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This paper presents a discrete physical model to approach the problem of nonlinear vibrations of beams resting on elastic
foundations. The model consists of a beam made of several small bars, evenly spaced. The bending stiffness is modeled by spiral
springs, and the Winkler soil stiffness is modeled using linear vertical springs. Concentrated masses, presenting the inertia of the
beam, are located at the bar ends. Finally, the nonlinear effect is presented by the axial forces in the bars, assumed to behave as
longitudinal springs, due to the change in their length induced by the Pythagorean Theorem. This model has the advantage of
simplifying parametric studies, because of its discrete nature, allowing any modification in the mass matrix, the stiffness matrix,
and the nonlinearity tensor to be made separately. Therefore, once the model is established, various practical applications may be
performed without the need of going through all the formulation again. The study of the nonlinear behavior makes the solution of
the movement equation rise in complexity. By considering this discrete model and using the linearization method, one can achieve
an idealized approach to this nonlinear problem and obtain quite easily approximate solutions.

1. Introduction

The analysis of the vibration of beams resting on elastic
foundations wears a practical and theoretical interest in
many fields such as civil, mechanical, and transportation
engineering. Analytical and numerical methods applied to
the modeling of such a problem are extensively addressed in
the literature. However, the combination between the emer-
gence of high-performance computers and problems com-
plexity made the discrete methods more appealing.

A discrete method such as the Finite Element Method
(FEM) is the first to address the problem numerically [1–
3]. The Differential Quadrature Method (DQM) is also
employed for the solution to similar engineering problems
involving beam vibrations and foundations [4–6]. Therefore,
Malekzadeh and Karami [7] gather the advantages of both
previous methods (DQM and FEM) to perform the free vi-
bration and buckling analysis of thick beams on two-
parameter elastic foundations.

On the other hand, soil behavior wears a great complexity,
because of its nonlinear nature. In that order, literature has
investigated multiple soil models starting from the idealized
elastic theories modeled by Winkler to the more complex
viscoelastic theories of Pasternak and Hetinyi. Similarly, Kerr
[8] carries a study showing the evolution of soil theories with
their extensions.

The aim of this work is the development of a flexible
general discrete model for linear and nonlinear vibrations of
beams resting on elastic foundations, via the adaptation and
the extension of the approach presented in [9]. Accordingly,
the process of discretization carried out is intended to
allow efficient variation of beam and soil geometrical and
mechanical characteristics, in order to make it easy to
perform multiple parametric studies.

For nonlinear vibrations, the multimode analysis leads to
a coupled nonlinear differential system involving the con-
tribution to various modes. Using the harmonic balance
method, Benamar [18] and Benamar et al. [19] reduce the
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nonlinear free vibration problem to a set of nonlinear
algebraic equations. Consequently, the objective here is the
investigation into linear and nonlinear vibrations, using the
discrete physical model developed for various types of soil
stiffness, and beam end conditions.

This study establishes a simplification to the nonlin-
ear problem induced by large deflections. However, the
nonlinearity tensor obtained becomes heavy in terms of
calculation for high values of the discretization parameter 𝑁
(presenting the number of masses in the physical model in
Figure 2). In fact, we addressed this complexity and proposed
a simplification of the calculation, leading to an efficient
algorithm.

The structure of this paper is as follows: Section 2.1
presents the general formulation, where the continuous and
discretemodels are detailed, in order to show their theoretical
similarities. After the establishment of the discrete model,
the following Section 2.2 is concerned with determination of
the discrete model parameters and the nondimensional
formulation. Finally, Section 2.3 introduces a solution to
the multimodal nonlinear problem using a linearization
procedure.

The physical discrete model validation is done in Sec-
tion 3, devoted to details and comments on the results
obtained in the cases considered. An examination is made of
how far the results deviate from the linear and the nonlinear
continuous theories, and a discussion is given about their
range of validity under the different assumptions adopted.

The main purpose of this work is achieved in Section 4,
in which straight applications of the theory are developed and
validated via comparisons with previous references. The first
application deals with a partially supported beam on elastic
foundations, where the springs presenting the soil reaction
are applied to only a limited portion of the beam span. In
the second application, the beam examined is resting on
a variable elastic foundation, where the distribution of soil
spring stiffness is linear or parabolic.

2. General Theory

A nonlinear discrete model of a beam, made of extensional
bars, concentrated masses and rotational springs located at
the bar ends, is introduced in [9] to approach the continuous
theory using different assumptions. In the present work, a
beam resting on an elastic soil is undergoing the same dis-
cretization process by extending and completing the previous
model.

2.1. General Formulation. This section presents the discrete
and continuous models for nonlinear vibrations of beams
resting on elastic foundations. Both models are based on the
Lagrangian principle, leading to a formally identical descrip-
tion.The linear behavior of the mechanical system examined
is determined by the classical mass and rigidity matrices 𝑚𝑖𝑗
and 𝑘𝑖𝑗. On the other hand, the nonlinear behavior, presented
by nonlinearity tensor 𝑏𝑖𝑗𝑘𝑙 due to the axial forces induced
by the large vibration amplitudes in the continuous case, is
established by the application of the PythagoreanTheorem in
the discrete physical model.
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Figure 1: A continuous beam supported onWinkler elastic founda-
tion.

2.1.1. Continuous Model. Before introducing the extended
formulation of the discrete model, a quick review of the
theory behind the continuousmodel [18] is introduced. Let us
consider transverse vibrations of a beam, shown in Figure 1,
resting on elastic foundations, having the characteristics (𝑆,𝐿,𝐻, 𝐼, 𝐸, 𝜌, and 𝑘) defined in Nomenclature.The total beam
strain energy can be written as the sum of the strain energy
due to bending denoted as 𝑉𝑠𝑙 and the strain energy induced
by Winkler springs 𝑉𝑙𝑙 plus the axial strain energy 𝑉nl due to
the axial load induced by large deflections. Thus 𝑉𝑠𝑙 , 𝑉𝑙𝑙 , 𝑉nl,
and the kinetic energy 𝑇 are as follows [20]:

𝑉𝑠𝑙 = 𝐸𝐼2 ∫𝐿
0

(𝜕2𝑊𝜕𝑥2 )
2 𝑑𝑥,

𝑉𝑙𝑙 = 𝐸𝐼2 ∫𝐿
0

(𝑊)2 𝑑𝑥,
𝑉nl = 𝐸𝑆8𝐿 (∫𝐿

0
(𝜕𝑊𝜕𝑥 )2 𝑑𝑥)2 ,

𝑇 = 𝜌𝑆2 ∫𝐿
0

(𝜕𝑊𝜕𝑡 )2 𝑑𝑥,

(1)

where𝑊 is the beam transverse displacement. Using a gener-
alized parameterization and the usual summation convention
used in [18], the transverse displacement can be described as
[20]

𝑊(𝑥, 𝑡) = 𝑞𝑖 (𝑡) 𝑤𝑖 (𝑥) for 𝑖, 𝑗 = 1, . . . , 𝑁. (2)

By replacing 𝑊 (2) in its new form into the energy
expressions 𝑉𝑠𝑙 , 𝑉𝑙𝑙 , 𝑉nl, and 𝑇 (1), one gets

𝑉𝑠𝑙 = 𝑘𝑠𝑖𝑗2 𝑞𝑖𝑞𝑗, (3)

𝑉𝑙𝑙 = 𝑘𝑙𝑖𝑗2 𝑞𝑖𝑞𝑗, (4)

𝑉nl = 𝑏𝑖𝑗𝑘𝑙2 𝑞𝑖𝑞𝑗𝑞𝑘𝑞𝑙, (5)

𝑇 = 𝑚𝑖𝑗2 𝑞̇𝑖𝑞̇𝑗 (6)
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Figure 2: A multi-degree-of-freedom discrete model made of 𝑁 concentrated masses, connected by longitudinal and spiral springs (bar
characteristics) and longitudinal springs (soil stiffness).

in which 𝑚𝑖𝑗, 𝑘𝑠𝑖𝑗, 𝑘𝑙𝑖𝑗, and 𝑏𝑖𝑗𝑘𝑙 are defined as follows in the
modal basis (MB):

𝑚𝑖𝑗 = 𝜌𝑆∫𝐿
0

𝑤𝑖𝑤𝑗𝑑𝑥 for 𝑖, 𝑗 = 1, . . . , 𝑁,
𝑘𝑠𝑖𝑗 = 𝐸𝐼∫𝐿

0

𝜕2𝑤𝑖𝜕𝑥2
𝜕2𝑤𝑗𝜕𝑥2 𝑑𝑥 for 𝑖, 𝑗 = 1, . . . , 𝑁,

𝑘𝑙𝑖𝑗 = 𝑘∫𝐿
0

𝑤𝑖𝑤𝑗𝑑𝑥 for 𝑖, 𝑗 = 1, . . . , 𝑁,
𝑏𝑖𝑗𝑘𝑙 = 𝐸𝑆4𝐿 ∫𝐿

0

𝜕𝑤𝑖𝜕𝑥
𝜕𝑤𝑗𝜕𝑥 𝑑𝑥∫𝐿

0

𝜕𝑤𝑘𝜕𝑥 𝜕𝑤𝑙𝜕𝑥 𝑑𝑥
for 𝑖, 𝑗, 𝑘, 𝑙 = 1, . . . , 𝑁.

(7)

For a conservative system, the dynamic behavior of the
structure may be obtained by Lagrange’s equations [20]:

− 𝜕𝜕𝑡 ( 𝜕𝑇𝜕𝑞̇𝑟) + 𝜕𝑇𝜕𝑞𝑟 −
𝜕𝑉𝜕𝑞𝑟 = 0 for 𝑟 = 1, . . . , 𝑁, (8)

where 𝑉 = 𝑉𝑠𝑙 + 𝑉𝑙𝑙 + 𝑉nl. By introducing the energy
expressions, that is, (3) to (6), into (8), one gets

𝑚𝑖𝑟𝑞̈𝑖 + 𝑘𝑠𝑖𝑟𝑞𝑖 + 𝑘𝑙𝑖𝑟𝑞𝑖 + 2𝑞𝑖𝑞𝑗𝑞𝑘𝑏𝑖𝑗𝑘𝑟 = 0
for 𝑟 = 1, . . . , 𝑁. (9)

This nonlinear differential system (9)may be expressed in
a matrix form as

[M] {q̈} + [K𝑠] {q} + [K𝑙] {q} + 2 [B (q)] {q} = 0, (10)

where [M], [K𝑠], [K𝑙], and [B(q)] are, respectively, the mass
matrix, the bending rigidity matrix, the Winkler springs
rigidity matrix, and the nonlinear rigidity matrix.

According to the conclusion of [9, 18, 21, 22], a harmonic
distortion of the nonlinear response of a harmonically exited
structure happens at large transverse vibration amplitudes.
However, it is shown both experimentally and theoretically
that the higher harmonic components remain very small,

compared to the response first harmonic component. Conse-
quently, the nonlinear free response of the beam is assumed
in the present paper, as inmany previous ones, to be drawn as
[18, 20]

𝑞𝑖 = 𝑎𝑖 cos (𝜔nl𝑡) , (11)

where 𝑎𝑖’s are the contribution coefficients to the beam
nonlinear mode shapes. By replacing (11) in (10) and applying
the harmonic balance method, one has

([K𝑠] + [K𝑙]) {A} − (𝜔)2 [M] {A} + 32 [B (A)] {A}
= 0. (12)

At this point, the vibration of a continuous Euler-
Bernoulli beam resting on elastic foundations is put under a
matrix form. It is interesting to note that the model presented
in this section and summarized in (12) can be considered as a
multidimensional form of the Duffing equation, very often
encountered in nonlinear vibration analyses of structures
with cubic nonlinearities. The solution to this nonlinear
equation is discussed in Section 2.3.

2.1.2. DiscreteModel. In order to adapt the discrete model [9]
to the case of a beam resting on Winkler elastic foundations
and to compare it to the continuous model established in
Section 2.1.1, let us consider the𝑁-degree-of-freedom (DOF)
system shown in Figure 2, made of 𝑁 concentrated masses𝑚1, . . . , 𝑚𝑁, 𝑁 + 1 bars presented by longitudinal linear
springs, 𝑁 + 2 torsional springs, and 𝑁 longitudinal linear
soil springs. 𝐶𝑟 is the stiffness coefficient of the rth spiral
spring, for 𝑟 = 1 to 𝑁 + 2. The moment M in the spiral
spring is given by M = −𝐶𝑟Δ𝜃; Δ𝜃 = 𝜃𝑟 − 𝜃𝑟−1 being the
angle between the bars adjacent to the node r, considered as
longitudinal springs of length 𝑙𝑟 and stiffness 𝑘𝑏𝑟, 𝑟 = 1, to𝑁.
TheWinkler foundations are modeled using the longitudinal
vertical spring’s distribution, with 𝑘𝑙𝑟 presenting the stiffness
coefficient of the rth linear spring, for 𝑟 = 1 to 𝑁.

Using vector notation, {d1}; {d2}; . . . ; {d𝑖}; . . . ; {d𝑁} is the
displacement basis, denoted as DB, and 𝑦1 to 𝑦𝑁 are,
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respectively, the transverse displacements of the masses 𝑚1
to 𝑚𝑁 from the horizontal equilibrium positions (𝑦 = 0) of
the system corresponding to the nondeformed positions of
the springs (spiral and linear).The vectors {d𝑖} are defined by

{d1}𝑇 = [1 0 0 0 ⋅ ⋅ ⋅ 0] ;
{d2}𝑇 = [0 1 0 0 ⋅ ⋅ ⋅ 0] ;

...
{d𝑖}𝑇 = [0 0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0] ;

...
{d𝑁}𝑇 = [0 0 0 0 ⋅ ⋅ ⋅ 1] ,

(13)

with {d𝑖}𝑇 being the unit displacement of the ith mass. The
displacement vector can be written in DB as

{y} = 𝑦1 {d1} + 𝑦2 {d2} + ⋅ ⋅ ⋅ + 𝑦𝑖 {d𝑖} + ⋅ ⋅ ⋅
+ 𝑦𝑁 {d𝑁} ; (14)

by considering the modal basis {{Φ1}, {Φ2}, . . . , {Φ𝑖},. . . , {Φ𝑁}}, obtained by solution of the linear eigenvalue
problem and denoted as MB, the displacement vector can be
expressed as

{y} = 𝑦1 {Φ1} + 𝑦2 {Φ2} + ⋅ ⋅ ⋅ + 𝑦𝑖 {Φ𝑖} + ⋅ ⋅ ⋅
+ 𝑦𝑁 {Φ𝑁} , (15)

where {Φ𝑖} is the 𝑖th linear mode shape of the system and𝑦1, 𝑦2, . . . , 𝑦𝑖, . . . , 𝑦𝑁 are the components of the mass dis-
placements expressed in MB. {Φ𝑖} is denoted in DB as

{Φ𝑖}𝑇 = [𝜑1𝑖 𝜑2𝑖 ⋅ ⋅ ⋅ 𝜑1𝑁] for 𝑖 = 1, . . . , 𝑁. (16)

Using the transition matrix [Φ] from DB to MB, the two
sets of coordinates in the two bases are related by

[𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝑁] = [Φ] [𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝑁]𝑇 . (17)

So, the displacement vector can be written by analogy
with the continuous displacement vector 𝑞𝑖, as [9]

𝑦𝑖 = 𝐴discr
𝑖 cos (𝜔nl

discr𝑡) = 𝑎𝑗𝜑𝑖𝑗 cos (𝜔nl
discr𝑡)

for 𝑖, 𝑗 = 1, . . . , 𝑁, (18)

where 𝐴discr
𝑖 is the modulus of the displacement 𝑦𝑖 expressed

in DB (or the contribution of the normalized vector {d𝑖} of
DB) and 𝑎𝑗 is the modulus of the displacement 𝑦𝑖 expressed
in MB (or the contribution of the normalized vector {Φ𝑖}
of MB). 𝜔nl

discr is the nonlinear frequency of the discrete
system associated with the amplitude 𝐴discr

𝑖 . Using the usual
summation convention for the repeated indices 𝑖, 𝑗, 𝑘, and 𝑙,
the kinetic, linear, and nonlinear strain energy expressions,

obtained by replacement of the expression (18) of 𝑦𝑖 in the
energy expressions (3) to (6), are

𝑇 = 12𝑎𝑖𝑎𝑗 (𝜔nl
discr)2𝑚𝑖𝑗sin2 (𝜔nl

discr𝑡)
for 𝑖, 𝑗 = 1, . . . , 𝑁, (19)

𝑉𝑠𝑙 = 12𝑎𝑖𝑎𝑗𝑘𝑠𝑖𝑗cos2 (𝜔nl
discr𝑡) for 𝑖, 𝑗 = 1, . . . , 𝑁, (20)

𝑉𝑙𝑙 = 12𝑎𝑖𝑎𝑗𝑘𝑙𝑖𝑗cos2 (𝜔nl
discr𝑡) for 𝑖, 𝑗 = 1, . . . , 𝑁, (21)

𝑉nl = 12𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙cos4 (𝜔nl
discr𝑡)
for 𝑖, 𝑗, 𝑘, 𝑙 = 1, . . . , 𝑁, (22)

where 𝑚𝑖𝑗, 𝑘𝑠𝑖𝑗, 𝑘𝑙𝑖𝑗, and 𝑏𝑖𝑗𝑘𝑙 are, respectively, the general
terms of the mass tensor, the linear rigidity tensors cor-
responding to the spiral and longitudinal vertical springs,
and the nonlinear rigidity tensor in MB. The relationships
between the expressions for these tensors in DB and MB can
be obtained using the transitionmatrix [Φ] as follows [19, 23]:

𝑚𝑖𝑗 = 𝜑𝑠𝑖𝜑𝑡𝑗𝑚𝑠𝑡,
𝑘𝑠𝑖𝑗 = 𝜑𝑠𝑖𝜑𝑡𝑗𝑘𝑠𝑠𝑡,
𝑘𝑙𝑖𝑗 = 𝜑𝑠𝑖𝜑𝑡𝑗𝑘𝑙𝑠𝑡,
𝑏𝑖𝑗𝑘𝑙 = 𝜑𝑠𝑖𝜑𝑡𝑗𝜑𝑝𝑘𝜑𝑞𝑙𝑏𝑠𝑡𝑝𝑞.

(23)

Replacing in (8) the expressions for 𝑇, 𝑉𝑙𝑙 , 𝑉𝑠𝑙 , and𝑉nl given in (19)–(22) and applying the harmonic balance
method, in MB, lead to [24, 25]

([K𝑠] + [K𝑙]) {A} − (𝜔nl
discr)2 [M] {A}

+ 32 [B (A)] {A} = 0. (24)

The linearized approximate methods of solution of non-
linear algebraic systems of the type (24) are proposed in [20].
In the present paper, to improve the accuracy of the numerical
solutions in the range of vibration amplitudes taken into
consideration, the so-called second formulation in [20] is
combined with the Newton-Raphson method in Section 2.3.

2.2. The Expressions for the General Terms of the Tensors 𝑚𝑖𝑗,𝑘𝑠𝑖𝑗, 𝑘𝑙𝑖𝑗, and 𝑏𝑖𝑗𝑘𝑙. One of the major advantages of this model
is its ability to explicitly express each tensor and give a clear
insight of the parameters chosen, before going through the
solution of the dynamic problem. However, in a discrete
problem, the calculation time depends on the discretization
number 𝑁. For the linear parameters 𝑚𝑖𝑗 and 𝑘𝑖𝑗, increasing
the number of masses in the physical discrete model does
not heavily affect the calculation time, because filling the
matrices and performing the change of bases from the DB
to the MB do not require more than a two loops’ process.



Advances in Acoustics and Vibration 5

Nevertheless, for the nonlinear parameter 𝑏𝑖𝑗𝑘𝑙 (4D tensor),
it requires only one loop in the filling process but does need
eight nested loops for the inversion, in order to transform
the tensor from DB to MB. In fact, this limitation made the
solution of the nonlinear problem for high values of the dis-
cretization parameter𝑁 a quite lengthy process. Accordingly,
by analyzing the form of the nonlinearity tensor, we noticed
a certain number of patterns. Then, we carried a meticulous
analysis leading to a simplified procedure as detailed in
Appendix A, where the eight nested loops are reduced to only
three.

Appendix B gives a summary of the calculation, carried
out in [9], for the expression of the parameters 𝑚𝑖𝑗, 𝑘𝑠𝑖𝑗, and𝑏𝑖𝑗𝑘𝑙. Identically, Sections 2.2.1(1) and 2.2.1(2) give detailed
calculations of the new parameter 𝑘𝑙𝑖𝑗.
2.2.1. The Expressions for the General Terms of the Tensors𝑚𝑖𝑗,𝑘𝑠𝑖𝑗, 𝑘𝑙𝑖𝑗, and 𝑏𝑖𝑗𝑘𝑙. The general expression of𝑚𝑖𝑗, 𝑘𝑠𝑖𝑗, 𝑘𝑙𝑖𝑗, and𝑏𝑖𝑗𝑘𝑙 for the discrete model are as follows:

(i) The Mass tensor [M]/𝑚𝑖𝑗 terms are expressed as
(Appendix B)

𝑚𝑖𝑗 = 𝜌𝑆𝐿(𝑁 + 1)𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑁. (25)

(ii)The spiral springs tensor [K𝑠]/𝑘𝑠𝑖𝑗 terms are expressed
as (Appendix B)

𝑘𝑠(𝑟−2)𝑟 = (𝑁 + 1)3 𝐸𝐼𝐿3 for 𝑟 = 3, . . . , 𝑁,
𝑘𝑠(𝑟−1)𝑟 = −4(𝑁 + 1)3 𝐸𝐼𝐿3 for 𝑟 = 2, . . . , 𝑁,

𝑘𝑠𝑟𝑟 = 6(𝑁 + 1)3 𝐸𝐼𝐿3 for 𝑟 = 1, . . . , 𝑁
(26)

and the other values of 𝑘𝑠𝑖𝑗 are obtained by symmetry
relations or are equal to zero. The boundaries conditions of
the system determine the stiffness 𝑘𝑠𝑖𝑖 for 𝑖 = 1 and𝑁+ 1. For
simply supported ends, the corresponding torsional springs𝐶1 and 𝐶𝑁+1 stiffness are equal to zero, since the rotation is
free; then 𝑘𝑖𝑖 = 5(𝑁 + 1)3𝐸𝐼/𝐿3 for 𝑖 = 1 and 𝑁 + 1. For
clamped ends, the corresponding torsional spring stiffness is
infinite, since the rotation is prevented, so 𝑘𝑠𝑖𝑖 = +∞ for 𝑖 = 1
and 𝑁 + 1.

(iii) The Winkler springs tensor [K𝑙]/𝑘𝑙𝑖𝑗 terms are
expressed as (details given in Sections 2.2.1(1) and 2.2.1(2))

𝑘𝑙𝑖𝑗 = 𝑘𝑖𝑙𝛿𝑖𝑗 = 𝑘𝑖𝐿(𝑁 + 1)𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑁. (27)
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Figure 3: Discretization of the linear vertical springs (soil stiffness).

(iv) The nonlinear rigidity tensor [B]/𝑏𝑖𝑗𝑘𝑙 terms are
expressed as (Appendix B)

𝑏𝑖𝑖𝑖𝑖 ≅ 2𝐸𝑆8𝑙3 = 2 (𝑁 + 1)3 𝐸𝑆8𝐿3
for 𝑖 = 1, . . . , 𝑁,

𝑏𝑖(𝑖−1)(𝑖−1)(𝑖−1) = 𝑏(𝑖−1)𝑖(𝑖−1)(𝑖−1) = 𝑏(𝑖−1)(𝑖−1)𝑖(𝑖−1)
= 𝑏(𝑖−1)(𝑖−1)(𝑖−1)𝑖 ≅ − (𝑁 + 1)3 𝐸𝑆8𝐿3

for 𝑖 = 2, . . . , 𝑁,
𝑏𝑖𝑖(𝑖−1)(𝑖−1) = 𝑏(𝑖−1)𝑖𝑖(𝑖−1) = 𝑏(𝑖−1)(𝑖−1)𝑖𝑖 = 𝑏𝑖(𝑖−1)(𝑖−1)𝑖

= 𝑏𝑖(𝑖−1)𝑖(𝑖−1) = 𝑏(𝑖−1)𝑖(𝑖−1)𝑖
≅ (𝑁 + 1)3 𝐸𝑆8𝐿3 for 𝑖 = 2, . . . , 𝑁,

𝑏𝑖𝑖𝑖(𝑖−1) = 𝑏(𝑖−1)𝑖𝑖𝑖 = 𝑏𝑖(𝑖−1)𝑖𝑖 = 𝑏𝑖𝑖(𝑖−1)𝑖
≅ − (𝑁 + 1)3 𝐸𝑆8𝐿3 for 𝑖 = 2, . . . , 𝑁

(28)

and other values of 𝑏𝑖𝑗𝑘𝑙 are obtained by symmetry relations
or are equal to zero.

(1) Calculation of the Equivalent Stiffness for the Winkler
Linear Springs. The linear potential energy stored in the
Winkler vertical spring 𝑘𝑙𝑖, shown in the discrete model of
Figure 3, can be written as [9]

𝑉𝑙𝑙 𝑖 = 12𝑘𝑙𝑖 (𝑦𝑖)2 with 𝑦0 = 𝑦𝑁+1 = 0. (29)
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On the other hand, the elementary potential energy
corresponding to an elementary section of length 𝑑𝑥 in the
continuous beam resting on the elastic foundations is given
by

𝑑𝑉𝑙𝑙 = 12𝑘 (𝑦 (𝑥))2 𝑑𝑥 (30)

with 𝑘 corresponding to the soil stiffness per length unit. By
approximation, one can write

(𝑦 (𝑥))𝑖 = 𝑦𝑖,
(𝑘)𝑖 = 𝑘𝑖,
𝑑𝑥 = 𝑙𝑖 + 𝑙𝑖+12 .

(31)

By substituting (31) in (30), one obtains

𝑑𝑉𝑙𝑙 = 12𝑘𝑖 𝑙𝑖 + 𝑙𝑖+12 (𝑦𝑖)2 for 𝑖 = 1, . . . , 𝑁. (32)

Since the bars have the same length (30) can be reduced
to

𝑑𝑉𝑙𝑙 = 12𝑘𝑖𝑙 (𝑦𝑖)2 for 𝑖 = 1, . . . , 𝑁. (33)

The identification between (29) and (33) gives

𝑘𝑙𝑖 = 𝑘𝑖𝑙 = 𝑘𝑖𝐿(𝑁 + 1) for 𝑖 = 1, . . . , 𝑁. (34)

(2) Expressions for the General Terms of the Tensors 𝑘𝑙𝑖𝑗. The
relationship existing between the longitudinal elongationsΔ𝑦𝑖 of the ith linear spring and the transverse displacements𝑦𝑖 is

Δ𝑦𝑖 = 𝑦𝑖. (35)

The potential energy stored in the ith linear spring, of
stiffness 𝑘𝑙𝑖, is given directly in terms of the stiffness 𝑘𝑙𝑖 and
the spring length variation 𝑦𝑖, by the very well-known
relationship, that is, 1/2 𝑘𝑙𝑖(𝑦𝑖)2, which leads, after summation,
to

𝑉𝑙𝑙 = 12
𝑁∑
𝑖=1

𝑘𝑙𝑖 (𝑦𝑖)2 for 𝑖 = 1 to 𝑁. (36)

The identification between (4) and (30) leads to the
following expression for the rigidity tensor associated with
the Winkler foundations in DB:

𝑘𝑙𝑖𝑗 = 𝛿𝑖𝑗𝑘𝑙𝑖 = 𝛿𝑖𝑗 𝑘𝑖𝐿(𝑁 + 1) for 𝑖, 𝑗 = 1, . . . , 𝑁, (37)

where 𝛿𝑖𝑗 is Kronecker’s symbol. Equation (37) can be written
in a matrix form as

[K𝑙] = 𝑘𝑙𝑖 [I] = 𝑘𝑖𝐿(𝑁 + 1) [I] (38)

with [I] being the identity matrix.

2.2.2. Nondimensionalization. In order to establish the nec-
essary comparisons with previous publications without fur-
ther manipulations, the nondimensional formulation of the
problem presented is essential. To define the nondimensional
parameters, let us put

𝑚𝑖𝑗𝑚∗𝑖𝑗 = 𝑚𝑖𝑗𝑚∗𝑖𝑗 = 𝜌𝑆𝐿𝑁 + 1 for 𝑖, 𝑗 = 1, . . . , 𝑁, (39)

𝑘𝑙𝑖𝑗𝑘𝑙∗𝑖𝑗 = 𝑘𝑙𝑖𝑗
𝑘𝑙∗𝑖𝑗 = 𝐸𝐼 (𝑁 + 1)3𝐿3 for 𝑖, 𝑗 = 1, . . . , 𝑁, (40)

𝑘𝑠𝑖𝑗𝑘𝑠∗𝑖𝑗 = 𝑘𝑠𝑖𝑗
𝑘𝑠∗𝑖𝑗 = 𝐸𝐼 (𝑁 + 1)3𝐿3 for 𝑖, 𝑗 = 1, . . . , 𝑁, (41)

𝑏𝑖𝑗𝑘𝑙𝑏∗𝑖𝑗𝑘𝑙 =
𝑏𝑖𝑗𝑘𝑙
𝑏∗𝑖𝑗𝑘𝑙 =

𝐸𝑆 (𝑁 + 1)38𝐿3
for 𝑖, 𝑗, 𝑘, 𝑙 = 1, . . . , 𝑁,

(42)

𝜔∗𝜔 = √ 𝐸𝐼𝜌𝑆𝐿4 . (43)

TheWinkler stiffness coefficient is given by

𝑘𝑙𝑖𝑗 = 𝑘𝑙𝛿𝑖𝑗 = 𝛼𝑖𝐸𝐼 (𝑁 + 1)3𝐿3 𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑁 (44)

𝛼𝑖 and 𝜆𝑖 being the nondimensional parameter:

𝛼𝑖 = 𝑘𝑖𝐿4𝐸𝐼 (𝑁 + 1)4 = 𝜆𝑖(𝑁 + 1)4 with 𝜆𝑖 = 𝑘𝑖𝐿4𝐸𝐼 . (45)

In the case of a constant soil distribution 𝛼𝑖 = 𝛼 and 𝜆𝑖 =𝜆.
The nondimensional amplitude 𝐴∗ is expressed as

𝐴∗ = 𝐴𝑅 with 𝑅 = √ 𝐼𝑆 , (46)

where 𝑅 is the radius of gyration.
The expression for the nonlinear frequency [19] is

𝜔2nl = 𝑎𝑖𝑎𝑗 (𝑘𝑠𝑖𝑗 + 𝑘𝑙𝑖𝑗) + 32𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙
𝑚𝑖𝑗𝑎𝑖𝑎𝑗

for 𝑖, 𝑗, 𝑙, 𝑘 = 1, . . . , 𝑁.
(47)

As the nondimensional formulation is established, the
general expressions for 𝑚∗𝑖𝑗, 𝑘∗𝑠𝑖𝑗, 𝑘∗𝑙𝑖𝑗, and 𝑏∗𝑖𝑗𝑘𝑙 for the
discrete model become as follows:

(i) The nondimensional mass tensor [M∗]/𝑚∗𝑖𝑗 is
obtained by replacing (25) in (39):

𝑚∗𝑖𝑗 = 𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑁. (48)
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(ii) The nondimensional spiral springs tensor [K∗𝑠]/𝑘∗𝑠𝑖𝑗
is obtained by replacing (26) in (40):

𝑘∗𝑠(𝑟−2)𝑟 = 1 for 𝑟 = 3, . . . , 𝑁,
𝑘∗𝑠(𝑟−1)𝑟 = −4 for 𝑟 = 2, . . . , 𝑁,

𝑘∗𝑠𝑟𝑟 = 6 for 𝑟 = 1, . . . , 𝑁
(49)

and the other values of 𝑘∗𝑠𝑖𝑗 are obtained by symmetry
relations or are equal to zero.

(iii) The nondimensional Winkler springs tensor [K∗𝑙]/𝑘∗𝑙𝑖𝑗 is obtained by replacing (27) in (41):

𝑘∗𝑙𝑖𝑗 = 𝛼𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑁. (50)

(iv) The nondimensional nonlinear rigidity tensor[B∗]/𝑏∗𝑖𝑗𝑘𝑙 is obtained by replacing (28) in (42):

𝑏∗𝑖𝑖𝑖𝑖 = 2 for 𝑖 = 1, . . . , 𝑁,
𝑏∗𝑖(𝑖−1)(𝑖−1)(𝑖−1) = 𝑏∗(𝑖−1)𝑖(𝑖−1)(𝑖−1) = 𝑏∗(𝑖−1)(𝑖−1)𝑖(𝑖−1)

= 𝑏∗(𝑖−1)(𝑖−1)(𝑖−1)𝑖 = −1
for 𝑖 = 2, . . . , 𝑁,

𝑏∗𝑖𝑖(𝑖−1)(𝑖−1) = 𝑏∗(𝑖−1)𝑖𝑖(𝑖−1) = 𝑏∗(𝑖−1)(𝑖−1)𝑖𝑖
= 𝑏∗𝑖(𝑖−1)(𝑖−1)𝑖 = 𝑏∗𝑖(𝑖−1)𝑖(𝑖−1)
= 𝑏∗(𝑖−1)𝑖(𝑖−1)𝑖 = 1 for 𝑖 = 2, . . . , 𝑁,

𝑏∗𝑖𝑖𝑖(𝑖−1) = 𝑏∗(𝑖−1)𝑖𝑖𝑖 = 𝑏∗𝑖(𝑖−1)𝑖𝑖 = 𝑏∗𝑖𝑖(𝑖−1)𝑖 = −1
for 𝑖 = 2, . . . , 𝑁

(51)

and other values of 𝑏∗𝑖𝑗𝑘𝑙 are equal to zero.
2.3. Solution of the Nonlinear Algebraic System: Linearization.
In order to solve the nonlinear amplitude equation and
establish a good approximation for large vibration amplitudes
of the beam examined, a linearization of the nonlinear
algebraic problem is performed, based on the so-called
second formulation introduced in [20]. For this linearization
to be accomplished, only the second-order terms of the type𝜀𝑖𝜀𝑗𝑎1𝑏𝑖𝑗𝑘𝑟 are neglected when considering the first nonlinear
mode, in (24), rewritten in summation form as

(𝑘𝑙𝑖𝑟 + 𝑘𝑠𝑖𝑟 − 𝜔2𝑚𝑖𝑟) 𝑎𝑖 + 32𝑎𝑖𝑎𝑗𝑎𝑘𝑏𝑖𝑗𝑘𝑟 = 0
for 𝑟 = 1, . . . , 𝑁. (52)

The nonlinear expression 𝑎𝑖𝑎𝑗𝑎𝑘𝑏∗𝑖𝑗𝑘𝑟 is split to terms
proportional to 𝑎13, terms proportional to 𝑎12𝜀𝑖, and terms
proportional to 𝑎12𝜀𝑖𝜀𝑗 which are neglected, leading to

𝑎𝑖𝑎𝑗𝑎𝑘𝑏∗𝑖𝑗𝑘𝑟 = 𝑎13𝑏∗111𝑟 + 𝑎12𝜀𝑖𝑏∗11𝑖𝑟
for 𝑟 = 1, . . . , 𝑁. (53)

The 1D ratio of the nonlinear nondimensional frequency
established from (47) is given by

𝜔∗nl2 = (𝑁 + 1)4 (𝑘𝑠∗11 + 𝑘𝑙∗11)
𝑚∗11 [

[
1

+ 316 𝑏∗1111(𝑘𝑠∗11 + 𝑘𝑙∗11) (𝑎1𝑅 )2]
]

.
(54)

Then (52) can be written in a matrix form as

([K∗𝑙𝑅𝐼] + [K∗𝑠𝑅𝐼] − 𝜔nl
∗2 [M∗𝑅𝐼]) {A∗𝑅𝐼}

+ 316 [𝛼∗𝐼 ] {A∗𝑅𝐼} = {− 316 (𝑎1𝑅 )3 𝑏∗111𝑟}
(55)

with

[𝛼∗𝐼 ] = (𝑎1𝑅 )2 𝑏∗11𝑖𝑟, (56)

where [K∗𝑠𝑅𝐼] = 𝑘∗𝑠𝑖𝑗 , [K∗𝑙𝑅𝐼] = 𝑘∗𝑙𝑖𝑗 , and [M∗𝑅𝐼] = 𝑚∗𝑖𝑗 are,
respectively, the reduced beam rigidity matrix, the Winkler
foundation rigidity matrix, and the mass matrix associated
with the first nonlinear mode, obtained by varying i and j in
the set (3, 5, . . . , 11). [𝛼∗𝐼 ] is a 5 × 5 square matrix, depending
on 𝑎1, whose general term 𝛼𝑖𝑗∗ is equal to 𝑏11𝑖𝑟(𝑎1/𝑅)2, and
{−3/16(𝑎1/𝑅)3𝑏111𝑟} is a column vector representing the right
side of the linear system (55) in which the reduced unknown
vector is {A∗𝑅𝐼}𝑇 = [𝜀3/𝑅, . . . , 𝜀𝑖/𝑅, . . . , 𝜀𝑁/𝑅]. The modal
contributions 𝜀3, . . . , 𝜀𝑖, . . . , 𝜀𝑁 can be calculated simply by
solving the linear system (55) of five equations and five
unknowns [20].

This formulation is proven [20] to give good results when
applied to various nonlinear vibration problems. However,
to get an even better approximation, it is combined with a
Newton-Raphson algorithm, which requires a good initial
estimate of the solution (given by the actual linearization
method). Accurate results (up to 10−14) are obtained within
few numbers of iteration.

3. Results Validation

In Section 2, a general theory is developed for the phys-
ically discrete model, with demonstrations carried out for
calculating the new model parameters. In order to confirm
the extended theory, this section is devoted to the validation
of the results in the linear and nonlinear cases for simply
supported and clamped beams.

3.1. Simply Supported Beams Resting on Elastic Foundations.
In Figure 2, a discrete physical model, made of masses,
bars, and springs, is described. In the following section, a
validation of the results obtained for a simply supported beam
resting on Winkler elastic foundation is discussed. Namely,
calculations are performed in the linear and nonlinear cases
using Matlab’s software, based on the procedure described in
Section 2.
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Table 1: Comparison of the nondimensional frequencies corresponding to the first 3 modes and the nondimensional Winkler soil stiffness
for a S-S beam.

S-S beam (linear)

𝜆 Present study(𝑁 = 10) Present study(𝑁 = 50) Present study(𝑁 = 100) Ref. [10] Ref. [11] Exact
Ref. [12] Average Error %(𝑁 = 10) Error %(𝑁 = 50) Error %(𝑁 = 100)

0
3,131 3,141 3,141 3,150

3,141 3,141
3,144 0,427 0,104 0,092

6,198 6,279 6,2822 6,280 6,280 1,304 0,013 −0,035
9,139 9,411 9,421 9,420 9,420 2,982 0,092 −0,014

100
3,742 3,748 3,7483 3,750

3,748 3,7484
3,749 0,181 0,022 0,016

6,300 6,378 6,3807 6,380 6,380 1,245 0,034 −0,010
9,172 9,441 9,4511 9,450 9,450 2,945 0,093 −0,012

10000
10,024 10,024 10,024 10,020

10,024 10,024
10,023 −0,013 −0,016 −0,016

10,350 10,368 10,368 10,360 10,360 0,095 −0,076 −0,082
11,415 11,558 11,563 11,570 11,570 1,343 0,104 0,057

1000000
31,623 31,623 31,623 31,620

31,623 31,623
31,622 −0,004 −0,004 −0,004

31,634 31,635 31,635 31,630 31,630 −0,016 −0,014 −0,014
31,678 31,685 31,685 31,720 31,720 0,133 0,112 0,111

3.1.1. Linear Case. One has now to make the form of the
matrices introduced in Section 2 explicit, knowing that the
calculations are developed in the MB. The nondimensional
mass matrix is reduced to the unity matrix [I], and the stiff-
ness matrix [KSS

𝑁 ], combining the effects of the extensional
and spiral springs, obtained by addition of the Winkler soil
stiffness matrix and the spiral spring matrix, for the simply
supported case, can be presented as follows [9]:

[KSS
𝑁] = (𝑁 + 1)3 𝐸𝐼𝐿3

⋅

[[[[[[[[[[[[[[
[

5 + 𝛼 −4 1 0 ⋅ ⋅ 0
−4 6 + 𝛼 −4 1 0 ⋅ ⋅
1 −4 ⋅ ⋅ ⋅ ⋅ ⋅
0 1 ⋅ ⋅ ⋅ ⋅ 0
⋅ 0 ⋅ ⋅ ⋅ −4 1
0 ⋅ 0 1 −4 6 + 𝛼 −4
0 ⋅ ⋅ 0 1 −4 5 + 𝛼

]]]]]]]]]]]]]]
]

,

[KSS
𝑁] = (𝑁 + 1)3 𝐸𝐼𝐿3 [KSS∗

𝑁 ] .

(57)

With this new expression for the nondimensional rigidity
matrix [KSS∗

𝑁 ] (24), corresponding to linear vibrations, can be
written as

[KSS∗
𝑁 ] {y} + (𝜔discr)2 𝜌𝑆𝐿4

𝐸𝐼 (𝑁 + 1)4 {y} = 0 (58)

with {y} being the vector of mass displacements in the MB.
Solving (58) gives the eigenvalues {𝛽}, which allows the
corresponding frequencies to be written as

𝜔SS
𝑙 discr = (𝑁 + 1)2√𝛽𝑖√ 𝐸𝐼𝜌𝑆𝐿4 . (59)

Table 1 gives, for the first 3 modes of the simply supported
beam, the nondimensional frequencies, for increasing num-
ber of masses (𝑁 = 10, 50, 100) and increasing values of
the Winkler foundation stiffness. Accordingly, these nondi-
mensional frequencies are calculated from (59), by extracting
the √𝐸𝐼/𝜌𝑆𝐿4 term, where the eigenvalues 𝛽𝑖 are those of
the nondimensional stiffness matrix [KSS∗

𝑁 ]. So, they can be
presented as

𝜔SS
𝑙 discr
∗ = (𝑁 + 1)2√𝛽𝑖. (60)

In order to validate the model introduced in Section 2,
for the simply supported beam, a comparison of the first 3
natural frequencies is carried out for increasing values of 𝑁
(the number of masses) and 𝜆 (the soil stiffness), and results
are drawn in Table 1.

The natural frequencies, Table 1, converge faster by
increasing the 𝑁 or 𝜆. A good approximation is already
obtained for (𝑁 = 10, 𝜆 =0) where the overall error ((average− present study (𝑁))/average %) is below three percent limit.
On the other hand, by increasing the soil stiffness to the case
(𝑁 = 10, 𝜆= 1000000) the error drops below 0.15%.However,
once the discretization number 𝑁 is higher than 50 the
overall error is under the 0.12%. Thus, increasing one of
the parameters 𝜆 and 𝑁, or both, makes the discrete model
converge to the reference models [10–12].

3.1.2. Nonlinear Case

(1) Mode Shapes. In [9], the discussions covered only the
validation of nonlinear frequencies. In the present work, the
validation is extended to the beam mode shapes. Likewise,
Table 2 gives a comparison between the mode shapes calcu-
lated using the present discrete physical model with previous
results [13].

The results are identical to the exact theoretical mode
shape in the linear case. However, in the nonlinear case
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Table 2: Comparison of the normalized first mode shape at different positions of the beam in the S-S beam case for 𝑁 = 100.
𝜉 = 𝑥/𝐿 Exact

Ref. [13] Present FEM
Ref. [13] Present FEM

Ref. [13] Present FEM
Ref. [13] Present FEM

Ref. [13]
𝐴∗ = 0 𝐴∗ = 0 𝐴∗ = 0 𝐴∗ = 1 𝐴∗ = 1 𝐴∗ = 2 𝐴∗ = 2 𝐴∗ = 3 𝐴∗ = 3

0,00 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
0,05 0,1564 0,1564 0,1564 0,1544 0,1564 0,1498 0,1564 0,1449 0,1564
0,10 0,3090 0,3090 0,3090 0,3054 0,3090 0,2969 0,3090 0,2876 0,3090
0,15 0,4540 0,4540 0,4540 0,4493 0,4540 0,4381 0,4540 0,4258 0,4540
0,20 0,5878 0,5878 0,5880 0,5827 0,5880 0,5707 0,5880 0,5570 0,5880
0,25 0,7071 0,7071 0,7071 0,7024 0,7071 0,6911 0,7071 0,6780 0,7071
0,30 0,8091 0,8090 0,8090 0,8053 0,8090 0,7962 0,8090 0,7853 0,8090
0,35 0,8910 0,8910 0,8910 0,8886 0,8910 0,8825 0,8910 0,8750 0,8910
0,40 0,9511 0,9511 0,9511 0,9498 0,9511 0,9468 0,9511 0,9430 0,9511
0,45 0,9877 0,9877 0,9877 0,9874 0,9877 0,9865 0,9877 0,9855 0,9877
0,50 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

Table 3: Comparison of the first three modes’ nondimensional nonlinear frequency 𝜔ss∗
nl discr/𝜔ss∗

𝑙 discr, in S-S beam, for various values of the
nondimensional Winkler soil stiffness.

SIMPLY SUPPORTED BEAM𝜆 0,1𝜋4 1𝜋4 10𝜋4𝐴∗ 𝑁 = 100 Ref. [14] Error % 𝑁 = 100 Ref. [14] Error % 𝑁 = 100 Ref. [14] Error %
0,2 1,0026 1,0034 0,0843 1,0014 1,0019 0,0494 1,0003 1,0003 0,0044
0,4 1,0102 1,0135 0,3278 1,0056 1,0075 0,1876 1,0010 1,0014 0,0377
0,6 1,0228 1,0301 0,7128 1,0126 1,0167 0,4053 1,0023 1,0031 0,0799
0,8 1,0401 1,0529 1,2144 1,0223 1,0295 0,7036 1,0041 1,0054 0,1310
1 1,0620 1,0814 1,7928 1,0346 1,0457 1,0649 1,0064 1,0085 0,2110
2 1,2294 1,2924 4,8729 1,1319 1,1708 3,3188 1,0253 1,0334 0,7885
3 1,4666 1,5795 7,1497 1,2779 1,3519 5,4771 1,0560 1,0736 1,6424

(high amplitudes), in spite of the result often accepted in
the literature, according to which the mode shape in the
simply supported case is amplitude independent [18], this
discrete physical model leads to mode shapes which seem to
be amplitude dependent. As a result, the amplitude depen-
dency may be due to the hypothesis (small triangle angle)
taken for the nonlinearity effect which is sensitive to high
amplitudes.

(2) Comparison of Nondimension Frequency𝜔ss∗
nl discr/𝜔ss∗

𝑙 discr.
For validating the results in the nonlinear case, comparing
the ratio of the nonlinear frequency parameter (𝜔ss∗

nl discr/𝜔ss∗
𝑙 discr) (54) and (60) may be one of the best indica-

tors of the nonlinearity type and acuity. The number of
masses considered in the calculation is (𝑁 = 100), because
of the good approximation obtained for this degree of
discretization in the linear case (error below 0.1%).

Table 3 gives the nonlinear frequencies for increasing val-
ues of the vibration amplitude and the soil parameter 𝜆.These
numerical results give a comparison of the beam nonlinear
behavior by the mean of frequency ratio (𝜔ss∗

nl discr/𝜔ss∗
𝑙 discr).

For small values of the nondimensional vibration amplitude
(<1), the results are close to those of [14] (error ≈ 1%).
However, once the nondimensional amplitude rises to values
higher than one, the difference becomes more noticeable
making the error exceed seven percent. This late conclusion
may be due to the hypothesis taken for the nonlinearity effect.
Another aspect that one may extract from this comparison is
that the soil stiffness affects the convergence between the
discrete and the continuous models [14], since the error
decreases by increasing the soil stiffness coefficient.

3.2. Clamped Beam Resting on Elastic Foundations. This
section is concerned with the validation of the results
obtained for the clamped beam case. Also, calculations of the
frequencies andmode shapes are performed for the linear and
nonlinear cases using Matlab’s software, based on the proce-
dure described in Section 2.

3.2.1. Linear Case. As it is stated in [9], to establish the
clamped beam stiffness matrix, an infinite coefficient should
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Figure 4: The model considered for the discrete C-C beam by blocking the rotation of the first and the last bars.

be taken for the first and last nodes. In that order the following
matrix is built:

[KCC
𝑁 ] = (𝑁 + 1)3 𝐸𝐼𝐿3

⋅

[[[[[[[[[[[[[[
[

+∞ −4 1 0 ⋅ ⋅ 0
−4 6 + 𝛼 −4 1 0 ⋅ ⋅
1 −4 ⋅ ⋅ ⋅ ⋅ ⋅
0 1 ⋅ ⋅ ⋅ ⋅ 0
⋅ 0 ⋅ ⋅ ⋅ −4 1
0 ⋅ 0 1 −4 6 + 𝛼 −4
0 ⋅ ⋅ 0 1 −4 +∞

]]]]]]]]]]]]]]
]

.
(61)

However, once introduced in the calculation, a mathe-
matical error about the conditioning of the matrix arises (ill-
conditioned matrix).

Since the present physical model considers that the bars
are rigid transversally, it may be concluded that, by blocking
(nonrotation) the first bar, the second node located at its end
would be blocked too at𝑦 = 0 as shown in Figure 4.Using this
method for taking into account the clamped ends conditions,
the N-DOF clamped beam problem is reduced to a (𝑁 − 2)-
DOF problem by removing the first and last row and column
of the stiffness matrix; then (61) becomes

[KCC
𝑁−2] = (𝑁 + 1)3 𝐸𝐼𝐿3

⋅

[[[[[[[[[[[[[[
[

6 + 𝛼 −4 1 0 ⋅ ⋅ 0
−4 6 + 𝛼 −4 1 0 ⋅ ⋅
1 −4 ⋅ ⋅ ⋅ ⋅ ⋅
0 1 ⋅ ⋅ ⋅ ⋅ 0
⋅ 0 ⋅ ⋅ ⋅ −4 1
0 ⋅ 0 1 −4 6 + 𝛼 −4
0 ⋅ ⋅ 0 1 −4 6 + 𝛼

]]]]]]]]]]]]]]
]

,

[KCC
𝑁−2] = (𝑁 + 1)3 𝐸𝐼𝐿3 [KCC

𝑁−2

∗] .

(62)

With this new expression for the nondimensional rigidity
matrix [KCC

𝑁−2

∗], the linear vibration equation (24) can be
described by

[KCC
𝑁−2

∗] {y} + (𝜔CC
𝑙 discr)2 𝜌𝑆𝐿4

𝐸𝐼 (𝑁 + 1)4 {y} = 0 (63)

with {y} being the vector of mass displacements in MB.
Solving (63) gives the eigenvalues {𝛽} so one can write the
frequencies as

𝜔CC
𝑙 discr = (𝑁 + 1)2√𝛽𝑖√ 𝐸𝐼𝜌𝑆𝐿4 . (64)

Table 4 gives the first three modes of the clamped beam
nondimensional frequencies for increasing number ofmasses
(𝑁 = 10, 50, 100) and increasing values of the Winkler
foundation stiffness. These nondimensional frequencies are
calculated from (64) by extracting the√𝐸𝐼/𝜌𝑆𝐿4 term, where
the eigenvalues 𝛽𝑖 are those of the nondimensional stiffness
matrix [KCC

𝑁−2

∗], so they can be presented as

𝜔CC
𝑙 discr

∗ = (𝑁 + 1)2√𝛽𝑖. (65)

In order to validate the discrete model, for clamped
beams, Table 4 shows a comparison between the results
obtained here for the first threemodes of a clamped beam, for
various values of the soil stiffness coefficients and increasing
number of massesN = (10/50/100), and the theoretical values
of the natural frequencies of continuous beams obtained in
[12].

In conclusion, the natural frequencies drawn in Table 4
converge slower to the continuousmodel [12] than the simply
supported case. The error percentage ((results [12] − present
study (𝑁))/results [12]%), for the case of no soil stiffness
applied 𝜆 = 0, do not get below the one percent until 𝑁 =100. However, once the soil stiffness 𝜆 is increased, a good
approximation is already obtained for the case of𝑁 = 10.This
convergence rate is due to the approximations taken by
contraction of the matrices in the clamped beam case.
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Table 4: Comparison of the first three modes’ nondimension frequency and the nondimensional Winkler soil stiffness for a C-C beam.

C-C beam (linear)

𝜆 Present study(𝑁 = 10) Present study(𝑁 = 50) Present study(𝑁 = 100) Ref. [11] Exact
Ref. [12]

Error %(𝑁 = 10) Error %(𝑁 = 50) Error %(𝑁 = 100)
0

5,2153 4,8251 4,7775 4,7300 4,7300 −10,261 −2,011 −1,003
8,5727 8,0083 7,9313 7,8500 7,8540 −9,150 −1,965 −0,984
11,7658 11,2052 11,1030 11,0000 10,9960 −7,001 −1,902 −0,973

100
5,3833 5,0338 4,9919 4,9500 4,9500 −8,753 −1,692 −0,846
8,6121 8,0565 7,9809 7,9000 7,9040 −8,959 −1,930 −0,973
11,7811 11,2229 11,1212 11,0100 11,0140 −6,965 −1,897 −0,974

10000
10,1800 10,1328 10,1278 10,1200 10,1230 −0,563 −0,097 −0,047
11,1400 10,8995 10,8692 10,8400 10,8390 −2,777 −0,558 −0,279
13,0681 12,6693 12,5991 12,5300 12,5260 −4,328 −1,144 −0,583

1000000
31,6286 31,6271 31,6269 31,6400 31,6260 −0,008 −0,003 −0,003
31,6654 31,6552 31,6540 31,6700 31,6530 −0,039 −0,007 −0,003
31,7732 31,7467 31,7422 31,7500 31,7380 −0,111 −0,027 −0,013

Table 5: Comparison of the first mode shape at different positions of the beam in the C-C beam case.

C-C beam (nonlinear)

𝜉 = 𝑥/𝐿 Present𝑁 = 100 ASM
Ref. [15]

FEM
Ref. [13]

Present𝑁 = 100 GFEM
Ref. [16]

FEM
Ref. [13]

Present𝑁 = 100 GFEM
Ref. [16]

FEM
Ref. [13]

𝐴∗ = 0 𝐴∗ = 2 𝐴∗ = 5
0,00 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
0,05 0,0324 0,0325 0,0329 0,0341 0,0339 0,0341 0,0464 0,0411 0,0413
0,10 0,1196 0,1119 0,1203 0,1242 0,1234 0,1237 0,1555 0,1429 0,1432
0,15 0,2444 0,2435 0,2454 0,2508 0,2505 0,2506 0,2927 0,2795 0,2796
0,20 0,3906 0,3900 0,3922 0,3969 0,3981 0,3982 0,4363 0,4307 0,4308
0,25 0,5435 0,5435 0,5455 0,5480 0,5511 0,5513 0,5757 0,5815 0,5817
0,30 0,6895 0,6901 0,6918 0,6917 0,6960 0,6964 0,7058 0,7200 0,7204
0,35 0,8168 0,8178 0,8189 0,8174 0,8214 0,8219 0,8217 0,8372 0,8376
0,40 0,9156 0,9164 0,9170 0,9155 0,9182 0,9185 0,9159 0,9259 0,9262
0,45 0,9783 0,9787 0,9789 0,9782 0,9792 0,9293 0,9783 0,9812 0,9813
0,50 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

3.2.2. Nonlinear Case

(1) Mode Shapes. In [9], the discussions covered only the
validation of frequencies. In order to have a more complete
validation, Table 5 compares the present work mode shapes
with previous works.

For clamped beams, the mode shapes are shown both
theoretically and experimentally to be amplitude dependent
at large vibration amplitudes. Table 5 shows that the discrete
model leads to amplitude dependent mode shapes. By com-
paring these mode shapes to the ones obtained in [13, 15, 16],
it can be seen that these results complies with the results
obtained by the two methods FEM [13] and GFEM [16].

(2) Comparison of Nondimension Frequency 𝜔cc∗
nl discr/𝜔cc∗

𝑙 discr. As it is explained in the linear case Section 3.2.1, the

same procedure for implementing the beam end conditions
is applied for the nonlinear rigidity tensor, which is also
subjected to dimension reduction by removing the first and
last column and row of the 4D tensor. Once thismanipulation
done, the results of (𝜔cc∗

nl discr/𝜔cc∗
𝑙 discr) given by (54) and

(65) for various values of the vibration amplitude and soil
stiffness are summarized in Table 6. The number of masses
taken is (𝑁 = 100), for which a good convergence is reached
in the linear case (error below 1%).

The nonlinear behavior of a clamped beam resting on
elastic foundations is presented in Table 6 by means of the
amplitude dependence of the parameter (𝜔cc∗

nl discr/𝜔cc∗
𝑙 discr).

For small values of nondimension amplitude (<1), the results
are very close to [14] (error <1%). However, once the nondi-
mensional amplitude rises (>1), the difference becomes more
significant. The last conclusion may be due as it is stated
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Table 6: Comparison of firstmodes nondimensional nonlinear frequency𝜔cc∗
nl discr/𝜔cc∗

𝑙 discr, for various values of the nondimensionalWinkler
soil stiffness for a C-C beam.

Clamped-clamped beam𝜆 0,1𝜋4 1𝜋4 10𝜋4𝐴∗ 𝑁 = 100 Ref. [14] Error % 𝑁 = 100 Ref. [14] Error % 𝑁 = 100 Ref. [14] Error %
0,2 1,0013 1,0009 −0,0397 1,0011 1,0008 −0,0314 1,0005 1,0003 −0,0161
0,4 1,0052 1,0037 −0,1475 1,0044 1,0032 −0,1244 1,0018 1,0013 −0,0541
0,6 1,0116 1,0082 −0,3391 1,0100 1,0071 −0,2859 1,0041 1,0029 −0,1236
0,8 1,0206 1,0146 −0,5879 1,0177 1,0125 −0,5110 1,0073 1,0052 −0,2137
1 1,0320 1,0227 −0,9046 1,0275 1,0195 −0,7829 1,0115 1,0081 −0,3330
2 1,1224 1,0876 −3,1963 1,1058 1,0756 −2,8113 1,0451 1,0320 −1,2670
3 1,2587 1,1870 −6,0403 1,2253 1,1625 −5,4062 1,0988 1,0705 −2,6458
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Figure 5: A partially supported continuous S-S beam.

for the simply supported case to the model taken for the
nonlinearity effect. It may also be noticed that the effect of
the soil stiffness on the nonlinear frequency affects the error
between the discrete and the continuous model where the
error decreases for the same nondimensional amplitude for
high values of the soil stiffness parameter 𝜆.
4. Applications

One of the main purposes in developing the discrete physical
model presented here is to allow easy variation of the different
parameters, compared with the continuous models, espe-
cially in the nonlinear case for which analytical solutionsmay
be very laborious and, quite often, impossible to obtain. Since
the key factor in the present work is the soil stiffness, two
applications of an important practical interest are examined.
The first application is concerned with a beam supported
partially on elastic foundations.The second is concernedwith
a beam supported on a Winkler elastic foundation with a

variable stiffness. In both cases, simply supported and
clamped beams are examined.

4.1. A Partially Supported Beam. In order to get a good
approximation in the nonlinear case, the number𝑁 ofmasses
used in the discretization process is taken equal to 100,
taking the same algorithm developed according to the steps
discussed in Section 2 and varying the soil stiffness parameter𝜆 values and the repartition inside the algorithm between the
supported span (𝜆𝑖 ̸= 0) and the nonsupported span (𝜆𝑖 = 0).
4.1.1. A Simply Supported Beam (Linear Case). In this section,
a simply supported beam is assumed to be subjected to
the effect of partial intermediate supports and comparison
is made between the results of the continuous model of
Figure 5(a) and the discrete model of Figure 5(b).

For a practical convenience, a semilogarithmic curve is
drawn, showing the relative stiffness parameter 𝜆 on
the abscissa and the nondimensional frequency parameter
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(√𝜔ss∗
𝑙 discr) on the ordinate. The ratio of the supported span

to the total span 𝐵 [26] chosen covers the cases where the
beam is supported along 25, 50, and 75 percent of its span; the
extreme cases are also taken where 𝐵 = 0, no-intermediate
supports, and 𝐵 = 1, fully supported. The results correspond
to the case 𝑁 = 100, which also enabled a simplification of 𝐵
ratios (25% corresponds to 25 nodes supported and so on).

In order to establish a comparison with the results given
in [26], the first five linear modes NDF(𝜆) curves are drawn.
Since the results extracted from [26] consisted only of curves,
a graphical comparison is conducted showing a very good
approximation. The conclusions drawn from Figure 6 are
that the first modes are more sensitive to the soil stiffness
variation. For the first mode the influence on the frequency is
noticeable at an early stage (𝜆 = 10). However, the 5th mode
seems to be less sensitive to the soil stiffness variation since
the frequency jump is noticeable only for 𝜆 = 1000.
4.1.2. A Simply Supported Beam (Nonlinear Case). After
validating the physical model in the linear regime, one may
investigate the nonlinearity effect on theNDF(𝜆)(√𝜔SS∗

𝑙 discr).
It may be concluded in Figure 7(b), corresponding to a

high nondimensional amplitude (𝐴∗ = 3), that the difference
between the curves is more accentuated than in Figure 7(a)
(𝐴∗ = 1), corresponding to a lower nondimensional
amplitude and, consequently, a less accentuated nonlinear
effect. By deepening the analysis, the gaps between the curves
seem to take different paths: In the case of 𝐵 = 1, the gap is
very small, but by taking a zoom, the gap is more pronounced
for low soil stiffness and tends to become narrower as the
soil stiffness rises. In the case of 𝐵 = 0.75, contrary to the
case 𝐵 = 1, the gap between the curves seems to widen by
increasing the soil stiffness. In the case of 𝐵 = 0.5, the same
conclusion may be made as in the case 𝐵 = 0.75 but the gap
seems to remain constant. For 𝐵 = 0.25, the same behavior is
obtained as for 𝐵 = 0.5. In the case of 𝐵 = 0, the two curves
are parallel.

4.1.3. A Clamped Beam (Linear Case). In this section, the
case of partially supported beam with clamped ends is inves-
tigated by comparing the results of the continuous model
of Figure 8(a) to the discrete model of Figure 8(b).

The study of partially supported beams in [26] covered
only the simply supported and free ends cases. In [27]
and based on the work of [26], the clamped beam case is
investigated.

In [27], a study is conducted using continuous beammod-
els and results are given for the 4 first linear modes shapes.
By graphically comparing the curves NDF(𝜆)(√𝜔CC∗

𝑙 discr) of
Figure 9 to [27], a very good approximation is reached by the
present physically discrete model. The same conclusion is
obtained for the simply supported beam in terms of frequency
variation.

4.1.4. A Clamped Beam (Nonlinear Case). After establishing
and validating the physical model in the linear regime in
Section 4.1.3, a comparison is carried out here for the

nonlinear case. To show the impact of nonlinearity, the
NDF(𝜆)(√𝜔CC∗

𝑙 discr) curves in the linear case (𝐴∗ = 0) and
in the nonlinear case (𝐴∗ ̸= 0) are drawn in the same graph
Figure 10.

In Figure 10(b), which corresponds to a high value of
the nondimensional amplitude (𝐴∗ = 3), the difference
between the curves is more expressed in Figure 10(a) (𝐴∗ =1), corresponding to a lower nondimensional amplitude
and, consequently, a less accentuated nonlinear effect. By
deepening the analysis, the gaps between the curves seem to
take different paths: in the case of 𝐵 = 1, the gap is very small,
but by taking a zoom, the gap ismore pronounced for low soil
stiffness and tends to become narrower as the soil stiffness
rises. In the case of 𝐵 = 0.75, contrary to the case 𝐵 = 1, the
gap between the curves seems to widen by increasing the soil
stiffness. In the case of 𝐵 = 0.5, the same conclusion may be
made as in the case 𝐵 = 0.75 but the gap seems to remain
constant. For 𝐵 = 0.25, the same behavior is obtained as for𝐵 = 0.5. In the case of 𝐵 = 0, the two curves are parallel.
However, the gaps between the curves are narrower than in
the simply supported case.

4.2. Variable Elastic Foundation. Foundations are often not as
homogenous as one may expect, especially for long beams
such as pipes and piers, because soil is made ofmultiple layers
with a variable stiffness. In order to approach this reality, the
foundation may be sometimes modeled with a distribution
of stiffness with linear (66) or parabolic (67) variations. In
[17], this problem is solved using the Differential Transform
Method (DTM) and in the following Sections 4.2.1 and 4.2.2,
comparison of frequencies is made between the discrete
model introduced in this paper and the DTM.

𝑘𝑙 (𝑥) = 𝜆 (1 − 𝜋𝑥) , (66)

𝑘𝑝 (𝑥) = 𝜆 (1 − 𝜏𝑥2) . (67)

Equations (66) and (67) are introduced in the calculation
algorithm and results are obtained.

4.2.1. A Simply Supported Beam (Linear Case). Simplification
of variable implementation is the aim of the present discrete
model. Figure 11 shows a simply supported beam resting on
a variable elastic foundation and Table 7 gives the variation
of the frequency parameter Ω𝑖 associated with the ith mode
shape, for 𝑖 = 1 to 8, in accordance with the soil variation for
the simply supported beam.

The results obtained for the simply supported beam case,
drawn inTable 7 for a linear soil distribution and inTable 8 for
a parabolic distribution, for the first eight modes (frequency
parameter Ω𝑖), show that the soil distribution has a low
impact on the convergence speed. On the other hand, the
discrete model converges well to the results of [17] for a low
value of the number ofmasses since the error is already below
one percent for 𝑁 = 10.
4.2.2. A Simply Supported Beam (Nonlinear Case). Figure 12
shows the backbone curve of a simply supported beam
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Figure 6: Nondimensional frequency √𝜔SS∗
𝑙 discr(𝜆) for a simply supported beam: (a) first mode; (b) second mode; (c) third mode; (d) forth

mode; (e) fifth mode.
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Figure 7: Nondimensional frequency√𝜔SS∗
𝑙 discr(𝜆) for a simply supported beam: (a) firstmode (𝐴∗ = 0/𝐴∗ = 1); (b) firstmode (𝐴∗ = 0/𝐴∗ =3).
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Figure 8: A partially supported C-C beam: (a) continuous model; (b) discrete model.

resting on a variable elastic foundation. In Figure 12(a),
corresponding to a low soil stiffness (𝜆 = 10), the nonlinear
behavior is more expressed since the nonlinear frequency is
higher than the one of the high soil stiffness Figure 12(b) (𝜆 =1000). However, for this last case the curves aremore distinct.

4.2.3. A Clamped Beam (Linear Case). Figure 13 shows
a clamped beam resting on a variable elastic foundation.

Table 9 indicates the variation of the frequency parameterΩ𝑖
associated with the ith mode shape, with 𝑖 = 1 to 3, for the
linear and parabolic soil stiffness variation, by increasing both
the number of masses from 𝑁 = 10 to 𝑁 = 100 and the soil
stiffness from 1 to 1000. It is obvious form the results obtained
that the soil distribution (linear and parabolic) has no effect
on the convergence. However, a low number of masses (𝑁 =10) is not sufficient to get a good approximation (error about
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Figure 9: Nondimensional frequency√𝜔CC∗
𝑙 discr(𝜆) for a clamped beam: (a) first mode; (b) second mode; (c) third mode; (d) forth mode; (e)

fifth mode.
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Figure 10: Nondimensional frequency√𝜔CC∗
𝑙 discr(𝜆) for a clamped beam: (a) first mode (𝐴∗ = 0/𝐴∗ = 1); (b) first mode (𝐴∗ = 0/𝐴∗ = 3).
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Figure 11: Model of S-S beam supported on variable soil. (a) Linear distribution; (b) parabolic distribution.
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Figure 12: Backbone curve nondimensional frequency 𝜔SS∗
nl discr/𝜔SS∗

𝑙 discr(𝐴∗): (a) (𝜏 = 0.2, 𝜋 = 0.2, and 𝜆 = 10); (b) (𝜏 = 0.2, 𝜋 = 0.2, and𝜆 = 1000).
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Table 7: The first eight modes’ frequencies for the linear and parabolic soil distribution in S-S beam case.

Linear (𝜋 = 0.2)𝜆 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8
10

Ref. [17] 3,2118 6,2922 9,4275 12,5675 15,7085 18,8499 21,9914 25,1329

Present work 𝑁 = 10 3,2010 6,2074 9,1420 11,8954 14,4077 16,6270 18,5079 20,0122𝑁 = 100 3,2116 6,2912 9,4240 12,5594 15,6927 18,8225 21,9479 25,0681

100
Ref. [17] 3,6999 6,3720 9,4515 12,5777 15,7138 18,8529 21,9933 25,1342

Present work 𝑁 = 10 3,6884 6,2895 9,1681 11,9073 14,4144 16,6313 18,5111 20,0147𝑁 = 100 3,6993 6,3709 9,4481 12,5696 15,6980 18,8256 21,9499 25,0694

1000
Ref. [17] 5,6185 7,0420 9,6828 12,6783 15,7657 18,8831 22,0123 25,1469

Present work 𝑁 = 10 5,6021 6,9748 9,4177 12,0242 14,4808 16,6747 18,5426 20,0396𝑁 = 100 5,6171 7,0406 9,6794 12,6702 15,7500 18,8558 21,9690 25,0822

Table 8: The first eight modes’ frequencies for the linear and parabolic soil distribution in S-S beam case.

Parabolic (𝜏 = 0.2)𝜆 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8
10

Ref. [17] 3,2150 6,2926 9,4276 12,5675 15,7086 18,8499 21,9914 25,1329

Present work 𝑁 = 10 3,2042 6,2078 9,1421 11,8955 14,4077 16,6270 18,5079 20,0122𝑁 = 100 3,2148 6,2916 9,4241 12,5594 15,6927 18,8226 21,9480 25,0681

100
Ref. [17] 3,7212 6,3755 9,4526 12,5781 15,7140 18,8530 21,9933 25,1342

Present work 𝑁 = 10 3,7090 6,2928 9,1691 11,9077 14,4146 16,6315 18,5112 20,0148𝑁 = 100 3,7206 6,3744 9,4491 12,5700 15,6982 18,8257 21,9499 25,0694

1000
Ref. [17] 5,6788 7,0676 9,6923 12,6824 15,7679 18,8843 22,0131 25,1474

Present work 𝑁 = 10 5,6600 6,9987 9,4269 12,0285 14,4832 16,6763 18,5438 20,0406𝑁 = 100 5,6772 7,0660 9,6888 12,6744 15,7521 18,8571 21,9697 25,0827

Table 9: The 3 first modes’ frequencies for the linear and parabolic soil distribution in C-C beam case.

𝜆 Linear (𝜋 = 0.2) Parabolic (𝜏 = 0.2)Ω1 Ω2 Ω3 Ω1 Ω2 Ω3
1

Ref. [17] 4,7322 7,8537 10,9958 4,7323 7,8537 10,9958

Present work 𝑁 = 10 4,2684 7,0143 9,6267 4,2685 7,0143 9,6267𝑁 = 100 4,6849 7,7746 10,8833 4,6850 7,7747 10,8833

10
Ref. [17] 4,7512 7,8579 10,9973 4,7522 7,8581 10,9974

Present work 𝑁 = 10 4,2799 7,0169 9,6277 4,2805 7,0170 9,6278𝑁 = 100 4,7029 7,7786 10,8848 4,7039 7,7788 10,8848

100
Ref. [17] 4,9297 7,8993 11,0125 4,9391 7,9013 11,0132

Present work 𝑁 = 10 4,3897 7,0427 9,6378 4,3953 7,0437 9,6381𝑁 = 100 4,8730 7,8180 10,8992 4,8820 7,8199 10,8999

1000
Ref. [17] 6,1172 8,2815 11,1611 6,1665 8,2988 11,1677

Present work 𝑁 = 10 5,1964 7,2860 9,7362 5,2301 7,2957 9,7398𝑁 = 100 6,0167 8,1825 11,0407 6,0643 8,1989 11,0469

L

(a)
L

(b)

Figure 13: Model of C-C beam supported by a soil with a variable stiffness: (a) linear distribution; (b) parabolic distribution.
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Figure 14: Backbone curve nondimensional frequency 𝜔CC∗
nl discr/𝜔CC∗

𝑙 discr(𝐴∗): (a) (𝜏 = 0.2, 𝜋 = 0.2, and 𝜆 = 10); (b) (𝜏 = 0.2, 𝜋 = 0.2, and𝜆 = 1000).

10%). For𝑁 = 100, the results become accurate with an error
around one percent.

In conclusion, by applying the present model to the
problem of vibrations of beams resting on variable elastic
foundations, the simply supported beam converges faster
than the clamped beam. This convergence may be expected
because of the hypothesis taken to solve the clamped beam
problem, based on the reducedmatrix, and form the behavior
of the clamped beam, which is more restrained than the
simply supported one.

4.2.4. A Clamped Beam (Nonlinear Case). The backbone
curve presenting the nondimensional frequency is drawn for
the case of a clamped beam in Figure 14. In Figure 14(a), with
a low soil stiffness (𝜆 = 10), the nonlinear behavior is more
expressed since the nonlinear frequency is higher than the
one of the high soil stiffness Figure 14(b) (𝜆 = 1000). On the
other hand, the nonlinear frequency seems to be lower than
the simply supported case. This frequency difference is less
distinguishable for high soil stiffness 𝜆 = 1000.
5. Conclusion

A discrete model of a beam made of multiple bars, masses,
and spiral springs is introduced in [9]. Accordingly, the
present paper extends the previousmodel to the case of beams
resting on elastic foundations, and validations are carried out
for both the linear and nonlinear cases with various soil
stiffness’s and beam’s end conditions.

Before validation of the results obtained via the extended
theory and to complete the results of the previous paper [9], a
mode shape analysis using the present model is investigated
in the linear and nonlinear cases for simply supported and

clamped beams. For the clamped beam, a good approxima-
tion is established, since amplitude dependent mode shapes
are obtained, in agreement with previous theoretical and
experimental works. However, in the simply supported case,
themode shape seemed to be slightly deviating from the orig-
inal shape for high amplitudes, which is not conformed to the
result mentioned in [9, 18], according to which it is amplitude
independent, namely, because of the hypothesis taken in the
discretemodel for the nonlinearity effect, which is sensitive to
the amplitude variation (small triangle angle approximation).
On the other hand, the nonlinear/linear frequency ratios are
in a good agreement with the result given in [13], based
on the FEM method. For the case of a simply supported
beam, the linear theory is validated with an error less
than three percent for 𝑁 = 10 to an error less than 0.1% for𝑁 = 100 in all the cases considered. In the nonlinear case,
the error increased for high amplitudes to seven percent but
decreased to one percent by increasing the soil stiffness.

For the clamped beam, the convergence is relatively
slower, which is expected because of the hypothesis taken. In
the linear case, the error is about ten percent for 𝑁 = 10 and
dropped to one percent for 𝑁 = 100. In the nonlinear case,
the error increased for high amplitudes to six percent but
it decreased to about three percent by increasing the soil
stiffness.

The main objective of this paper is to construct a general
discrete physical model enabling easy solutions in various
configurations of a practical interest. Two applications were
conducted. The first application deals with beams partially
supported on elastic foundations, and the results obtained
complies graphically with [26, 27] in the linear case. For
the nonlinear case, similar curves corresponding to the first
nonlinear mode are plotted for various amplitudes (𝐴∗ = 1
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and 𝐴∗ = 3), to show the shifting from the linear to the
nonlinear curves. The second application is concerned with
beams resting on elastic foundations with a variable stiff-
ness (linear and parabolic). The comparison of the results
obtained with previous results [17] shows the convergence of
the present method for different modes, soil stiffness, and
beam ends conditions. For this application, the simply sup-
ported case is proven faster to converge on the linear case.
For the nonlinear case, the backbone curves are drawn with
various soil stiffness coefficients (𝜆 = 10, 𝜆 = 1000), showing
the deviation introduced by the nonlinearity effect.

Appendix

A. Simplified Calculation 𝑏𝑖𝑗𝑘𝑙
As stated in Section 2.1, the nonlinearity tensor 𝑏𝑖𝑗𝑘𝑙 may be
written as

𝑏𝑖𝑗𝑘𝑙 = 𝜑𝑠𝑖𝜑𝑡𝑗𝜑𝑝𝑘𝜑𝑞𝑙𝑏𝑠𝑡𝑝𝑞. (A.1)

The summation (A.1) may be rewritten, that is, Matlab
program, as

for 𝑖 = 1 : 𝑁;
for 𝑗 = 1 : 𝑁;
for 𝑘 = 1 : 𝑁;
for 𝑙 = 1 : 𝑁;
for 𝑠 = 1 : 𝑁;
for 𝑡 = 1 : 𝑁;
for 𝑝 = 1 : 𝑁;
for 𝑞 = 1 : 𝑁;

𝑏 (𝑖, 𝑗, 𝑘, 𝑙) = 𝑏 (𝑖, 𝑗, 𝑘, 𝑙) + 𝜑 (𝑠, 𝑖) ∗ 𝜑 (𝑡, 𝑗) ∗ 𝜑 (𝑝, 𝑘) ∗ 𝜑 (𝑞, 𝑙) ∗ 𝑏 (𝑠, 𝑡, 𝑝, 𝑞) ;
end . . .

(A.2)

This means the number of calculations to establish the
nonlinearity tensor 𝑏𝑖𝑗𝑘𝑙 terms is 𝑁8.

In Section 2.3 a method to solve the complex nonlinear
problem is proposed. In this method the 𝑏𝑖𝑗𝑘𝑙 term required

for solving the equation is 𝑏11𝑘𝑙, so the earlier (A.2) summa-
tion becomes

for 𝑘 = 1 : 𝑁;
for 𝑙 = 1 : 𝑁;
for 𝑠 = 1 : 𝑁;
for 𝑡 = 1 : 𝑁;
for 𝑝 = 1 : 𝑁;
for 𝑞 = 1 : 𝑁;

𝑏 (1, 1, 𝑘, 𝑙) = 𝑏 (1, 1, 𝑘, 𝑙) + 𝜑 (𝑠, 1) ∗ 𝜑 (𝑡, 1) ∗ 𝜑 (𝑝, 𝑘) ∗ 𝜑 (𝑞, 𝑙) ∗ 𝑏 (𝑠, 𝑡, 𝑝, 𝑞) ;
end . . .

(A.3)

Now the number of calculation dropped to 𝑁6.
By analyzing the form and symmetry patterns of the

nonlinear tensor, a simplification is established reducing the
six earlier nested loops to only three, as
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for 𝑝 = 1 : 𝑁;
for 𝑞 = 1 : 𝑁;

𝑏 (1, 1, 𝑝, 𝑞) = 2 ∗ 𝜑 (1, s) ∗ 𝜑 (1, 𝑡) ∗ 𝜑 (1, 𝑝) ∗ 𝜑 (1, 𝑞) ;
for 𝑖 = 2 : 𝑁;
𝑀0 = 2 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀1 = −1 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖 − 1, 𝑡) ∗ 𝜑 (𝑖 − 1, 𝑝) ∗ 𝜑 (𝑖 − 1, 𝑞) ;
𝑀2 = −1 ∗ 𝜑 (𝑖 − 1, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖 − 1, 𝑝) ∗ 𝜑 (𝑖 − 1, 𝑞) ;
𝑀3 = −1 ∗ 𝜑 (𝑖 − 1, 𝑠) ∗ 𝜑 (𝑖 − 1, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖 − 1, 𝑞) ;
𝑀4 = −1 ∗ 𝜑 (𝑖 − 1, 𝑠) ∗ 𝜑 (𝑖 − 1, 𝑡) ∗ 𝜑 (𝑖 − 1, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀5 = −1 ∗ 𝜑 (𝑖 − 1, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀6 = −1 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖 − 1, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀7 = −1 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖 − 1, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀8 = −1 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖 − 1, 𝑞) ;
𝑀9 = 1 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖 − 1, 𝑡) ∗ 𝜑 (𝑖 − 1, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀10 = 1 ∗ 𝜑 (𝑖 − 1, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖 − 1, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀11 = 1 ∗ 𝜑 (𝑖 − 1, 𝑠) ∗ 𝜑 (𝑖 − 1, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖, 𝑞) ;
𝑀12 = 1 ∗ 𝜑 (𝑖 − 1, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖 − 1, 𝑞) ;
𝑀13 = 1 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖 − 1, 𝑡) ∗ 𝜑 (𝑖, 𝑝) ∗ 𝜑 (𝑖 − 1, 𝑞) ;
𝑀14 = 1 ∗ 𝜑 (𝑖, 𝑠) ∗ 𝜑 (𝑖, 𝑡) ∗ 𝜑 (𝑖 − 1, 𝑝) ∗ 𝜑 (𝑖 − 1, 𝑞) ;
𝑏 (1, 1, 𝑝, 𝑞) = 𝑏 (1, 1, 𝑝, 𝑞) + 𝑀0 + 𝑀1 + 𝑀2 + 𝑀3 + 𝑀4 + 𝑀5 + 𝑀6 + 𝑀7 + 𝑀8 + 𝑀9 + 𝑀10 + 𝑀11 + 𝑀12 + 𝑀13 + 𝑀14;
end . . .

(A.4)

B. Parameters Calculation Summary

The following appendix summarized the demonstrations
already carried out in [9].

B.1. Expressions for the General Terms of the Tensorsmij. The
kinetic energy of the N-DOF system is the sum of the kinetic
energies of the masses, considered as particles, concentrated
at the nodes:

𝑇 = 12𝑦̇𝑖2𝑚𝑖. (B.1)

The value of the concentratedmass𝑚𝑖 for a beam divided
into (𝑁 + 1) bars is equal to 𝑚𝑖 = 𝜌𝑆𝐿/(𝑁 + 1), 𝑖 = 1, . . . , 𝑁.

Identifying the terms of (6) and (B.1) leads to the follow-
ing expression for the mass tensor in DB:

𝑚𝑖𝑗 = 𝜌𝑆𝐿(𝑁 + 1)𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑁, (B.2)

where 𝛿𝑖𝑗 is Kronecker’s symbol.

B.2. Expressions for the General Terms of the Tensors ksij.
By considering that transverse displacements are relatively
small, compared to the length of the bars, of the discrete

system shown in Figure 15, the following approximation can
be established:

sin 𝜃𝑖 = 𝑦𝑖 − 𝑦𝑖−1𝑙 ≈ 𝜃𝑖
for 𝑖 = 1, . . . , 𝑁 + 1 with 𝑦𝑁+1 = 𝑦0 = 0. (B.3)

The linear potential energy 𝑉𝑠𝑙 of the N-DOF system,
resulting from the linear counterpart of the stretching forces
in the 𝑁 + 2 spiral springs, is given by

𝑉𝑠𝑙 = 12
𝑁+2∑
𝑖=1

𝐶𝑖 (Δ𝜃𝑖)2 = 12
𝑁+2∑
𝑖=1

𝐶𝑖 (𝜃𝑖 − 𝜃𝑖−1)2
with 𝜃0 = 𝜃𝑁+2 = 0.

(B.4)

By substituting (B.4), 𝜃𝑖−𝜃𝑖−1, with its expression in (B.3),𝑉𝑠𝑙 , one can write

𝑉𝑠𝑙 = 12
𝑁+2∑
𝑖=1

𝐶𝑖 (Δ𝜃𝑖)2 = 12𝑙2
𝑁+2∑
𝑖=1

𝐶𝑖 (𝑦𝑖 − 2𝑦𝑖−1 + 𝑦𝑖−2)2
with 𝑦𝑁+2 = 𝑦𝑁+1 = 𝑦0 = 𝑦−1 = 0.

(B.5)
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Figure 15: Present beam model with a zoom in the neighborhood of ith bar.

The mass 𝑚𝑟 is subjected from the three spirals springs 𝑟,𝑟 + 1, and 𝑟 + 2 to the resulting elastic force given by

𝐹𝑟𝑙 = − 1𝑙2 [𝐶𝑟 (𝑦𝑟 − 2𝑦𝑟−1 + 𝑦𝑟−2)
− 2𝐶𝑟+1 (𝑦𝑟+1 − 2𝑦𝑟 + 𝑦𝑟−1)
+ 𝐶𝑟+2 (𝑦𝑟+2 − 2𝑦𝑟+1 + 𝑦𝑟)] .

(B.6)

The expression for the linear potential energy 𝑉𝑠𝑙 of the
system, associatedwith the spiral springs, is given in (20).The
linear spring force applied to the mass r can be derived from𝑉𝑠𝑙 as follows:

𝜕𝑉𝑠𝑙𝜕𝑦𝑟 = −12 (𝑦𝑖𝑘𝑠𝑖𝑟 + 𝑦𝑗𝑘𝑠𝑟𝑗) = −𝑦𝑖𝑘𝑠𝑖𝑟
for 𝑖, 𝑗, 𝑟 = 1, . . . , 𝑁

(B.7)

in which the classical symmetry relation, that is, 𝑘𝑠𝑖𝑗 = 𝑘𝑠𝑗𝑖,
is adopted. Equations (B.6) and (B.7) lead to the following
expressions for the rigidity matrix general terms:

𝑘𝑠(𝑟−2)𝑟 = 𝐶𝑟𝑙2 for 𝑟 = 3, . . . , 𝑁,
𝑘𝑠(𝑟−1)𝑟 = − 2𝑙2 (𝐶𝑟 + 𝐶𝑟+1) for 𝑟 = 2, . . . , 𝑁,

𝑘𝑠𝑟𝑟 = 1𝑙2 (𝐶𝑟 + 4𝐶𝑟+1 + 𝐶𝑟+2) for 𝑟 = 1, . . . , 𝑁.
(B.8)

The others values of 𝑘𝑠𝑖𝑗 are obtained by symmetry
relations from (B.8) or are equal to zero.

The linear potential energy stored in the spiral spring 𝐶𝑖,
subjected to the rotations shown in Figure 15, can be written
as

𝑉𝐶𝑙 = 12𝐶𝑖 (Δ𝜃𝑖)2 = 12𝐶𝑖 (𝜃𝑖 − 𝜃𝑖−1)2
for 𝜃0 = 𝜃𝑁+1 = 0. (B.9)

On the other hand, [9] gives the elementary bending
potential energy corresponding to elementary sections of
length 𝑑𝑥 in a continuous Euler-Bernoulli beam:

𝑑𝑉𝑏 = 12𝐸𝐼(𝑑2𝑦𝑑𝑥2)
2 𝑑𝑥 = 12𝐸𝐼 (𝜃𝑖 − 𝜃𝑖−1)2

with 𝜃𝑖 = (𝑑𝑦𝑑𝑥)
𝑖

.
(B.10)

𝐼 is the quadratic moment relative to the neutral fibre of this
section.

By identification between (B.9) and (B.10), we get

𝐶𝑖 = 𝐸𝐼𝑙 = (𝑁 + 1) 𝐸𝐼𝐿 with 2 ≤ 𝑖 ≤ 𝑁 + 1. (B.11)

B.3. Expression for the General Term of the Nonlinear Rigidity
Tensor bijkl. The stretching of the axial spring having the
equivalent stiffness 𝑘𝑏𝑖 = 𝐸𝑖𝑆𝑖/𝑙𝑖 [9], in which 𝐸𝑖 (N⋅m−2)
is the Young modulus of the material, 𝑆𝑖 (m2) is the area of
cross section and 𝑙𝑖 (m) is the length of the bar 𝑖, andΔ𝑙𝑖 is the
longitudinal displacement following the vector {V𝑖}, Figure 15.

Assuming that the masses 𝑚1, . . . , 𝑚𝑁 are transversally
displaced by 𝑦1, . . . , 𝑦𝑁. By applying the Pythagorean Theo-
rem to the triangle formed by 𝑙𝑖/(𝑦𝑖−𝑦𝑖−1) /𝑙󸀠𝑖 and developing
the square root to the first order, the following nonlinear
energy expression is obtained [9]:

𝑉nl = 12
𝑁+1∑
𝑖=1

𝑘𝑏𝑖4𝑙𝑖2 (𝑦𝑖
4 − 4𝑦𝑖−13𝑦𝑖 + 6𝑦𝑖−12𝑦𝑖2

− 4𝑦𝑖3𝑦𝑖−1 + 𝑦𝑖−14) 𝑦0 = 𝑦𝑁+1 = 0.
(B.12)

One obvious conclusion coming to sight is that the last
expression for the potential energy stored in the (𝑁+1) linear
longitudinal springs contains the terms 𝑦𝑖4, 𝑦𝑖−14, 𝑦𝑖3𝑦𝑖−1,𝑦𝑖−12𝑦𝑖2, and 𝑦𝑖4. On the other hand, the symmetry relations
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usually encountered in the previous cases examined by the
present method, for example, [20, 23], are adopted here as
follows:

𝑏𝑖𝑗𝑘𝑙 = 𝑏𝑖𝑗𝑙𝑘,
𝑏𝑖𝑗𝑘𝑙 = 𝑏𝑘𝑙𝑖𝑗,
𝑏𝑖𝑗𝑘𝑙 = 𝑏𝑗𝑖𝑘𝑙,
𝑏𝑖𝑗𝑘𝑙 = 𝑏𝑘𝑙𝑖𝑗,
𝑏𝑖𝑗𝑘𝑙 = 𝑏𝑖𝑘𝑗𝑙

for 𝑖, 𝑗, 𝑘, 𝑙 = 1, . . . , 𝑁.

(B.13)

With bar having the following characteristics, 𝐸, Young’s
modulus, 𝑆, area of the section, and 𝑙, length of the bar may
then be assimilated to a longitudinal spring whose stiffness is
[9]

𝑘𝑏𝑖 = 𝐸𝑆𝑙 . (B.14)

Adopting the symmetry relations (B.13) in the relation (5),
one has

𝑉nl = 𝑁+1∑
𝑖=1

(𝑏𝑖𝑖𝑖𝑖𝑦𝑖4 + 4𝑏𝑖(𝑖−1)(𝑖−1)(𝑖−1)𝑦𝑖−13𝑦𝑖
+ 6𝑏𝑖(𝑖−1)(𝑖−1)𝑖𝑦𝑖−12𝑦𝑖2 + 4𝑏𝑖𝑖𝑖(𝑖−1)𝑦𝑖3𝑦𝑖−1
+ 𝑏(𝑖−1)(𝑖−1)(𝑖−1)(𝑖−1)𝑦𝑖−14) with 𝑦0 = 𝑦𝑁+1 = 0.

(B.15)

The identification between (B.12) and (B.15) leads to the
following expressions for the general terms of the nonlinear
rigidity tensor 𝑏𝑖𝑗𝑘𝑙:

𝑏𝑖𝑖𝑖𝑖 ≅ 2𝐸𝑆8𝑙3 = 2 (𝑁 + 1)3 𝐸𝑆8𝐿3
for 𝑖 = 1, . . . , 𝑁,

𝑏𝑖(𝑖−1)(𝑖−1)(𝑖−1) = 𝑏(𝑖−1)𝑖(𝑖−1)(𝑖−1) = 𝑏(𝑖−1)(𝑖−1)𝑖(𝑖−1)
= 𝑏(𝑖−1)(𝑖−1)(𝑖−1)𝑖 ≅ −𝐸𝑆8𝑙3
= − (𝑁 + 1)3 𝐸𝑆8𝐿3 for 𝑖 = 2, . . . , 𝑁,

𝑏𝑖𝑖(𝑖−1)(𝑖−1) = 𝑏(𝑖−1)𝑖𝑖(𝑖−1) = 𝑏(𝑖−1)(𝑖−1)𝑖𝑖 = 𝑏𝑖(𝑖−1)(𝑖−1)𝑖
= 𝑏𝑖(𝑖−1)𝑖(𝑖−1) = 𝑏(𝑖−1)𝑖(𝑖−1)𝑖 ≅ 𝐸𝑆8𝑙3
= (𝑁 + 1)3 𝐸𝑆8𝐿3 for 𝑖 = 2, . . . , 𝑁,

𝑏𝑖𝑖𝑖(𝑖−1) = 𝑏(𝑖−1)𝑖𝑖𝑖 = 𝑏𝑖(𝑖−1)𝑖𝑖 = 𝑏𝑖𝑖(𝑖−1)𝑖 ≅ −𝐸𝑆8𝑙3
= − (𝑁 + 1)3 𝐸𝑆8𝐿3 for 𝑖 = 2, . . . , 𝑁.

(B.16)

The rest of 𝑏𝑖𝑗𝑘𝑙 are equal to zero.

Nomenclature

∗: Nondimensional parameter symbol𝑎𝑗: Contribution coefficient of the jth linear
mode shape in MB for the discrete system𝐴 𝑖: The discrete modulus of the displacement𝑦𝑖 expressed in DB{A}: Displacement amplitudes of the masses𝑚1; . . . ; 𝑚𝑖; . . . ; 𝑚𝑁 in DB𝑏𝑖𝑗𝑘𝑙: The general term of the nonlinear rigidity
tensor in DB𝑏𝑖𝑗𝑘𝑙: The general term of the nonlinear rigidity
tensor in MB𝐵: The ratio of the supported span to the total
span[B]: The nonlinear rigidity matrix in DB[B]: The nonlinear rigidity matrix in MB𝐶𝑟: The stiffness coefficient of the 𝑟th spiral
spring

DB: Displacement basisΔ𝑙𝑖: The longitudinal displacement following
the vector𝛿𝑖𝑗: Kronecker’s symbol{𝑑𝑖}: The 𝑖th displacement vector in DB𝐸: The Young modulus of the bar’s material𝐸𝑖: The Young modulus of the 𝑖th bar𝐻: The thickness of the bar in m𝐼: The quadratic moment relative to the
neutral fibre for the cross section in m4[I]: The identity matrix𝑘: The soil stiffness spring stiffness𝑘𝑠𝑖𝑗: The general term of the linear rigidity
tensor in DB (spiral spring)𝑘𝑠𝑖𝑗: The general term of the linear rigidity
tensor in MB (spiral spring)[K𝑠]: Matrix of linear rigidity in DB (spiral
spring)[K𝑠]: Matrix of linear rigidity in MB (spiral
spring)𝑘𝑙𝑖𝑗: The general term of the linear rigidity
tensor in DB (Winkler soil spring)

𝑘𝑙𝑖𝑗: The general term of the linear rigidity
tensor in MB (Winkler soil spring)𝑘𝑏𝑖 : The general term of the axial rigidity
tensor𝑘𝑙(𝑥): Linear soil distribution function𝑘𝑝(𝑥): Parabolic soil distribution function[K𝑙]: Matrix of linear rigidity in DB (Winkler
soil spring)

[K𝑙]: Matrix of linear rigidity in MB (Winkler
soil spring)[KSS∗

𝑁 ]: Linear rigidity matrix of the N-DOF
discrete system presenting a simply
supported beam[KCC

𝑁 ]: Linear rigidity matrix of the N-DOF
discrete system presenting a
clamped-clamped beam
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[KCC
𝑁−2]: Linear rigidity matrix of the N-DOF

discrete system presenting a
clamped-clamped beam𝑙𝑖: Length of the bar 𝑖 in m𝑙󸀠𝑖 : The length of the bar 𝑖 after deformation in
m𝐿: Total length of the bars𝑚𝑖𝑗: The general term of the mass tensor in DB𝑚𝑖𝑗: The general term of the mass tensor in MB

MB: Modal basisΩ𝑖: Frequency parameter of the 𝑖th mode[M]: Matrix of masses in DB[M]: Matrix of masses in MB
M: Moment in the spiral spring𝑁: Number of degrees of freedom (number of

masses)𝑞𝑖: The time component of the transverse
displacement of the 𝑖th mass𝑞̇𝑖: The first derivative with respect to time of𝑞𝑖𝑞̈𝑖: The second derivative with respect to time
of 𝑞𝑖𝑅: The radius of gyration𝑆𝑖: The area of cross section of the 𝑖th bar in
m2𝑆: The area of cross section for uniform beam
in m2𝑇: The kinetic energy{V𝑖}: Vector following the 𝑖th bar𝑉: The total potential energy𝑉𝑙𝑙 𝑖: The linear potential energy stored in the𝑖th Winkler spring𝑉𝑙: The linear potential energy𝑉nl: The total nonlinear strain energy stored in
the (𝑁 + 1) longitudinal springs𝑉𝑠𝑙 : The linear potential energy stored in the(𝑁 + 2) spiral springs𝑉𝑙𝑙 : The total linear potential energy stored in
the (𝑁) Winkler springs𝑊: Beam transverse displacement𝑥: The distance on the beam𝑦𝑖: Transverse displacement of the 𝑖th mass in
DB𝑦𝑖: Transverse displacement of the 𝑖th mass in
MB𝛼: Soil stiffness parameter{𝛽}: The eigenvalue of nondimensional rigidity
vector𝛽𝑖: The 𝑖th eigenvalue of nondimensional
rigidity𝜀𝑖: The small contribution of the 𝑖th mode𝜃𝑟: The angular displacement of the bar 𝑟 in
rad𝜆: Soil stiffness parameter𝜆𝑖: The 𝑖th soil stiffness parameter𝜉: Relative length 𝑥/𝑙𝜌: Mass per unit volume of the bar (kg m−3)

𝜑𝑟: The 𝑟th component of {Φ𝑖}{Φ𝑖}𝑇: Transpose of the 𝑖th linear mode shape of
the system (when considering a 𝑁-DOF
model){Φ𝑖}: The 𝑖th linear mode shape of the system in
MB (when considering a 𝑁-DOF model)[Φ]: Transition matrix𝜔nl

discr: The nonlinear frequency parameter of the
discrete system𝜔SS

𝑙 discr: The first linear frequency of the discrete
system in the case of simply supported
beam𝜔SS

nl discr: The first nonlinear frequency of the
discrete system in the case of simply
supported beam𝜔CC

𝑙 discr: The first linear frequency of the discrete
system in the case of clamped-clamped
beam𝜔CC

nl discr: The first nonlinear frequency of the
discrete system in the case of
clamped-clamped beam.
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