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Abstract: This paper investigates the numerical solution of a viscoelastic continuous beam whose damping be-
haviours are defined in term of fractional derivatives of arbitrary order. The Homotopy Perturbation Method
(HPM) is used to obtain the dynamic response. Unit step function response is considered for the analysis.
The obtained results are depicted in various plots. From the results obtained it is interesting to note that
by increasing the order of the fractional derivative the beam suffers less oscillation. Similar observations
have also been made by keeping the order of the fractional derivative constant and varying the damping
ratios. Comparisons are made with the analytic solutions obtained by Zu-feng and Xiao-yan [Appl. Math.
Mech. 28, 219 (2007)] to show the effectiveness and validation of this method.
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1. Introduction

In recent years, fractional calculus has been used tomodel physical and engineering problems in fields suchas solid mechanics, fluid mechanics, biology, physics,and other areas of engineering and science. Since, it istoo difficult to obtain the exact solution of a fractionaldifferential equation so, one may need a reliable andefficient numerical technique for solving fractional dif-ferential equations. Many important works on fractionalcalculus have been reported in the last few decades and
∗E-mail: diptiranjanb@gmail.com
†E-mail: sne_chak@yahoo.com (Corresponding author)

several excellent books have been written by differentauthors representing the scope and various aspects of thisfield such as: Kiryakov [37], Golmankhaneh [2], Baleanuet al. [6, 7], Miller and Ross [22], Oldham and Spanier[14], Podlubny [8], and Samko et al. [31]. These booksalso give an extensive review of fractional derivativeand fractional differential equations which may helpthe reader understand the basic concepts of fractionalcalculus.Many authors have developed various methodsto solve ordinary and partial fractional differentialequations integral to physical systems. Some commonlyused methods are the Adomian Decomposition Method(ADM), Variational Iteration Method (VIM), DifferentialTransform Method (DTM), etc. which are described in[1, 30, 32–36] and the references mentioned therein.
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Some other related works are reviewed and cited herefor a better understanding of the present investigation.Half-order fractional derivative models of viscoelasti-cally damped structures have been excellently studiedby Bagley and Torvik [28, 29]. Laplace transform isconsidered in [28] to find response characteristics. Also,Koeller [26] has used a fractional model to describe creepand relaxation functions for viscoelastic materials. In[15, 16] Fourier transformation is used to analyse thedamping description of the impulse response function ofoscillators with fractional derivatives. Time domain finiteelement analysis of viscoelastic structures with fractionalderivatives is clearly explained in [20]. The eigenvectorexpansion method is successfully implemented in [17] tofind the solution of dynamic systems containing fractionalderivatives. Various numerical methods are applied in[4, 18, 20, 21, 27] to find the responses of a fractionallydamped system.
Recently, the homotopy perturbation method has beenfound to be a powerful tool for analysing this type ofsystem involving fractional derivatives. The HomotopyPerturbation Method (HPM) was first developed byJi-Huan He in 1999 [9–13] and many authors applied thismethod to solve various linear and non-linear functionalequations of scientific and engineering problems. Thesolution is considered as the sum of infinite series, whichconverges rapidly to accurate solutions. In the homotopytechnique (in topology), a homotopy is constructed withan embedding parameter which is considered as a "smallparameter". Very recently the homotopy perturbationmethod has been applied to a wide class of physicalproblems [3, 5, 9, 11, 13, 24, 25].
In this analysis, the homotopy perturbation method is usedto handle the dynamic analysis of a fractionally dampedviscoelastic continuous beam. The same problem is stud-ied by Zu-feng and Xiao-yan [19] using the adomain de-composition method. A damping factor is defined with afractional derivative of an arbitrary order. In the followingsections, preliminaries are described first, followed by theimplementation of HPM for fractionally damped viscoelas-tic beam. Then the response analysis for a unit step loadis presented and finally numerical examples and conclu-sions are given.
2. Preliminaries
In this section, we present some notations, definitions andpreliminary facts which are used further in this paper [8,

14, 22, 31, 37].
Definition 1 (Riemann-Liouville fractional inte-
gral).There are several definitions of fractional integrals. Themost commonly used is by Riemann-Liouville and Caputo[8]. The Riemann-Liouville integral operator Jα of order
α ≥ 0, is defined by

Jα f (t) = 1Γ(α)
t∫

0
(t − τ)α−1f (τ)dτ, t > 0.

Definition 2 (Caputo derivative).The fractional derivative of f (t) in the Caputo sense isdefined as
Dα f (t) = Jm−αDmf (t)
=
 1Γ(m−α) t∫

0
f (m)(τ)dτ(t−τ)α+1−m , m− 1 < α < m,m ∈ N

dm
dxm f (t), α = m,m ∈ N

where, the parameter α is the order of the derivative andis allowed to be real or complex. In this paper, onlyreal and positive α will be considered. For the Caputo’sderivative we have
DαC = 0, C is a constatnt

Dα tβ = { 0, (β ≤ α − 1)Γ(β+1)Γ(β−α+1) tβ−α , (β > α − 1)
Similar to integer-order differentiation, Caputo’s fractionaldifferentiation is a linear operation:

Dα (λf (t) + µg(t)) = λDα f (t) + µDαg(t),
where,λ, µ are constants and satisfies the so called Leib-nitz rule:

Dα (g(t)f (t)) = ∞∑
k=0
(
α
k

)
g(k)(t)Dα−k f (t),

if f (τ)is continuous in [0, t] and g(τ) has n+ 1continuousderivatives in [0, t].
Definition 3 (Mittage-Leffer function).A two-parameter function of the Mittage-Leffer type isdefined by the series expansion [8]

Eα,β (z) = ∞∑
k=0

zkΓ(αk + β) , (α > 0, β > 0).



Diptiranjan Behera, Snehashish Chakraverty

3. Application of HPM [10, 11] to
a fractionally damped viscoelastic
beam
To develop numerical schemes for a fractionally dampedviscoelastic beam [19] let us consider a linear differentialequation which describes the dynamics of the system withthe damping as an arbitrary fractional derivative of order
α

ρA∂
2v
∂t2 + c ∂

αv
∂tα + EI ∂

4v
∂x4 = F (x, t) (1)

where ρ, A, c, E and I represent the mass density, crosssectional area, damping coefficient per unit length, Young’smodulus of elasticity and moment of inertia of the beamrespectively. F (x, t) is the externally applied force and
v (x, t) is the transverse displacement. ∂α

∂tα is the fractionalderivative of order α ∈ (0, 1) of the displacement func-tion v (x, t). Initial conditions are considered as v (x, 0) = 0and v̇ (x, 0) = 0. Homogeneous initial conditions are takenhere to compare the solution obtained by the presentHPM with the solution of [19].Equation (1) can be written as
∂2v
∂t2 + c

ρA
∂αv
∂tα + EI

ρA
∂4v
∂x4 = F (x, t)

ρA . (2)
According to HPM, we may construct a simple homotopyfor an embedding parameter p ∈ [0, 1] as follows

(1− p) ∂2v
∂t2 +

p
(
∂2v
∂t2 + c

ρA
∂α v
∂tα + EI

ρA
∂4v
∂x4 − F (x,t)

ρA

) = 0, p ∈ [0, 1] (3)
or

∂2v
∂t2 + p

(
c
ρA

∂αv
∂tα + EI

ρA
∂4v
∂x4 − F (x, t)

ρA

) = 0. (4)
Here, p is considered as a small homotopy parameter 0 ≤
p ≤ 1. For p = 0, Equations (3) and (4) become a linearequation i.e. ∂2v

∂t2 = 0, which is easy to solve. For p = 1,Equations (3) and (4) turn out to be same as the originalEquation (1) or (2). This is called deformation in topology.
∂2v
∂t2 and c

ρA
∂α v
∂tα + EI

ρA
∂4v
∂x4 − F (x,t)

ρA are called homotopic.Next, we can assume the solution of Equation (3) or (4)as a power series expansion in p as
v (x, t) = v0(x, t) + pv1(x, t) + p2v2(x, t) + p3v3(x, t) + · · · ,(5)

where vi(x, t) for i = 0, 1, 2, . . . are functions yet to bedetermined. Substituting Equation (5) into Equation (3)or (4), and equating the terms with the identical power of
p we can obtain a series of equations of the form

p0 := ∂2v0
∂t2 = 0, (6)

p1 : ∂2v1
∂t2 + c

ρA
∂αv0
∂tα + EI

ρA
∂4v0
∂x4 − F (x, t)

ρA = 0, (7)
p2 : ∂2v2

∂t2 + c
ρA

∂αv1
∂tα + EI

ρA
∂4v1
∂x4 = 0, (8)

p3 : ∂2v3
∂t2 + c

ρA
∂αv2
∂tα + EI

ρA
∂4v2
∂x4 = 0, (9)

p4 : ∂2v4
∂t2 + c

ρA
∂αv3
∂tα + EI

ρA
∂4v3
∂x4 = 0, (10)

and so on.Choosing initial approximation v0(x, 0) = 0 and applyingthe operator L−1
tt (which is the inverse of the operator Ltt =

∂2
∂t2 ) on both sides of Equations (6) to (10) one may obtainthe following equations

v0(x, t) = 0, (11)

v1(x, t) = L−1
tt

(
− c
ρA

∂αv0
∂tα −

EI
ρA

∂4v0
∂x4 + F (x, t)

ρA

)
, (12)

v2(x, t) = L−1
tt

(
− c
ρA

∂αv1
∂tα −

EI
ρA

∂4v1
∂x4

)
, (13)

v3(x, t) = L−1
tt

(
− c
ρA

∂αv2
∂tα −

EI
ρA

∂4v2
∂x4

)
, (14)

v4(x, t) = L−1
tt

(
− c
ρA

∂αv3
∂tα −

EI
ρA

∂4v3
∂x4

)
, (15)

and so on.Now substituting these terms in Equation (5) with p→ 1one may get the approximate solution of Equation (1) asfollows.
v (x, t) = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t)++v4(x, t) + · · · (16)

The solution series converge very rapidly. Proof of con-vergence of the above series may be found in [10, 11].The rapid convergence means that only a few terms arerequired to get the approximate solutions.
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4. Response analysis
Similar to [19] the external applied force F (x, t) is consid-ered as

F (x, t) = f (x)g(t),
where f (x) is a specified space dependent deterministicfunction, and g(t) is a time dependent process. We willnow consider the response of the beam to a unit stepload of the form g(t) = Bu(t) where u(t) is the Heavisidefunction and B is a constant. By using HPM we have

v0(x, t) = 0, (17)
v1(x, t) = fB

ρA
t22 , (18)

v2(x, t) = − cfB
ρ2A2 t4−αΓ(5− α) − EIBf (4)

ρ2A2 t4Γ(5) , (19)
v3(x, t) = c2fB

ρ3A3 t6−2αΓ(7−2α) + 2cEIBf (4)
ρ3A3 t6−αΓ(7−α)+

+ E2I2Bf (8)
ρ3A3 t6Γ(7) ,

(20)
v4(x, t) = − c3fB

ρ4A4 t8−3αΓ(9−3α) − 3c2EIBf (4)
ρ4A4 t8−2αΓ(9−2α)−

3cE2I2Bf (8)
ρ4A4 t8−αΓ(9−α) − E3I3Bf (12)

ρ4A4 t8Γ(9)
(21)

and so on, where f (i) = ∂if
∂xi .In a similar manner the rest of the components can beobtained. Therefore, the solution can be written in itsgeneral form as

v (x, t) = B
ρA

∞∑
r=0 (−1)r

r!
(
EI
ρA

)r
f (4r)t2(r+1)

∞∑
j=0
(
−c
ρA

)j (j+r)!t(2−α)j
j!Γ((2−α)j+2r+3) .

(22)

Equation (21) can now be rewritten as follows
v (x, t) = B

ρA

∞∑
r=0 (−1)r

r!
(
EI
ρA

)r
f (4r)t2(r+1)E r2−α,αr+2

(
−c
ρA t

2−α). (23)
In Eq. (22), E r

λ,µ(y) is called the Mittage-Leffler functionof two parameters λ and µ. Here
E r
λ,µ(y) = ∞∑

j=0
(j + r)!yj

j!Γ(λj + λr + µ) , r = 0, 1, 2, . . . ,

λ = 2− α and µ = αr + 2.
It is worth mentioning that the normal mode and theLaplace transform techniques have been applied to thesystem (1) with α = 1/2 by Agrawal [23] to find an ana-lytical solution. Also, the Adomain decomposition method[19] has been used to find an analytical solution. Zu-fengand Xiao-yan [19] reported in their remarks that the re-sults obtained are identical with [23] for the special valuesof α and F (x, t). One may find the solution of Equation(1) under homogeneous initial conditions as mentioned in[19, 23] as

v (x, t) = ∞∑
j=1

1
mj
φj

t∫
0
Gj (t − ξ)fj (ξ)dξ, (24)

where Gj is the fractional Green’s function associated withthe operator Pj ( dαdtα ), fj ≡ fj (t) is defined by
fj = L∫

0
F (x, t)φj (x)dx

and φj ≡ φj (x) satisfies EI d4φj
dx4 = ρAω2

j φj with the or-thogonality condition
L∫

0
ρAφiφjdx = { mj , i = j0, i 6= j .

Here L is the length of the beam, mj is the generalizedmass in the j-th mode and ωj is the natural frequencyof the j-th mode. We have investigated the problem withsome values of α and F (x, t) below to compare the solutionof [19, 23] and these agree well.
5. Numerical results and discus-
sions
As discussed above, a unit step function response hasbeen considered for analysis. The calculated results aredepicted in plots are discussed below.
Equation (21) or (22) provides the desired expressions forthe considered loading condition. In order to show theresponse in a precise way, some numerical results arepresented in this section. We have considered a simplysupported beam, hence one may have the expression for
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the force distribution for single degree freedom idealiza-tion as
f (x) = sin( πxL ).

Here the numerical computation has been done bytruncating the infinite series (21) or (22) to a finitenumber of terms. For numerical simulations, let us denote
c/m and EI/ρA respectively as 2ηω3/2 and ω2 where, ωis the natural frequency and η is the damping ratio. Thevalues of the parameters are taken as B = 1, ρA = 1,
L = π and m = 1.
Figure (1) gives the effect of displacement against timefor various values of α(= 0.2, 0.5, 0.8) In this computation
x and η are taken as 1/2. Figures 1(a) and 11(b) presentthe plot for ω = 5rad/s and ω = 10rad/s respectively.A similar simulation has been done with damping ratio
η = 0.05 and the obtained results are depicted in Figure2. The dynamic responses versus time for differentvalues of η(= 0.05, 0.5, 1) are given in Figure 3. In thiscomputation α = 0.2 and x = 1/2 are considered. AgainFigures 2(a) and 2(b) depict the plot for ω = 5rad/s and
ω = 10rad/s respectively. Finally Figure 4 cites theresults as above with α = 0.5.
It is interesting to note from Figures (1) and (2) that ifwe increase the order of the fractional derivative α , thebeam suffers more oscillations for smaller value of α . Sim-ilar observations may be made by keeping the order of thefractional derivative constant and varying the damping ra-tios as shown in Figures (3) and (4). It can clearly be seenthat increasing the value of the damping ratios decreasesthe oscillations.
6. Conclusions
The Homotopy perturbation method has successfully beenapplied to the solution of a fractionally damped viscoelas-tic beam, where the fractional derivative is considered asof arbitrary order. Unit step response functions with ho-mogeneous initial conditions are chosen to illustrate theproposed method. Performance of this method is shownand its results are compared with analytical solution ob-tained by Zu-feng and Xiao-yan [19]. It is interesting tonote that the results obtained by the presented methodexactly matches the analytical solution obtained in [19].Though the solution by HPM is of the form of an infiniteseries, it can be written in a closed form in some cases.The main advantage of HPM is the capability to achieveexact solution and rapid convergences with few terms.

Figure 1. Unit step responses along x = 1/2 with natural frequency
(a) ω = 5rad/s, (b) ω = 10rad/s and damping ratio η =0.5

Figure 2. Unit step responses along x = 1/2 with natural frequency
(a) ω = 5rad/s, (b) ω = 10rad/s and damping ratio η =0.05
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Figure 3. Unit step responses along x = 1/2 with natural frequency
(a) ω = 5rad/s, (b) ω = 10rad/s and damping ratios η =0.05, 0.5 and 1 for α = 0.2

Figure 4. Unit step responses along x = 1/2 with natural frequency
(a)ω = 5rad/s, (b)ω = 10rad/s and damping ratios η =0.05, 0.5 and 1 for α = 0.5
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