
  

  
Abstract—This paper deals with the analysis of collision 

vibration in continuous system excited by periodic displacement 
with arbitrary function.  The analytical model is steady collision 
vibration of  simply supported beam which collides with 
arbitrary location. In order to clarify the main resonance of the 
system, the resulting vibration is analyzed applying the Fourier 
series method for this system and an exact solution is proposed. 
Following the theoretical analysis, numerical calculation is 
performed and experiments are also carried out to verify the 
theoretical results. 
 

Index Terms—Vibration analysis, theory of vibration, forced 
vibration, collision vibration. 
 

I. INTRODUCTION 
Collision vibrations are generated by a high-speed 

collision with an elastic body and constitute a system with a 
comparatively high degree of nonlinearity making it difficult 
to perform quantitative assessment to obtain general 
analytical results. Choi [1] analyzed the steady forced 
collision response of a single-degree-of-freedom system with 
an asymmetrical piecewise linear restoring force. The 
restoring force was derived using a fast Fourier 
transformation algorithm, and the method of harmonic 
balance was applied. The nonlinear simultaneous equations 
derived by harmonic balance were solved by using a 
Newton-Raphson iteration method, and periodic solutions 
were calculated. Studies on collision vibrations of continuous 
systems include analyses by Watanabe [2], Shaw [3], Aoki [4] 
and Brake [5] of the responses under single harmonic 
excitation. However, seismic design of chemical plant 
structures such as piping systems must consider not only 
single periodic excitation. It must also consider a wide 
variety of exciting vibrations of structures [6]. Kumano [7] 
have also examined analyzed the steady forced collision 
response of a continuous system having a symmetrical 
piecewise linear restoring force by the Fourier series method. 
The main resonance was analyzed and an exact solution was 
derived. Numerical calculations were also performed based 
on the exact solution and resonance curves were constructed. 
The effect of the nonlinearity on the resonance was shown. 
These continuous system analyses were limited to special 
cases in terms of the locations of elastic collisions, with 
collisions occurring at the free end of a cantilever beam or at 
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the midpoint of a simply supported beam at both ends. A real 
structure or machine often contains clearance or gaps 
mid-span, as well as regions where structural elements or 
components undergo elastic collision mid-span with other 
components. However, no analyses have been appeared to be 
conducted for periodic excitations with arbitrary functions 
based on displacement for these structural materials. 

This paper presents basic research on analyzing the steady 
collision vibrations arising in a simply supported beam 
suspended between two springs clamped symmetrically at an 
arbitrary position along the beam. This study used Fourier 
series method, which expands a series about the restoring 
force that arises from a collision, and a rigorous expression 
for the resulting vibration was derived. A numerical 
calculation was also performed based on the analytical results. 
An experiment was also conducted with physical conditions 
matching those used in the simulation; the experimental 
results were in good agreement with the numerical 
predictions, confirming the effectiveness of this analysis.   

 

II. THEORETICAL ANALYSIS 

A. Characteristics of System and Equation of Motion 
The system examined in this study is shown in Fig. 1. It is a 

simply supported beam subjected to elastic collision at an 
arbitrary point along its span with springs clamped to walls 
located at symmetric distances from the neutral beam 
position, while subjected to a displacement of a periodic 
excitation with an arbitrary function q(t). 
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Fig. 1. Dynamical model of collision vibration system. 
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Fig. 2. Characteristics of restoring force. 
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As shown in Fig. 2, the restoring force of the spring is 
symmetric piecewise linear with a dead zone (zone II) at 
clearance z = [+e0, −e0]. If zone II is considered the standard, 
then zones I and III as an entire system can be considered the 
nonlinear regions. If A is the cross section of the beam, I is the 
second moment of the beam cross-sectional area, E is 
Young’s modulus and ρ is the density, we can calculate the 
transverse vibration in bending under periodic excitation by a 
displacement described by an arbitrary function q(t). During 
this vibration, the beam also collides elastically with a spring 
with a spring constant of K at an arbitrary position along the 
beam. We consider the beam to consist of two independent 
bodies on either side of this location: beam I on the side with  
the left end and beam II on the side with the right end. The 
relative displacement of beam i (where i = I, II) is zi. The 
following equation of motion is obtained for zi: 
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The displacement excitation q(t) acting on the system is 
assumed to be described by an arbitrary periodic function, 
and can therefore be expanded into the following complex 
Fourier series and the real Fourier series given later. 
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where ω is the angular frequency and Sn, f0, fn and gn are 
Fourier coefficients. If (2) is substituted into (1), we obtain 
the following partial differential equation: 
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We consider the steady collision vibration in this analysis, 
so the relative beam displacement zi is a periodic function of 
the angular frequency ω and q(t). It follows that the resulting 
displacement zi in (3) can be expanded into the following 
Fourier series, in which the superscript i denotes beam I or II: 
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The resulting displacement (4) can be substituted into the 
partial differential equation in (3). If we use the relation 
between the relative displacement and the absolute 
displacement, we obtain the following ordinary differential 
equation for the beam: 
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where Xi
n(x) (i = I, II; n = 0, 1, 2, …) is an eigenfunction 

describing normal-mode vibration. If the coefficients in (5) 
are then restated as 
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then λn are the eigenvalues and Xi
n(x) are given by the 

following formula:  
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The An, Bn, Cn, … Hn in the above equation are constants 
to be determined later from the boundary conditions and from 
the continuity conditions. The primary angular frequency of a 
cantilever beam is given by 
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where Z1=π. Equation (6) can be restated in terms of the 
frequency ratio Ω = ω/ω1, giving the following relationship: 
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B. Fourier Series Method 
This analysis limits considerations to resulting waves in 

which the beam strikes and compresses the upper and lower 
springs in the nonlinear region only one time each during the 
main resonance region. In order to simplify the analysis, the 
response waveform was assumed to be approximately axially 
symmetric about the midpoint of the duration of beam’s 
collision with each of the clamped springs and the maximum 
or minimum resulting displacement is assumed to occur at 
those temporal midpoints. One cycle of the resulting wave of 
the relative displacement at the location of collision with the 
springs is divided into three zones (I, II, III). These zones 
correspond to zones I, II and III in the restoring force 
characteristic graph in Fig. 2. The phase angle θ is introduced 
here in terms of the portion of the cycle θ0 spent in contact 
with one or the other spring. The starting point for the period 
is considered to be the midpoint of zone I. The phase lag 
angle α is defined as 

αωθ −= t          (10) 

α is unknown for now and will be calculated later, and ω is 
the angular frequency of excitation. 

The boundary conditions for the analytical model shown in 
Fig. 1 are set using the following expressions: 
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The dwell angle θ0 is defined as the portion of the resulting 
vibration period spent in nonlinear zones I and III. The 
following expressions show the conditions at the collision 
point when the beam enters and leaves the nonlinear regions 
(the switching-over conditions): 
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where µ (=a/l) is collision positon ratio and zµl express 
collision point.  
There is continuity at the boundary point between beam I and 
beam II. The continuity conditions are as follows: 
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In (13), f(zµl) is the restoring force in the spring during 
elastic collision with the beam, as shown in Fig. 2; this is 
written g(θ). θ0 is the dwell angle, the angle of duration of 
collision points between the beam and spring in zones I and 
III. Thus, g(θ) is found as follows: 
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g(θ) can be considered a periodic function of the phase 
angle θ with period 2π. Thus, it can be expanded into a 
Fourier series: 
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where cn, a0, an and bn are Fourier coefficients. 

C. Derivation of Analytical Equation 
The dimensionless resulting displacement ratio zµl /e0 was 

derived as follows by using (3) and (13): 

∑

∑

∞

=

∞

=









+

−
+













































−







+

−

+





 −








+

−

+

=





7,5,3

0

1

110

,7,5,3

0

0

1

11

0

1

11

0

2
cos1

2
cos

sin

2
sin

2
sin

sin1

2
coscos1

cos

n
nnnn

n

nnnn

nnnn

l

nxM
N

xMuNn

n

nyM
N

xMvN

nnxM
N

xMuN

e
z

θθ

θθ

θ

θ

θθ

θ

µ  (16) 

The following values are derived for the excitation 
amplitude ratio f1/e0 and the phase lag angle α corresponding 
to these conditions: 
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These dimensionless equations were introduced as 
simplified forms of (16)-(18): 
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Equations (16)-(18) can all be determined using the three 
parameters of frequency ratio Ω, phase lag angle α and dwell 
phase angle θ0 in zones I and III and the independent 
dimensionless Fourier coefficients xn and yn. Therefore, once 
xn and yn (n = 1, 3, 5,…) are known, the resulting 
displacement ratio zµl/e0 can be found from (16), the 
corresponding excitation amplitude ratio f1/e0 can be found 
from (17), and the phase lag angle α can be found from (18). 

D. Identification of the Dimensionless Fourier 
Coefficients 
The first and second expressions in (19) define the 

dimensionless Fourier coefficients xn and yn. The 
requirement to satisfy the piecewise linear condition of the 
restoring force provides the following infinite set of 
simultaneous linear equations: 
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Thus, solving (20) and (21) together determines xn and yn. 
Amn, Bmn, … Jmn in the above are constants determined by Ω, 
α, and θ0. 

 

III. NUMERICAL AND EXPERIMENTAL RESULTS 

A. Comparison of Numerical Results with Experimental 
Results 

Fig. 3 shows the resonance curve that compares the 
numerically predicted amplitudes at resonance at the 
collision position during unitary excitation and the observed 
amplitudes in the experiment. These results agree reasonably 
well. The resonance curve bends to the right when the 
maximum vibration amplitude at the collision point entered 
the nonlinear region (marked with ), beyond which the 
curve bent to the right, indicating prominent nonlinear 
behavior. 

0

1

2

3

0.8 1 1.2 1.4 1.6
Ω

{(
z/

e 0
) m

ax
-(

z/
e 0

) m
in
}/

2

Calc
Exp○

● Boundary point
of nonlinear region

 
{q(t)=cosωt, µ=0.5, K/k=3.2, f1/e0=0.1} 

Fig. 3. Resonance curve for comparing theoretical result with experimental 
one. 
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Fig. 4. Resonance curves in the case where spring constant ratio  
K/k is parameter. 

B. Example of Numerical Calculation 
Numerical calculations were performed using the results 

described above and a periodic solution was found for steady 
vibration in the main resonance regions. A periodic 
excitation with an arbitrary function was assumed.  

Fig. 4 shows the resonance curve when the spring constant 
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ratio K/k is parameter. K/k expresses the magnitude of the 
nonlinearity of the supporting spring; when the resonance 
curve enters the nonlinear region, it bends, and the greater 
K/k is, the more the resonance curve bends to the right. 

Fig. 5 shows the resonance curve with respect to another 
parameter f1/e0, the ratio of excitation amplitude. The greater 
f1/e0 is, the wider the extent of the resonance region, and the 
lower e0, the relative width of the linear region (Region I) is, 
the wider the resonance region. 

Fig. 6 shows the resonance curve when the collision 
position ratio µ is parameter. Fig. 6  show that the greater µ is, 
the more the resonance curve bends to the right. 

 

IV. CONCLUSIONS 
This study examined the vibration of a simply supported 

beam elastically colliding with springs at an arbitrary 
location along the span of the beam as an example of the 
behavior of a continuous system responding to a vibratory 
excitation. The following results were obtained: 
1) The analyzed model consisted of a cantilever beam 

elastically colliding with clamped springs on both sides, 
placed at arbitrary locations along the span of the beam. 
There were symmetric gaps between the rest position of 
the beam and each spring, leaving a dead zone in the 
symmetric piecewise linear system. Fourier series 
method was employed to examine the steady collision 
vibration resulting from a periodic excitation with an 
arbitrary function. A rigorous solution was found for the 
resulting vibration. 
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Fig. 5. Resonance curves in the case where excitation amplitude ratio f1/e0  is 
parameter. 
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Fig. 6. Resonance curves in the case where collision position ratio  
µ is parameter. 

2) A physical model was constructed and subjected to a 
cosine excitation as an example of periodic excitation 
with an arbitrary function to verify the results of the 
analysis conducted in (1). The experimental results were 
compared with the analytical results and found to agree 
with them well. 

3) A numerical model was executed on the basis of the 

analysis in (1). Parameters were created of the excitation 
amplitude ratio f1/e0, spring collision position ratio µ 
and nonlinearity (ratio of spring constants) K/k to 
produce graphs of resonance curves and the effect of 
these factors on the resonance curve shape were 
identified numerically.  

4) It is possible to treat periodic excitations with an 
arbitrary function in a general manner. Once this 
analytical method is firmly established, it will be 
possible to use the procedure in (3) to calculate solutions 
for resulting vibrations for any magnitude of the 
parameters in (3). 
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