
Neurocomputing 113 (2013) 27–35
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

and Int

Academ

E-m
journal homepage: www.elsevier.com/locate/neucom
Classification-based learning by particle swarm optimization
for wall-following robot navigation
Yen-Lun Chen a, Jun Cheng a, Chuan Lin a, Xinyu Wu a,b,n, Yongsheng Ou a,b, Yangsheng Xu a,b

a Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
b Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong
a r t i c l e i n f o

Article history:

Received 26 July 2012

Received in revised form

21 December 2012

Accepted 30 December 2012
Communicated by R. Tadeusiewicz
savings on the training time compared to the conventional grid search. For wall-following robot
Available online 1 March 2013

Keywords:

Multi-category classification

Particle swarm optimization

Wall-following robot navigation
12/$ - see front matter & 2013 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.12.037

esponding author at: Guangdong Provincial

elligent System, Shenzhen Institutes of Adv

y of Sciences, China.

ail address: xy.wu@siat.ac.cn (X. Wu).
a b s t r a c t

In this paper, we study the parameter setting for a set of intelligent multi-category classifiers in wall-

following robot navigation. Based on the swarm optimization theory, a particle selecting approach is

proposed to search for the optimal parameters, a key property of this set of multi-category classifiers.

By utilizing the particle swarm search, it is able to obtain higher classification accuracy with significant

navigation, the best accuracy (98.8%) is achieved by the particle swarm search with only 1/4 of the

training time by the grid search. Through communicating the social information available in particle

swarms in the training process, classification-based learning can achieve higher classification accuracy

without prematurity. One of such learning classifiers has been implemented in SIAT mobile robot.

Experimental results validate the proposed search scheme for optimal parameter settings.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Classification-based learning represents a machine learning
technique [1,2] with successful applications in several domains,
such as biometrics, bioinformatics, and multimedia information
management [3–6]. In recent years, mobile robots [7] have
become widely applied to human daily life with the advancement
of technology and the enhancement of digital information. The
capability to interact with people is essential for robots that
perform tasks in cooperation with humans, such as service and
surveillance robots. In mapless navigation, the system uses no
explicit representation about the space in which navigation is to
take place [8], where the robot motions are determined by
observing and extracting relevant information about the elements
(such as walls, desks or doorways) in the environment, and
navigation is carried out with respect to these elements. To
navigate, the robot uses sensors to calculate the distance of the
objects. Many sensors have been used to find the objects, includ-
ing infrared sensor, laser range finder, visible-light camera, and
ultrasonic sensors [9]. For example, SIAT mobile robot uses
ultrasonic sensors to avoid collision as shown in Fig. 1.

Wall-following navigation is a kind of motion that the robot
moves along the wall in a certain direction, or more generally,
ll rights reserved.

Key Laboratory of Robotics

anced Technology, Chinese
moves along the exterior of objects while keeping a safe distance
away from objects [10]. When it is combined with other high-
level intelligent behavior, the robot can accomplish complex tasks
[11]. Recently, intelligent controllers developed using artificial
neural network, fuzzy logic, genetic algorithms, or a combination
thereof are appealing to deal with such complicated systems.
Modeling a human expert control strategy (HCS) [12] with
learning-based algorithms is a fine solution for the control of
dynamic systems with unstructured uncertainties and fast-
changing un-modeled dynamics. However, it is difficult to model
the human expert control strategy. In such a case, collecting the
needed training data to build a sufficiently accurate learning
model for an intelligent classifier is one of the promising solu-
tions. For the wall-following robot navigation, empirical evalua-
tion of this task is a problem of pattern recognition and could be
modeled as multi-category classifications. Extending a classifier
from binary to multiple categories is still an ongoing research
topic [13,14]. Generally, a single multi-class problem is consid-
ered as a collection of multiple binary problems. The problem is
interpreted as a cascade of hierarchical binary-tree classifiers.
Therefore, multi-category classification is considered in the fra-
mework of hierarchical-cascaded trees, for parallel and easy
implementation with hardware circuits to satisfy the real-time
requirement.

When training the classifiers for high accuracy, it is essential to
select the parameter of each binary classifier at each node in the
hierarchy. Conventionally, grid search is the approach taken.
Between the minimum and maximum values of each parameter,

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.12.037
http://dx.doi.org/10.1016/j.neucom.2012.12.037
http://dx.doi.org/10.1016/j.neucom.2012.12.037
mailto:xy.wu@siat.ac.cn
http://dx.doi.org/10.1016/j.neucom.2012.12.037


Fig. 1. SIAT mobile robot navigates in an indoor environment.

Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–3528
the method divides the range into several grid-like corresponding
dots to select the optimal point. However, doing a complete grid-
search may be time-consuming, especially for a large amount of
parameters. In training classifiers with low computational com-
plexity, a simple grid-search method can meet the needs for
practical applications; however, in training classifiers with high
computational complexity, instead of performing exhaustive
search for the best parameters, sample-based optimizations such
as particle swarm methods [15,16] are proposed to efficiently
select the parameters. Particle swarm optimization (PSO) is a
parallel algorithm originally developed by Kennedy and Eberhart
based on a metaphor of social interaction [17,18]. It is a powerful
and easily implemented algorithm to solve optimization pro-
blems, especially in a multidimensional vector space. The PSO
algorithm is initialed with a population of random candidate
solutions, each of which is called a ‘‘particle’’, with a randomly
assigned velocity and position. Then, each particle is attracted
stochastically towards the location of its own previous best
fitness and the best fitness of its neighbors.

When particles are unable to escape from a local optimum
after hundreds or thousands of iterations, there exist invalid
iterations in PSO [19,20] during the optimization of various
continuous functions. The problem is mainly because that the
algorithm lacks an effective scheme to escape from the local
optimum. To overcome the premature property of PSO, a hybrid
PSO (HPSO) algorithm is proposed by integrating the basic PSO
with local optimization of pattern search. In each iteration,
particles are selected with a probability, where pattern search is
performed and the original particles are replaced to improve the
precision of convergence if the new fitness value is better. HPSO
enables the parameter optimization to possess parameter-fitness
capability both globally and locally such that it can be more
effective than the basic PSO to achieve an optimal performance.
Using the HPSO algorithm, optimal parameters can be efficiently
selected via reducing the complexity iteratively and avoiding
irrelevant calculations.

The paper is organized as follows. Section 2 describes the
multi-category classification and our problems in this paper. The
particle-based search approach to evaluate parameters of classi-
fiers are presented in Section 3. In Section 4, the effectiveness of
the proposed method is illustrated via a simulation study based
on the data from a mobile robot. Finally, we close the paper by
stating the conclusions in Section 5.
2. Problem statement

In this section, we will first introduce the concept of binary
classification and then multi-category classification.
2.1. Binary classification

We now introduce the binary classification concept. Suppose
that we are given n training samples ðxl,ylÞ, where xlARd and
ylAfþ1,�1g. For example in the support vector machine (SVM)
[21], a hyperplane wT xþb¼ 0 could be obtained to separate the
samples of different classes on the two sides of hyperplane, where
w is the norm vector and b is the bias of the hyperplane. When
the training samples are linearly separable, support vector
machine yields the optimal hyperplane that separates two classes
without training error, where optimization is in the sense of
maximizing the minimum distance from training samples to the
hyperplane, or equivalently minimizing JwJ2. For linearly non-
separable cases, the concept of a separating hyperplane is gen-
eralized by employing the slack variable xi with potential training
errors. In other words, the parameter pair ðw,bÞ corresponding to
the optimal hyperplane is a solution to the following optimization
problem. Mathematically, it can be written as

min :
1

2
JwJ2

þC
X

l

xl,

subject to :
ylðw

TfðxlÞþbÞZ1�xl,

xlZ0,

(
ð1Þ

where C is a parameter to adjust the weight of training errors in
the minimization. When this linear separation is not possible in
the input space X , a transformation f : X-F can be used to
project the data to a high-dimensional feature space F , where the
prospect of finding a linear separating hyperplane is higher.

2.2. Multi-category classification

Based on the binary classifier, the concept is extended from
binary to multiple classes. Mathematically, we want to find
decision boundaries in vector space Rd based on the information
from training samples xl to separate k different classes.

Given training samples ðxl,ylÞ, where xlARd is a training
sample and ylAf1,2, . . . ,kg is the corresponding class label. One-
versus-rest (OVR) approach constructs k binary classifiers, each of
which separates one class from all the rest. The ith binary
classifier is trained with all the training examples in the ith class
with positive labels, and all the others with negative labels. For
example in SVM, the ith binary classifier solves the following
problem which yields the ith decision function f iðxÞ ¼wT

i fðxÞþbi:

min :
1

2
JwiJ

2
þCi

X
l

xi
l ,

subject to :
~yi

lðw
T
i fðxlÞþbiÞZ1�xi

l,

xi
lZ0,

8<
: ð2Þ

where ~yi
l ¼ 1 if yl ¼ i and ~yi

l ¼�1 otherwise. The k� k matrix form
of OVR could be interpreted as

~Y ¼

þ � � � � �

� þ & ^

^ & & �

� � � � � þ

0
BBB@

1
CCCA: ð3Þ

In the classification phase, x is classified as the class in which has
the largest value of the decision function

in ¼ arg max
i ¼ 1,...,k

ðwT
i fðxÞþbiÞ: ð4Þ

Different from the one-versus-all method, one-versus-one
(OVO) approach constructs kðk�1Þ=2 binary SVM classifiers, each
of which separates two of k classes. Let f i,jðxÞ ¼wT

i,jfðxÞþbi,j

denote the decision function between class i and class j, which



Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–35 29
mathematically is the solution to the following problem:

min :
1

2
Jwi,jJ

2
þCi,j

X
l

xi,j
l ,

subject to :
~yi,j

l ðw
T
i,jfðxlÞþbi,jÞZ1�xi,j

l ,

xi,j
l Z0,

8<
: ð5Þ

where ~yi,j
l ¼ 1 if yl ¼ i and ~yi,j

l ¼�1 if yl ¼ j. The k� Ck
2 matrix form

of OVO can be interpreted as

~Y ¼

þ þ � � � 0

� 0 0 ^

0 � þ 0

^ 0 0 þ

0 � � � � �

0
BBBBBB@

1
CCCCCCA

, ð6Þ

where each column is a classifier with þ/� indicating the class
label and 0 indicating no use of those samples in training the
classifier. The voting scheme, or the ‘‘Max Wins’’, can be used in
the classification phase. If the function f i,jðxÞ ¼wT

i,jfðxÞþbi,j deci-
des x belongs to the ith class, then the vote for the ith class is
increased by one. Otherwise, the jth class gets one vote. Finally, x
is classified to the class with the most votes.

The training phase of the directed acyclic graph (DAG) [22]
approach is the same as the OVO method by solving kðk�1Þ=2
binary problems. However, in the testing phase, DAG operates on
a list initialized with all classes, where each node eliminates one
class from the list. A test point is evaluated against the decision
node that corresponds to the first and last elements of the list.
Each node is a binary classification problem of ith and jth classes.
If the node prefers one of the two classes, the other class is
eliminated from the list, and DAG proceeds to test the first and
last elements of the new list. Starting at the root node, the DAG
algorithm terminates when only one class remains in the list.
Each test instance goes through a path before reaching a leaf node
which indicates the predicted class.
60

60

60

60

70

70

70

70
0707

80

80

80

80

80

80

Accuracy (%)

C

si
gm

a

−5 0 5 10 15

−14

−12

−10

−8

−6

−4

−2

0

2

Fig. 2. The contour lines show the fivefold cross-validation accuracy of heartscale

in two parameters C and s (log scale, base 2). With 20 particles, the particle swarm

algorithm only needs two iterations to achieve the optimal value.
3. Parameter selection via particle swarm optimization

In this section, parameter search by particle swarm optimiza-
tion is presented to overcome the inefficient problem of grid
search. As illustrated above, the number of parameters in multi-
category classification, including weighting factor Ci and Gaussian
kernel width si, increases linearly in the method of OVR, and
quadratically in OVO and DAG when the number of classes
increases. If the grid search is used for parameter selection in
training, the computational complexity increases exponentially as
the number of parameters increases. It is not only inefficient but
also inapplicable when either the number of classes or the
number of samples is large.

To overcome the premature property of the conventional
particle swarm optimization (PSO), a hybrid PSO (HPSO) algo-
rithm is proposed by integrating the basic PSO with local
optimization of pattern search. Convergence speed and conver-
gence precision are the two important indicators of optimization
performance, closely related to the setting of parameters in an
algorithm. While considering the setting of parameters, the two
indicators are conflicting; that is, in order to obtain a more precise
convergence value, it will be at the cost of extending the time of
convergence; on the other hand, to increase the optimization
speed, it will usually be trapped in a local optimum solution.
Since the pattern search method is very effective in local search, it
is chosen to intensify the small-region search, which avoids early
convergence at a local optimum value to achieve higher precision
of convergence while increasing the speed of convergence.
3.1. Basic particle swarm optimization

The particle-based model consists of a swarm of particles, each
of which is considered as a social individual. At the beginning,
each particle is assigned a random position z and a random
velocity v in the n-dimensional search space. Then at each time
step t, a particle evaluates its fitness at the current position with a
fitness function. Moreover, the particle records its own best
position so far as pt . After that it adjusts velocity and position
by pt and the global best position gt obtained through commu-
nication with its immediate neighbors. This information flow is
obtained by defining a neighbor topology on the swarm. In every
iteration t, a particle is updated through the following formula:

vtþ1 ¼wvtþc1r1ðpt�ztÞþc2r2ðgt�ztÞ, ð7Þ

ztþ1 ¼ ztþvtþ1, ð8Þ

where r1 and r2 are the random numbers evenly distributed
between ð0,1Þ; c1 and c2 are the learning factors, and mostly
c1 ¼ c2 ¼ 2; w is the inertia weight.

In an improved particle swarm algorithm [23], the inertia
weight decreases linearly in every iteration; therefore, at the
beginning, particles tend to keep their previous speeds for
exploration, and follow the trend of optimization later. The
formula for linear decrement is as below:

w¼wstart�
wstart�wend

tmax
nt, ð9Þ

where tmax is the maximum number of iteration; wstart and wend

are the weights at the beginning and at the end, respectively.
The fitness function is defined as the classification accuracy in

the parameter selection of multi-category classifications, and the
particle position is defined as z¼ ½C1, . . . ,Ck,s1, . . . ,sk�. For exam-
ple in Fig. 2, the contour lines show the classification accuracy of
heartscale [24] when k¼1. The horizontal axis represents para-
meter C and the vertical axis represents parameter s, respectively.
Position vector z¼ ½C,s� is in the two-dimensional parameter
space. The particle swarm algorithm only needs two iterations
to achieve the optimal value with 20 particles. On the contrary,
the grid method tries all possible combinations in the range
between the minimum and maximum values of the parameter
space. Exhaustive search must be done before the optimal value



Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–3530
could be determined, which is especially inefficient in training a
time-consuming model. Therefore, the particle-based algorithm
significantly reduces the computational complexity of parameter
search to achieve the goal of efficient parameter optimization.

3.2. Principle of the hybrid particle swarm algorithm

The precision of particle-based algorithm depends on the
initial position of particles to some extent. Firstly, this algorithm
initializes the position of every particle according to the uniform
distribution to enable particles evenly distributed in the entire
solution space and to ensure that there exist particles in the
nearby area of the optimum solution. Secondly, perform local
optimization for part of initial particles with a given probability
by using the pattern search method, so that the obtained particles
will replace the original ones to change the positions of the initial
particles by relocating the initial particles in the nearby area of
the optimum value.

In every iteration, the particles update themselves through
tracing individual and global best values, so the individual and
global best values have direct impacts on the speed and precision.
In this paper, the algorithm performs local optimization by using
the pattern search method while selecting the individual and
global best values with a probability P as initial values; the
obtained particles with preferable fitness will replace the initial
particles as new individual and global best values and can be used
for updating the positions of particles in the next iteration, which
can save numerous invalid iterations. Herein, the probability P of
the pattern search method is selected based on the strategy of
linear decrement; so that, in the beginning, a more precise
function value may be obtained faster. Then, in the later phase,
because the algorithm has reached a better precision, it is able to
cut down unnecessary adoption of the pattern search to improve
the execution efficiency. The decrement formula of probability P

is as below [25]:

P¼ Pstart�
Pstart�Pend

tmax
nt, ð10Þ

where tmax is the maximum number of iteration; t is the current
number of iteration; Pstart and Pend are probabilities based on the
pattern search method at the beginning and at the end,
respectively.

3.3. Parameter analysis of the hybrid particle swarm algorithm

In the hybrid particle-based algorithm, the parameters are
swarm scale, learning factors c1 and c2, inertia weight w, max-
imum velocity vmax, minimum velocity vmin and the pattern
search probability P, which are analyzed as follows.

(1) Swarm scale: Usually, 20–200 particles are selected.
Expanding the scale will improve the probability of successful
global optimization, but also increase the execution time of the
algorithm.

(2) Learning factors c1 and c2: Importance degree on the
attraction of individual and global best values to every particle.
If c1 ¼ c2 ¼ 0, particles will fly at the current speed until they
arrive on the border. If so, limited area is searched and it is
difficult to find the optimal solution. If c1 ¼ 0, particles lack the
ability of self-cognition; despite the fast convergence speed, the
algorithm will easily be trapped into the local best value. If c2 ¼ 0,
where social information sharing is unavailable among particles,
it is very unlikely to obtain the optimal solution.

(3) Inertia weight w: Inertia that keeps particles moving. A
higher weight may accelerate global search, yet the algorithm will
easily be trapped into a local optimal value. On the contrary,
a lower weight may accelerate local search, yet it will increase the
number of iterations when finding the global optimal value.

(4) Maximum velocity vmax and minimum velocity vmin: The
range of particle displacements in a cycle are determined by the
maximum and minimum velocities, which are usually set as the
scale width. If the range is too small, particles move very slowly,
which will cause longer execution time of the algorithm; if it is
too large, particles move very quickly, which will be unfavorable
for the convergence.

(5) Pattern search probability P: It decides the overall perfor-
mance of particle swarm and the convergence precision. If the
value is too small or equal to 0, it returns to the standard
algorithm. If the value is relatively large, high-precision conver-
gence may be obtained. However, it will lead to unnecessary
adoption of pattern search method in the later phase, so that the
execution efficiency will be reduced.

3.4. Realization of the hybrid particle swarm algorithm

Step1: Initialization, including learning factors c1 and c2, inertia
weight w, maximum number of iteration tmax, pattern search
probabilities at the beginning Pstart and at the end Pend. Then, in
the defined n-dimensional space, randomly generate m particles
according to the uniform distribution and form the initial particle
swarm; create initial velocity v of individual particles.

Step2: Randomly select particles with the probability P while
performing local optimization for them by the pattern search
method; then replace the initial particles with the newly obtained
particles.

Step3: Particle swarm evaluation, i.e. calculate the fitness of
every particle and re-initialize the worst particles.

Step4: Update the flying speed of the particle swarm according
to the formula of particle speed; then, update the position of the
particle swarm according to the formula of particle position;
finally, produce new particle swarm.

Step5: Select the individual and global best particles of the
particle swarm with the probability P in every iteration, while
performing local optimization using the pattern search method to
produce new particles; if the new particles have better fitness
than the initial individual and global best value particles, replace
them with the new particles to serve as a basis for updating the
flying speeds and positions of the particles in the next iteration.

Step6: Check the stop condition. If it is met, end search;
otherwise, t¼ tþ1, return to step 3.

The above procedure is summarized in the flow chart of Fig. 3.
4. Experimental study

In this section, experimental results are provided to illustrate
the analysis and estimation of particle-based parameter selection.

4.1. Experimental description

The performance of multi-category classifications was inves-
tigated on the wall-following robot navigation data set from the
UCI machine learning repository [26]. The data were collected as
the mobile robot navigates through the room following the wall
in a clockwise direction, for four rounds. By commanding the
robot to perform 4 full rounds around the room, the sensory data
collection was performed with a reading rate of 9 samples
per second for each sensor, resulting in 5455 samples as shown
in Table 1. To navigate, the robot uses 24 ultrasound sensors
arranged circularly around its waist, where the numbering of the
ultrasound sensors starts at the front of the robot and increases in
clockwise direction. There are three different data sets in the



Fig. 3. Flow chart of the hybrid particle swarm algorithm.

Table 1
Class label distribution of UCI wall-following robot navigation.

One-versus-all classifier Action Samples Percentage

f1 – – – Move-forward 2205 40.41

– f2 – – Slight-left-turn 328 6.01

– – f3 – Slight-right-turn 826 15.13

– – – f4 Sharp-right-turn 2097 38.43

Sensor readings 24 Sensor readings 4 Sensor readings 2
0

20

40

60

80

100
Test Accuracy (%)

Sensor readings 24 Sensor readings 4 Sensor readings 2
0

100

200

300

400
Training Time (sec)

Grid (OVO)
PSO (OVR)
PSO (OVO)

Fig. 4. Training time and test accuracy of the wall-following robot navigation.

Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–35 31
provided repository. The first data set contains the raw values of
the measurements of all 24 ultrasound sensors and the corre-
sponding class label. The second one contains four simplified-
distance sensor readings and the corresponding class label; these
simplified distances are referred to as the front distance, left
distance, right distance and back distance, which consist of the
minimum sensor readings among those within 601 arcs located at
the front, left, right and back parts of the robot, respectively. The
third data set contains only the front and left simplified distances
and the corresponding class label.

The first quarter of the samples, which correspond to the first
full round of the navigation, is used for training and the other
samples are used for testing. In the training phase, fivefold cross-
validation is used to prevent the overfitting problem [24], where
the training set is first divided into five subsets of equal size, and
sequentially one subset is tested using the classifier trained on
the remaining four subsets. Thus, each instance of the whole
training set is predicted once so the cross-validation accuracy is
the percentage of data which are correctly classified. After
training on cross-validation, the optimal parameters of the
classifiers in the training phase and the decision function are
then applied on the test samples to obtain the classification
accuracy.

The software adopted for simulation in the laboratory is
Matlab 7.10, and the computer configuration is AMD Phenom(tm)
Q9600B 2.30 GHz Windows PC with 4 GB RAM. In Fig. 4, the
training time and test accuracy of wall-following robot navigation
are compared between the particle-based search and the grid
search. In the one-versus-rest (OVR) method, k classifiers are
constructed to separate from the rest of the classes, and in the
one-versus-one (OVO) method, kðk�1Þ=2 pairs of classifiers are
constructed to separate each class from another one. The decision
function is determined by combining the results. In the grid
search, CiA ½2

�5,2�4, . . . ,215
� and s2

i A ½2
�4, . . . ,214

�. In the PSO
search, learning factors c1 ¼ c2 ¼ 2; particle swarm number 20;
maximum flying speed vmax ¼ 1; minimum flying speed
vmin ¼�1; r1 and r2 are the random numbers between [0, 1];
the inertia weights wstart ¼ 0:9 at the beginning and wend ¼ 0:4 at
the end, respectively. By using the PSO search, it is able to obtain
higher test accuracy with significant savings on the training time
compared to the grid search. In the case of the sensor readings 2,
the best accuracy 98.8% is achieved by the PSO search with only
1/4 of the training time by the grid search.

A receiver operating characteristic (ROC) [27] graph depicts
relative tradeoffs between benefits (true positives) and costs
(false positives), in which true positive rate is plotted on the
vertical axis and false positive rate is plotted on the horizontal
axis. Considering that ROC curves are mainly used in detection or
verification applications, the ROC curve is defined in a rejection-
classification problem as the curve depicting the correct classifi-
cation rate PC vs. false alarm rate PFA, where PC is defined as the
percentage of target samples correctly classified in the target
class. In Fig. 5, the ROC curves of classifiers f1, f2, f3 and f4 are
plotted accordingly. It could be observed that given a false
positive rate, the true positive rates are higher based on the
sensor readings 2 than those based on the sensor readings
4 and 24.

The area under the ROC curve (AUROC) indicates the accuracy
of a classifier in the way that larger AUROC indicates better
accuracy. In Fig. 5, the AUROC of sensor readings 24 are
Af 1
¼ 0:868, Af 2

¼ 0:965, Af 3
¼ 0:940, Af 4

¼ 0:950, the AUROC of
sensor readings 4 are Af 1

¼ 0:953, Af 2
¼ 0:997, Af 3

¼ 0:965,
Af 4
¼ 0:999, and the AUROC of sensor readings 2 are Af 1

¼ 0:993,
Af 2
¼ 0:998, Af 3

¼ 0:990, Af 4
¼ 0:999. From these results, the clas-

sifiers based on the sensor readings 2 have better accuracy, which
makes sense in the case of clockwise trajectories. However, the
advantage of using only the front and left simplified distances
instead of using all the other sensors may depend on the direction
of navigation. In order to make the system be more general and
practical, both clockwise and counterclockwise directions are
performed in the next experiment.



10−2 10−1 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate PFA

10−2 10−1 100

False Alarm Rate PFA

10−2 10−1 100

False Alarm Rate PFA

Tr
ue

 P
os

iti
ve

 R
at

e 
P

C
Tr

ue
 P

os
iti

ve
 R

at
e 

P
C

Tr
ue

 P
os

iti
ve

 R
at

e 
P

C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

4

24

Area Under ROC Curve (AUROC)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5. ROC curves of the UCI wall-following robot navigation: (a) sensor readings 24, (b) sensor readings 4, (c) sensor readings 2, and (d) the area under ROC curves

(AUROC).

7948(mm) 

1885 
(mm) 

2973(mm) 

6173 
(mm) 

11013 (mm) 

3156 
(mm) 

1901(mm) 

1954(mm) 

2173 
(mm) 

MAP 
2732 
(mm) 

Fig. 6. The map used for Pioneer 3 DX wall-following navigation.

Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–3532
4.2. Experiments on the wall-following data from pioneer 3 DX

The data were collected as the Pioneer 3 DX mobile robot
navigates through the room following the wall in both clockwise
and counterclockwise directions. The sonar sensory data col-
lection was performed by commanding the robot to perform
four full rounds around the room as shown in Fig. 6, and the
clockwise/counterclockwise trajectories are shown in Fig. 7a and b,
respectively. Five controlling commands, including sharp left-
turn, slight left-turn, forward, slight right-turn, and sharp right-
turn, are used in the navigation.

In Tables 2 and 3, experimental results of PSO and HPSO on
OVR, OVO and DAG classifications are listed for clockwise and
counterclockwise trajectories, respectively. The table shows the
prediction result in a specific layout that allows visualization of
the performance of a supervised learning algorithm. Each column
of the matrix represents the instances in a predicted class, while
each row represents the instances in an actual class. All correct
predictions are located in the diagonal of the table to easily
identify classification errors, as the errors will be represented by
any non-zero values outside the diagonal.

As can be seen, HPSO has more percentage of samples located
in the main diagonal with a few percentage of samples misclassi-
fied to other classes, which indicates correct classifications in
most of the time. Furthermore, the distance of a misclassification
sample to the main diagonal is proportional to the level of errors;
the closer to the main diagonal indicates lower level of errors.
If more levels instead of the current 2 levels of slight and sharp
turns, an error-tolerance region could be set as a strip of elements
near the main diagonal of the table to be the correct controlling
margin.

4.3. Experimental system and the results

Experiments are further investigated on the Pioneer 3 DX
platform which is installed as the base of SIAT mobile robot for



Fig. 7. Pioneer 3 DX mobile robot trajectories. (a) Clockwise and (b) counterclockwise.

Table 2
Prediction percentage (%) of Clockwise trajectories, where each row represents a

known label and each column represents a predicted label. L: sharp left-turn, l:

slight left-turn, F: forward, r: slight right-turn, R: sharp right-turn.

PSO HPSO

OVR L l F r R L l F r R

L 88.0 8.3 3.7 L 100
l 75 25 l 50 25 25

F 8.6 61.7 29.7 F 4.7 92.2 3.1

r 1.3 1.8 96.9 r 1.1 98.9
R 100 R 80 20

OVO L l F r R L l F r R

L 93.5 6.5 L 99.5 0.5

l 100 l 75 25

F 8.6 57.1 32.0 2.3 F 3.1 95.3 1.6

r 4.0 94.7 1.3 r 0.1 1.3 98.6
R 60 40 R 20 80

DAG L l F r R L l F r R

L 93.5 6.5 L 99.5 0.5

l 25 75 l 75 25

F 7.0 56.3 34.4 2.3 F 3.1 94.6 2.3

r 0.1 3.4 95.2 1.3 r 0.1 1.0 98.9
R 60 40 R 20 80

Table 3
Prediction percentage (%) of Counterclockwise trajectories, where each row repre-

sents a known label and each column represents a predicted label. L: sharp left-

turn, l: slight left-turn, F: forward, r: slight right-turn, R: sharp right-turn.

PSO HPSO

OVR L l F r R L l F r R

L 45.7 43.2 6.2 4.9 L 76.1 18.3 5.6

l 4.7 90.4 4.9 l 98.3 0.9 0.8

F 7.1 13.3 67.2 12.4 F 3.4 83.9 5.1 7.6

r 100 r 27.3 72.7
R 4.2 0.5 95.3 R 100

OVO L l F r R L l F r R

L 79.0 11.1 9.9 L 95.8 4.2

l 11.8 83.2 5.0 l 99.5 0.5

F 10.6 86.7 2.7 F 2.5 96.6 0.9

r 100 r 54.5 45.5
R 1.9 2.3 8.4 87.4 R 100

DAG L l F r R L l F r R

L 77.8 21.0 1.2 L 95.8 4.2

l 11.7 83.4 4.7 0.2 l 99.5 0.5

F 18.6 77.0 4.4 F 1.7 97.5 0.8

r 71.4 28.6 r 54.5 45.5
R 1.9 3.7 5.6 88.8 R 100

Fig. 8. Sonar configuration (courtesy of ActivMedia Robotics, LLC) of Pioneer 3 DX

installed in SIAT mobile robot.

Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–35 33
the wall-following robot navigation. The platform can rotate with
zero radius, climb a 251 slope and cross a ditch of 2.5 cm. The
speed can reach 1.6 m/s. The mobile base has a motor with 500-
tick decoders and can carry out different kinds of robot motion
[28]. As the primary means of robot navigation, the frontal sonar
ring is composed of eight transducers arranged at angles 901, 501,
301, 101, �101, �301, �501, and �901, where the position of each
sonar is fixed in the array as shown in Fig. 8. Each sonar comes
with its own electronics for independent operation. During
normal operations, the sonars fire in sequence from 0 to 7 along
the array in Fig. 8.

As the experimental scenes shown in Fig. 9, by using the PSO-
based parameter selection for learning classifiers, the experiment
of robot navigation is successful and SIAT mobile robot can
complete wall-following tasks in an indoor environment. The
wall-following trajectory is further illustrated in Fig. 10. As can be
seen, the whole trajectory is matched with the environment well,
except in the right-lower part of the trajectory, where the height
of the nearby wall is just a little higher than the position of sonar
sensors. For other parts with concrete walls, the robot trajectory
is straight and stable from the accurate classification of unambig-
uous sonar inputs.
5. Conclusions

In this paper, parameter optimizations of intelligent classifiers
for wall-following robot navigation are investigated. A hybrid
particle scheme is proposed to select the optimal parameters. An
experimental study is given to validate the proposed selection
approach and discussions therein. Further exploration for meth-
ods to embed the search scheme when model re-training is a part
of future work.



Fig. 9. Scenes of SIAT mobile robot performing wall-following navigation in an indoor experiment.

−200 0 200 400 600 800 1000 1200 1400 1600 180
−3500

−3000

−2500

−2000

−1500

−1000

−500

0

x/mm

y/
m

m

Fig. 10. The trajectory of SIAT mobile robot in the wall-following experiment.

Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–3534
Acknowledgments

This work described in this paper is partially supported by the
National Natural Science Foundation of China (61005012), Shenz-
hen Fundamental Research Program (JC201105190948A and
JC201005270365A), and Guangdong Innovative Research Team
Program (201001D0104648280). The authors would like to thank
Sheng Wang, Ying Liu, Dawei Dai, Xin Kong and anonymous
reviewers for their highly constructive suggestions and
substantial help.
References

[1] D. Tao, X. Li, X. Wu, S.J. Maybank, Geometric mean for subspace selection,
IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009) 260–274.

[2] A.C. Lorena, A.C. de Carvalho, Evolutionary tuning of SVM parameter values in
multiclass problems, Neurocomputing 71 (16–18) (2008) 3326–3334.

[3] X. Wang, Z. Li, D. Tao, Subspaces indexing model on Grassmann manifold for
image search, IEEE Trans. Image Process. 20 (9) (2011) 2627–2635.

[4] N. Guan, D. Tao, Z. Luo, B. Yuan, Online nonnegative matrix factorization with
robust stochastic approximation, IEEE Trans. Neural Networks Learn. Syst. 23
(7) (2012) 1087–1099.

[5] Y. Wang, S. Chen, H. Xue, Can under-exploited structure of original-classes
help ECOC-based multi-class classification? Neurocomputing 89 (2012)
158–167.

[6] J. Yu, W. Bian, M. Song, J. Cheng, D. Tao, Graph based transductive learning for
cartoon correspondence construction, Neurocomputing 79 (2012) 105–114.

[7] C.-H. Chao, B.-Y. Hsueh, M.-Y. Hsiao, S.-H. Tsai, T.-H. Li, Real-time target
tracking and obstacle avoidance for mobile robots using two cameras, in:
ICCAS-SICE, 2009, pp. 4347–4352.

[8] G.N. DeSouza, A.C. Kak, Vision for mobile robot navigation: a survey, IEEE
Trans. Pattern Anal. Mach. Intell. 24 (2) (2002) 237–267.

[9] A.L. Freire, G.A. Barreto, M. Veloso, A.T. Varela, Short-term memory mechan-
isms in neural network learning of robot navigation tasks: a case study, in:
Proceedings of the Sixth Latin American Robotics Symposium (LARS’2009),
2009, pp. 1–6.
[10] M. Katsev, A. Yershova, B. Tovar, R. Ghrist, S. LaValle, Mapping and pursuit-

evasion strategies for a simple wall-following robot, IEEE Trans. Robotics 27

(2011) 113–128.

[11] Y. Liu, R. Fu, J. Wang, Y. Ou, X. Wu, A. Peng, A wall-following strategy for

mobile robots based on self-convergence, in: Proceedings of the IEEE

International Conference on Robotics and Biomimetics (ROBIO), 2011,

pp. 824–828.

[12] Y. Ou, H. Qian, X. Wu, Y. Xu, On stability region analysis for a class of human

learning controllers, in: Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS2010), 2010, pp. 1303–1309.

[13] R. Rifkin, A. Klautau, In defense of one-vs-all classification, J. Mach. Learn.

Res. 5 (2004) 101–141.

[14] A. Joshi, F. Porikli, N. Papanikolopoulos, Breaking the interactive bottleneck in

multi-class classification with active selection and binary feedback, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2010, pp. 2995–3002.

[15] X. Zhang, Y. Guo, Optimization of SVM parameters based on PSO algorithm,

in: Fifth International Conference on Natural Computation (ICNC), 2009,

pp. 536–539.

[16] K. Boese, A. Kahng, Simulated annealing of neural networks: the ‘cooling’

strategy reconsidered, in: IEEE International Symposium on Circuits and

Systems (ISCAS), vol. 4, 1993, pp. 2572–2575.

[17] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the

IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.

[18] S. Shi, H. Rabitz, Quantum mechanical optimal control of physical observa-

bles in micro systems, J. Chem. Phys. 92 (1) (1990) 364–376.

[19] K. Xu, L. Zhang, R. Fu, Y. Ou, Y. Xu, A stochastic scattering particle swarm

optimizer, in: Proceedings of the 2010 IEEE International Conference on

Robotics and Biomimetics, 2010.

[20] L. Zhang, K. Xu, R. Fu, Y. Ou, X. Wu, A stochastic perturbing particle swarm

optimization model, in: Proceedings of the 2010 Second WRI Global Congress

on Intelligent Systems, GCIS ’10, vol. 01, IEEE Computer Society, Washington,

DC, USA, 2010, pp. 35–38.

[21] Y. Liu, Y.F. Zheng, One-against-all multi-class SVM classification using

reliability measures, in: Proceedings of the International Joint Conference

on Neural Networks, 2005, pp. 849–854.

[22] J.C. Platt, N. Cristianini, J. Shawe-Taylor, Large margin DAGs for multiclass

classification, in: NIPS, 1999, pp. 547–553.

[23] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of

IEEE Word Congress on Computational Intelligence, 1998, pp. 69–73.



Y.-L. Chen et al. / Neurocomputing 113 (2013) 27–35 35
[24] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM
Trans. Intell. Syst. Technol. 2 (2011) 27:1–27:27. software available at
/http://www.csie.ntu.edu.tw/�cjlin/libsvmS.

[25] D. Dai, S. Wang, Y.-L. Chen, X. Wu, Y. Xu, A particle swarm optimization
algorithm based on the pattern search method, in: International Conference
on Computer Design and Applications (ICCDA), vol. 1, 2011, pp. 155–160.

[26] A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010. URL: /http://
archive.ics.uci.edu/mlS.

[27] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Lett. 27
(2006) 861–874.

[28] C. Chen, X. Wu, L. Han, Y. Ou, Butler robot, in: Proceedings of the IEEE
International Conference on Information and Automation, 2011, pp. 732–
737.
Yen-Lun Chen is an Assistant Professor at Shenzhen
Institutes of Advanced Technology, Chinese Academy
of Sciences. Chen received her B.S. and M.S. degrees
from the Department of Electrical Engineering at
National Taiwan University, Taipei, Taiwan, and her
Ph.D. degree from Department of Electrical and Com-
puter Engineering at the Ohio State University, Colum-
bus, Ohio, USA. Her research interests include machine
learning, pattern recognition, computer vision, and
their applications in the area of robotics and multi-
media signal processing.
Jun Cheng received Bachelor of Engineering, Bachelor
of Finance and Master of Engineering from the Uni-
versity of Science and Technology of China in 1999 and
2002 respectively. His Ph.D. degree was awarded at the
Chinese University of Hong Kong in 2006. Currently he
is with the Shenzhen Institutes of Advanced Integra-
tion Technology, Chinese Academy of Sciences, as a
Professor and Director of the Laboratory for Human–
Machine Control. His research interests include com-
puter vision, robotics, machine intelligence, and
control.
Chuan Lin received her master degree from College of
Mechanical and Electrical Engineering, Guilin Univer-
sity of Electronic Technology in 2012. She currently
works at the Chinese University of Hong Kong, Shenz-
hen (CUHKSZ) in China. Her research interests include
computer vision and robotics.
Xinyu Wu is a Professor at Shenzhen Institutes of
Advanced Technology, and an Associate Director of
Center for Intelligent and Biomimetic Systems. He
received his B.E. and M.E. degrees from the Depart-
ment of Automation, University of Science and Tech-
nology of China in 2001 and 2004, respectively. His
Ph.D. degree was awarded at the Chinese University of
Hong Kong in 2008. He has published over 50 papers
and a monograph. His research interests include com-
puter vision, robotics, and intelligent system.
Yongsheng Ou is a Professor at Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences.
He holds a B.Sc. degree in Mechanical and Electrical
Engineering (Beijing University of Aeronautics and
Astronautics, 1995) and an M.Sc. degree in Electrical
Engineering (Institute of Automation, Chinese Acad-
emy of Sciences, 1998). Ou received a Ph.D. degree in
Automation and Computer-Aided Engineering from
the Chinese University of Hong Kong in 2004. He is a
coauthor of the monograph on Control of Single Wheel
Robots (Springer, 2005). His research interests include
learning control by demonstration, computer vision,

control of biped robots and control of distributed

parameter systems with applications to fusion reactors.
Yangsheng Xu is a Professor of Automation and
Computer-Aided Engineering at the Chinese University
of Hong Kong where he has worked since 1997. He
received BSE and MSE from Zhejiang University in
China, and Ph.D. from the University of Pennsylvania
in US in the area of Robotics. His current research
interests are in the areas of robotics, intelligent sys-
tems, and electric vehicles.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Classification-based learning by particle swarm optimization for wall-following robot navigation
	Introduction
	Problem statement
	Binary classification
	Multi-category classification

	Parameter selection via particle swarm optimization
	Basic particle swarm optimization
	Principle of the hybrid particle swarm algorithm
	Parameter analysis of the hybrid particle swarm algorithm
	Realization of the hybrid particle swarm algorithm

	Experimental study
	Experimental description
	Experiments on the wall-following data from pioneer 3 DX
	Experimental system and the results

	Conclusions
	Acknowledgments
	References




