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Abstract: This paper investigates the numerical solution of a viscoelastic continuous beam whose damping be-
haviours are defined in term of fractional derivatives of arbitrary order. The Homotopy Perturbation Method
(HPM) is used to obtain the dynamic response. Unit step function response is considered for the analysis.
The obtained results are depicted in various plots. From the results obtained it is interesting to note that
by increasing the order of the fractional derivative the beam suffers less oscillation. Similar observations
have also been made by keeping the order of the fractional derivative constant and varying the damping
ratios. Comparisons are made with the analytic solutions obtained by Zu-feng and Xiao-yan [Appl. Math.
Mech. 28, 219 (2007)] to show the effectiveness and validation of this method.
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1. |ntr0ducti0n several excellent books have been written by different
authors representing the scope and various aspects of this
field such as: Kiryakov [37], Golmankhaneh [2], Baleanu

) et al. [6, 7], Miller and Ross [22], Oldham and Spanier

In recent years, fractional calculus has been used to [14], Podlubny [8], and Samko et al. [31]. These books

model physical and engineering problems in fields such . . . . s
also give an extensive review of fractional derivative

as solid mechanics, fluid mechanics, biology, physics,

and other areas of engineering and science. Since, it is
too difficult to obtain the exact solution of a fractional
differential equation so, one may need a reliable and

efficient numerical technique for solving fractional dif-

and fractional differential equations which may help
the reader understand the basic concepts of fractional
calculus.Many authors have developed various methods
to solve ordinary and partial fractional differential
equations integral to physical systems. Some commonly
i used methods are the Adomian Decomposition Method
calculus have been reported in the last few decades and (ADM), Variational lteration Method (VIM), Differential
Transform Method (DTM), etc. which are described in

ferential equations. Many important works on fractional
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Some other related works are reviewed and cited here
for a better understanding of the present investigation.
Half-order fractional derivative models of viscoelasti-
cally damped structures have been excellently studied
by Bagley and Torvik [28, 29]. Laplace transform is
considered in [28] to find response characteristics. Also,
Koeller [26] has used a fractional model to describe creep
and relaxation functions for viscoelastic materials. In
[15, 16] Fourier transformation is used to analyse the
damping description of the impulse response function of
oscillators with fractional derivatives. Time domain finite
element analysis of viscoelastic structures with fractional
derivatives is clearly explained in [20]. The eigenvector
expansion method is successfully implemented in [17] to
find the solution of dynamic systems containing fractional
derivatives. Various numerical methods are applied in
[4, 18, 20, 21, 27] to find the responses of a fractionally
damped system.

Recently, the homotopy perturbation method has been
found to be a powerful tool for analysing this type of
system involving fractional derivatives. The Homotopy
Perturbation Method (HPM) was first developed by
Ji-Huan He in 1999 [9-13] and many authors applied this
method to solve various linear and non-linear functional
equations of scientific and engineering problems. The
solution is considered as the sum of infinite series, which
converges rapidly to accurate solutions. In the homotopy
technique (in topology), a homotopy is constructed with
an embedding parameter which is considered as a "small
parameter’. Very recently the homotopy perturbation
method has been applied to a wide class of physical
problems [3, 5, 9, 11, 13, 24, 25].

In this analysis, the homotopy perturbation method is used
to handle the dynamic analysis of a fractionally damped
viscoelastic continuous beam. The same problem is stud-
ied by Zu-feng and Xiao-yan [19] using the adomain de-
composition method. A damping factor is defined with a
fractional derivative of an arbitrary order. In the following
sections, preliminaries are described first, followed by the
implementation of HPM for fractionally damped viscoelas-
tic beam. Then the response analysis for a unit step load
is presented and finally numerical examples and conclu-
sions are given.

2. Preliminaries

In this section, we present some notations, definitions and
preliminary facts which are used further in this paper [8,

14, 22, 31, 37].

Definition 1 (Riemann-Liouville fractional inte-
gral).

There are several definitions of fractional integrals. The
most commonly used is by Riemann-Liouville and Caputo
[8]. The Riemann-Liouville integral operator J* of order
a >0, is defined by

Y 1
Jof(t) = r—/
0

Definition 2 (Caputo derivative).
The fractional derivative of f(t) in the Caputo sense is
defined as

)*f(t)dT, t > 0.

D(Xf(t) jmfa Dlﬂ ( )
[t [ m ot <a<mmen
ddx'" f(t), a=mmeN

where, the parameter « is the order of the derivative and
is allowed to be real or complex. In this paper, only
real and positive a will be considered. For the Caputo’s
derivative we have

D“C =0, C is a constatnt

(B<a—1)
(B>a—1)

Similar to integer-order differentiation, Caputo’s fractional
differentiation is a linear operation:

0,
Datﬁ = { r(B+1) tB LI
I(B—a+1)

D (A(t) + ug(1)) = AD (1) + uD"g(),

where,A, y are constants and satisfies the so called Leib-
nitz rule:

[e)

DA (g(0)(1)) = Z( )g‘“(t)DG*kfm,

k=0

if f(7)is continuous in [0, t] and g(t) has n + 1continuous
derivatives in [0, t].

Definition 3 (Mittage-Leffer function).
A two-parameter function of the Mittage-Leffer type is
defined by the series expansion [8]

k

- z
Eoplz) = Z Flak+ )’ (@>0,8>0).

k=0
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3. Application of HPM [10, 11] to
a fractionally damped viscoelastic
beam

To develop numerical schemes for a fractionally damped
viscoelastic beam [19] let us consider a linear differential
equation which describes the dynamics of the system with
the damping as an arbitrary fractional derivative of order
a

2 o 4
pAa—tZ + c% + E/% = F(x, 1) (1)
where p, A, ¢, E and | represent the mass density, cross
sectional area, damping coefficient per unit length, Young's
modulus of elasticity and moment of inertia of the beam
respectively. F(x, t) is the externally applied force and
v(x, t) is the transverse displacement. % is the fractional
derivative of order o € (0,1) of the displacement func-
tion v(x, t). Initial conditions are considered as v(x,0) =0
and v(x, 0) = 0. Homogeneous initial conditions are taken
here to compare the solution obtained by the present
HPM with the solution of [19].

Equation (1) can be written as

o*v ¢ 0%

v, oV F(x, 1)
a2 ~ pAdte

El d%v
3 = . )
PA Ox PA

According to HPM, we may construct a simple homotopy
for an embedding parameter p € [0, 1] as follows

(1—p) s+

92 9 El % Fxt)) _
p (% + a5+ Boi - Tt) =0 pefo]

)

or

ELo_rd) g

PA ox* pA

v ( c 0% )

ot pA ote

Here, p is considered as a small homotopy parameter 0 <

p < 1. For p =0, Equations (3) and (4) become a linear
equation Le. % = 0, which is easy to solve. For p =1,

Equations (3) and (4) turn out to be same as the original
Equation (1) or (2). This is called deformation in topology.
oy % y Eldty _ Flxt) i

52 and Ao T oAt LA are called homotopic.
Next, we can assume the solution of Equation (3) or (4)

as a power series expansion in p as

v(x, t) = vo(x, t) + pva(x, t) + p?va(x, t) + pPus(x, t) + - - -,

)

where v;(x, t) for i = 0,1,2,... are functions yet to be
determined. Substituting Equation (5) into Equation (3)
or (4), and equating the terms with the identical power of

p we can obtain a series of equations of the form

62v0
=GR =0, )
P1 ) v . Laavo E% _ F(x,t) _ 7)
02 pAdtr  pA ox? PA '

5 0%v n ia"w Eé“w _ ®)
P92 T paare T pAaxt

3. 62V3 iaaw Ea4VZ _ (9)
P52 T pAaare T pA X

4 . 02V4 iaan; EO4V3 -0 (10)
Pge T oA gt T pAaxt

and so on.

Choosing initial approximation vy(x,0) = 0 and applying
the operator L;;! (which is the inverse of the operator L, =
%) on both sides of Equations (6) to (10) one may obtain
the following equations

volx, ) = 0, (11)
0%, El 0%y F(x.t)

=L (-2 B9 (12

k1) =Ly ( A dtr  pAoxt | pA (2)

_Laa'“ _ E% ) (13)
pA dte  pA ox*

va(x, t) = L,_,1 (

_ (o dw Eldw
it = L, ( PR el PRL)
_c 9 E% ) (15)
pA 9t pA ox*

va(x, t) = L7 (

and so on.

Now substituting these terms in Equation (5) with p — 1
one may get the approximate solution of Equation (1) as
follows.

v(x, t) = vo(x, t) + vi(x, t) + va(x, t) + v3(x, )+ (16)

+va(x, t) + -
The solution series converge very rapidly. Proof of con-
vergence of the above series may be found in [10, 11].
The rapid convergence means that only a few terms are
required to get the approximate solutions.
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4. Response analysis

Similar to [19] the external applied force F(x, t) is consid-
ered as

F(x, 1) = f(x)g(1),

where f(x) is a specified space dependent deterministic
function, and g(t) is a time dependent process. We will
now consider the response of the beam to a unit step
load of the form g(t) = Bu(t) where u(t) is the Heaviside
function and B is a constant. By using HPM we have

vo(x, t) =0, (17)
fBt
vilx, t) = ——=, 18
‘I( ) pA 2 ( )
fB ¢ EIBf4 ¢
v t) = =75 - rG) 1
pPAT(B—a)  p?A? T(5)
2B 62 2cEIBf)  {6-a
v3(x, t) = ;3? frza T Cp3A3 r7=at
(20)
E212Bf®) 0
+ PBAS T(7)
_ _ 3B 83 32EIBfY 822
)= =Gt e — A Too2a
(21)
3cE22BI®) B-o  E3PB12) 8
pPAT T(0-a) —  piAT T(9)
and so on, where f{ = %

In a similar manner the rest of the components can be
obtained. Therefore, the solution can be written in its
general form as

V(X, t) — B i (=1)" (ﬂ)r Fl4r) $2(r+1)

PA = rl P
(22)
e J i )2—a)j
—c (j+r)'t
/;0 ( pA ) M(2—a)j+2r+3)"
Equation (21) can now be rewritten as follows
_ B
v(x, t) = o
(23)

) [ E 2 —c 40—
e A= g |

In Eq. (22), E} ,(y) is called the Mittage-Leffler function
of two parameters A and p. Here

Zw (+ny!
E7 = - = = 12 ...
/\,u(g) p j!r()\j+)\r U)' r 0, 14y ’

A=2—caand y=ar+2.

It is worth mentioning that the normal mode and the
Laplace transform techniques have been applied to the
system (1) with @ = 1/2 by Agrawal [23] to find an ana-
lytical solution. Also, the Adomain decomposition method
[19] has been used to find an analytical solution. Zu-feng
and Xiao-yan [19] reported in their remarks that the re-
sults obtained are identical with [23] for the special values
of a and F(x, t). One may find the solution of Equation
(1) under homogeneous initial conditions as mentioned in
[19, 23] as

3‘—\

v(x, t) i

[ (t—OH@dE (24)
j=1 0
where G; is the fractional Green’s function associated with

the operator P; (dza) f; = f(t) is defined by

L
fi= /F(x, t)¢j(x)dx
0

and ¢; = ¢;(x) satisfies El% = pAwIquj with the or-

thogonality condition

L
mj,i=j
Apip:dx =4 .
/p ¢l¢/dx {0,1%]
0

Here L is the length of the beam, m; is the generalized
mass in the j-th mode and w; is the natural frequency
of the j-th mode. We have investigated the problem with
some values of @ and F(x, t) below to compare the solution
of [19, 23] and these agree well.

5. Numerical results and discus-

sions

As discussed above, a unit step function response has
been considered for analysis. The calculated results are
depicted in plots are discussed below.

Equation (21) or (22) provides the desired expressions for
the considered loading condition. In order to show the
response in a precise way, some numerical results are
presented in this section. We have considered a simply

supported beam, hence one may have the expression for
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the force distribution for single degree freedom idealiza-
tion as

f(x) = sin(7).

Here the numerical computation has been done by
truncating the infinite series (21) or (22) to a finite
number of terms. For numerical simulations, let us denote
c¢/m and El/pA respectively as 2nw?? and w? where, w
is the natural frequency and n is the damping ratio. The
values of the parameters are taken as B = 1, pA = 1,
L=mand m=1.

Figure (1) gives the effect of displacement against time
for various values of a(= 0.2,0.5, 0.8) In this computation
x and n are taken as 1/2. Figures 1(a) and 11(b) present
the plot for w = 5rad/s and w = 10rad/s respectively.
A similar simulation has been done with damping ratio
n = 0.05 and the obtained results are depicted in Figure
2. The dynamic responses versus time for different
values of n(= 0.05,0.5,1) are given in Figure 3. In this
computation o = 0.2 and x = 1/2 are considered. Again
Figures 2(a) and 2(b) depict the plot for w = 5rad/s and
w = 10rad/s respectively. Finally Figure 4 cites the
results as above with a = 0.5.

It is interesting to note from Figures (1) and (2) that if
we increase the order of the fractional derivative a, the
beam suffers more oscillations for smaller value of a. Sim-
ilar observations may be made by keeping the order of the
fractional derivative constant and varying the damping ra-
tios as shown in Figures (3) and (4). It can clearly be seen
that increasing the value of the damping ratios decreases
the oscillations.

6. Conclusions

The Homotopy perturbation method has successfully been
applied to the solution of a fractionally damped viscoelas-
tic beam, where the fractional derivative is considered as
of arbitrary order. Unit step response functions with ho-
mogeneous initial conditions are chosen to illustrate the
proposed method. Performance of this method is shown
and its results are compared with analytical solution ob-
tained by Zu-feng and Xiao-yan [19]. It is interesting to
note that the results obtained by the presented method
exactly matches the analytical solution obtained in [19].
Though the solution by HPM is of the form of an infinite
series, it can be written in a closed form in some cases.
The main advantage of HPM is the capability to achieve
exact solution and rapid convergences with few terms.
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Figure 1.
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Unit step responses along x = 1/2 with natural frequency
(a) w = 5rad/s, (b) w = 10rad/s and damping ratio n =
0.5

Figure 2. Unit step responses along x = 1/2 with natural frequency

(a) w = 5rad/s, (b) w = 10rad/s and damping ratio n =
0.05
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Figure 3. Unit step responses along x = 1/2 with natural frequency
(a) w = 5rad/s, (b) w = 10rad/s and damping ratios n =
0.05, 0.5 and 1 for @ = 0.2
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Figure 4. unit step responses along x = 1/2 with natural frequency
(a)w = brad/s, (b)w = 10rad/s and damping ratios n =
0.05, 0.5and 1 for a = 0.5
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