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Abstract—We study the electrical influence of an electrode over
an axon of nonzero thickness in time using a two-dimensional
finite element formulation. Although our inspiration comes from
the practice of peripheral nerve stimulation, other types of neural
tissue excitation can benefit from the model. Our formulation
combines a Hodgkin-Huxley model to account for nerve dynamics
with electrostatic intra- and extracellular potentials. Thus, the
influence of external electrode geometry and parameters can be
addressed instead of simplifying them to point current sources.
We show first numerical results for different extracellular stimuli
and explore future enhancement directions.

I. INTRODUCTION

Several applications in medicine and biology require the

analysis of interactions between extracellular electrodes and

electrically excitable tissue. Among these, Peripheral Nerve

Stimulation (PNS) is of special importance in the practice of

regional anesthesia [1], [2]. By means of a conducting needle

connected to a current source, physicians try to evoke a motor

response through particular nerves. Many works have tried to

simulate the effects of the needle. Among them, Cantrell et al.

[4] and Davis et al. [5] are able to compute the voltage and

current field when a constant voltage is applied over the needle

conductive surface but disregarding the actual electrode–nerve

interaction. Rattay [6], [7], [8] studied the nerve’s behavior

by simplifying it to a one dimensional PDE called the cable

equation model but considering the external electrode as a

current point source. Ying et al. [9], using a finite element

formulation, are able to study in detail the behavior of the

transmembrane voltage when an external electric field is ap-

plied. However, since the external stimulation is incorporated

through an external electric field, it is not able to take into

account the electrode shape.

In this communication, we propose a mathematical model

for the study of electrical interactions between an electrode and

a neural structure: specifically, an axon. Our model is based

on an finite element formulation coupled to a Hodgkin–Huxley

model accounting for the non–linear nerve behavior [10], [11].

After discretization, a suitable numerical scheme is proposed

to solve the problem. External stimulation is produced by

a fixed amount of current flowing through the electrode’s

conducting surfaces.

II. PROBLEM MODEL

We now present relevant assumptions and features to pro-

pose a well–posed mathematical formulation.

A. Cellular Membrane and Hodgkin–Huxley Equations

To model the axon’s trans–membrane voltage we recall the

Hodgkin–Huxley Model [10], [11]. Under this framework, the

current per unit area flowing across the cellular membrane I

and the transmembrane voltage V satisfy

I = Cm
∂V

∂t
+ Iion(V,q), (1)

∂q

∂t
= M(V,q). (2)

The term Iion represents the current flowing across the cellular

membrane due the transport of ionic species across it; q

denotes the vector of state variables representing the dynamic

of the axon membrane; and, M(V,q) is the system of ordinary

differential equations for q [12].

B. Problem Geometry

Our domain of interest is a subset of R
2: the axon’s mem-

brane can be reduced to closed surface splitting the analysis

region into intra- and extracellular domains, Ωi and Ωe, respec-

tively, as show in Figure 1. The electrode’s conducting surface

is called Γt, being an equipotential surface through which a

fixed amount of current flows. Surfaces Γu and Γd represent

human skin, through which the current’s tangential component

can be non-zero. A grounded electrode is situated over Γr to

close the current electric path, otherwise the problem has no

physical meaning. To ensure this condition, the potential over

Γr is set equal to zero.

C. Extracellular Stimulation

In this model, the extracellular current stimulation comes

through the boundary Γt. If the external electrode is set to

be a perfect conductor, the potential is constant and the total

amount of current flowing across is a given value. Never-

theless, the current density at each point of Γt is unknown.

Since we are dealing with a direct current electric conduction
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Fig. 1: Problem geometry. The domain of interest is separated

into intra- and extracellular domains Ωi and Ωe, respectively.

Boundary Γr is located at the right hand side whereas Γt

represents the tip of the electrode. Surfaces Γu and Γn are

sections of the outer boundary between Γt and Γr. Over the

points P1, P2, P3 and P4 on Γn (the boundary representing the

cellular membrane) the transmembrane voltage is measured as

a function of time.

problem, the relation J = −σ∇u must hold. Integrating over

an area A, one derives
∫

A

J · n̂ds = −σ

∫

A

∂u

∂n̂
ds. (3)

Also, the total amount of injected current through A is

It = −

∫

A

J · n̂ds (4)

Since this is a two dimensional approximation, all physical

quantities portray do not change along the perpendicular

direction to the plane. By choosing ∆L as an arbitrary dis-

tance perpendicular to the plane of interest and redefining

A := Γt × ∆L, we obtain

It = −

∫

A

J · n̂ds = σ∆L

∫

Γt

∂u

∂n̂
ds. (5)

Thus, for a two dimensional formulation over Γt, it holds
∫

Γt

∂u

∂n̂
ds =

I∆L

σ
(6)

where I∆L = It/∆L is a current per length. Since Γt is a

boundary of the extracellular domain, all the quantities must be

interpreted as extracellular ones. The above discussion is only

valid for a two-dimensional formulation. Whenever a three

dimensional model is used, appropriate boundary condition

can be deduced from the argumentation presented in this

subsection.

D. Mathematical Formulation

Based on the quasi–static approximation of Maxwell’s equa-

tions and representing the non–linear temporal behavior of

the nerve through the Hodgkin–Huxley Model, it is possible

to set up a consistent mathematical model. We aim to find

ue ∈ H1(Ωe) and ui ∈ H1(Ωi), the corresponding Sobolev

spaces [13], such that:

∆ui = 0 in Ωi, (7)

∆ue = 0 in Ωe, (8)
∫

Γt

∂ue

∂n̂e
ds =

I∆L

σe
(9)

−σi
∂ui

∂n̂i
= σe

∂ue

∂n̂e
= I on Γn, (10)

ui − ue = V on Γn, (11)

∂ue

∂n̂e
= 0 on Γu ∪ Γd, (12)

ue = 0 on Γr, (13)

where

• ui is the intra–cellular potential;

• ue is the extra–cellular potential;

• V is the transmembrane potential across the cellular

membrane Γn;

• I is the transmembrane current per unit area;

and, σi and σe are intra- and extracellular conductivities

respectively. In addition to equations (7)–(13), we include

a condition reflecting the fact of a constant potential over

the electrode surface, i.e. ue constant over the boundary Γt.

This condition will be included directly in the finite element

method’s variational formulation by means of an adequate

manipulation of the corresponding functional spaces.

III. VARIATIONAL FORMULATION

Let us first define H1
1
(Ωe) and H1

C
(Ωe) the functional

spaces satisfying:

H1

1
(Ωe) = {u ∈ H1(Ωe)| u|

Γr
= 0 and u|

Γt
= 1},

H1

C(Ωe) = {u ∈ H1(Ωe)| u|
Γr

= 0 and u|
Γt

= C ∈ R}.

With these, condition (13) can already be included. Multiply-

ing equation (7) by a test function vi ∈ H1(Ωi) and recalling

Green’s first identity, we obtain
∫

Ωi

∇ui · ∇vidx =

∫

∂Ωi

∂ui

∂n̂i
vids =

∫

Γn

∂ui

∂n̂i
vids. (14)

Repeating this procedure with equation (8), but using a test

function ve ∈ H1
1
(Ωe) we have

∫

Ωe

∇ue · ∇vedx =

∫

∂Ωe

∂ue

∂n̂e
veds (15)

=

∫

Γt

∂ue

∂n̂e
veds +

∫

Γu∪Γd

∂ue

∂n̂e
veds

+

∫

Γr

∂ue

∂n̂e
veds +

∫

Γn

∂ue

∂n̂e
veds. (16)

Since ve belongs to H1
1 (Ωe), the integral over Γr in equation

(16) must vanish. Also, due to the non-flux condition over Γu∪
Γd (12), the related integral is equal to zero. The test function

ve is a constant equal to one over Γt, and consequently, by

(9)
∫

Γt

∂ue

∂n̂e
veds =

∫

Γt

∂ue

∂n̂e
ds =

I∆L

σe
. (17)
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The variational representation of (8) including the current

continuity over Γn, becomes
∫

Ωe

∇ue · ∇vedx =
I∆L

σe
−

σi

σe

∫

Γn

∂ui

∂n̂i
veds. (18)

Equation (11) must be included in a weak sense: multiplication

by a test function vn ∈ H1/2(Γn) yields
∫

Γn

(ui − ue)vnds =

∫

Γn

Vvnds. (19)

Finally, the original problem presented in Subsection II-D can

be stated in the following way: find ui ∈ H1(Ωi), ue ∈
H1

C
(Ωe) and ∂ui

∂n̂i

∈ H1/2(Γn) satisfying equations (14)–(18)–

(19) for all vi ∈ H1(Ωi), ve ∈ H1
1 (Ωe) and vn ∈ H1/2(Γn).

For the sake of simplicity, from we denote un = ∂ui

∂n̂i

. The

existence and uniqueness for both the continuous and discrete

problems comes from the application of the Lax–Milgram

lemma [13].

IV. VARIATIONAL FORMULATION OF THE

HODGKIN–HUXLEY MODEL

Let us assume V, q, Iion and M to be functions defined

in H1/2(Γn). By multiplying equations (1)–(2) by a test

function vn ∈ H1/2(Γn) and integrating over Γn, we obtain

a representation suitable to be coupled with the variational

formulation developed in Section III. Aditionally, the time

derivatives are approximated through an implicit Euler scheme

and the underlying non–linear system is addressed by a fixed

point procedure. Then, at time tj = j∆t (j ∈ N) is imperative

to solve iteratively

−σi

∫

Γn

(un)k
j vnds =

Cm

∆t

∫

Γn

(Vk
j − Vj−1)vnds

+

∫

Γn

Iion(Vk−1

j ,qk−1

j )vnds,(20)

1

∆t

∫

Γn

qk
j vnds =

1

∆t

∫

Γn

qj−1vnds

+

∫

Γn

M(Vk−1

j ,qk−1

j )vnds, (21)

wherein

• V
k
j and qk

j : trans–membrane voltage at the time step j
and fixed point iteration k.

• Vj−1 and qj−1: trans–membrane voltage at the previous

time step j − 1.

• (un)k
j : un at time step j and fixed point iteration k.

For each time tj , the fixed point procedure must be repeated

until the difference between consecutive steps lies below a

given threshold.

V. FINITE ELEMENT DISCRETIZATION

Given admissible meshes Ti and Te for Ωi and Ωe, respec-

tively, we define piecewise linear basis functions ϕi such that

ϕi = 1 at the i-th node and equals to zero on any other. Using

the procedure proposed by Dular et al. [14], the nodes of Te

are split into two disjoint sets: those belonging to Γt and their

Y

X

Y

ZZ X

(a) Mesh Te for Ωe. The inner
dot is the nerve’s mesh.

XX

Y

Z

Y

Z

(b) Mesh Ti for Ωi.

Fig. 2: Admissible meshes Ti and Te for Ωi and Ωe, respec-

tively.

complement, denoted At and At, respectively. We propose an

adequate discrete ansatz for ue:

uh
e :=

∑

i∈At

αiϕi + A

∑

i∈A
t

ϕi

︸ ︷︷ ︸

=ϕA
t

(22)

where αi, A ∈ R are the finite element approximation degrees

of freedom for all nodes i ∈ At. Then, uh
e is an approxima-

tion coming from a discrete subspace of H1

C
(Ωe). Moreover,

{ϕi}i∈At
and ϕA

t
constitute a discrete subspace basis for

H1
1
(Ωe). Discrete approximations for ui, un, V and q are

given by the well-known expansion used in classical versions

of the finite element method.

VI. RESULTS AND DISCUSSION

Admissible meshes Ti and Te are set up for Ωi and Ωe,

as shown in Figure 2. Intra- and extracellular conductivities

are σi = 5 mS/cm and σi = 20 mS/cm, respectively. Also,

we set a time step ∆t = 0.01 ms and simulate 10 ms of axon

activity. Two situations are studied: (1) I∆L = 150 mA/cm and

(2) I∆L = −150 mA/cm, for an axon diameter dA = 15 µm.

Figures 3 and 4 show the results for both situations.

Figures 3 and 4 portray classical shapes of the elicited

transmembrane potential obtained through our formulation.

Comparison of transmembrane voltages at different points on

the axon’s surface reveals same shapes but with significantly

varying offsets. Even though differences in neural excitability

are observed depending on the applied stimulation (I∆L >
0 or I∆L < 0), a comparison between Fig 3–(a) with 4–(c)

and Fig 3–(c) with 4–(a) reveals a spatial inversion of the

solution when changing the polarity of the excitation. Thus,

this model is not able to predict differences in excitability as

the ones observed in the experimental practice [15].

VII. CONCLUSIONS

A two-dimensional numerical framework to deal with in-

teractions between a neural structure, as an axon, and an ex-

tracellular electrode have been developed in the present work.

Among the objectives achieved, our finite element formulation

is able to represent the external stimulation as a fixed amount

of current flowing across the electrode’s surface. Also, there is

no need to reduce the external stimulation to a constant electric
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Fig. 3: Transmembrane voltage measured between ti = 0ms

and tf = 10ms using I∆L = 150mA/cm for differentes points

over the cellular membrane or the surface Γn. Figures (a), (b),

(c) and (d) are the trans-membrane voltage measured at points

P1, P2, P3 y P4 as showed in Figure 1.
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Fig. 4: Transmembrane voltage measured between ti = 0ms

and tf = 10ms using I∆L = −150mA/cm for differentes points

over the cellular membrane or the surface Γn. Figures (a), (b),

(c) and (d) are the trans-membrane voltage measured at points

P1, P2, P3 y P4 as showed in Figure 1.

field, as proposed by Ying et al. [9] or a current point source

as done by Rattay [6], [7], [8]. Future work will concern three-

dimensional models excitation of multiple axons as well as a

search of better models to address differences in excitability

due to changes in polarity of the external stimulus.
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and FONDECYT Iniciación Grant No. 11121166.

REFERENCES

[1] C. Bollini, F. Cacheiro. ”Peripheral Nerve Stimulation”. Techniques in

Regional Anesthesia and Pain Management, vol. 3, no. 10, pp. 7988,
2006.

[2] C. Pham-Dang, O. Kick, T. Collet, F. Gouin, M. Pinaud. “Continuous
peripheral nerve blocks with stimulating catheters”. Regional Anesthesia

and Pain Medicine, vol. 28, no. 2, pp. 8388, 2003.
[3] N. Sepulveda, J. Wikswo, D. Echt. “Finite Element Analysis of Cardiac

Defibrillation Current Distributions”. IEEE Transactions on Biomedical

Engineering, vol. 37, no. 4, 1997.
[4] M. Cantrell, W. Grill, S. Klein, ”Computer-based finite element modeling

of Insulated tuohy needles used in regional anesthesia”, Anesthesiology,
vol. 110, no. 6, pp. 1229–1234, 2009.

[5] J. Davis, N. Anderson, J. Ramirez, F. Kayser Enneking, M. Meisel.
”Finite-difference modeling of the anisotropic electric fields generated
by stimulating needles used for catheter placement”, IEEE Transactions

on Biomedical Engineering, vol. 54, no. 7, pp. 1186–1190, 2007.
[6] F. Rattay. ”Analysis of Models for External Stimulation of Axons”. IEEE

Transactions on Biomedical Engineering, vol. 33, no. 10, pp. 974–977,
1986.

[7] F. Rattay. ”Analysis of Models for Extracellular Fiber Stimulation”. IEEE
Transactions on Biomedical Engineering, vol. 36, no. 7, pp. 676–682,
1989.

[8] F. Rattay. Electrical Nerve Stimulation. Theory, Experiments and Appli-
cations. Vienna, Austria: Springer–Verlag, 1990, ch. 57, pp. 73139.

[9] W. Ying, C.S. Henriquez. ”Hybrid Finite Element Method for Describing
the Electrical Response of Biological Cells to Applied Fields”. IEEE

Transactions on Biomedical Engineering, vol 54, no. 4, April 2007.
[10] A.L. Hodgkin and A.F. Huxley. ”A quantitative description of membrane

current and its application to conduction and excitation in nerve”. The

Journal of Physiology, vol. 117, no. 4, pp- 500–544, 1952.
[11] A.L. Hodgkin, A.F. Huxley AF, B. Katz. ”Measurement of current–

voltage relations in the membrane of the giant axon of Loligo”. Journal

of Physiology. vol. 116, no. 4, pp. 424–448, 1952.
[12] S. Doi, J. Inoue., Z. Pan, K. Tsumoto. Computational Electrophysiology.

Tokyo, Japan: Springer Series, A First Course in In Silico Medicine, vol.
2, 2010.

[13] O. Steinbach, Numerical approximation methods for elliptic boundary

value problems, Springer–Verlag, New York, 2008.
[14] P. Dular, W. Legros. ”Coupling of Local and Global Quantities in

Various Finite Element Formulations its Application to Electrostatics,
Magnetostatics and Magnetodynamics”, IEEE Transactions on Magnetics,
vol. 34, no. 5,1998.

[15] J. Li, X. Kong, S.N. Gozani, R. Shi, R. Borgens. ”Current–Distance
Relationships for Peripheral Nerve Stimulation Localization”, Anesthesia

& Analgesia, vol. 112, no. 1, 2011.

592



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



