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In this paper, we report the results of our investigation of an evolutionary approach for solving the
unequal area multi-objective facility layout problem (FLP) using the variable neighborhood search
(VNS) with an adaptive scheme that presents the final layouts as a set of Pareto-optimal solutions. The
unequal area FLP comprises a class of extremely difficult and widely applicable optimization problems
arising in diverse areas and meeting the requirements for real-world applications. The VNS is an
explorative local search method whose basic idea is systematic change of neighborhood within a local
search. Traditionally, local search is applied to the solutions of each generation of an evolutionary
algorithm, and has often been criticized for wasting computation time. To address these issues, the
proposed approach is composed of the VNS with a modified 1-opt local search, an extended adaptive
local search scheme for optimizing multiple objectives, and the multi-objective genetic algorithm (GA).
Unlike conventional local search, the proposed adaptive local search scheme automatically determines
whether the VNS is used in a GA loop or not. We investigate the performance of the proposed approach
in comparison to multi-objective GA-based approaches without local search and augmented with
traditional local search. The computational results indicate that the proposed approach with adaptive
VNS is more efficient in most of the performance measures and can find near-optimal layouts by

optimizing multiple criteria simultaneously.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The facility layout problem (FLP) is the determination of the
most efficient physical arrangement of a number of interacting
facilities on the factory floor of a manufacturing system in order
to meet one or more objectives. Facilities usually represent the
largest and most expensive assets of the organization and are of
crucial importance to the organization [1]. A facility is an entity
that assists in one dedicated task and can include a department, a
machine tool, a work center, a manufacturing cell, a machine
shop, or a warehouse [2]. The FLP is a classic computer science
problem and has been shown to be NP-hard [3]. Layout planning
in a manufacturing company is also an important economical
consideration. An effective layout will help any company improve
its business performance and can reduce up to 50% of total operating
expenses [4]; conversely, an ineffective layout can add as much as
36% to material handling costs [5]. The estimate is that an amount
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that exceeds 250 billion is spent annually in the United States alone
on planning and revising facility layouts [6].

A lot of optimal and heuristic algorithms for solving FLPs have
been developed in the past few decades [7-9]. The majority of
these approaches adopt a problem formulation known as the
quadratic assignment problem (QAP) that is particularly suitable
for equal area facilities. The main drawback of these approaches is
that geometric constraints, e.g. unequal sizes of facilities, are not
taken into account. These approaches tend to focus on the relative
location of equal area facilities on a floor plan. If all the facilities are
of equal area, or can be physically interchanged without altering the
overall adjacency or distance relationship among the remaining
facilities, it is easy to specify in advance a finite number of potential
sites for these facilities to occupy [10]. However, in most real-world
applications, equal area facility is a very poor assumption [11,12].

When layouts have varying area facilities, it can no longer be
treated as the problem of assigning n facilities to n distinct centroid
locations. Instead, the locations of the centroids will depend on
the exact configuration selected, making the QAP formulations of
unequal area FLPs less tractable than their equal area counterparts.
To handle unequal area FLPs, early heuristic algorithms are based on
discrete models which divide the floor plan into a grid of equal-sized
squares. Then, each facility is assigned to the number of squares
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which most closely matches its total area. While conceptually
simple, this approach mostly generates odd-shaped facilities [12].
Some procedures, nonetheless, place restrictions on the shapes of
the composite facilities to make the problem more tractable and
implementable. The unequal area FLP addresses these situations
effectively by finding the optimal arrangement of a given number of
non-overlapping indivisible facilities with unequal area require-
ments on a factory floor. This in turn makes the FLP with unequal
areas a fundamental optimization problem encountered in many
manufacturing and service organizations.

Most of the studies conducted in FLPs have focused on a
single objective, either quantitative (distance-based) or qualitative
(adjacency-based) goodness of the layout. In contrast, practical FLPs
involve several conflicting objectives. Therefore, both quantitative
and qualitative objectives must be considered simultaneously before
arriving at any conclusion. A layout that is optimal with respect to a
given criterion might be a poor candidate when another criterion is
paramount. In general, minimization of the total material handling
(MH) cost is often used as the optimization criterion in FLPs. The
closeness rating, hazardous movement, safety, and the like are also
important criteria in FLPs. In fact, these qualitative factors have
significant influence on the final layout and should give considera-
tion. In addition, when only a quantitative objective is used, the
criteria are often tempered with judgment to include “inside knowl-
edge” [13]. Consequently, the FLP falls into the category of multi-
objective optimization problem (MOOP).

Multi-objective optimization is a technique to treat several
objectives simultaneously without converting them into one. The
objective of MOOPs is to find a set of Pareto-optimal solutions
[14], which are the superior solutions when considering all the
objectives. In MOOPs, the absolute optimal solution is absent and
the designer must select a solution that offers the most profitable
trade-off between the objectives as an alternative. Thus, instead
of offering a single solution, it is more realistic and appropriate to
generate a number of “good” layouts that meet several criteria
laid down by the facility designer and let decision makers choose
between them based on the current requirement. Surprisingly,
there is a little attention paid to the study of multi-objective FLPs,
much less in the case of unequal area FLPs.

Recently, meta-heuristic approaches have been also developed
and widely applied to solve large FLPs [8,9]. Among those
approaches, the genetic algorithm (GA) has been theoretically
and empirically proved to provide a robust search in complex
search spaces [9]. Despite of the successful application of GAs to
numerous optimization problems including FLPs, it has a major
limitation in applying to such problems. GAs can do global search
in the entire search space, but there is no way for exploring the
search space within the convergence area generated by the GA
loop. In certain cases, it performs too slowly to be practical. A very
successful way to improve the performance of GAs is to hybridize
it with local search. Local search techniques are used to refine the
solutions explored by the GA by searching its vicinity for the
fittest individuals and replacing it if a better one is found.

The variable neighborhood search (VNS) is a relatively recent
meta-heuristic which is based on systematic change of neighbor-
hood within a possibly local search [15,16]. Contrary to other meta-
heuristics based on local search methods which use single neighbor-
hood search method only; the VNS explores increasingly distant
neighborhoods of the current incumbent solution, and jumps from
this solution to a new one if and only if there is an improvement. In
this way, it keeps favorable characteristics of the incumbent solution
and obtains promising neighboring solutions. By allowing the use of
different neighborhood search methods, the VNS can easily escape
from local optima and move towards global optimum.

Unfortunately, there has been a little study on the local search
technique in multi-objective optimization to date. Then again,

hybridization with local search may degrade the global search
ability of multi-objective GAs and require more computational
time than conventional GAs [17]. This is because, applying local
search to all individuals in a population is a computationally
intensive procedure. Therefore, most of the computation time is
spent in local search. To overcome this weakness, an adaptive
local search scheme can be used to automatically control whether
the local search is used in a GA loop or not.

Although the advantages and good performance of GAs in FLPs
have been demonstrated in the literature, yet there is no formal
approach to solve the unequal area FLP considering multiple objec-
tives separately using local search. It is also noticeable that all
the existing methods use either single objective or a weighted-sum
method to solve unequal area FLPs. As a result, Pareto-optimality was
never utilized for solving unequal area FLPs. In our previous paper
[11], we proposed a multi-objective GA for unequal area FLPs using
Pareto-optimality [11], but without any local search. In this work, we
propose a multi-objective GA for solving the unequal area FLP using
an adaptive local search scheme to investigate its performances in
solving such problems with multiple objectives. The proposed
approach presents the layouts as a set of Pareto-optimal solutions.
The proposed adaptive local search scheme is based on a modified
VNS and the similarity coefficient measure (SCM) to remove the
traditional global search problem exhibited by GAs. In addition,
we extend the 1-opt local search [18] that is integrated within
the VNS framework by incorporating domination strategy for
handling unequal area multi-objective FLPs. We use the non-domi-
nated sorting genetic algorithm 2 (NSGA 2) [19] as the multi-
objective evolutionary algorithm (MOEA).

The paper is organized in the following way. Section 2 presents
the related works. Section 3 mentions the importance of Pareto-
optimality in solving FLPs. Section 4 justifies the application of the
adaptive local search scheme and also describes its implementa-
tion. Section 5 outlines the implementation of the proposed
unequal area multi-objective FLP approach. This section also
includes the layout construction process and the implementation
of the adaptive local search using the VNS. Section 6 analyzes the
results obtained, followed by the conclusion in Section 7.

2. Related works

Several FLP approaches are available in the literature, which
could be mainly classified into (i) exact approaches and (ii)
heuristic and meta-heuristic approaches. The biggest limitation
of exact approaches is that they cannot optimally solve large FLPs
due to the computational intractability of the problem. Optimal
algorithms have been successfully applied to small FLPs, but they
require high computational efforts and extensive memory cap-
abilities. A recent survey shows that the results achieved by the
best existing exact algorithms (Branch and Bound) are modest. It
is not suitable for solving FLPs of size larger than 20 facilities in
reasonable time [20]. Thus, researchers have relied on heuristic
methods for searching through the huge search space which is
representative of practical FLPs.

Armour and Buffa [21] presented the first formulation for the
unequal area FLP with pair-wise exchange method. Since then, quite a
few authors have attempted to address unequal area FLPs. The recent
reviews of unequal area FLPs are given in [1,7]. Konak et al. [22]
developed a mixed integer programming (MIP) formulation to solve
unequal area FLPs based on the flexible bay structure (FBS), which can
find optimal solutions for problems with up to 14-facilities only. In
terms of meta-heuristics, Castillo et al [23] applied a mixed-integer
nonlinear programming for solving this problem. Hu and Wang [24]
applied GA to unequal area FLPs for achieving the minimal layout
cost. Tate and Smith [10] presented a GA-based model for FLPs with
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unequal areas and different geometric shape constraints. Unfortu-
nately, all of these approaches are for optimizing a single objective. In
[1], a hybridized meta-heuristic for solving the unequal area FLP is
presented. However, it is mainly based on discrete representation.
Recently, a GA- and MIP-based approach [25], a tabu search (TS)-
based approach with slicing tree representation [26], an ant system
(AS)-based method [27], and an ant colony optimization (ACO)
combined with FBS-based approach [28] have been proposed to solve
unequal area FLPs. Similar to the GA-based approaches, all of these
approaches focus on single objective. A multi-objective approach for
solving the unequal area FLP has been proposed in [29]. However, it
used the weighted-sum method to handle multiple objectives.

3. Importance of Pareto-optimality in the FLP

The typical approaches to FLPs have been implemented to
optimize only one objective: either quantitative or qualitative
objective. Quantitative objective aims at minimizing the sum of
the product of material flow, distance, and transportation cost per
unit per distance unit for each pair of facilities. It is popularly
known as the material handling (MH) cost. Qualitative objective
aims to place facilities that utilize common materials, personnel,
or utilities adjacent to one another, while separating facilities for
the reasons of safety, noise, or cleanliness. Qualitative objective uses a
relationship chart to maximize the overall adjacency measure for a
given layout. This chart specifies the closeness rating (CR) for each
facility pair.

Many researchers have questioned the appropriateness of select-
ing a single criterion to solve FLPs because qualitative and quantita-
tive approaches each have advantages and disadvantages [30]. The
major limitations on quantitative approaches are that they consider
only relationships that can be quantified and do not consider any
qualitative factors. On the other hand, qualitative approaches suffer
from the shortcoming of strong assumption made on all qualitative
factors that these factors can be aggregated into one criterion.
Moreover, in MOOPs, obtaining an “absolute optimum” solution that
satisfies all objectives is almost impossible. It is due to the conflicting
nature of objectives, where improving one objective may only be
achieved when worsening another objective. In such case, it is
desirable to generate a set of approximately efficient solutions—the
Pareto-optimal solutions. These solutions are optimal in the wider
sense that no other solutions in the search space are superior
considering all the objectives. Therefore, the decision maker can pick
up the best solution among all of the generated solutions for specific
order or customer demands.

Although researchers have been proposing approaches for solving
the multi-objective FLP over the last few years [7, 9], these
approaches, in most cases, lead to the optimization of a weighted-
sum of a function. In this method, multiple objectives are added up
into a single, scalar objective using weighted coefficients. The
impractical weighted-sum approach involves the difficulty of normal-
izing these objectives and of quantifying the weights in advance. In
addition, other disadvantages of this technique include issues with
predetermining the relative weights of objectives, obtaining inferior
non-dominated solutions, user involvement in specifying the weight
values, and obtaining a single solution at one time. Interested readers
can find the details in [30, 31]. To overcome these weaknesses,
Pareto-optimality has become an efficient alternative.

4. Rationale for the adaptive local search
Although GAs can find promising regions quickly while solving

combinatorial optimization problems, it can suffer from excessively
slow and premature convergence before providing an accurate

solution. Also, GAs have inherent difficulties in converging to the
global optimum with an adequate precision in complex and large
search space that is very usual in real-world FLPs. This is because of
GA’s fundamental characteristics—not using a priori knowledge
and inability to explore the search space within the convergence
area generated by the GA loop. In contrast, local search heuristic can
iteratively examine a set of points in the neighborhood of the
current solution and replaces it if a better neighbor exists. There-
fore, the synergy between both methods can give rise to a family of
hybrid algorithms, simultaneously global and precise. The GA
globally explores the domain and finds a good set of initial
estimates, while the local search further refines these solutions in
order to locate the nearest, best solution.

Hybridization with local search, however, often degrades the
global search ability of the GA. This is because, local search is
usually applied to the solutions of each generation of the GA. As a
result, the local search technique has to examine a large number
of solutions for finding a locally optimum solution from each
initial solution generated by genetic operations. It is nothing but
mere waste of CPU time. Also, most of the local search techniques
used in hybridized GAs are designed without any analysis of their
convergence characteristics [32]. For decreasing the computation
time spent by local search and improving these weaknesses in the
application of local search, we implemented an adaptive local
search technique augmented with the VNS that will only search
around the convergence area produced by the GA loop instead of
applying to all individuals.

The basic idea behind the proposed adaptive local search
scheme is to consider whether the GA is converging to global
optimal solution or not. When the GA is converging to a global
optimum, the solutions are continuously improved. In this situa-
tion, the application of local search is needless in order to save the
unnecessary use of computation time. On the contrary, the
performance of a GA definitely deteriorates if it is not converging
to global optimal solution. At the worst, if this situation con-
tinuously proceeds, it will get stuck into a local optima resulting
in a premature convergence. A local search technique within the
GA loop helps improving this situation, since it can generate new
individuals having certain high fitness values like the superior
individuals generated by the GA.

5. Implementation
5.1. Chromosome representation

The proposed approach uses the slicing tree structure [27] for
representing chromosomes suitable for unequal area FLPs. slicing
tree is a binary tree which is used to represent a slicing structure. For
a FLP with n acilities, the slicing tree consists of n leaves and n —1
internal nodes, where each leaf represents a facility, and each
internal node contains information about the direction of cut
(horizontal or vertical).

In this work, the chromosomes are divided into three parts and
are encoded as (fifyfs,....fn) (551552583, ...,55,_1) (501503503, ...,
so,_1), respectively, where f, ss, so, and n represent facility sequence,
slicing sequence, slicing orientation, and the number of facilities,
respectively. The first two parts of the chromosome are represented
by integers, whereas the last part is represented by either 1 or 0. The
facility sequence will be transformed into a slicing tree form. The
slicing sequence is the ordering that slices the facility sequence. A
slicing orientation O represents a horizontal cut and 1 represents a
vertical cut. A chromosome for a 7-facility problem is shown in
Fig. 1. Every slicing structure can be represented by a slicing tree and
vice versa, but there can be multiple slicing trees corresponding to
the same slicing structure. In general, the slicing tree representation
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recursively divides the total floor area either in horizontal or vertical
direction completely from one side to the other in proportion to the
areas of the facilities. Fig. 2 presents the corresponding solution
representation, the slicing tree transformation, and the layout for
the chromosome presented in Fig. 1.

5.2. Objective function

In this work, we follow the assumptions described in [27]:
facilities must be located within a given area; facilities must not
overlap with each other; the layout must fulfill the maximum
aspect ratio constraints (or minimum value restrictions) for the
dimension of facilities. Aspect ratio constraints are frequently
used in FLPs to restrict the occurrence of overly long and narrow
facilities in the layout, and are measured as the ratio between the
height and width of a facility.

We use the total MH cost as the first objective which is based on
quantitative model. The second objective, the CR score, is based on
qualitative model. The first objective is subject to minimization,
while the later one is subject to maximization. These objectives can
be expressed by the following mathematical models:

=35 Cifydy %))

i=1j=1

%faclhtysequenc licing sequenc ‘ licing orlentatlon—b{

\2\6\3\4\5\0\1\4\3\2\1\0\5\0\0\1\1\1\0\

Fig. 1. Chromosome representation for a 7-facility problem.
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rij= a common boundary 3)
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where fj, G is the material flow, and the transportation cost between
facilities i and j, d;; is the Euclidean distance between the centers of
facilities i and j. We use the following CR values: absolutely
necessary =6, essentially important=5, important=4, ordinary=3,
un-important=2, and undesirable=1.

5.3. Layout construction

In this approach, we assume that the total facility area cannot
be larger than the sum of width and height of all facilities. This is
obvious because in the worst case scenarios, all the facilities
might be placed horizontally or vertically. In such cases, the final
width and height of the layout will be equal to the sum of widths
or the sum of heights of all facilities. In other cases, the final width
and height of the layout will be less than the sum of widths and
heights of all facilities.

At the beginning when no facilities are assigned to any specific
location, the upper left co-ordinate (x1, y1) of all facilities are (0,0)
and the lower right co-ordinate (x2, y2) will be (> widths of all
facilities, >~ heights of all facilities). It indicates that initially there is

Fig. 2. Transformation of chromosome into slicing tree and the corresponding layout. (a) Solution representation, (b) slicing tree and (c) solution layout.
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Set 2
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J
(3 Set1W,y Set1H) YI+ZSet2H)

y1+ 3 Set1H)

Fig. 3. Placement of facilities (first step). (a) Initial layout area. (b) Vertical cut (orientation type=1). (c) Horizontal cut (orientation type=0).
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one complete layout area which holds all facilities. Still the
specific positions of the facilities within that area is unknown.
At this point, we start assigning specific positions to each facility
according to the slicing sequence and orientation. The slicing
sequences are processed one at a time. Each slice breaks the
layout area into two pieces. The co-ordinates of the facilities (or
facility) for the two newly created smaller areas are calculated
according to the orientation of the slice. (Fig. 3(b)) describes the
first step of facility placement.

If the first slice has a vertical cut, all facilities on the left side of
the cut (in the original chromosome) will be in Set 1 and those
that are on the right side will be in Set 2 (Fig. 3(b)). The (x1,y1) of
Set 1 will remain as (0,0). However, the (x2,y2) will be recalcu-
lated as (> widths of all facilities in Set 1, > heights of all
facilities in Set 1). Since Set 2 does not start from the point (0,0)
after slicing, the (x1,y1) and (x2,y2) of Set 2 will be recalculated as
follows:

(x1,y1) of Set 2 = (Z widths of all facilities in Set 1,0)

(x2,y2) of Set 2 = (x1+ Ewidths of all facilities in Set 2,y1
+ ) _ heights of all facilities in Set 2)

These calculations can be easily derived from Fig. 3(b). On
the other hand, if the first slice has a horizontal cut; all facilities
on the left side of the cut (in the original chromosome) will be in
the lower portion of the cut which is Set 1. And, the facilities
which are on the right side will be in higher portion of the cut
which is Set 2. Similar to Fig. 3(b), the (x1,y1) and (x2,y2) for the
newly created set of facilities have to be recalculated. This is
depicted in Fig. 3(c). This recalculation procedure is performed
recursively for every newly created set of facilities until all the
facilities have been placed and all the sets contain only one
facility.

Fig. 4 gives a pictorial description of the facility placement
procedure for the 7-facilty problem shown in Fig. 2. In this figure,
the height and width ratios of the facilities do not follow the actual
scale measure. The (area, maximum aspect ratio) pairs for the
problem are {(16, 4), (16, 4), (16, 4), (36, 4), (9, 4), (9, 4), (9, 4)}.
After a certain point, this figure does not include (x1, y1),(x2, y2)
for clarity and better understanding. The pseudo-code for the
procedure is given in Fig. 5.

(0,0) (0,0

(13.5, 54)

<;:|
2 3

5.4. Variable neighborhood search (VNS)

The VNS is closely related to iterated local search (ILS).
However, instead of iterating over one constant type of neighbor-
hood structure as done in ILS, the VNS switches neighborhoods of
growing size to identify better local optima with shaking strate-
gies [33]. The steps of basic VNS are presented in Algorithm 1,
where N, represents the kth neighborhood structure (k=1,
...,kmax), S represents the set of all feasible solutions, and N(s)
represnts the set of all solutions in the kth neighborhood of the
solution s.

void recursive_positioning (int start, int end, int slice_position)
1: if slice_position is within start and end && there are more than one element
in the set then
2:  create two sets: Set 1 from start to slice_position and Set 2 from slice posi-
tion to end
3:  calculate wl «  Set 1 widths, w2 «  Set 2 widths, 1l « } Set 1
heights, 42 « Y’ Set 2 heights

4 if orientation == horizontal then
5 for Set 2 do

6: Set2.y2 « Set2.yl + h2
7 Set2.x2 « Set2.xl +w2
8 end for

9: for Set 1 do

10: Set 1.yl « Setl.yl +h2
11: Set1.y2 « Setl.yl +hl
12: Set1.x2« Setl.xl+wl
13: end for

14:  else

15: for Set 1 do

16: Set1.y2 « Setl.yl +hl
17: Set1.x2« Setl.xl+wl
18: end for

19: for Set 2 do

20: Set2.xl « Set2.x1+wl
21: Set2.y2 « Set2.yl +h2
22: Set2.x2 « Set2.xl +w2
23: end for

24:  endif

25:  find the next slice_position

26:  recursive_positioning (start, slice_position , next_slice_position)
27:  recursive_positioning (slice_position, end, next_slice_position)
28: end if

Fig. 5. Pseudo-code for the facility placement procedure.

(8, 54)

!
(= =

Fig. 4. Facility placement procedure.
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Algorithm 1. Basic VNS Algorithm.

Initialization:
Define neighborhood structures Ny, k=1, ..., Kimax;
Find an initial solution s e S;
Choose an end condition;
while end condition is not met do
Set k=1;
while k < ko do
Shaking:
Generate a point s’ € Ni(s) at random;
Local search:
Obtain the local optimum s” by applying some local
search to s;
Move or not:
if s” is better than s then
s=5";
k=1;
else
k=k+1;
end if
end while
end while

As stated earlier, changing of neighborhood within a possibly
local search is the basic principle in the VNS. So how to define
the effective neighborhood around an initial solution is crucial in
the VNS. Many researchers have concluded that the insertion
neighborhood is superior to the swap or exchange neighborhood
in the case of permutation representation [34], which we use in
this work.

In this approach, two different types of insertion neighborhood
structure each comprising of two different orders are adopted.
These two types are divided based on the number of chromosome
segment taking part in constructing the neighborhood. For sim-
plicity, we consider only the first two segments (facility sequence
and slicing sequence) for this process. First, we randomly
decide the number of segments. If it is one, we choose the
segment at random. One gene from this segment is randomly
removed from its position and inserted elsewhere within the
same segment. All genes within these positions are moved one
position forward or backward. We perform the same process for
both of the segments, if both segments are selected for the
process. For the other two neighborhoods, we repeat the same
process (single segment or double segments) but changing the
number of genes. Instead of one gene, two genes are removed
from their positions and inserted elsewhere within the same
segment. Therefore, the VNS interactively explores neighborhood
of growing size.

In the local search step of the VNS (Algorithm 1), we use the
modified 1-Opt local search method proposed in Section 5.4.1.
Since, we are dealing with multiple objectives, we have to modify
the next step (Move or not) of the VNS algorithm. Here “better”
means non-dominated. A neighbor is made the current solution if
and only if it dominates the current one.

5.4.1. Modified 1-Opt Local Search

In order to apply local search, we have to specify an objective
function to be optimized by the search. This specification is straight-
forward for a single objective optimization problem because the
single objective function can be used for both genetic and local
search. As mentioned earlier, there are much fewer studies of
hybridization for multi-objective optimization. A weighed-sum of
multiple objectives is often used for local search in hybrid multi-
objective GA [17], which is not realistic.

Algorithm 2. Modified 1-Opt Local Search for Unequal Area
MOFLP.

set fit] = MH cost of the current chromosome;

set fit) = CR score of the current chromosome;
for i=1to 2n—1 do
repeat

select another gene j randomly such that
(i) i+#j; AND
(ii) i, j will be from the same portion (facility sequence
or slicing sequence);
construct a new layout by swapping i and j;

find fitf = MH cost of the new layout;

find fit% = CR score of the new layout;
if the current layout is dominated by the new layout
then
replace the current one with the new layout;
else
continue with the current one;
end if
until any improvement in the current layout
end for

In this work, we extend the 1-opt local search [18] for the
unequal area multi-objective FLP by incorporating domination
strategy [19]. The general outline of this algorithm is given in
Algorithm 2. This implementation of local search is to replace the
current solution with its neighbor that dominates the current
solution. The incorporation of domination strategy is necessary
because we are dealing with multiple objectives and all the
previous applications of 1-opt local search were proposed for
single objective only. By employing this strategy, we can find out
which of the neighbors of the current solution dominates the
current one (if any exists). Also, to save computation time and
effort, this algorithm stops searching the neighborhood as soon as
it finds a solution which dominates the current one.

5.5. Implementation of adaptive local search

The proposed adaptive local search scheme is based on the
VNS and the SCM to consider the similarity of individuals of a GA
population. The basic idea of the SCM was originally developed
for grouping machines and parts in production environment [35].
When the GA is continuously converging, the similarity among
the individuals of a GA population becomes higher. Therefore, the
fitness values of the individuals are significantly similar to each
other and the variety of the population is reduced. This definitely
deteriorates the performance of the GA [32]. Inserting new
individuals into the current population can improve these situa-
tions. These new individuals should not have too close similarity
with the current population and also preferably get high fitness
values compared to the rest of the population.

In this work, we modified the basic idea of SCM for the unequal
area multi-objective FLP environment. We can calculate the similar-
ity coefficient SC,q between two chromosomes p and q as follows:

M )

SCpg =
where f,x and fg are the facilities at location k in chromosomes p and
q, k is the index of location in the layout (only within the facility
sequence portion of the chromosome), and n is the number of
facilities.The genes of the first and the second portion of chromo-
some contain any values within the range of 1 ton, and 1 ton —1,
respectively. Whereas, the third portion contains only 1 or 0. So, to
compare the similarity between two chromosomes, &(f . fq), we
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only consider the first two portions. This can be expressed as follows:

1 if (fpk = :qu) AND (sspk == Squ)
0 otherwise

5(fpkquk) = { (5)
where sspc and ssq are the slicing sequences at location k in
chromosomes p and ¢, and k is the index of slicing sequence portion
of the chromosome in the layout (in this portion, the maximum
value of k will be n—1). The average similarity coefficient (SC) for all
individuals of the population (N) can be expressed as follows:

ST g:] Z'qupﬂ SCpq
- N

Assuming a pre-defined threshold value (f3), the local search
method in form of the VNS will be automatically invoked in a GA
loop by the following condition:

{ apply VNS to GA loop if SC >

(6)

apply GA alone otherwise )

5.6. Crossover

We applied 3-point crossover operation depicted in Fig. 6. For
keeping the chromosomes valid after the exchange of genes, we
choose the 3 points separately from each segment of a chromosome.
However, for the first two segments, some repair operations are
required after the exchange to remove any duplication or absence of
genes. For the repair operations, first we find and list the duplicate
facilities in the first segment according to the occurrence in the
chromosome. Then, we check whether any facility is missing in the
segment starting from the first to the last facility (from 1 to n). After
that we replace the list of the duplicate facilities with facilities that
are missing. The same procedure is repeated for the genes of the
second segment, except that here the range is from 1 to n—1.

5.7. Mutation

We use swap mutation with the restriction that both genes will
be chosen from the same segment. As a result, no repair is necessary.
Unlike the crossover, the genes will be chosen from only one segment
of the chromosome and this choice will be random for every
chromosome of the population pool. Fig. 7 gives an example for the
mutation.

a

P1[2]6[3]4[5]0]1]4]3]2]1]0][5[0]o]1]1]1]0]
P2[1]3]5]4]2[6]0]1]5]3]0]2]4]1]0]1]0[1]1]

b
c1[2]6][3]4]2][6]0]4][3][2]1]2][4][o]o]1]0]1]1]
c2(1]3]5]4]5[o]1]1][5][3]0]0]5[1]o]1]1]1]0]

C
c1[2]6]3]4]1]5]0[4]3][2]1]o]5]0]o]1]o]1]1]
c2(1]3]5]4]6]0]2]1][5][3]0]2][4[1]o]1]1]1]0]

Fig. 6. Crossover operation. (a) Parent chromosomes before crossover. (b) Child
chromosomes after crossover without repair. (c) Child chromosome after repair.

a L
2l613]a[5[0[1[4[3[2[1[0]5[0[0[1]1]1[0]

b
[2]6]3]4]5]0]1][4[0[2][1[3]5]0[0[1]1]1]0]

Fig. 7. Mutation. (a) Before. (b) After.

6. Computational result and analysis
6.1. Test setup

To evaluate the efficiency of the proposed approach, the
results are compared to the unequal area multi-objective FLP
approach without any local search [11]. To our knowledge, it is
the only available published results for the unequal area multi-
objective FLP using Pareto-optimality. We also implement an
approach for solving the unequal area multi-objective FLP with
traditional local search, and compare with our proposed adaptive
VNS-based local search approach. This will give an idea about the
performance of the proposed adaptive VNS scheme in comparison
to the traditional local search.

The experiments are conducted using various benchmark
instances taken from published literature. The test problems are
composed of 7, 8, 9, 10, 12, 14, 20, 30, 35, and 62 facilities. The
details of the problem data can be found in [27]. It is worthwhile
to mention that very few benchmark problems are available for
unequal area multi-objective FLPs, particularly in the case of CR
score. As a result, we have created CR scores for these data sets on
our own. We use the last digits to indicate the number of facilities
in each problem. We set the maximum aspect ratios as 4 for
Bal2, Ba14, SC30, and SC35 which are not fixed in the original
literature. To justify the proposed approach, we also compare
with some existing single objective (MH cost) heuristic
approaches for unequal area FLPs.

The experiments are conducted using 200 chromosomes and
100 generations for problems with up to 15 facilities; and 1000
chromosomes and 900 generations for problems with more than
15 facilities. However, for justifying the convergence behavior of
the proposed adaptive local search, later we run the three multi-
objective unequal area FLP approaches less than the mentioned
generations. The probabilities of crossover, mutation and pre-
defined coefficient () are 0.9, 0.3, and 0.9 (90%), respectively. We
use the traditional tournament selection with a tournament size
of 2. The stopping condition for the VNS is set to 5% of the number
of chromosomes. Each benchmark problem is tested for 30 times
with different seeds. Then each of the final generation is com-
bined and a non-dominated sorting is performed to constitute the
final non-dominated solutions.

6.2. Experimental analysis

Since almost all FLP approaches try to optimize single criteria
only (mainly minimizing the MH cost), first we compare the MH
costs obtained by our approach with the existing single objective
approaches. Then we show its performance as an unequal area
multi-objective FLP approach by optimizing both MH cost and CR
score. Note that, for both single and multiple objectives, we use the
same results from the same non-dominated solutions obtained by
the approaches.

In single-objective optimization, “quality” can be easily defined
by means of the objective function—the smaller (or larger) the
value, the better the solution. However, when dealing with MOOPs,
there are several reasons why a qualitative assessment of results
becomes difficult [36, 37]. The initial problem is that MOOPs do not
try to find one optimal solution but all the trade-off solutions. There
are two distinct goals in MOOPs: (i) convergence to the true Pareto-
optimal front, and (ii) diversity of the Pareto-optimal solutions. Also,
due to the stochastic nature of EAs, multiple runs on the same
problem are necessary to get a good estimation of performance [38].
Accordingly, it is not clear what “quality” means with respect to
Pareto front in MOOPs. Thus, the quality of multi-objective optimi-
zation is often difficult to define precisely by any single performance
metric and the results have to be validated using statistical analysis
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tools. Recently, a few studies have been carried out to clarify this
situation [36, 38, 39]. Generally, researchers utilize various methods
that assign a vector of real numbers to each Pareto front that reflect
different aspects of quality. These elements of the vector are called
the unary quality indicators. A list of unary indicators that have been
introduced over the past few decades is available in [36].

To analyze the performance of the final layouts optimizing
multiple objectives, we use the following three metrics (unary
indicators) mentioned in [36]. We choose these matrices because
they do not require the prior knowledge of the true Pareto front
which is not available for the test problems.

1. Pareto Ratio (PR) [40]: It is related to the convergence mea-
surement of a Pareto front. It varies from O to 1 and the ideal
value of a population is 1.

2. Space (S) [41]: The metric S is used to measure the diversity of
the non-dominated solutions. As long as the spread is uniform
within the range of solutions obtained, this metric produces a
small value.

3. Overall Pareto Spread (OPS) [42]: This metric is also related to
the diversity. OPS quantifies how widely the non-dominated
solutions spreads over the objective space considering all the
objectives. When comparing two Pareto fronts, the one with
wider spread is desirable. In other words, if OPS(PF;)> OPS
(PF»), the PF; is preferred to PF,.

The values provided in Table 1 show the MH cost for the best
layouts obtained by our approach and some existing algorithms.
We compare our results with those obtained by ant system (AS)
[27], GA with flexible bay representation [10], GA with MIP [25],
TS with slicing tree representation [26], and our previous
approach without any local search [11]. This table is partially
cited from [11, 23]. The best results are bold-faced in the table. As
shown in the table, both the proposed approaches (with adaptive
VNS and with traditional local search) outperform AS and GA with
flexible bay for all the test problems. They perform better than TS
with slicing tree for all the problems except Bal4, where they find
the same MH cost. In comparison to GA with MIP, the proposed
adaptive VNS-based approach finds better results for all the
problems except SC35, and the result is the same in SC30.

It is interesting to observe that the performances are signifi-
cantly improved with the introduction of local search. In fact,
both the approaches with local search (adaptive and traditional)
find new best results for Bal2 and the same as the existing best
result for Bal4. Most importantly, the incorporation of adaptive
VNS scheme helps the algorithm to achieve the new best solu-
tions for VC10, Ab20, SC30, and Du62. It is also noticeable that the
approach with traditional local search minimizes its MH cost in
comparison to our previous approach without any local search.
All these justify the application of adaptive VNS scheme in solving
unequal area FLPs. Above all, the values in the table suggest that

Table 1
Comparison with existing algorithms for MH cost only.

our approach with adaptive VNS performs well in cases of both
small and large FLPs.

Table 2 compares the results of the proposed adaptive VNS-
based multi-objective FLP approach with conventional local search
and without local search [11] in the context of MH cost and CR
scores. The results shown in the table indicate that the adaptive
VNS-based approach clearly outperforms the others. Indeed, it
achieves better MH cost for all the problems except 07, 08, and
09 in comparison to the approach without local search. For these
problems, the total MH costs are the same. Then again, while
comparing to the approach with traditional local search, it finds
better MH costs for VC10, Ab20, SC30, SC35, and Du62. In the case
of CR scores, the adaptive scheme finds better results than the
approach without local search for all the problems except 07. For
this problem, the CR scores are the same. In comparison to the
traditional local search-based approach, our proposed adaptive
VNS scheme finds better results for 7 out of 10 problems. The
results are the same for the rest three problems. From the table, we
can find that the adaptive VNS-based approach is never out-
performed by any of the comparing approaches for any of the
two objectives. Furthermore, the average values for both objectives
considerably improve with the introduction of the adaptive scheme.

This can be further justified by Fig. 8, where the convergence
behavior of the proposed and previous methods over generations
for both objectives is depicted. From the figures, it can be found
that from first generations to last generations, the proposed
approaches are able to optimize both MH cost (minimize) and
CR score (maximize) successfully. However, the incorporation of
adaptive VNS reduces the gaps between the best and average values
more than that of the competing approaches for both the objectives.
The best and average values obtained by the approaches as men-
tioned in Table 2 also justify this.

In conjunction with the averages, box plot is an effective way to
describe the spread of data. Fig. 9 presents box plots for both
objectives to show the distribution tendency of the final Pareto-
optimal layouts. Along with the median, the mean is also presented
in the boxes as the small square with a cross. From the plots, it can
be easily summarized that the proposed VNS-based approach
successfully finds the optimal values for both the objectives. The
median values for MH cost (minimize) and CR score (maximize)
obtained by the approach with adaptive local search are better than
the two competitors. Also, the inter-quartile range (second-order
moments for the spread of data) of the adaptive scheme is larger
than those of the other two. Considering these all, the performance
of the adaptive VNS-based approach is consistent enough.

Table 3 highlights the values of PR, S, and OPS metrics for the
approaches. As discussed earlier, these metrics are used to illustrate
the convergence and diversity of Pareto-optimal layouts for handling
multiple objectives. The values of the metrics as shown in this table
indicate that the Pareto-optimal layouts obtained by the adaptive
VNS scheme have better convergence and diversity characteristics

Data sets  AS [27] GA with flexible bay [10]  GA with MIP [25] TS with slicing tree [26]  Without LS [11]  Traditional LS  Adaptive VNS
07 131.68 NA 131.63 132.00 98.69 98.69 98.69
08 243.12 NA 245.41 243.16 202.72 202.72 202.72
09 236.12 NA 246.26 239.07 201.75 201.75 201.75
vCc10 19967.60 23 671.00 19 997.00 19994.10 19 963.74 19907.75 19 901.32
Ba12 8252.67 8768.00 8702.00 8264.00 8103.85 7982.24 7982.24
Bal4 4724.68 5080.00 4852.00 4712.33 4790.83 4712.33 4712.33
Ab20 4972.56 NA 5668.00 5225.96 4015.25 3982.54 3978.24
SC30 3868.54 5743.00 3707.00 NA 3740.75 3716.44 3707.00
SC35 4132.37 NA 3604.00 NA 3835.78 3638.20 3636.75
Du62 3720521.13 NA NA NA 2977 512.96 2976 120.11 2975 604.25
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Comparison with exiting MOFLP approaches.

Data sets Comparing approaches MH cost CR score Optimal sol. after 60% generations Time (s)
Best Avg Best Avg
Adaptive VNS 98.69 102.36 54 33.125 83% 3.18
07 Traditional LS 98.69 102.36 54 33.125 43% 3.18
Without LS 98.69 111.009 54 30.825 16% 3.18
Adaptive VNS 202.72 270.125 70 42.328 76% 4.09
08 Traditional LS 202.72 279.69 68 38.00 21% 4.09
Without LS 202.72 292.602 64 32.267 7% 4.02
Adaptive VNS 201.75 294.36 96 68.16 82% 9.46
09 Traditional LS 201.75 304.12 94 56.52 18% 9.68
Without LS 201.75 444.672 88 39.897 15% 9.12
Adaptive VNS 19901.32 24783.75 150 81.016 72% 14.29
VvC10 Traditional LS 19907.75 25739.038 132 76.048 16% 14.92
Without LS 19 963.74 26 065.55 120 61.846 0% 11.72
Adaptive VNS 7982.24 8591.18 128 78.09 68% 27.42
Bal2 Traditional LS 7982.24 8652.94 128 77.62 11% 29.07
Without LS 8103.85 8711.847 110 71.25 0% 24.27
Adaptive VNS 4712.33 5397.04 198 105.96 70% 46.23
Ba14 Traditional LS 4712.33 5410.04 184 101.06 4% 51.91
Without LS 4790.83 5500.217 156 98.167 0% 32.18
Adaptive VNS 3978.24 5856.25 216 108.86 57% 367.2
Ab20 Traditional LS 3982.54 5892.946 210 104.84 0% 469.02
Without LS 4015.25 6131.369 201 99.329 0% 296.56
Adaptive VNS 3707.00 4146.27 380 264.62 58% 732.84
SC30 Traditional LS 3716.44 4186.04 370 249.834 0% 919.01
Without LS 3740.75 4444.037 349 241.872 0% 587.78
Adaptive VNS 3636.75 4190.25 340 237.65 52% 1086.72
SC35 Traditional LS 3638.20 4214.075 340 226.96 0% 1422.16
Without LS 3835.78 4305.899 337 216.043 0% 816.74
Adaptive VNS 2975 604.25 3218 854.65 306 201.125 56% 2847.35
Du62 Traditional LS 2976 120.11 3220214.64 284 168.17 0% 3448.29
Without LS 2977 512.96 3220771.01 248 155.25 0% 2258.67
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Fig. 9. Box plots for VC10. (a) MH cost. (b) CR score.
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than the approaches with traditional local search and without local
search. Interestingly, the approaches with adaptive VNS and tradi-
tional local search have almost the same PR and S values for small
FLPs. However, as the problem size increases, the approach with
adaptive scheme shows better behavior than the approach with
traditional local search. This also demonstrates the importance of
adaptive VNS in obtaining stable solutions.

Since we look for maximizing the total MH costs and minimizing
the CR scores, we set the “good point” as (lowest MH cost —10%,
highest CR scores+10%) and “bad point” as (highest MH cost+ 10%,
lowest CR scores —10%) for calculating OPS. If we observe the values
of OPS achieved by the three multi-objective approaches, we can find
that our proposed approach with adaptive VNS finds the larger OPS
value for most of the test problems. This justify that our proposed

Table 3

Performance metrics for the comparing approaches.

VNS-based approach is capable of finding non-dominated solutions
with wider spread. Thus, it can provide a wide range of alternative
layouts to choose.

To further demonstrate the convergence and diversity behavior
of the final Pareto-optimal layouts, non-dominated solutions of the
final generation produced by the approaches for 08 and VC10 are
shown in Fig. 10. In fact, many of the final solutions are Pareto-
optimal. In the figures, the occurrences of the same non-dominated
solutions are plotted only once. The value of PR metric for each
problem mentioned in Table 3 also indicate this phenomenon. From
these figures, it can be observed that the final solutions for all
approaches, particularly with adaptive VNS scheme, are well spread
and converged. It can be further justified by the values of S, PR,
and OPS as specified in Table 3. And for this reason, the proposed
approach is capable of finding extreme solutions. Thus, they provide
a wide range of alternative layout choices for the designers.

The required time for a complete evolutionary cycle mentioned
in Table 2 also shows that the proposed method with adaptive VNS
takes less time than the traditional local search-based approach, and
the difference is very significant. For obvious reason, the proposed
approach takes slightly more time than the approach without local
search. Despite that it is very important to note that the perfor-
mance of our proposed approach with adaptive VNS is much better
than the other two approaches. In fact, the experimental results
suggest that after performing half of the scheduled generations, the
proposed approach with adaptive scheme starts finding the known
best values for both objectives for more than 50% of the populations
for all test problems. Where as, at this point the performances of the
other two approaches are not satisfactory enough. They can find the
best values only for small problems (up to 14-facility problems for
traditional local search, and only up to 9-facility problems for
without local search). The number of optimal solutions is also small.
Table 2 summarizes the percentages of the optimal solutions
obtained by each approach.

As mentioned earlier, we run the proposed approaches for 60%
of the scheduled generations for all test problems to test their
convergence behaviors. The experimental results suggest that at
this stage, the proposed VNS-based approach almost conver-
gences for around 70% of the total population. Fig. 8 also shows
this tendency. For this reason, the required time for the proposed
approach will be less than the time mentioned in Table 2.
However, for fair comparison, we mention the time for the same
number of generations for all approaches. Thus, the proposed
adaptive VNS scheme appears to be highly effective, and the
additional coding effort and time required in comparison to the
approach without local search is definitely justified.

To summarize the result, the proposed evolutionary approach
incorporating adaptive VNS for solving unequal area multi-objec-
tive FLPs is capable of producing near-optimal and non-dominated

Data sets Approach PR S oPS
Adaptive VNS 1 0.1 0.81
07 Traditional LS 1 0.1 0.81
Without LS 0.98 2.431 0.78
Adaptive VNS 0.86 1.416 0.64
08 Traditional LS 0.78 2.586 0.60
Without LS 0.58 5.850 0.64
Adaptive VNS 0.86 3.014 0.60
09 Traditional LS 0.77 3.054 0.61
Without LS 0.64 4.721 0.59
Adaptive VNS 0.77 1.049 0.61
vCi10 Traditional LS 0.62 1.390 0.51
Without LS 0.62 1.700 0.50
Adaptive VNS 0.82 1.668 0.59
Bal2 Traditional LS 0.805 1.654 0.60
Without LS 0.7 2.690 0.59
Adaptive VNS 0.76 1.974 0.60
Bal4 Traditional LS 0.645 2.040 0.60
Without LS 0.505 2.701 0.56
Adaptive VNS 0.70 5.892 0.66
Ab20 Traditional LS 0.61 6.942 0.62
Without LS 0.505 7.370 0.60
Adaptive VNS 0.61 5.001 0.67
SC30 Traditional LS 0.51 5.361 0.62
Without LS 0.49 6.971 0.54
Adaptive VNS 0.58 6.035 0.63
SC35 Traditional LS 0.505 6.473 0.59
Without LS 0.49 8.374 0.54
Adaptive VNS 0.61 4.952 0.62
Du62 Traditional LS 0.57 5.587 0.56
Without LS 0.47 7.430 0.53
a
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Fig. 10. Final Pareto-optimal layouts. (a) 08. (b) VC10.
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layouts, which are also the best-known results in many cases. The
results clearly show that the introduction of adaptive local search
scheme helps well improving the best and average fitness value,
average number of generations, convergence and diversity beha-
vior of the final Pareto-optimal layouts.

In future, we hope to improve the proposed approach by
considering several recently proposed faster and efficient MOEA
variants. These could include multi-objective differential evolution
based on the summation of normalized objectives and improved
selection method (SNOV-IS) [43], Decomposition-based multiobjec-
tive evolutionary algorithm with an ensemble of neighborhood sizes
(ENS-MOEA/D) [44], and multi-objective evolutionary algorithms
based on the summation of normalized objectives and diversified
selection (SNOV-DS) [45]. We would also like to analyze the
performances of the final Pareto-optimal layouts using additional
statistical tests, which are recently published in the literature [46].

7. Conclusion

The unequal area FLP has been an emerging topic in the recent
years. A large volume of current research in unequal area FLPs has
been conducted to satisfy the quantitative (distance-based)
objective, while ignoring the aspect of adjacency (qualitative
aspect) in the layout. In this paper, we developed an adaptive
variable neighborhood search (VNS)-based evolutionary approach
for solving the unequal area multi-objective FLP to find a set of
Pareto-optimal layouts which is more relevant for practical use.
The main reason for using the local search technique in multi-
objective GA is to reinforce the search ability for locating globally
optimal solution. However, this research goes one step further by
incorporating a modified adaptive local search in form of the VNS
using the modified SCM and the improved 1-opt local search
method to automatically determine whether or not local search
should be used in a GA loop. Consequently, this can save the
computation time wasted by the traditional local search. The
computational experiments strongly support the competitiveness
of the proposed adaptive local search scheme for solving unequal
area multi-objective FLPs in comparison to existing heuristic
methods, approaches with traditional local search, and without
local search. The proposed scheme is capable of finding a set of
Pareto-optimal layouts that optimizes both MH cost and CR score
simultaneously throughout the entire evolutionary process. Thus,
it provides a wide range of alternative choices, allowing decision
makers to be more flexible and to make better decisions based on
market circumstances. The experimental results also shows that
the proposed approach is more adept at improving the best and
average fitness values, the required time, and the convergence
behaviors of the trade-off solutions.
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