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During the last decade, audio information hiding has attracted lots of attention due to its ability to 
provide a covert communication channel. On the other hand, various audio steganalysis schemes have 
been developed to detect the presence of any secret messages. Basically, audio steganography methods 
attempt to hide their messages in areas of time or frequency domains where human auditory system 
(HAS) does not perceive. Considering this fact, we propose a reliable audio steganalysis system based on 
the reversed Mel-frequency cepstral coefficients (R-MFCC) which aims to provide a model with maximum 
deviation from HAS model. Genetic algorithm is deployed to optimize dimension of the R-MFCC-based 
features. This will both speed up feature extraction and reduce the complexity of classification. The 
final decision is made by a trained support vector machine (SVM) to detect suspicious audio files. The 
proposed method achieves detection rates of 97.8% and 94.4% in the targeted (Steghide@1.563%) and 
universal scenarios. These results are respectively 17.3% and 20.8% higher than previous D2-MFCC based 
method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Subliminal channels are types of covert channels which are 
used for stealth communication over innocuous-looking insecure 
channels. This concept was first introduced by Simmons as the 
prisoner’s problem [37]. Two accomplices have been arrested and 
are kept in separate cells. They want to cook up an escape plan 
but they can only communicate through a vigilant warden who 
will deliver only innocuous messages. Steganography is among 
the ways to implement such subliminal channel. Steganography 
consists of an embedding algorithm (Aem) that hides a message 
(m ∈ M) into an innocent-looking signal called cover (c ∈ C) and 
results in a stego signal (s ∈ S). On the receiver side, another al-
gorithm (Aex) is used to extract hidden message from the stego 
signal. A steganography system is called secure if the spaces of 
cover and stego coincide with each other:

C= S (1)

On the other hand, steganalysis is the countermeasure of war-
den to detect presence of any subliminal channel. If cover signals 
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are empirical [4] then for practical steganography systems, as-
sumption of (1) does not hold and there would be a deviation 
between C and S. This discrepancy can be exploited to discrimi-
nate between cover and stego signals. If Aem and statistical model 
of C are known a-priori, optimum detector can be designed using 
statistical decision theory, otherwise a set of suitable feature and 
machine learning techniques should be employed [21].

Considering different types of cover media, steganographic sys-
tems can be divided into five major categories including image, 
audio, video, text, and network. Reviewing literature shows that 
on the contrary to the image, audio steganographic systems have 
found less attention so far. It is noteworthy that, steganogra-
phy and steganalysis like many new trends in cryptology such 
as multimedia encryption systems [18], multimedia secret shar-
ing, and water marking rely heavily on signal processing tech-
niques.

Regarding the functionality of steganalysis systems, they are ei-
ther universal or targeted. In the former one, the detector does not 
have any prior knowledge about Aem , while in the latter one the 
system is designed specifically for detecting signatures of a par-
ticular method. Over the past decade, different audio steganalysis 
systems have been proposed. Based on the nature of their features, 
they can be divided into two distinct types:
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1. Methods that extract their features by comparing the input 
signal with a reference signal

2. Methods based on extracting features directly from the signal

Steganalysis by comparing signal with a reference:
Extracting a proper reference signal is the main issue in this 

category. There are different methods to generate the reference sig-
nal for this paradigm. One possible solution is applying denoising 
method to the input signal in order to provide an estimation of the 
cover signal. The first method in this area was proposed in [28]. 
They also used audio quality metrics (AQMs) to quantify the de-
viation between input signal and generated reference signal [29]. 
In [14], they argued that AQMs have been designed specifically to 
detect modifications of pure audio contents. They proposed Haus-
dorff distance for a better representation of dissimilarity between 
reference and input signal. Johnson et al. proposed another method 
for creating reference signal. They used a set of bases functions 
that were localized in both time and frequency domains to cap-
ture regularities of audio signals. These bases aimed to estimate 
a reference for every input signal. The deviation between refer-
ence and input signals was modeled by different moments [20]. In 
another work, a reference signal independent of input signal was 
applied [1]. Avcıbas showed that if reference is generated from in-
put signal, then the extracted features depend on both message 
and content of the cover signal. This dependency on the cover sig-
nal may diminish generalization property of the system. They used 
a constant pair of cover-stego signal for referencing. They showed 
that this technique improves steganalysis results.

Steganalysis by direct inspection of input signal:
In this scenario, the features are extracted directly from input 

signals. First, steganalysis was integrated into an intrusion detec-
tion system. This work used ratio of ones and zeros in the LSBs 
to detect steghide [9]. Ru et al. used wavelet and linear predic-
tion techniques to extract correlation between samples of input 
signals [34]. They employed different statistical moments calcu-
lated from the residual signal of every sub-band of wavelet tree 
for steganalysis. MFCC as one of the most well-known features 
were examined to improve steganalysis results in [24]. This work 
also demonstrated that removing speech relevant components of 
speech signal is beneficial for improving steganalysis. In [13], the 
first three moments of time and frequency histograms of input 
signal and its wavelet sub-bands were exploited for proposing a 
proper steganalysis scheme. Principle component analysis (PCA) 
was applied to reduce the features’ dimension. In [23], it was ar-
gued that due to the existence of chaotic phenomena in speech 
signals, chaotic-based features may be employed to boost detec-
tion of audio steganalysis algorithms. It was shown that steganog-
raphy noise increases chaoticity and dimension of phase space 
in the stego signals. Then, values of false neighbor fraction and 
Lyapunov spectrum were used to quantify chaotic characteristics 
of the analyzed signals. Markov transition probabilities were pro-
posed in [25]. They introduced a metric for measuring complex-
ity of different cover signals and showed that performance of 
their method maintained good even for complex signals. Liu et 
al. showed that second order derivative magnifies the differences 
between spectrum of cover and stego signals [26]. A steganalysis 
system based on auto regressive time delay neural network was 
proposed in [31]. A combination of different invariant moments 
and features was used by Bhattacharyya to model deviation be-
tween cover and stego signals [2].

Investigating previous audio steganalysis methods shows that:

1. As the most basic requirement, the effects of steganogra-
phy should not be detectable by human perception systems. 
Therefore, processing a cover and its stego version with a 

“perfect” model of human perception system virtually should 
produce the same results, and they should be indistinguish-
able. For example in [24,26] Mel frequency cepstral coefficients 
(MFCC) have been used for feature extraction. MFCC is a model 
that mimics frequency resolution of HAS. Other characteris-
tics of HAS that have been used in steganalysis literature in-
clude loudness, pre-masking and post-masking [1,28,29]. For 
instance, loudness belongs to the category of intensity sen-
sations and it is primarily a psychological characteristic. It is 
known that HAS has the lowest sensitivity in the high frequen-
cies; therefore, incorporating loudness in the feature extraction 
wipes out faint noises in the high frequency portions of the 
signal, a region that is very valuable for steganalysis. These 
ideas are discussed more thoroughly in the section 2 of this 
paper.

2. Most of the previous works have investigated only LSB stega-
nography and its different implementations. Furthermore, to 
address steganography systems that resist active warden, these 
works have used watermarking methods [1,23,29]. We be-
lieve that reliable results for active warden are achieved if 
robust steganography methods are investigated. The rationale 
behind this claim is that undetectability is not a prerequi-
site for watermarking systems. Therefore, reliable detection of 
watermarking methods does not necessarily lead to a reliable 
detection of robust steganography methods.

3. Although most of previous works have claimed a universal ste-
ganalysis system but all of them (except for [29], to the best 
of our knowledge) have only reported results of targeted sim-
ulations.

Continuing on our seminal work [16], this paper aims to ad-
dress these problems. Specifically the following contributions are 
made:

– A new model with the maximum deviation from HAS is pro-
posed. Then, this model is exploited for extracting a new set of 
features. Finally, genetic algorithm (GA) is invoked for a near 
optimum feature selection.

– The reliability of the proposed steganalysis system is tested on 
a wide range of steganography methods including LSB, DWT, 
and DCT domain methods. Also, for the sake of completeness 
and better comparison with previous works, two watermark-
ing methods are also considered.

– Both targeted and universal steganalysis scenarios are pursued.

The rest of this paper is organized as follows. Section 2 includes 
some preliminaries on the HAS and its relations with stegano-
graphic concepts. Section 3 elaborates on the proposed method. 
Experimental results are presented in section 4. Discussion follows 
in section 5 and finally conclusions are made in section 6.

2. Human auditory system

Basilar membrane within cochlea of the inner ear is the base 
for sensory cells of hearing. Previous studies have shown that 
cochlea operate as a kind of mechanical frequency analyzer [35]. 
Further studies have discovered that the produced effects in the 
inner ear are not linear or logarithmic over the whole length of 
the basilar. In contrast, other scales such as pitch ratio and critical-
band can be plotted on linear scales along the basilar membrane. 
Therefore, in characterizing HAS either the critical-band scale or 
the pitch ratio scale are more useful than the frequency scale [12].

Pitch ratio and Mel Scale:
To measure pitch of a pure tone, one possible procedure is to 

present human subjects with a pure tone of frequency f1 and ask 
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Fig. 1. R-Mel and Mel triangular filter bank.

them to adjust a second frequency f2 such that f2 produces half 
pitch of the first tone. Subjective measurements have shown that 
at low frequencies, halving of the pitch sensation corresponds to 
the ratio of f1/ f2 = 2 while in the frequencies above 1 KHz, this 
ratio is larger than 2 [12]. According to these observations, for each 
tone with an actual frequency measured in hertz, a subjective pitch 
is calculated on a scale called ‘Mel’. Equation (2) shows the math-
ematical formula for converting a given frequency ( f ) in hertz to 
its corresponding Mel value.

Mel = 1127 × ln

(
1 + f

700

)
(2)

Mel-frequency cepstral coefficients:
Cepstrum is the anagram of the word spectrum which reflects 

information about the rate of power changes in different spectrum 
bands. Later, this metric was tweaked to mimic characteristics of 
HAS. These new coefficients are commonly known as MFCC and 
have found numerous applications such as speaker identification 
[33] and speech recognition [30].

Assume that F denotes fast Fourier transform, MFCCs are cal-
culated as:

Sk =
∑

F
(
x(t)

)
.Wk; Cm = F

(
log(Sk)

)
(3)

Where M is the number of filters in the Mel bank, and Wk is 
the triangular weighting function corresponding to the k-th filter. 
These filters are constructed as follows:

– In the target scale (R-Mel or Mel), linearly divide the whole 
spectrum into M + 1 parts.

– Convert stop and start points of all parts to hertz. This will 
lead to M + 2 distinct points.

– Wk is a triangle such that it starts from i-th point, reaches its 
peak at i + 1th point and returns to zero at the i + 2th point. 
Sometimes these triangles are normalized such that they have 
areas equal to one.

Plots of these weighting functions for both R-Mel and Mel scales 
are presented in Fig. 1.

Steganography and Human Auditory System
Reviewing the steganography literature shows that many works 

have used peak signal to noise ratio (PSNR) or signal to noise ra-
tio (SNR) to imply security of their methods. Furthermore, Zamani 

Fig. 2. SNRs of sub-band for different data hiding methods.

et al. investigated the correlation between PSNR and the capac-
ity of audio steganography [41]. They showed that PSNR decreases 
with increasing the capacity. Logically, increasing the capacity of a 
certain method enhances its probability of detection. Therefore, it 
can be inferred that lower values of PSNR lead to higher probabil-
ity of detection. Based on this assumption, effect of a typical audio 
steganography system is investigated. Let us model the effect of 
steganography as an additive noise:

s(t) = c(t) + n(t) (4)

We take discrete time Fourier transforms from both sides:

S
(
e jw) = C

(
e jw) + N

(
e jw)

(5)

Then, the whole spectrum of the signal is divided into L equally 
spaced sub bands:

(i − 1) × π

L
≤ Bi ≤ i × π

L
, 1 ≤ i ≤ L (6)

We define sub-band SNR of signal as:

SNRi = 10 log10

( ∫
Bi |C(e jw)|2∫
Bi |N(e jw)|2

)
, 1 ≤ i ≤ L (7)

In order to investigate the effect of steganography on differ-
ent sub bands, a total number of 4169 audio files were embed-
ded with different data hiding methods. The methods included 
Hide4Pgp [32], Steghide [19], spread spectrum in the frequency do-
main [27], error-free wavelet method [36], and two watermarking 
methods of spread spectrum [22], and the DCT-based robust wa-
termarking method (COX) [7]. After dividing the whole spectrum 
of cover and noise signals into 29 sub-bands, values of SNRi were 
calculated for all files. Fig. 2 shows average values of SNRi over all 
the files. (Notations are in accordance with those of Table 1.)

The main purpose of steganographic communication is to hide 
the mere existence of a secret message. Therefore, the most pri-
mary requirement of a steganographic system is to remain unde-
tectable. Thus, in its most rudimentary form, it is crucial that the 
human perception system (ears in the case of audio steganogra-
phy and eyes in the case of image) should not be able to distin-
guish between the stego and cover signals. In other words, effects 
of steganography should not be detectable by human perception 
systems. According to this fact, a true model of human percep-
tion system should be indifferent to steganography. Thus, it is very 
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Table 1
Database specifications.

Method Embedding 
domain

Capacity 
BPB (%)

Capacity 
ratio (%)

SNR 
(mean ± std)

Parameters Bit error
rate (%)

Ref.

Steganography method Hide4pgp LSB 25 100 53.7 ± 7.0 – 0 [32]
12.5 50 65.8 ± 7.0 – 0

6.25 25 72.8 ± 7.0 – 0
Steghide 3.125 100 74.9 ± 6.4 – 0 [19]

1.563 50 77.1 ± 6.1 – 0
I-Wavelet Wavelet 25 – 35.1 ± 7.2 Haar wavelet 0 [36]

12.5 – 58.7 ± 7.5 Haar wavelet 0
6.25 – 69.9 ± 8.4 Haar wavelet 0
3.125 – 74.6 ± 8.9 Haar wavelet 0

DSSS + DCT DCT 0.0063 – 49.8 ± 7.0 α = 10, N = 1000 18.76 [27]
0.00063 – 49.9 ± 7.0 α = 10, N = 10 000 11.27
0.0063 – 43.8 ± 7.0 α = 20, N = 1000 13.82
0.00063 – 43.8 ± 7.0 α = 20, N = 10 000 6.98

Watermarking method DSSS Time – – 19.3 ± 3.7 – – [22]
COX DCT – – 27.7 ± 7.0 α = 0.01 – [7]

likely that employing features based on human perception systems 
leads to discarding vital information.

Investigating different audio covers shows that as frequency 
increases, their power spectrums decrease so they can be con-
sidered as band-limited signals. On the other hand, investigating 
noise of steganography indicates that it is a broadband signal. Con-
sequently, it is expected that the value of SNRi decreases with 
increasing of the frequency. Fig. 2 supports this claim.

Comparing results of Fig. 2 and characteristics of HAS reveals 
interesting facts. According to Fig. 1, Mel scale has its highest 
resolution in the lower frequencies and its lowest resolution in 
the higher frequencies. On the other hand, according to Fig. 2, 
high frequency portions of the signal tend to reveal the effects 
of steganography more clearly. Therefore, features based on HAS 
are not very suitable. It is noteworthy that steganalysis methods 
[1,28,29] that have incorporated other psychoacoustic characteris-
tics of HAS (such as loudness and masking [12]) in their feature 
extraction routine, have produced inferior results to MFCC-based 
systems. We believe these inferior results are due to extracting fea-
tures from a more accurate model of HAS.

Reversed Mel Scale:
Based on our previous discussions, we propose an artificial au-

ditory model that has maximum deviation from HAS. Specifically, 
our suggested model employs a new scale called reversed-Mel 
scale (R-Mel) that has reversed frequency resolution of HAS. The 
new scale has its highest resolution in high frequencies and its 
lowest resolution in low frequencies. If F S denotes sampling fre-
quency of the signal, we define the R-Mel value of a given fre-
quency f in hertz as:

RMel = 1127 × ln

(
1 + 0.5 × Fs − f

700

)
(8)

Based on this new scale, a new set of triangular weighting func-
tions is constructed. These new filters are used in equation (3)
to produce reversed-Mel frequency cepstral coefficients (R-MFCC). 
Fig. 1 compares filter banks constructed based on Mel with R-Mel 
scale. Investigating filers constructed on the Mel scale shows that 
these filters are more concentrated in the lower frequencies. In 
other words because triangles in the low frequencies have smaller 
width, more coefficients will be extracted from low frequencies. 
Therefore, we say Mel scale has higher frequency resolution in the 
lower frequencies. On the other hand, filters constructed on the 
R-Mel scale have exactly the opposite characteristics. That is, the 
filters have finer resolutions in the higher frequencies and coarser 
resolutions in the lower frequencies.

3. The proposed scheme

Our proposed method is based on taking advantages of R-MFCC 
coefficients discussed in the previous section. We believe that 
these features provide suitable discrimination between cover and 
stego audio files.

Analysis of the Proposed Features:
According to equations (3) and (4), the discriminating factor be-

tween the cover and stego is:

D = F
(

log
(∑

F (c + n).Wk

))

− F
(

log
(∑

F (c).Wk

))
(9)

Using some basic manipulation, (9) reduces to:

D = F

(
log

(∑
F (c + n).Wk∑

F (c).Wk

))
(10)

D = F

(
log

(
1 +

∑
F (n).Wk∑
F (c).Wk

))
(11)

Now let us investigate equation (11) for both MFCC and R-MFCC 
cases. According to the discussion of section 2, the most discrim-
inative features would be extracted from high frequency regions; 
thus, the last weighting function of Mel and R-Mel banks are con-
sidered. Assuming F S = 44 100, and M = 29, the W29 of MFCC and 
R-MFCC have non-zero values in the regions of [17 340, 22 050] Hz 
and [21 869, 22 050] Hz, respectively. Apparently, W29 in the MFCC 
has larger number of non-zero components; therefore, denomina-
tor of equation (11) for MFCC feature is larger than the R-MFCC 
case.∑

F (c).W29-MFCC >
∑

F (c).W29R-MFCC (12)

Furthermore, frequency components of noise are much smaller 
than their cover counterparts; thus, the numerator cannot compen-
sate for this increase in the value of denominator. In other words, 
in the high frequency regions, the discriminating factors of (11) are 
larger in R-MFCC case than their MFCC counterparts.

D29-RMFCC > D29-MFCC (13)

Feature Extraction:
After normalizing data to [−1, 1], it was segmented into frames 

of 1024 samples with overlap of 512. Then, R-MFCCs were calcu-
lated for each frame. In this paper, 29 different filters were used. 
Features were calculated as the values of mean, standard devia-
tion, skewness, and kurtosis of each R-MFCC coefficient over all 
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Fig. 3. Feature extraction procedure.

the frames. Previous works have shown that employing second or-
der derivative of the signal leads to better discriminating features 
[25,26]. Based on this idea, the same procedure was applied on 
the second order derivative of the input signal. This second set of 
features is denoted by D2-R-Mel. Fig. 3 illustrates the feature ex-
traction procedure.

Preprocessing:
Investigating the extracted features shows that:

1. The values of extracted features from some observations in the 
same class are significantly different from each other.

2. Different features tend to have different dynamic ranges.

Observations with significantly different feature values are 
called outliers. Outliers are either results of noisy measurements or 
distribution with long tails [39]. Removing the noise and outliers 
during training allows the learning algorithm to find more accurate 
classification boundaries [38]. Therefore, in the training phase, out-
liers were removed using the distance-based method implemented 
in [11]. In this method, distances between all observations from 
the same class were calculated. If the distance between an obser-
vation and more than 10% of other observations was larger than a 
threshold, it was considered as an outlier. Also, the threshold was 
defined as the mean of distances plus three times their standard 
deviation.

Another problem in classification stems from features with high 
values. Such features may influence cost function of the classifier 
more, regardless of their effectiveness in discrimination. Features 
were normalized to alleviate this problem. To this end, mean and 
variance of features over train set were calculated, and then fea-
tures were normalized according to equation (14):

x̂ik = xik − mk

σk
(14)

Furthermore, the values of mk and σk were retained for applying 
normalization to test samples.

Dataset:
Our cover signals consisted of 4169 mono uncompressed au-

dio wave files with frequency of 44 100 Hz and 16 bits resolution. 
The duration of each excerpt was 10 seconds and they covered 
wide range of music genres and languages [16]. All covers were 
embedded with random messages; furthermore, the message was 
changed for each cover. Different steganography and watermarking 
algorithms were used to hide message. The steganography algo-
rithms in this study were Hide4Pgp, Steghide, spread spectrum 
in the frequency domain, error-free wavelet method, and water-
marking methods are spread spectrum, and the DCT-based robust 
watermarking method (COX).

Embedding Strength:
Expressing embedding strength of steganographic methods can 

be accomplished through two different metrics of capacity ratio 
and bit-per-bit percent (BPB). Capacity ratio is the ratio of embed-
ding rate to the maximum capacity of a particular method. Also, 
BPB is the ratio of message size to the size of cover. Although 
previous audio steganalysis studies have used capacity ratio for 

expressing embedding strength, BPB is much more suitable. First, 
steganography tries to implement a subliminal channel which its 
efficiency is equal to the ratio of message size to the cover size. 
Therefore, BPB quantifies objective of steganography more closely. 
Furthermore, BPB is a universal metric and can be used across 
different steganography methods and different bit resolutions of 
cover signals. Thus, BPB provides a meaningful way of comparing 
different steganography methods. Table 1 presents details of the 
employed database.

Feature Selection:
In classification tasks, there are usually some irrelevant or re-

dundant features. In fact, there is no useful information with ir-
relevant features and also redundant features do not provide fur-
ther information than the currently selected features. Such fea-
tures increase complexity of feature extraction (as the most time-
consuming part of the system) while they provide no useful infor-
mation. Furthermore, high dimensional space increases the com-
putational complexity of the classifier and it may also diminish 
its generalization property [40]. Due to its good performance [17], 
GA was invoked to choose a near-optimum subset of features. We 
used accuracy of the classifier as the fitness function, population 
size of 200 individuals, tournament selection [3], and two-point 
crossover [15]. For selecting k out of n features, genes were en-
coded as a decimal array of length k. Initially, this array was filled 
with k random draws from set of [1, n] without replacement. To 
further improve the performance of GA, selection operation was 
followed by elitism [8] which was implemented as directly se-
lecting 1% of the mating population from the best chromosomes. 
Finally, mutation with rate of 1% was implemented as replacing 
one of already selected features with one of the remaining ones.

Classifier:
The process of distinguishing cover from stego samples needs a 

classifier to define a suitable decision boundary. This work employs 
support vector machine (SVM) for its superb performance [17]. 
SVM is basically based on Vapnik’s statistical learning theory in 
which a maximum-margin hyper plane is created to distinguish 
the training vectors from different classes [6]. Furthermore, if fea-
tures are not linearly separable, it is possible to map the original 
problem into a much higher-dimensional space and achieve bet-
ter classification result. This task is accomplished by applying a 
suitable kernel function. In this work, SVM is applied by using 
the non-commercial package LIBSVM [5] with radial basis function 
(RBF).

4. Experimental results

Scatter plots of both MFCC and R-MFCC of the second order 
derivative of cover signal and steghide@1.563 BPB are shown in 
Fig. 4.

Comparing Figs. 4.A and 4.B shows that features based on R-Mel
scale are more separated than features extracted based on Mel 
scale. This observation justifies our initial assumption that fea-
tures extracted based on the idea of maximum deviation from HAS 
would lead to more discriminative features.

GA was invoked to select the best subset of features for opti-
mum detection of steghide@1.563% BPB. The results showed that 
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Fig. 4. Scatter plots of covers vs. stegos for (A) D2-MFCC features, and (B) D2-R-MFCC features.

Table 2
Performance of the proposed method in term of sensitivity (Se%), specificity (Sp%) and accuracy (Ac%).

Method BPB% MFCC [24] D2-MFCC [25] R-MFCC D2-R-MFCC

Se Sp Ac Se Sp Ac Se Sp Ac Se Sp Ac

Hide4pgp 25 91.7 83.9 87.8 99.7 94.7 97.2 99.7 99.9 99.8 99.8 100 99.9
12.5 70.4 65 67.8 95.9 86.5 91.3 98.2 97.4 97.8 99.4 99.7 99.5

6.25 59.4 50.5 55 89.7 79.5 84.7 93.3 90 91.7 98.9 98.7 98.8
Steghide 3.125 55.1 46.8 51 86.4 76.8 81.7 91.1 87.7 84.9 98.1 98.6 98.4

1.563 56.6 38.9 47.8 80.5 73.8 77.2 87.1 82.6 84.9 97.8 97.4 97.6
I-Wavelet 25 100 98.9 99.4 100 99.2 99.6 100 100 100 100 100 100

12.5 87.8 79.7 83.8 99.1 93.4 96.3 99.6 99.6 99.6 99.6 99.9 99.8
6.25 64.1 60.1 62.4 94 84 89.1 96.7 95.2 96 99.3 99.2 99.2
3.125 57.4 43.8 50.7 84.8 75 79.9 89 85 87 98.5 97.4 98

DSSS + DCT 6.3e−3 95.4 87.6 91.5 99.8 95.7 97.8 99.6 99.9 99.7 99.8 99.8 99.8
6.3e−4 96.2 88.8 92.5 99.8 96.1 98 99.4 99.9 99.7 99.9 100 99.9
6.3e−3 98.9 93.8 96.4 100 98 99 99.8 100 99.9 99.8 100 99.9
6.3e−4 99.4 94.4 96.9 100 98 99 99.8 100 99.9 99.9 100 100

DSSS – 65.4 55.7 60.7 79.1 72.3 75.8 78.3 72.8 75.6 97.3 94.5 96
COX – 90.8 89.7 90.2 91.7 93 92.3 97.2 98.8 98 98.3 99.8 99

the best accuracy was achieved when 21 features were selected. 
These indexes were used for all of the simulations. The rationales 
behind this approach are as follows. Firstly, although the selected 
features may be sub-optimum for other methods, but in scenarios 
where embedding algorithm is not known a-prior feature selec-
tion should be independent from embedding algorithm. Secondly, 
among the methods considered in this paper steghide@1.563 had 
the highest values of SNRi (Fig. 2); thus, it was the most challeng-
ing method to detect. Therefore, if a subset of features can detect 
steghide@1.563 accurately, it is more likely that they would do the 
same for other methods as well.

Considering search complexity of GA, the feature selection was 
repeated for 10 times and the numbers of required generations 
were calculated. The simulations showed that on average after 4.7 
generations the algorithm finds the best feature set. If this number 
is multiplied with the number of individuals in each generation 
(200), average search complexity of 940 is calculated. Considering 
the fact that the GA was performed only once (just for steghide), 
this complexity is acceptable.

To measure efficacy of the proposed method, different tests 
were conducted. In each test, database was randomly divided into 
the training (70%) and the testing (30%) sets. Then, SVM was 
trained using the features extracted from train set. Finally, trained 
model was evaluated using test set. This procedure was repeated 
for 20 times and, the performance criteria were eventually calcu-
lated by averaging over all the iterations. Criteria used in this paper 
are sensitivity (SE), specificity (SP), and accuracy (ACC). These cri-
teria are described as follows:

– True negative (TN): the number of cover samples that are clas-
sified as cover samples.

– True positive (TP): the number of stego samples that are clas-
sified as stego samples.

– False negative (FN): the number of stego samples that are clas-
sified as cover samples.

– False positive (FP): the number of cover samples that are clas-
sified as stego samples.

Sensitivity (SE) is the probability of correct detection of stego sam-
ples and is defined as:

SE = TP

TP + FN
× 100% (15)

Specificity (SP) is the probability of correct detection of the cover 
samples and is equal to:

SP = TN

TN + FP
× 100% (16)

Accuracy (ACC) is the probability of correct classification and is 
calculated as:

ACC = TN + TP

TN + FP + TP + FN
× 100% (17)

Targeted steganalysis scenario:
In this section, we assume that Aem is known a priori. Table 2

compares performance of the proposed features with some of pre-
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Table 3
Results of targeted steganalysis N F : Number of features NC : No. of covers in the 
database.

Method N F NC Mean Se. Mean Sp. Ref.

AQM 19 664 92.75 93.5 [29]
Hausdorff 25 200 88.6 72.9 [14]
MFCC 36 389 66.0 – [24]
Chaotic 22 2554 80.3 74.2 [23]
Markov 81 12 000 Accuracy = 92.2 [25]
D2-MFCC 29 12 000 Accuracy = 85.9 [26]
D2-R-MFCC 29 4169 97.3 94.7 [16]
R-MFCC + GA 21 4169 95.3 93.9 *

D2-R-MFCC + GA 21 4169 99.1 99.0 *

* These results have been achieved in our simulations.

vious works based on HAS. Best results are presented in the bold 
face letters.

Results of Table 2 shows that the proposed method outperforms 
previous methods. Comparing accuracy of the proposed method 
with D2-MFCC method shows that an improvement of 20.4% has 
been achieved. Another important fact becomes apparent when the 
rate of change in the accuracy for different capacities are studied. 
In this fashion, for the proposed method as the capacity reduces 
from 25%BPB to 1.563%BPB, accuracy of the system only drops by 
2.3%. On the other hand this number rises to 20% for D2-MFCC 
method.

To compare performance of the proposed method and previous 
works, average value of performance criteria over different embed-
ding algorithms are calculated. These results with other important 
factors such as number of features (N F ) and number of cover files 
in the database (NC ) are presented in the Table 3.

Comparing results of Table 3 shows that using R-Mel instead of 
Mel scale improves performance of steganalysis considerably. Other 
points become apparent when results of D2-R-MFCC are compared 
with those of R-MFCC + GA and D2-R-MFCC + GA. Specifically 
taking second order derivative of audio signals improves sensi-
tivity and specificity of the proposed method by 3.8% and 5.1%, 
respectively. Also, gains of 1.8% and 4.3% in the average values of 
sensitivity and specificity are achieved when higher order statistics 
and GA are incorporated into the proposed method.

Universal steganalysis scenario:
In this section, we assumed that Aem was not known. To sim-

ulate this scenario, all stego files were placed in a folder and then 
4169 of them were selected randomly. In this fashion, stego files 
were uniformly selected across all data hiding algorithms. To the 
best of our knowledge, only in [29] result of universal scenario was 
reported. Therefore, we have also investigated efficacy of universal 
steganalysis on some of previous works. Table 4 compares results 
of the proposed universal system with some of previous ones.

Comparing results of D2-MFCC and D2-R-MFCC+GA shows that, 
the proposed method improves sensitivity and specificity of the 
universal scenario by 20.8% and 9.3%, respectively. Comparing sen-
sitivity and specificity of the AQM method in the universal and 
targeted scenarios shows that they drop moderately and consid-
erably in the universal case, respectively. On the other hand for 
the proposed method another trend is observed. That is, sensitiv-
ity and specificity of the proposed method in the universal sce-
nario decrease and remain unchanged, respectively. These different 
behaviors stem directly from differences in the statistical charac-
teristics of AQM and D2-R-MFCC features which in turn would 
be reflected in the support vectors of each case. That is, support 
vectors selected for AQM in the universal case are such that they 
favor more toward designating a signal as stego (therefore, higher 
value of sensitivity). On the other hand, support vectors selected 
for D2-R-MFCC are such that they favor more toward designating a 
signal as cover (therefore, higher value of specificity).

Table 4
Results of universal steganalysis N F : Number of features NC : No. of covers in the 
database.

Method N F NC Mean Se. Mean Sp. Ref.

AQM 19 664 81.8 79.7 [29]
MFCC 29 4169 54.4 86.3 *[24]
D2-MFCC 29 4169 73.6 89.8 *[26]
R-MFCC + GA 21 4169 83.9 96.0 *

D2-R-MFCC + GA 21 4169 94.4 99.1 *

* These results have been achieved in our simulations.

Receiver Operating Characteristic (ROC):
ROC is a graphical plot that illustrates performance of the clas-

sifier, as the decision boundary is varied. An ROC plot depicts rel-
ative tradeoffs between the benefits (true positives) and the costs 
(false positives) [10]. So, ROC can provide a good tool for assess-
ing classification task and selecting between different classifiers. 
Fig. 5 presents ROC plots of both targeted (for steghide@1.563 BPB) 
and universal scenarios. According to ROC of different feature sets 
we can infer that the proposed method is far better than its com-
petitors. This is evident from larger value of area under the curve 
(AUC) for D2-R-MFCC feature set.

5. Discussion

Audio media due to its remarkable redundancy and popular-
ity can provide a suitable means to hide data. Therefore, a vast 
variety of schemes have been proposed to embed secret data in 
audio files. These methods have mainly attempted to suggest al-
gorithms which benefits from the areas of audio file in time or 
frequency domain where the resulted changes from embedding 
were not detectable by HAS. Therefore, in order to detect the effect 
of steganography, it is better to employ a model that has maximum 
deviation from HAS. Furthermore, examining the power spectrum 
of steganography noise N(e jw) and power spectrum of cover signal 
C(e jw) revealed interesting facts. Steganography noise constitutes 
a broad-band signal with powerful high frequency components. On 
the other hand, cover signal is a band limited signal. That is, its 
power spectrum decreases with increasing of the frequency. There-
fore, it is expected that the high frequency region of signals leads 
to more discriminating features. Result of Fig. 2 justifies this no-
tion. On the other hand, frequency response of human ear (Mel 
filter bank of Fig. 1) shows that HAS has low frequency resolution 
at high frequencies; consequently some information will be lost. In 
contrast, frequency response of our proposed model matches with 
our goals (high resolution at high frequencies). According to Fig. 4, 
it is obvious that this matching has resulted in very good discrim-
inating features. According to this figure, distributions of the pro-
posed features are more separated than those based on Mel scale.

Comparing results of Steghide@3.125 and Hide4pgp@6.25 in the 
Table 2 leads to an interesting conclusion. While their accuracy of 
detection is the same, Steghide provide half capacity of Hide4pgp.

According to Tables 3 and 4, the proposed system has good per-
formance in both targeted and universal scenarios. Also, results of 
universal systems are lower than targeted paradigm.

6. Conclusion

This paper proposed the idea of maximum deviation from hu-
man auditory system for steganalysis. Based on this idea, frequency 
characteristic of our proposed artificial auditory system was ex-
plained. Specifically, this artificial ear had high resolution and sen-
sitivity in high frequencies and lower resolution and sensitivity in 
low frequencies. Simulation results showed that such artificial ear 
has potency of distinguishing between stego and cover signals ef-
fectively. Proposed method in the targeted scenario achieved accu-
racy of 97.6% (StegHide@1.563% BPB) and 98.8% (Hide4Pgp@6.25% 
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Fig. 5. ROC plots of different steganalysis system: (A) Targeted Scenario (steghide@1.563 BPB) and (B) Universal Scenario.

BPB) which were 20.4% and 14.1% higher than previous MFCC 
based methods. In the universal test, proposed method achieved 
sensitivity and specificity of 94.4% and 99.1% which were 20.8% 
and 9.3% higher than previously reported results.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.dsp.2015.12.015.
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