in streams and rivers. Furthermore, people can harvest the energy
of moving liquids, such as water or liquid nutrients, in pipes with a
small hydrogenerator [96]. In [96], a commercial hydrogenerator
by Vulcano (Fig. 10(h)) was used as an energy harvester. The
hydrogenerator output power is almost constant (approximately
18 mW) and is independent of the water flow value. Another
alternative is the use of seawater batteries made up of electrodes.
The seawater acts as the electrolyte and activate the electrodes to
generate the energy [106]. The performance and longevity of
seawater batteries depend on the hydrodynamic conditions at the
deployment location. Accordingly, they are deployed where deep-
sea hydrodynamic flows exist or attached to a moving device or
object so that water can flow through the electrodes. In addition,
the Microbial Fuel Cell (MFC) is yet another alternative for
underwater energy harvesting. It exploits the metabolic activities
of bacteria (such as micro-organisms from water) to generate
electrical energy directly from biodegradable substrates [107].

3.2. External sources

3.2.1. Mechanical-based energy harvesting
To harvest energy from vibrations, pressure, and stress–strain,

one needs to use a suitable Mechanical-to-Electrical Energy Gen-
erator (MEEG). Generally, a MEEG uses either electromagnetic,
electrostatic, or piezoelectric mechanisms to harvest energy
[108,64]. The pressure variations can be converted to energy using
either piezoelectric or electrostatic generators, which provide the
highest density of power [109,100].

In electromagnetic energy harvesting, vibrations are required
to move a magnet across a coil to generate a current. In contrast,
electrostatic convertors use vibrations to pull the plates of a
charged capacitor against the electrostatic attraction, resulting in
electrical energy due to the capacitance change. Conversely, when
stressed using vibrations, piezoelectric materials can produce an
electric potential difference that can be extracted as electrical
energy. For a MEEG, the harvested energy increases with device
volume, i.e., for 100 cm3 in volume, a device generates 10 mW, and
a device with a volume less than 0.01 cm3 can generate less than
10 mW. In [110], a device with a volume of 150 mm3 achieved
45 μW for a 0.6 m/s2 acceleration at 50 Hz.



Fig. 12. Mechanical energy harvesters for WSNs.

Fig. 13. Energy harvesters for WBAN.
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In [111], the electromagnetic harvester uses 10 Hz vibrations to
charge the battery of a MicaZ mote. A two-stage Dickson rectifier
gathers the generated energy. Fig. 12(a) shows the fabricated
energy harvester module and the assembled rectifier. The pro-
posed harvester first charges the capacitor, which in turn charges
the batteries of the senor node. In [112], a hybrid energy har-
vesting system for Acoustic Emission Monitoring (AEM) is pro-
posed to power the ZigBee based sensors using supercapacitors as
the storage medium (Fig. 12(b)). The energy is harvested from
three sources namely thermoelectric, vibrational (based on the
electromagnetic phenomenon), and a photovoltaic. The proposed
energy harvesting system is deployed on an air compressor in a
large-scale cold storage facility. By using electromagnetic har-
vesting from machine vibrations at 25–48 mg magnitudes and
49.3–49.7 Hz frequencies, 1.56 mW is harvested.

In [113], a piezoelectric energy harvester is developed to har-
vest energy from the acceleration of tires (Fig. 12(c)). The self-
powered WSN node used for the application was tested while
driving vehicles. The 1.37 μW/mm3 of power harvested was suf-
ficient to power the developed node. A micro piezoelectric vibra-
tion energy harvester is proposed in [114] (Fig. 12(d)). The output
power achieves 115.2 mW when the load resistance is 200 kΩ. A
detailed discussion of piezoelectric vibration energy harvesting for
WSNs is given in [115].
3.2.2. Human-based energy harvesting
Among other WSN applications, the healthcare sector is of prime

importance due to the necessity of monitoring patients con-
tinuously to ensure that medical professionals can take appropriate
and timely actions. Accordingly, the Wireless Body Area Network
(WBAN) have been receiving a lot of attention recently; in these
networks, sensor nodes are deployed on or inside of the human
body to monitor physiological parameters continuously. Due to
their deployment on humans, the nodes need to be operational for
long periods of time and ideally for the lifetime of the humans
being monitored. Thus, harvesting energy from the human is pre-
ferable to alternative sources of power. Fortunately energy can be
harvested from humans in a variety of ways, such as through
locomotion or changes in finger position, body heat, and blood flow.
Broadly speaking, human-based energy harvesting can be categor-
ized as activity based harvesters and inherent physiological para-
meters based harvesters. Traditional harvesters as well as the other
energy harvesters for WSNs discussed previously can be used for
human based energy harvesting, but the main challenge will be to
miniaturize them to make them easier for human adoption, Though
infrequent, human movements are generally non-periodic and
contain high acceleration, e.g., 100 m=s2 at 2 Hz while jogging.
Furthermore, the average human walk generates up to 7W per foot
of power. Researchers have used several types of generators, such as
shoe-mounted rotary harvesters [116] (Fig. 13(a)), piezoelectric
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materials [117–119], and electroactive polymers, to convert human
movement into power. The highest power achieved has been in the
range of 0.210 W [118].

The use of piezoelectric materials is gaining interest in
implants, including orthopedic implants [120] (Fig. 13(b)), which
generate around 4.8 mw raw power. In contrast, the motion of the
heart, lungs, and diaphragm [121] (Fig. 13(c)) generate a power
density of approximately 1.2 μW/cm2.

In [122], a micro TEG used on a human arm produced 34 mWof
power. Similarly, in [123], an EEG module was powered using TEG
to produce a power of 18 μW (Fig. Fig. 13(d)).
Fig. 14. GMLA [128].
4. Energy harvesting modeling

The amount and the rate of the energy harvested over time are
two critical parameters that anyone developing an energy har-
vesting system should consider before the design stage [124,125].
Generally, the behavior of the energy source is dynamic in nature.
For example, in solar energy harvesting, the energy source is
predictable and non-controllable; therefore, developers can fore-
cast the amount of energy harvested and the availability of the
source [126,127]. Accordingly, energy sources can be distinguished
with respect to the characteristics of predictability and controll-
ability. For controllable energy sources, there is no need for pre-
diction as the harvestable energy will be available whenever
required. For non-controllable energy sources, the energy will be
harvested whenever available. Furthermore, if the energy source
can be predicted for non-controllable energy sources, then it will
be easy to forecast the next availability of the energy source to
harvest the energy. Table 4 provides an overview of different
energy sources and their corresponding characteristics.

Such a forecasting mechanismwill enable the energy harvesting
system to decide how to utilize the available energy and how much
to store for future use. Next, we provide an overview of the different
energy forecasting mechanisms presented in the literature.

Predicting RF energy for harvesting is tied to predicting the quality
of the links. The quality of the links affects the reliability of commu-
nication between the sensor nodes, which in turn enables the energy
harvesting mechanisms to harvest energy from the RF signals. In
[128], a Genetic Machine Learning Approach (GMLA) for link quality
prediction is proposed to forecast the RF connectivity time in mobile
environments. GMLA consists of a classifier classification and Markov
chain model of RF links. The Markov model parameters can be
adapted at runtime, thereby making the GMLA approach appropriate
for generic environments. Fig. 14 depicts the GMLA approach and
shows the prediction and classifier selection processes.

In [129], the reviewed an optimized Morkov model is presented
for link quality prediction using the Oriented Birth-Death (OBD)
model. The authors added orientation to the original Birth-Death
model to introduce the tendency of the future states of the link;
Table 4
Characteristics of various energy sources.

Energy source Predictable

RF ✓

Solar ✓

Thermal
Flow Wind ✓

Hydro ✓

Mechanical Vibration
Pressure
Stress–strain

Human Activity
Physiological
i.e., the model considers if the link tends to increase or decrease
the signal strength to make a prediction for mobile WSNs.

For static WSNs, a Data Driven Link Quality Prediction (DDLQP)
approach is defined using link features in [130]. DDLQP consists of
three steps: data collection, off-line modeling, and online predic-
tion. In the data collection phase, link quality indicators, such as
Receiver Signal Strength Indicator (RSSI), Link Quality Indicator
(LQI), and Signal-to-Noise Ratio (SNR), are collected and then used
to train the system in the off-line phase. During the prediction
phase, the authors used three machine learning methods: the
Bayes classifier, logistic regression, and artificial neural networks.
They showed that logistic regression performs better than other
prediction techniques.

In [126], the authors propose a Solar Energy Forecasting Model
(SEFM) based on the Exponentially Weighted Moving-Average
(EWMA) with the assumption that the energy source at a parti-
cular time of a day is similar to previous days. The whole day is
divided into fixed length time slots (30 min), and the amount of
energy available on previous days is maintained as a weighted
average where the contribution of older data decreases exponen-
tially. The EWMA adapts very well to the normal day-night cycle
Unpredictable Controllable Non-controllable

✓

✓

✓ ✓

✓

✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓



Table 5
Performance comparison of various prediction schemes for solar energy [139].

Memory (B) Time ðμsÞ Average error (%)

EWMA 96 9 28.6
WCMA 384 51 9.8
ETHZ 96 14 29.9
Neural network 520 711 67.2
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and produces accurate results. If, however, the weather changes
frequently, the EWMA is less accurate. Put more formally, if x(i) is
the generated energy in slot i, then the historical average for each
slot is xðiÞ ¼ αxði�1Þþð1�αÞxðiÞ, where α is a weighting factor
(taken as 0.5) and xðiÞ is the historical average value for slot i.

To overcome the deficiencies of the EWMA approach, the
authors in [131] proposed the Weather-Conditioned Moving
Average (WCMA). The WCMA is able to take into account both the
current and past days weather conditions, obtaining a relative
mean error of only 10%. The WCMA algorithm uses an E matrix of
size DxN that stores N energy values for each D past day, i.e.,
Eðd;nþ1Þ ¼ αEðd;nÞþGAPkð1�αÞMDðd;nþ1Þ, where α is a
weighting factor, MDðd;nþ1Þ is the mean of D past days at nþ1
sample of the day (MDðd;nÞ ¼

Pd�D
i ¼ d�1 Eði;nÞ=D), and GAPk factor

measures the solar conditions in the present day relative to the
previous days. To overcome the corner cases of the WCMA, espe-
cially those due to sudden changes in the environment with
α¼ 0:5, the authors in [132] proposed a feedback system known as
the Phase Displacement Regulator (PDR). The PDR significantly
reduces the WCMAs prediction errors.

In [133], the authors proposed a prediction scheme similar to the
EWMA based on assumptions made about the periodic solar energy
availability. The system receives tuples ðt; ESðtÞÞ for all time slots
tZ1 (ESðtÞ is harvested energy) and delivers N predictions (inter-
vals of equal size L) for energy harvesting. Accordingly, at time t, the
predictor produces estimations ~Eðt; kÞ ¼ ~ESðtþk � L; tþðkþ1Þ � LÞ for
all 0rkoN. The prediction scheme combines the energy harvested
in the current time slot with the energy availability during past
time slots.

To overcome short-term varying weather conditions, which are
not handled properly in previous approaches, the authors in [134]
introduced a scaling factor to minimize the prediction errors as
ξn ¼ xn�1=yn�1 where xn�1 is harvested energy and yn�1 is the
predicted energy during slot n�1 using the EWMA. The value of
ξn is then used to fine-tune future predictions.

SunCast [135] propose the use of regression analysis to map
and predict future sunlight. It uses a three-stage process to predict
the sunlight: (1) first, it calculates the similarity between the real-
time data and historical data; (2) then, it uses regression to map
the trends in the historical data and real-time data; (3) finally, it
combines the weighted historical data to predict sunlight using
quadratic optimization. SunCast is limited to predictable environ-
mental factors such as sunrise and sunset. The rapid daylight
changes, such as those caused by the clouds, are unpredictable.

Pro-Energy [136] utilizes both solar and wind energy prediction
to cope with the problem of energy availability in an energy har-
vesting system. The main idea is to utilize the available energy
profiles from previous days. The harvested energy profile of a
typical day is also stored in a vector. Once per time slot, Pro-Energy
predicts the available energy by looking at the stored profile most
similar to the current day. The Euclidean distance is used to find
the similarity between the profiles using first t elements, where t
is the current time slot. Compared to the EWMA and WCMA, Pro-
Energy performs well due to its ability to utilize the energy pro-
files of previous days to make fewer errors. In [137], the authors
propose the Pro-Energy with Variable-Length Time slots (Pro-
Energy-VLT), an extension of Pro-Energy to improve the accuracy
of predictions keeping memory and energy overhead low. The
authors, having argued that using equal-length time slots may not
provide the best results, proposed an adaptive scheme to fine-tune
the time slots according to the dynamic behavior of the energy
source. They showed a 50% reduction in memory overhead com-
pared to Pro-Energy.

In [138], the authors analyzed weather forecast data and
energy harvesting data to formulate a model, known as Cloudy
Computing, that predicts solar and wind energy. The inconsistency
of weather patterns leads to the poor performance of traditional
EWMA-based approaches. Thus, cloudy computing integrates the
fine-grained weather details from the weather forecast data to
predict energy availability more accurately.

The authors in [139] compared different solar energy predic-
tion schemes. They showed that it is possible to design a predic-
tion scheme that has a low memory footprint and requires less
computation. They also introduced a neural network based
approach for solar energy prediction where supervised learning is
carried out with error back propagation. Based on their study,
Table 5 shows the statistics of various prediction schemes.

In [97], the authors proposed wind energy prediction using
linear regression in which the prediction variable is the time (t ¼
average duration of the wind harvesting events) and the response
variable is the estimated power at tðptÞ. For the set of the last n
power observations, fðti�n; pti�nÞ;⋯ðti; pti Þg. The goal of the simple
linear regression is to find the equation of the straight line that
will provide the best fit for the observed data points.

In [140], the authors proposed a Combinational Prediction
Model (CPM) for short-term wind farm energy harvesting using
meteorological data. For prediction purposes, the CPM combines a
Back Propagation Neural Network (BPNN) with a Genetic Algo-
rithm (GA) and Particle Swarm Optimization (PSO). The meteor-
ological data is used as input for the BPNN, whereas the GA and
the PSO are used to adjust the BP's weight and threshold values
dynamically. Then, the trained GA-BPNN and PSO-BPNN are used
to predict wind power through a combination method as
PP ¼ PGA�BPNNþPPSO�BPNN=2. A comprehensive review of wind

energy generation prediction is available in [141].
In [142], the authors used neural networks for River Flow

Prediction (RFP). The authors proposed an adaptive cascade-
correlation algorithm to present the data to the Artificial Neural
Networks (ANN) to train them. A Generalized River Flow Predic-
tion (GRFP) model using an ANN is proposed in [143]. In order to
improve the efficiency of the ANN when the input data for training
is limited, the GRFP proposes a guidance system for the cascade-
correlation learning architecture. For Flow Prediction in Horizontal
Pipelines (FPHP), the authors in [144] proposed the Least Square
Support Vector Model (LSSVM). The inputs of this model are the
superficial velocities of oil and water, pipe diameter, pipe rough-
ness, and oil viscosity. For further reading on this topic, [145]
provides an effective review of predicting water resource variables
using an ANN.

In contrast prediction techniques, [146] proposes a Prediction
FREe Energy Neutral (P-FREEN) power management system using
Budget Assigning Principles (BAPs) to maximize the amount of
harvested energy that a sensor can use in the presence of battery
energy storage inefficiencies. P-FREEN implements BAPs on the
observed rate of energy harvested and the residual battery energy
level. The computational complexity of P-FREEN is lower than the
existing prediction mechanisms, and it performs well during
simulations.

Table 6 summarizes the different prediction techniques various
approaches use for energy forecasting.



Table 6
Summary of prediction techniques for energy forecasting.

Energy source Approach Prediction mechanism

RF GMLA [128] Classifier-Morkov chain model
OBD [129] Morkov model
DDLQP [130] Logistic regression

Solar SEFM [126] EWMA
[131] WCMA
[133] EWMA
[134] EWMA with scaling factor
SunCast [135] Regression analysis

SolarþWind Pro-Energy [136] Energy profiles (EP)
Pro-Energy-VLT [137] EP with adaptive time slots
Cloudy Computing [138] Weather forecast

Wind [97] Linear rigression
[140] CPM

Hydro RFP [142] ANN
GFRP [143] ANN
FPHP [144] LSSVM
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5. Open research challenges

WSNs are emerging as a key technology for the Internet of
Things and related applications for indoor and outdoor environ-
ments. Energy harvesting mechanisms for WSNs are flourishing and
becoming more attractive as microelectronics and MEMS advance.

Generic harvester: One of the key challenges is to harvest
energy from multiple sources, which requires the development of
advanced power management techniques. A generic plug and play
energy harvester that can harvest energy from multiple sources is
needed in order to fulfill sensor nodes energy requirements. By
having such a generic harvester, it may be possible to eliminate
energy storage systems to power the nodes.

Miniaturization: The large-scale deployment of WSNs with
bulky harvesting systems will not be economically viable or sui-
table for pervasive environments. Therefore, in future the main
focus should be on the development of nano-scale miniaturized
energy harvesting systems. Accordingly, microelectronics will be
utilized to provide robust, miniaturized, low power, and low-cost
micro-computing systems that can be interfaced to the already
miniaturized electronics. As discussed in earlier sections, the bio-
medical field has made some effort to use very small energy har-
vesting systems in implants. While sufficient for powering the
implants, the small amount of energy these miniaturized systems
produce cannot be used directly for other application scenarios
such as monitoring. Thus, there is a need for small-scale harvest-
ing systems that can produce sufficient energy to power the node,
sensors, and other associated interfaces.

Protocol adaptation: Traditionally, the focus of WSNs has been
on energy efficient networking protocols to maximize the lifetime
of the network [12]. With the introduction of energy harvesting
systems the WSN objectives need to be redefined, e.g., instead of
energy efficient protocols it should be information centric proto-
cols which maximize the information based on amount of energy
harvested. Redefining the objectives will lead to a careful adap-
tation of the various protocols and strategies involved in delivering
information from the environment to the user. Topology control
protocols may use high power transmissions in order to deliver
information successfully from one hop to another. Given that this
requirement will require more energy to be harvested, topology
control protocols need to be adapted according to harvested
energy. Typically, WSN MAC protocols trade delay for energy
usage. For energy harvesting WSNs, it is important to determine
how to maximize throughput and minimize delays. Furthermore,
cross layer analysis of communication links can promote efficient
utilization of the energy harvesting schemes. Routing protocols
also need to be adapted to take advantage of the availability of
new energy harvesting systems in the network. The optimization
problem of routing must be revisited carefully since the majority
of the existing works in WSNs assume a limited energy budget for
routing purposes. Accordingly, to ensure reliability where
retransmission of data is frequent, transport protocols must adapt
to provide application level requirements.

Although some works have investigated protocol adaptation for
energy harvesting WSNs [147,71,148], developers still need to
develop a generic framework for the dissemination of information
in energy harvesting WSNs.

Efficient prediction techniques: The existing prediction techni-
ques are generally simple, but they can lead to substantial prediction
errors. Despite their shortcomings, they are used to avoid expending
excessive power for processing because the harvested power is also
limited (e.g., harvested solar energy). Thus, researchers should
devote more attention to developing efficient and less error prone
prediction algorithms to improve power management.

Simulation environments: To the best of our knowledge, simu-
lation environments that can cover all aspects of energy harvest-
ing in WSNs are almost non-existent. Such a simulation environ-
ment will be a valuable tool to evaluate the impact of proposed
energy harvesting systems on large-scale networks.

Energy-efficient reliable systems: All energy harvesting systems
will benefit from more reliable and ultra-energy efficient sensors
and nodes. Beyond having anti-fouling coatings on the surfaces,
reliable sensors must strive for consuming very low power (ideally
no power) and should be highly reliable over the system lifetime.
The sensor nodes also raise the challenge of calibration and
cleaning over the entire system lifetime. Thus, nodes not requiring
calibration or cleaning would resolve many of the reliability
challenges. Having such sensors will reduce both the amount of
energy needed and the size of the energy system, which will
increase the system lifetime.

Energy storage: Large-scale and long-lasting applications will
impact battery parameters, such as self-discharge, charge cycles,
and environmental conditions. Therefore, future researchers should
devote additional effort to further investigate and assess the per-
formance and reliability of conventional and rechargeable battery
technologies [149]. Researchers should also further explore the
tradeoffs between using batteries and capacitors as storage devices.

The ultimate goal of energy harvesting systems for WSNs is to
shift the paradigm from the battery-operated WSN to an autono-
mous energy harvesting WSN that only relies on energy harvested
from the ambient environment.
6. Conclusion

Energy harvesting in WSNs continues to receive a lot of
attention by various stakeholders involved in their design and
implementation given the strong potential of energy harvesting
techniques in meeting the energy demands of future WSN
deployments. In this work, we developed a comprehensive clas-
sification scheme for energy harvesting techniques in WSNs. More
specifically, we focused on energy harvesting techniques that
leverage the ambient environment and external sources to gen-
erate energy for WSNs. For each class and sub-class of energy
harvesting techniques we have identified, we thoroughly reviewed
the energy harvesting mechanism, the harvester hardware design,
the amount of energy harvested, and the efficiency of the har-
vester. It is worth noting that each energy source has different
harvesting capabilities and, as a result, the harvester hardware
design is also different for each category which ultimately deter-
mines the efficiency of the harvester. In order to address the issue
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of intermittent outages of harvested energy, we surveyed in detail
the various models aimed at predicting future energy cycles. We
found that the current state-of-the-art in this area of modeling is
still immature and only very basic prediction techniques have so
far been utilized. Finally, we identified several open research
challenges that still need to be addressed in the future including
the need to focus miniaturized generic harvesters which can be
used in different environments with dynamic energy sources.
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