
2076 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

Turbo Equalization for Doubly-Selective Fading
Channels Using Nonlinear Kalman Filtering and

Basis Expansion Models
Hyosung Kim and Jitendra K. Tugnait, Fellow, IEEE

Abstract—We present a turbo (iterative) equalization receiver
with fixed-lag nonlinear Kalman filtering for coded data trans-
mission over doubly-selective channels. The proposed receiver
exploits the complex exponential basis expansion model (CE-
BEM) for the overall channel variations, and an autoregressive
(AR) model for the BEM coefficients. We extend an existing
turbo equalization approach based on symbol-wise AR modeling
of channels to channels based on BEM’s. In the receiver an
adaptive equalizer using nonlinear Kalman filters with delay is
coupled with a soft-input soft-output (SISO) decoder to iteratively
perform equalization and decoding. The adaptive equalizer
jointly optimizes the estimates of the BEM coefficients and
data symbols, thereby automatically accounting for correlation
between data symbols and channel tap gains. An extrinsic
information transfer (EXIT) chart analysis of the proposed
approach is also presented. Simulation examples demonstrate
that our CE-BEM-based approach significantly outperforms the
existing symbol-wise AR model-based turbo equalizer.

Index Terms—Basis expansion models, doubly-selective chan-
nels, turbo equalization, extended Kalman filter, channel estima-
tion, iterative decoding.

I. INTRODUCTION

DUE to multipath propagation and Doppler spread, wire-
less channels are characterized by frequency- and time-

selectivity. Accurate modeling of time-variations of the chan-
nel plays a crucial role in channel estimation and data detec-
tion. Among various models for channel time-variations, the
autoregressive (AR) process, particularly the first-order AR
model, is regarded as a tractable formulation to describe a
time-varying channel on a symbol-by-symbol basis [1], [5],
[13]. In fast time-varying channel environments, however,
channel prediction using an AR model may lead to high
estimation variance resulting in erroneous symbol decisions
[5]. Basis expansion models (BEM) depict evolutions of the
channel over a period (block) of time, in which the time-
varying channel taps are expressed as superpositions of time-
varying basis functions in modeling Doppler effects, weighted
by time-invariant coefficients [3].
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In [7], a subblock-wise tracking approach was proposed
for doubly-selective channels using time-multiplexed (TM)
training. It exploits the oversampled complex exponential
BEM (CE-BEM) [17] for the overall channel variations of
each (overlapping) block, and a first-order AR model to
describe the evolutions of the BEM coefficients. Since the
time-varying nature of the channel can be well captured in
the CE-BEM by (known) Fourier basis functions, the time-
variations of the (unknown) BEM coefficients are likely much
slower than those of the channel, and thus more convenient to
track in fast-fading environments [7]. The slow-varying BEM
coefficients are updated via Kalman filtering at each training
session; during information sessions, channel estimates are
generated by the CE-BEM using the estimated BEM coeffi-
cients [7]. This approach achieves better performance in fast-
fading environments, than using conventional symbol-wise AR
models [7].

In this paper we extend the approach of [7] to coded
modulation communication systems using turbo equalization
receivers. Turbo (iterative) equalization is an iterative equaliza-
tion and decoding approach used in place of the computation-
ally prohibitive but optimal joint maximum likelihood (ML)
or maximum a posteriori (MAP) equalization and decoding.
Although originally proposed for parallel concatenated error
correction codes [8], the turbo principle is shown to be
applicable to the detection problem for coded systems with
intersymbol interference (ISI) in [9]. By combining a MAP
equalizer and a MAP decoder, and exchanging probabilistic
information about data symbols iteratively, turbo equalization
usually can achieve close-to-optimal performance but with
much lower complexity [9]. In [10], a turbo-equalization-
like system using linear equalizers based on soft interference
cancellation and linear minimum mean-square error (MMSE)
filtering is proposed as part of a multiuser detector for code
division multiple access (CDMA) systems. Based on these
works, a variety of soft-input soft-output (SISO) equalizers
employing linear MMSE and decision feedback equalization
(DFE) are proposed in [11] and [12]. For doubly-selective
channels an adaptive SISO equalizer has been presented in
[13], using an extended Kalman filter (EKF) to incorporate
channel estimation into the equalization process. This adaptive
soft nonlinear Kalman equalizer takes the soft decisions of
data symbols from the SISO decoder as its a priori in-
formation, and performs equalization in each iteration. This
approach jointly optimizes the estimates of the channel and
data symbols in each iteration. This avoids the common draw-
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back in separate channel estimation and equalization/detection
approaches in that the correlation between channel estimates
and data symbol decision is considered. The complexity of
[13] is comparable to that of the turbo equalizers using linear
filters [14], [15], [29], and is usually much lower than that
of the ML/MAP based joint channel estimation and data
detection schemes.

In this paper, based on the turbo approach proposed in [13]
and the BEM-based approach of [7], we present an adaptive
turbo equalizer with fixed-lag nonlinear Kalman filtering,
based on the CE-BEM. The channel variations can be well
captured by the CE-BEM since the time-variations of the BEM
coefficients are likely much slower than those of real chan-
nels. The adaptive SISO equalizer takes the decision of data
symbols provided by SISO decoder as its a priori information
and the performance can be improved iteratively. The proposed
adaptive equalizer jointly optimizes the estimates of channel
BEM coefficients and data symbols in each iteration of the
equalization process; thus, correlation between the estimates
of the channel and data symbols is automatically considered.
An extrinsic information transfer (EXIT) chart analysis of
the proposed approach is also provided. Simulation examples
demonstrate our CE-BEM based scheme has superior perfor-
mance over the turbo equalizer in [13] that relies on the AR
modeling of the channel∗.

The rest of the paper is organized as follows. Sec. II
introduces the coded modulation system and the channel
model, including the AR and the CE-BEM representations.
The turbo equalizer receiver structure is the subject of Sec.
III. We then discuss the SISO nonlinear Kalman equalizer in
Sec. IV. Simulation examples are presented in Sec. V. An
EXIT chart analysis is presented in Sec. VI, and Sec. VII
concludes the paper.

Notations: Superscripts ∗, 𝑇 , 𝐻 and † denote the com-
plex conjugation, transpose, complex conjugate transpose, and
Moore-Penrose pseudo-inverse, respectively. I𝑁 is the 𝑁×𝑁
identity matrix, tr (A) is the trace of a square matrix A,
0𝑀×𝑁 is the 𝑀×𝑁 null matrix and ⊗ denotes the Kronecker
product. We use ⌈⋅⌉ for integer ceiling and ⌊⋅⌋ for integer
floor. The symbol 𝐸 {⋅} or 𝐸 [⋅] denotes expectation, 𝛿 (𝜏) is
the Kronecker delta function, that is, 𝛿 (𝜏) = 1 for 𝜏 = 0,
and 𝛿 (𝜏) = 0 otherwise, and x𝑖 (also 𝑥𝑖) denotes the 𝑖th
component of vector x.

II. SYSTEM AND CHANNEL MODELS

A. Bit-Interleaved Coded Modulation (BICM) and Received
Signal

We consider a BICM transmitter (as in [18]) as shown
in Fig. 1. A sequence of independent data bits ∈ {1, 0}
are collected into blocks of length 𝑘0 as b(𝑛′) =
[𝑏1(𝑛′), 𝑏2(𝑛′), ⋅ ⋅ ⋅ , 𝑏𝑘0(𝑛′)] ∈ {1, 0}𝑘0 at time 𝑛′. The
sequence b(𝑛′) is fed into a convolutional encoder with
a code rate 𝑅𝑐 = 𝑘0/𝑛0. The coded output c(𝑛′) =
[𝑐1(𝑛′), 𝑐2(𝑛′), ⋅ ⋅ ⋅ , 𝑐𝑛0(𝑛′)] ∈ {1, 0}𝑛0 is passed through
a bit-wise random interleaver Π, generating the interleaved

∗It has been shown in [13] that their approach has better performance than
the turbo approaches of [14], [15], [29]; hence we compare our approach only
with [13].

Fig. 1. Bit-interleaved coded modulation system model.

coded bit sequence c(𝑛) = Π[c(𝑛′)]. The binary coded bits
are then mapped to a data signal sequence 𝑑(𝑛) over a 2-
dimensional signal constellation 𝜒 of cardinality 𝑀 = 2𝑚

by an 𝑀 -ary modulator with an one-to-one binary map
𝜇 : {0, 1}𝑚 → 𝜒. In this paper, we only consider the case
of phase-shift keying (PSK) or quadrature amplitude modu-
lation (QAM) with the average energy of the constellation 𝜒
constrained to be unity. That is, the signal 𝑑(𝑛) drawn from 𝜒
has mean 𝐸[𝑑(𝑛)] = 0 and variance 𝐸[∣𝑑(𝑛)∣2] = 1. After
modulation, we periodically insert short training sequences
into the data symbol sequence. The training symbols 𝑡(𝑛),
which are known to the receiver, are randomly drawn from
the signal constellation 𝜒 with equal probabilities. The symbol
𝑠(𝑛) will be used throughout to denote both 𝑑(𝑛) and 𝑡(𝑛).

Further consider a doubly-selective (frequency- and time-
selective) FIR linear channel with discrete-time impulse re-
sponse {ℎ (𝑛; 𝑙)} (channel response at time 𝑛 to a unit input
at time 𝑛− 𝑙). With {𝑠 (𝑛)} as the scalar input sequence, the
symbol-rate noisy channel output is given by (𝑛 = 0, 1, . . .)

𝑦 (𝑛) =

𝐿∑
𝑙=0

ℎ (𝑛; 𝑙) 𝑠 (𝑛− 𝑙) + 𝑣 (𝑛) (1)

where 𝑣 (𝑛) is zero-mean white complex Gaussian noise with
variance 𝜎2

𝑣 . We assume that {ℎ (𝑛; 𝑙)} represents a wide-sense
stationary uncorrelated scattering (WSSUS) channel [2].

B. Channel Models

1) Autoregressive (AR) Model for Channel Variations: It is
possible to accurately represent a WSSUS channel by a large
order AR model; see [5], [13], [31] and references therein.
Let

h̃(𝑛) := [ℎ(𝑛; 0) ℎ(𝑛; 1) ⋅ ⋅ ⋅ ℎ(𝑛;𝐿)]
𝑇 (2)

where h̃(𝑛) is (𝐿 + 1) × 1. Then a 𝑃 th order AR model,
AR(𝑃 ), for h̃(𝑛) is given by

h̃(𝑛) =
𝑃∑
𝑖=1

A𝑖h̃(𝑛− 𝑖) +G0w̃(𝑛) (3)

where A𝑖’s are the (𝐿+1)× (𝐿+1) AR coefficient matrices,
G0 is also (𝐿+ 1)× (𝐿+ 1) and the i.i.d. (𝐿+ 1)× 1 driv-
ing noise sequence w̃(𝑛) is zero-mean with identity covari-
ance matrix. Suppose that we know the correlation function
Rℎ(𝜏) = 𝐸{h̃(𝑛 + 𝜏)h̃𝐻(𝑛)} for lags 𝜏 = 0, 1, ⋅ ⋅ ⋅ , 𝑃 . The
following Yule-Walker equation holds for (3) [19]:

Rℎ(𝜏) =
𝑃∑
𝑖=1

A𝑖Rℎ(𝜏 − 𝑖) +G0G
𝐻
0 𝛿(𝜏). (4)

Using (4) for 𝜏 = 1, 2, ⋅ ⋅ ⋅ , 𝑃 , and the fact that Rℎ(−𝜏) =
R𝐻ℎ (𝜏), one can estimate A𝑖’s. Using the estimated A𝑖’s and
(4) for 𝜏 = 0 one can find G0G

𝐻
0 , from which one can find
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(nonunique) G0 by computing its “square root” [20, p. 358].
As noted in [5, Sec. II-B], this procedure amounts to matching
the first 𝑃 + 1 lags of the autocorrelation function of h̃(𝑛).
In [5], [13] only AR(1) or AR(2) models have been used
whereas [31] discusses fitting large order (several tens) AR
models. Later we will use AR models for some simulation
comparisons where various channel tap gains are assumed to
be mutually statistically independent. In this case we have
an independent AR process for each channel tap gain. Given
the channel correlation function, for AR model fitting, we
followed [31] where it is noted that for “large” order AR
model fitting, one may encounter numerical ill-conditioning
requiring regularization of a certain correlation matrix inverse.
It must be noted that in practice, one would not know Rℎ(𝜏).

2) Complex Exponential Basis Expansion Model (CE-
BEM): In contrast to the symbol-wise AR model, a BEM
assigns temporal variations to basis functions [4]. Suppose
that we collect the received signal over a time interval of 𝑇𝑟
symbols. [Referring to Fig. 1 and Sec. II-A, 𝑇𝑟 would be the
interleaver size in symbols plus the number of inserted training
symbols.] In the CE-BEM [3], [4], [17], the 𝑇𝑟 symbols are
divided into nonoverlapping blocks of 𝑇𝐵 symbols and over
the 𝑘th block, the channel impulse response is represented
by (for 𝑛 = (𝑘 − 1)𝑇𝐵, (𝑘 − 1)𝑇𝐵 + 1, . . . , 𝑘𝑇𝐵 − 1 and
𝑙 = 0, 1, . . . , 𝐿)

ℎ(𝑛; 𝑙) =

𝑄∑
𝑞=1

ℎ𝑞 (𝑙) 𝑒
𝑗𝜔𝑞𝑛, (5)

where the BEM coefficients ℎ𝑞(𝑙)’s remain invariant during
each block, but are allowed to change at the next block, the
Fourier basis functions

{
𝑒𝑗𝜔𝑞𝑛

}
are common for every block,

one chooses (𝑞 = 1, 2, . . . , 𝑄 and 𝐾 ≥ 1 is an integer)

𝑇𝑝 := 𝐾𝑇𝐵, 𝑄 ≥ 2 ⌈𝑓𝑑𝑇𝑝𝑇𝑠⌉+ 1, (6)

𝜔𝑞 :=
2𝜋

𝑇𝑝
[𝑞 − (𝑄+ 1) /2] , 𝐿 := ⌊𝜏𝑑/𝑇𝑠⌋ , (7)

𝜏𝑑 and 𝑓𝑑 are the delay spread and the Doppler spread,
respectively, and 𝑇𝑠 is the symbol duration. If the delay
spread and the Doppler spread of the channel (or at least their
upper bounds) are known, one can infer the basis functions
of the CE-BEM [3]. Treating the basis functions as known
parameters, estimation of a time-varying process is reduced
to estimating the invariant coefficients over a block of 𝑇𝐵
symbols. Note that the BEM period is 𝑇𝑝 = 𝐾𝑇𝐵 whereas
the block size is 𝑇𝐵 symbols. If 𝐾 > 1 (e.g. 𝐾 = 2
or 𝐾 = 3), then the Doppler spectrum is said to be over-
sampled [17] compared to the case 𝐾 = 1 where the Doppler
spectrum is said to be critically sampled. In [3], [4] only
𝐾 = 1 (henceforth called critically-sampled CE-BEM) is
considered whereas [17] considers 𝐾 ≥ 2 (henceforth called
over-sampled CE-BEM).

Unlike the prior works [3], [4], [17], we will now allow
the blocks of 𝑇𝐵 symbols to overlap. By exploiting the
invariance of the coefficients of the CE-BEM over each block,
we consider two overlapping blocks (each of 𝑇𝐵 symbols) that
differ by just one symbol: the “past” block beginning at time
𝑛0 and the “present” block beginning at time 𝑛0 + 1. Since
the two blocks overlap so significantly, one would expect the

BEM coefficients to vary only “a little” from the past block
to the present overlapping one. We propose to track the BEM
coefficients (rather than the channel tap gains) symbol-by-
symbol using a first-order AR model for their variations, where
we will use (5) for all times 𝑛, not just the particular block
of size 𝑇𝐵 symbols, by allowing the coefficients ℎ𝑞(𝑙)’s to
change with time.

Stack the channel coefficients in (5) into a 𝑄(𝐿 + 1) × 1
vector

h :=
[

ℎ1(0) ℎ2(0) ⋅ ⋅ ⋅ ℎ𝑄(0) ℎ1(1) ⋅ ⋅ ⋅
ℎ𝑄(1) ⋅ ⋅ ⋅ ℎ1(𝐿) ℎ2(𝐿) ⋅ ⋅ ⋅ ℎ𝑄(𝐿)

]𝑇
. (8)

We will allow h in (8) to change with “time” 𝑛, in which
case it will be denoted by h(𝑛). We assume that the channel
BEM coefficients follow an AR model. One could fit a general
AR(𝑃 ) model with a high value of 𝑃 (as in Sec. II-B1 for
channel variations), but we seek a “simple” AR(1) model given
by

h (𝑛) = A1h (𝑛− 1) +G0w (𝑛) (9)

where A1 is the time-invariant AR coefficient matrix and the
driving noise vector w (𝑛) is zero-mean white with identity
covariance. Collecting all channel tap gains over one block,
further define the [(𝐿+ 1)𝑇𝐵]× 1 vector

g(𝑛) :=
[

ℎ(𝑛; 0) ℎ(𝑛− 1; 0) ⋅ ⋅ ⋅ ℎ(𝑛− 𝑇𝐵 + 1; 0)

ℎ(𝑛; 1) ℎ(𝑛− 1; 1) ⋅ ⋅ ⋅ ℎ(𝑛− 𝑇𝐵 + 1; 1)

⋅ ⋅ ⋅ ℎ(𝑛;𝐿) ⋅ ⋅ ⋅ ℎ(𝑛− 𝑇𝐵 + 1;𝐿)
]𝑇

. (10)

Define

b𝑒𝑥 (𝑛) :=
[
𝑒−𝑗𝜔1𝑛 𝑒−𝑗𝜔2𝑛 ⋅ ⋅ ⋅ 𝑒−𝑗𝜔𝑄𝑛

]𝑇
. (11)

Using (11), we further define

B (𝑛) :=[
b𝑒𝑥 (𝑛) b𝑒𝑥 (𝑛− 1) ⋅ ⋅ ⋅ b𝑒𝑥 (𝑛− 𝑇𝐵 + 1)

]𝐻
, (12)

Γ := diag
{
𝑒𝑗𝜔1 , 𝑒𝑗𝜔2 , . . . , 𝑒𝑗𝜔𝑄

}
,

where B(𝑛) is 𝑇𝐵 × 𝑄 and Γ is 𝑄 × 𝑄. Consider two
overlapping blocks that differ by just one symbol: g(𝑛) and
g(𝑛 + 1), with h (𝑛) and h (𝑛+ 1), respectively, as the
corresponding BEM coefficients. It then follows that

g(𝑛) = B̄(𝑛)h(𝑛), g(𝑛+ 1) = B̄(𝑛)Γ̄h(𝑛+ 1) (13)

where (B̄ is [(𝐿+1)𝑇𝐵]× [(𝐿+1)𝑄] and Γ̄ is [(𝐿+1)𝑄]×
[(𝐿 + 1)𝑄])

B̄(𝑛) := diag{B(𝑛), B(𝑛), ⋅ ⋅ ⋅ , B(𝑛)}, (14)

Γ̄ := diag{Γ, Γ, ⋅ ⋅ ⋅ , Γ}.
If (9) holds, then using the Yule-Walker equation we have

A1 = 𝐸
{
h(𝑛+ 1)h𝐻(𝑛)

} [
𝐸
{
h(𝑛)h𝐻(𝑛)

}]−1
(15)

where using (13) we have

𝐸
{
h(𝑛+ 1)h𝐻(𝑛)

}
=

Γ̄−1B̄†(𝑛)𝐸
{
g(𝑛+ 1)g𝐻(𝑛)

}
B̄†𝐻(𝑛), (16)
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𝐸
{
h(𝑛)h𝐻(𝑛)

}
= B̄†(𝑛)𝐸

{
g(𝑛)g𝐻(𝑛)

}
B̄†𝐻(𝑛), (17)

and 𝐸
{
g(𝑛)g𝐻(𝑛)

}
and 𝐸

{
g(𝑛+ 1)g𝐻(𝑛)

}
can be calcu-

lated using (10) if we know the channel correlation function
Rℎ(𝜏) (as defined in Sec. II-B1). As in Sec. II-B1, this
procedure results in matching the correlation function of h (𝑛)
at lags 0 and 1.

Typically Rℎ(𝜏) will not be available. Therefore, to sim-
plify we will assume that A1 = 𝛼I (implying that all tap
gains have the same Doppler spectrum), G0 = I𝑄(𝐿+1) and
𝐸{w(𝑛)w𝐻(𝑛)} = 𝜎2

𝑤I𝑄(𝐿+1), leading to

h (𝑛) = 𝛼h (𝑛− 1) +w (𝑛) . (18)

If the channel is stationary (WSSUS) and coefficients ℎ𝑞(𝑙)’s
are independent (as assumed in [3]), then by (18) and Yule-
Walker equations, we can estimate 𝛼 as

𝛼 =

(
𝐸
{
h𝐻(𝑛+ 1)h(𝑛)

}
𝐸 {h𝐻(𝑛)h(𝑛)}

)∗

=
tr
{
Γ̄−1B̄†(𝑛)𝐸

{
g(𝑛+ 1)g𝐻(𝑛)

}
B̄†𝐻(𝑛)

}
tr
{
B̄†(𝑛)𝐸 {g(𝑛)g𝐻(𝑛)} B̄†𝐻(𝑛)

} , (19)

and for a uniform power delay profile, 𝜎2
𝑤 = 𝐸{∣ℎ(𝑛; 𝑙)∣2}(1−

∣𝛼∣2)/𝑄 where 𝜎2
ℎ = 𝐸{∣ℎ(𝑛; 𝑙)∣2}. Note that (19) requires

knowledge of Rℎ(𝜏). In order to avoid this, one can somewhat
arbitrarily pick a value of 𝛼 such that 𝛼 ≈ 1 but 𝛼 < 1;
this has been done in, e.g. [32] (in a different but similar
context). Besides, for tracking, one needs 𝛼 < 1 [32]. To
gain more insight, let us consider a specific channel tap
ℎ(𝑛; 𝑙) following the Jakes’ spectrum (also used in Sec. V in
simulation examples). When 𝑇𝑝 = 200, 𝑇𝐵 = 100, 𝑄 = 5, and
𝑓𝑑𝑇𝑠 = 0.01, one gets 𝛼 =0.99989 using (19). We compared
it with A1 obtained via (15)-(17), yielding the normalized
difference ∥A1 −𝛼I∥𝐹 /∥A1∥𝐹 =0.0095 where ∥.∥𝐹 denotes
the Frobenius norm. [As we will see later in Sec. V (Fig. 8),
this value of 𝛼 is too close to one to permit tracking; we used
𝛼 = 0.996 in Sec. V.] Thus, for channel taps following the
Jakes’ spectrum, A1 = 𝛼I is an excellent choice.

Under this formulation, we do not need a “strict” definition
of the block size 𝑇𝐵. A key parameter now is the CE-BEM
period 𝑇𝑝, not the block size 𝑇𝐵 . Later we use (5) for all
times 𝑛, not just the particular block of size 𝑇𝐵 symbols, by
allowing the coefficients ℎ𝑞(𝑙)’s to change with time (symbol-
wise). Note that model (5) is periodic with period 𝑇𝑝 whereas
the channel is by no means periodic. So long as the effective
“memory” of the Kalman filter used later is less than the model
period 𝑇𝑝, there are no deleterious effects due to the use of
(5) for all time.

III. RECEIVER STRUCTURE

A turbo equalization structure, as depicted in Fig. 2, is
employed in the receiver, as in [13] except that [13] uses
symbol-wise AR models. The adaptive SISO equalizer is
embedded into the iterative decoding (ID) process of the
BICM transmission system (BICM-ID) [18]. In each decoding
iteration, the equalizer takes the training symbols and the
soft decision information about data symbols supplied by
the SISO decoder from the previous iteration as its a priori

Fig. 2. Turbo-equalization receiver. Following [13], [23], [24] and contrary to
the original turbo-principle, a posteriori LLR L𝑎 {c(𝑛)} = L𝑀

𝑒 {c(𝑛)} +
L𝐷
𝑒 {c(𝑛)} instead of the extrinsic LLR L𝐷

𝑒 {c(𝑛)} can be input to the
LLR-to-symbol block. Inclusion of L𝑀

𝑒 {c(𝑛)} to create a posteriori LLR
is shown via dashed line. For our proposed approach we follow [13], [23],
[24]. SISO: soft-input soft-output.

information to perform joint adaptive channel estimation and
equalization. The equalizer produces the soft-valued extrinsic
estimate of the data symbols, which are independent of their a
priori information. The output of the equalizer is an updated
sequence of soft estimates 𝑑(𝑛) and its error variance 𝜎2(𝑛).
Using the adaptive SISO equalizer in Sec. IV-C, we have
extrinsic information for the data symbols 𝑑(𝑛). The training
symbols are removed at the SISO equalizer output and the
iterative process that follows is only for data symbols. The
SISO equalizer based on the CE-BEM is described in Sec.
IV-C. The SISO demodulator follows [18] whereas the SISO
decoder follows the MAP decoding algorithm (“BCJR”) [22,
Sec. 6.2].

The data symbol estimates 𝑑(𝑛) and its error variance 𝜎2(𝑛)
are passed to the SISO demodulator to generate extrinsic log-
likelihood ratios (LLR’s) L𝑀𝑒 {c(𝑛)} for the coded bits c(𝑛)
given 𝑇𝑟 received symbols {𝑦(𝑙), 0 ≤ 𝑙 < 𝑇𝑟}, denoted by

L𝑀𝑒 {c(𝑛)} = [𝐿𝑀𝑒 {𝑐𝑖(𝑛)} , 𝑖 = 1, 2 ⋅ ⋅ ⋅ , 𝑛0

]
, (20)

where 𝑇𝑟 is the information block size after mapping the
interleaved coded bits to the signal sequence,

𝐿𝑀𝑒
{
𝑐𝑖(𝑛)

}
:= ln

𝑃{𝑐𝑖(𝑛) = 1 ∣ 𝑦(𝑙), 0 ≤ 𝑙 < 𝑇𝑟}
𝑃{𝑐𝑖(𝑛) = 0 ∣ 𝑦(𝑙), 0 ≤ 𝑙 < 𝑇𝑟}

− ln
𝑃{𝑐𝑖(𝑛) = 1}
𝑃{𝑐𝑖(𝑛) = 0}︸ ︷︷ ︸
=:𝐿{𝑐𝑖(𝑛)}

, (21)

and 𝐿{𝑐𝑖(𝑛)} is the a priori LLR. In (21), 𝑃{𝑐𝑖(𝑛) = 𝑏 ∣
𝑦(𝑙), 0 ≤ 𝑙 < 𝑇𝑟}, 𝑏 ∈ {0, 1}, is approximated as

𝑃{𝑐𝑖(𝑛) = 𝑏 ∣ 𝑦(𝑙), 0 ≤ 𝑙 < 𝑇𝑟} ≈ 𝑃{𝑐𝑖(𝑛) = 𝑏 ∣ 𝑑(𝑛)}
(22)

by replacing the data {𝑦(𝑙), 0 ≤ 𝑙 < 𝑇𝑟} with the soft estimate
𝑑(𝑛). Since 𝑃{𝑐𝑖(𝑛) = 𝑏 ∣ 𝑑(𝑛)} = 𝑃{𝑑(𝑛) ∣ 𝑐𝑖(𝑛) =
𝑏}𝑃{𝑐𝑖(𝑛) = 𝑏}/𝑃{𝑑(𝑛)}, it follows from (21) and (22) that

𝐿𝑀𝑒
{
𝑐𝑖(𝑛)

}
= ln

𝑃{𝑑(𝑛) ∣ 𝑐𝑖(𝑛) = 1}
𝑃{𝑑(𝑛) ∣ 𝑐𝑖(𝑛) = 0} . (23)

The soft estimate 𝑑(𝑛) of 𝑑(𝑛) follows from the fixed-lag
SISO Kalman equalizer discussed later in Sec. IV (following
[13]), and it and its variance are given by (50) and (51), respec-
tively. We assume that 𝑑(𝑛) is complex Gaussian distributed
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with mean 𝑑 ∈ 𝒳 and variance 𝜎2(𝑛) and follow [18] to
calculate (23). Let 𝑐𝑖𝑑 denote the 𝑖-th code bit in the block
of code bits [𝑐1𝑑, 𝑐

2
𝑑, ⋅ ⋅ ⋅ , 𝑐𝑛0

𝑑 ] that is mapped to the symbol 𝑑;
dropping the subscript 𝑑, we will use the notation (see Sec.
II-A) 𝜇

(
[𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑛0 ]

)
= 𝑑. It then follows that

𝑃
{
𝑑 ∣ 𝑐𝑖} = 𝑛0∏

𝑗=1,
𝑗 ∕=𝑖

𝑃{𝑐𝑗 = 𝑐𝑗𝑑}. (24)

Furthermore, under the assumptions on 𝑑(𝑛), we have

𝑃
{
𝑑(𝑛) ∣ 𝑑

}
=

1

𝜋𝜎2(𝑛)
exp

(
−∣ 𝑑(𝑛)− 𝑑 ∣2

𝜎2(𝑛)

)
. (25)

Recall that in Sec. II-A we used 𝒳 to denote the
set of all possible data symbols. Let 𝒳 (𝑖, 𝑏) ={
𝜇
(
[𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑛0 ]

) ∣ 𝑐𝑖 = 𝑏
}
, with 𝑏 ∈ {1, 0} and

𝑖 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑛0}, denote the collection of all data symbols
whose corresponding 𝑖-th coded bit is “fixed” as 𝑏. Then
using (23)-(25) one obtains

𝐿𝑀𝑒
{
𝑐𝑖(𝑛)

}
=

ln

∑
𝑑∈𝒳 (𝑖,1)

[
exp

(
− ∣𝑑(𝑛)−𝑑∣2

𝜎2(𝑛)

)∏𝑛0
𝑗=1,
𝑗 ∕=𝑖

𝑃{𝑐𝑗(𝑛) = 𝑐𝑗𝑑}
]

∑
𝑑∈𝒳 (𝑖,0)

[
exp

(
− ∣𝑑(𝑛)−𝑑∣2

𝜎2(𝑛)

)∏𝑛0
𝑗=1,
𝑗 ∕=𝑖

𝑃{𝑐𝑗(𝑛) = 𝑐𝑗𝑑}
] .
(26)

The output extrinsic bit LLR’s of the SISO demodulator
are bit-wise deinterleaved as L𝑀𝑒 {c(𝑛′)} = Π−1[L𝑀𝑒 {c(𝑛)}],
which are then input to the SISO convolutional decoder. In
SISO decoder, the MAP decoding algorithm for convolution
codes (see [22, Sec. 6.2]) is applied to update the LLR’s of the
coded bits {c(𝑛)} as well as the LLR’s of the information bits
{b(𝑛)}, based on the code constraints. The decoder computes
the extrinsic LLR for coded bits

L𝐷𝑒 {c(𝑛′)} = [𝐿𝐷𝑒 {𝑐𝑖(𝑛′)
}
, 𝑖 = 1, 2 ⋅ ⋅ ⋅ , 𝑛0

]
, (27)

where

𝐿𝐷𝑒
{
𝑐𝑖(𝑛′)

}
:= ln

𝑃{𝑐𝑖(𝑛′) = 1 ∣ L𝑀𝑒 {c(𝑙)}, 0 ≤ 𝑙 < 𝑇𝑟}
𝑃{𝑐𝑖(𝑛′) = 0 ∣ L𝑀𝑒 {c(𝑙)}, 0 ≤ 𝑙 < 𝑇𝑟}

−𝐿𝑀𝑒 {𝑐𝑖(𝑛′)}︸ ︷︷ ︸
=:𝐿{𝑐𝑖(𝑛′)}

. (28)

The output bit LLR’s of SISO decoder are bit-wise interleaved
as L𝐷𝑒 {c(𝑛)} = Π[L𝐷𝑒 {c(𝑛′)}]. The SISO demodulator
performs symbol-by-symbol MAP demodulation using LLR’s
L𝐷𝑒 {c(𝑛)} for the coded bits generated by SISO decoder in
the previous iteration as its a priori information: 𝐿{𝑐𝑖(𝑛)} =
𝐿𝐷𝑒 {𝑐𝑖(𝑛)} . We set 𝐿𝐷𝑒

{
𝑐𝑖(𝑛)

}
= 0 for the initial step

(first iteration). The LLR for use in LLR-to-symbol block
is computed via L𝑎 {c(𝑛)} = L𝑀𝑒 {c(𝑛)} + L𝐷𝑒 {c(𝑛)},
which is the the a posteriori LLR. [It is claimed in [23]
that, unlike the original turbo-principle where one takes
L𝑎 {c(𝑛)} = L𝑀𝑒 {c(𝑛)}, usage of the full SISO-decoder’s
soft information embodied in the a posteriori LLR L𝑎 {c(𝑛)}
enhances performance compared to using only L𝐷𝑒 {c(𝑛)};
[13] also uses this set-up. This has also been our experience
in the simulations presented in this paper; therefore, we

have followed this approach.] The bit probabilities (converted
from the corresponding LLR L𝑎 {c(𝑛)}) at time 𝑛 are used
(following [18]) to compute the mean 𝑑(𝑛) and variance 𝛾𝑑(𝑛)
for data symbols 𝑑(𝑛) as

𝑑(𝑛) = 𝐸[𝑑(𝑛)] =
∑
𝑑∈𝒳

𝑑𝑃 {𝑑(𝑛) = 𝑑}

=
∑
𝑑∈𝒳

𝑑

𝑛0∏
𝑗=1

𝑃𝑎

{
𝑐𝑗(𝑛) = 𝑐𝑗𝑑

}
(29)

and

𝛾𝑑(𝑛) = var[𝑑(𝑛)] =
∑
𝑑∈𝒳

∣𝑑(𝑛)− 𝑑(𝑛)∣2𝑃 {𝑑(𝑛) = 𝑑}

= 1− 𝑑 2(𝑛) (30)

where

𝑃𝑎
{
𝑐𝑗(𝑛) = 1

}
=

1

1 + exp (−𝐿𝑎{𝑐𝑗(𝑛)}) ,

𝑃𝑎
{
𝑐𝑗(𝑛) = 0

}
=

1

1 + exp (𝐿𝑎{𝑐𝑗(𝑛)}) . (31)

Then 𝑑(𝑛) and 𝛾𝑑(𝑛) are fed back to the equalizer as a priori
information, along with the training symbols.

IV. ADAPTIVE SOFT-INPUT SOFT-OUTPUT NONLINEAR

KALMAN EQUALIZER

Using a symbol-wise AR-model for channel variations, an
adaptive SISO equalizer using fixed-lag EKF was presented
in [13] for joint channel estimation and equalization where
their correlation was (implicitly) considered. In this section,
we present a CE-BEM model-based SISO nonlinear Kalman
equalizer for turbo equalization.

A. State-Space Model using CE-BEM and a Priori Informa-
tion

We will perform equalization with a delay 𝛿 > 0. Define a
parameter

𝛿 := max {𝛿 + 1, 𝐿+ 1} (32)

and the data vector

z (𝑛) :=
[
𝑠 (𝑛) 𝑠 (𝑛− 1) ⋅ ⋅ ⋅ 𝑠

(
𝑛− 𝛿 + 1

)]𝑇
. (33)

Consider (18). In order to apply (extended) Kalman filtering
to joint channel estimation and equalization, we stack h (𝑛)
and data vector z (𝑛) together into a 𝐽 × 1 state vector x (𝑛)
at time 𝑛 as

x (𝑛) :=
[
z𝑇 (𝑛) h𝑇 (𝑛)

]𝑇
, 𝐽 := 𝛿 +𝑄 (𝐿+ 1) . (34)

As in [13] (and others), we consider the symbol sequence
{𝑠(𝑛)} as a stochastic process so as to utilize the soft decisions
on the data symbols generated in the iterative decoding process
as its a priori information. We can express 𝑠(𝑛) as 𝑠(𝑛) =
𝑠(𝑛) + 𝑠(𝑛) where 𝑠(𝑛) = 𝐸[𝑠(𝑛)] and 𝑠(𝑛) is approximated
as a zero-mean uncorrelated sequence such that 𝐸[𝑠(𝑛)𝑠∗(𝑛+
𝑗)] = 𝛾(𝑛)𝛿(𝑗), assuming an ideal interleaver. Note that 𝑠(𝑛)
and 𝛾(𝑛) are provided via the a priori information. We have
𝑠(𝑛) = 𝑑(𝑛) and 𝛾(𝑛) = 𝛾𝑑(𝑛) for a data symbol 𝑑(𝑛) (where
𝑑(𝑛) and 𝛾𝑑(𝑛) are specified in (29) and (30), respectively),
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while 𝑠(𝑛) = 𝑡(𝑛) and 𝛾(𝑛) = 0 for a training symbol 𝑡(𝑛).
Using x(𝑛), the state equation turns out to be

x(𝑛) = 𝒯 x(𝑛− 1) + e0𝑠(𝑛) + u(𝑛), (35)

where

𝒯 =

[
Φ 0𝛿×𝑄(𝐿+1)

0𝑄(𝐿+1)×𝛿 F

]
𝐽×𝐽

, F = 𝛼I𝑄(𝐿+1),

(36)

Φ =

[
01×(𝛿−1) 01×1

I(𝛿−1) 0(𝛿−1)×1

]
𝛿×𝛿

, e0 =
[
1 01×(𝐽−1)

]𝑇
,

(37)

the vector
u(𝑛) :=

[
e𝑇
𝛿
𝑠(𝑛) w𝑇 (𝑛)

]𝑇
(38)

is zero-mean uncorrelated process noise where e𝛿 =
[1 01×(𝛿−1)]

𝑇 , w(𝑛) is given in (9) and

Q(𝑛) := 𝐸[u(𝑛)u𝐻(𝑛)] = Q̃+ 𝛾(𝑛)e0e
𝑇
0 ,

Q̃ :=

[
0𝛿×𝛿 0𝛿×𝑄(𝐿+1)

0𝑄(𝐿+1)×𝛿 𝜎2
𝑤I𝑄(𝐿+1)

]
𝐽×𝐽

. (39)

The channel output 𝑦(𝑛) in (1) can be rewritten as

𝑦(𝑛) = 𝑓 [x(𝑛)] + 𝑣(𝑛), (40)

where (b𝑒𝑥 (𝑛) is as defined in (11)) 𝑓 [x(𝑛)] is as defined
in (41). With (35) and (40) as the state and measurement
equations, respectively, nonlinear Kalman filtering is applied
to track x(𝑛) for joint channel estimation and equalization.

B. Fixed-Lag Soft Input Extended Kalman Filtering

The EKF is applied to (35) and (40) to track the BEM
coefficients and to decode data symbols jointly. The EKF is
initialized with

x̂ (−1 ∣ −1) = 0 and P (−1 ∣ −1) = Q̃ (42)

where x̂ (𝑝 ∣ 𝑚) denotes the estimate of x (𝑝) given the ob-
servations {y (0) ,y (1) , ⋅ ⋅ ⋅ ,y (𝑚)}, and P (𝑝 ∣ 𝑚) denotes
the error covariance matrix of x̂ (𝑝 ∣ 𝑚), defined as

P (𝑝 ∣ 𝑚) := 𝐸{[x̂ (𝑝 ∣ 𝑚)− x (𝑝)][x̂ (𝑝 ∣ 𝑚)− x (𝑝)]𝐻}.
(43)

Extended Kalman recursive filtering (for 𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ ) is
applied as in [13] but with a different state and measurement
equations, to generate x̂ (𝑛 ∣ 𝑛) and P (𝑛 ∣ 𝑛). The following
steps are executed:

1) Time update:

x̂ (𝑛 ∣ 𝑛− 1) = 𝒯 x̂ (𝑛− 1 ∣ 𝑛− 1) + e0𝑠(𝑛), (44)

P (𝑛 ∣ 𝑛− 1) = 𝒯 P (𝑛− 1 ∣ 𝑛− 1) 𝒯 𝑇
+ Q̃+ 𝛾(𝑛)e0e

𝑇
0 . (45)

2) Kalman gain:

j(𝑛) =
∂𝑓 [x]

∂x

∣∣∣∣
x=x̂(𝑛∣𝑛−1)

. . . Jacobian matrix

= x̂𝑇 (𝑛 ∣ 𝑛− 1)
(
D+D𝑇

)
, (46)

k(𝑛) = P(𝑛 ∣ 𝑛− 1)j𝐻(𝑛)/[
𝜎2
𝑣 + j(𝑛)P(𝑛 ∣ 𝑛− 1)j𝐻(𝑛)

]
. (47)

Fig. 3. Structure of adaptive SISO equalizer proposed in [13]. EKF: Extended
Kalman Filter

3) Measurement update:

x̂ (𝑛 ∣ 𝑛) = x̂ (𝑛 ∣ 𝑛− 1)

+ k (𝑛) (𝑦 (𝑛)− 𝑓 [x̂(𝑛 ∣ 𝑛− 1)]) , (48)

P (𝑛 ∣ 𝑛) = [I𝐽 − k (𝑛) j (𝑛)]P (𝑛 ∣ 𝑛− 1) . (49)

The a priori information {𝑠(𝑛), 𝛾(𝑛)} is the soft input at
time 𝑛 acquired via (29) and (30), while 𝛿-th element of the
estimate x̂(𝑛+ 𝛿 ∣ 𝑛+ 𝛿) is the delayed a posteriori estimate
of data symbol.

C. Structure of Adaptive Soft-Input Soft-Output Equalizer

The fixed-lag EKF takes soft inputs and generates a delayed
a posteriori estimate for 𝑠(𝑛). In order to generate extrinsic
estimate independent of the a priori information {𝑠(𝑛), 𝛾(𝑛)},
a “comb” structure in conjunction with the EKF in Fig. 3
is used for SISO equalization, just as in [13]. At each time
𝑛, the vertical branch composed of (𝛿 + 1) EKF’s produce
the extrinsic estimate 𝑠(𝑛), while the horizontal branch keeps
updating the a posteriori estimate x̂(𝑛 ∣ 𝑛) and its error
covariance P(𝑛 ∣ 𝑛). The first vertical EKF has an input {0, 1}
in place of {𝑠(𝑛), 𝛾(𝑛)} to exclude the effect of the a priori
information. Let x̂𝑒(𝑛+ 𝑖 ∣ 𝑛+ 𝑖) and P𝑒(𝑛+ 𝑖 ∣ 𝑛+ 𝑖) denote
the state estimate and its error covariance matrix, respectively,
generated by the vertical filtering branch. Then the extrinsic
estimate 𝑠(𝑛) of 𝑠(𝑛) and its error variance 𝜎2(𝑛) are given
by

𝑠(𝑛) = 𝛿th component of vector x̂𝑒(𝑛+ 𝛿 ∣ 𝑛+ 𝛿) (50)

𝜎2(𝑛) = (𝛿, 𝛿)th component of matrix P𝑒(𝑛+ 𝛿 ∣ 𝑛+ 𝛿).
(51)

Note that the extrinsic outputs 𝑠(𝑛) and 𝜎2(𝑛) are computed
for data symbol 𝑑(𝑛), not for training symbol 𝑡(𝑛), and
then used in the later parts of the turbo-equalization receiver
(see Fig. 2). Further details regarding generation of extrinsic
estimates can be found in [13].

D. Computationally Complexity

The computational complexity of the approach of [13] is
𝒪((𝛿 + 2)[𝛿+ 𝑃 (𝐿+1)]2) where 𝛿 is the equalization delay,



2082 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

𝑓 [x(𝑛)] := x𝑇 (𝑛)
[
I(𝐿+1) 0(𝐿+1)×(𝐽−𝐿−1)

]𝑇 [
I(𝐿+1) ⊗ b𝑒𝑥(𝑛)

]𝐻 [
0[𝑄(𝐿+1)]×𝛿 I𝑄(𝐿+1)

]︸ ︷︷ ︸
=:D

x(𝑛). (41)

𝛿 is given by (32) and an AR(P) channel model is used [13,
Sec. IV-C]. Note that it is independent of the constellation
size 𝑀 . As we follow [13] with the difference that we use
CE-BEM instead of AR modeling of the channel, the compu-
tational complexity of our proposed approach readily follows
as 𝒪((𝛿 + 2)[𝛿 + 𝑄(𝐿 + 1)]2) = 𝒪((𝛿 + 2)𝐽2) where 𝑄 is
the number of basis functions in the CE-BEM. Therefore, the
proposed approach and the approach of [13] have comparable
computational complexity if one takes 𝑃 = 𝑄. As in [13],
the computational complexity of our proposed approach is
independent of the constellation size 𝑀 . In the simulations
presented in Sec. V, we have 𝛿 = 5, 𝐿 = 2 and 𝛿 = 6. For
BEMs we take 𝑄 = 5 or 𝑄 = 9, therefore, corresponding
values of the AR model order 𝑃 in the approach of [13]
were picked as 5 or 9 to attain comparable computational
requirements for a fair performance comparison.

V. SIMULATION EXAMPLES

A random time- and frequency-selective Rayleigh fading
channel is considered. We assume ℎ (𝑛; 𝑙) is zero-mean,
complex Gaussian WSS with variance 𝜎2

ℎ. We take 𝐿 = 2
(3 taps) in (1) (as in [13]), and 𝜎2

ℎ = 1/ (𝐿+ 1) (i.e.
uniform power delay profile). For different 𝑙’s, ℎ (𝑛; 𝑙)’s are
mutually independent and satisfy Jakes’ model. To this end,
we simulate each single tap following [25] (with a correction
in the appendix of [6]). We consider a communication system
with carrier frequency of 2GHz, data rate of 40kBd (kilo-
Bauds), therefore 𝑇𝑠 = 25𝜇s, and a varying Doppler spread
𝑓𝑑 in the range of 40 to 400Hz, or the normalized Doppler
spread 𝑓𝑑𝑇𝑠 from 0.001 to 0.01. The additive noise is zero-
mean complex white Gaussian. The (receiver) SNR refers to
the average energy per symbol over one-sided noise spectral
density.

In the simulations, we use a 4-state convolutional code of
rate 𝑅𝑐 = 1/2 with octal generators (5, 7). The information
block size is set to 3000 bits (𝑇𝑖=3000) leading to a coded
block size of 6000 bits, and the interleaver size is equal to the
coded block size. In the modulator, the QPSK constellation
with Gray mapping is used, which gives 𝑀 = 4 and a
block size of 3000 symbols. After modulation, training symbol
sequences of length 𝑙𝑝 are inserted in front of every 𝑙𝑠 data
symbols, leading to a sequence of length 𝑇𝑟 = 3750 when
𝑙𝑝 = 5 and 𝑙𝑠 = 20 (20% training overhead).

For the CE-BEM, we consider BEM period 𝑇𝑝 = 200
and 400 respectively, so that 𝑄 = 5 and 9, respectively,
by (6). For the channel BEM coefficients, we take the AR-
coefficient in (18) as 𝛼 = 0.996 for 𝑇𝑝 = 200 and 𝛼 =
0.998 for 𝑇𝑝 = 400. We compare our proposed BEM-based
turbo equalization schemes (denoted by “TE-BEM(200)” for
𝑇𝑝 = 200 and “TE-BEM(400)” for 𝑇𝑝 = 400) with the
AR(P) model-based scheme in [13] (denoted by “TE-AR5” for
AR(5) model and “TE-AR9” for AR(9) model). The AR(P)
model is as described in Sec. II-B1 and is fitted using [31]
to Jakes’ spectrum with 𝑓𝑑𝑇𝑠=0.01 (the maximum anticipated
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Fig. 4. BER vs SNR under 𝑓𝑑𝑇𝑠 = 0.01, 𝑙𝑝 = 5, 𝑙𝑠 = 20 (20%
training overhead), for 1st and 5th iterations. Legend TE-LE refers to the
turbo equalizer of [29] based on linear equalization. TE-BEM(𝑇𝑝) is the
proposed turbo equalizer using CE-BEM with BEM period 𝑇𝑝: TE-BEM(200)
is based on 𝑇𝑝 = 200 and 𝑄 = 5, and TE-BEM(400) is based on 𝑇𝑝 = 400
and 𝑄 = 9. TE-ARP refers to the turbo equalizer of [13] using symbol-
wise AR(P) channel model: TE-AR5 and TE-AR9 are based on AR(5) and
AR(9) models, respectively. Legend TrueCH refers to the results of the turbo
equalizer based on the fixed-lag Kalman filter with knowledge of the true
channel. Legend Opt-MAP-TrueCH refers to the results of the turbo equalizer
based on the optimum BCJR method with knowledge of the true channel.

normalized Doppler spread). We evaluate the performances of
various schemes by considering their bit error rates (BER).
The BER’s are evaluated by employing the equalization delay
𝛿 = 5 and using the decoded information symbol sequences
at the turbo-equalization receiver output. All the simulation
results are based on 1000 runs.

In Fig. 4, the performances of the two schemes, under
normalized Doppler spread 𝑓𝑑𝑇𝑠 = 0.01, are compared for
different SNR’s. In Fig. 5, the two schemes are compared
over varying Doppler spreads 𝑓𝑑’s, under SNR = 10dB; other
settings of the simulation as for Fig. 4, including the fact
that 𝑄 = 5 (for 𝑇𝑝=200) or 𝑄 = 9 (for 𝑇𝑝=400), regardless
of the actual 𝑓𝑑. It is clear from these two figures that
since the channel variations are well captured by the BEM
coefficients, our proposed TE-BEM approach yields good
performance even for “low” SNR’s and over a wide range
of Doppler spreads. Note that TE-BEM with larger block
parameter 𝑇𝑝 = 400 has a (slightly) better performance than
with the smaller parameter 𝑇𝑝 = 200; see the last paragraph in
Sec. II-B2 for a possible explanation. The BER for TE-BEM
varies only “slightly” with increasing normalized Doppler
spread implying that its performance is not sensitive to the
actual Doppler spread. Therefore, we do not have to know
the exact Doppler spread of the channel – an upper bound
on it is sufficient in practice. The performance of TE-AR5
is significantly worse than that of TE-BEM(200) (the two
approaches have comparable computational complexity) in



KIM and TUGNAIT: TURBO EQUALIZATION FOR DOUBLY-SELECTIVE FADING CHANNELS USING NONLINEAR KALMAN FILTERING . . . 2083

1 2 3 4 5 6 7 8 9 10

x 10
−3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Normalized Doppler spread (f
d
T

s
)

B
E

R

QPSK,L=2,d=5,l
p
=5,l

s
=20,SNR=10dB,1000runs

 

 

1st iteration
5th iteration
TE−LE
TE−AR5
TE−AR9
TE−BEM(200)
TE−BEM(400)

Fig. 5. BER vs 𝑓𝑑𝑇𝑠 under SNR = 10dB, 𝑙𝑝 = 5, 𝑙𝑠 = 20 (20% training
overhead), for 1st and 5th iterations. TE-LE refers to the turbo equalizer
of [29] based on linear equalization. TE-BEM(𝑇𝑝) is the proposed turbo
equalizer using CE-BEM with BEM period 𝑇𝑝: TE-BEM(200) is based on
𝑇𝑝 = 200 and 𝑄 = 5, and TE-BEM(400) is based on 𝑇𝑝 = 400 and
𝑄 = 9. TE-ARP refers to the turbo equalizer of [13] using symbol-wise
AR(P) channel model: TE-AR5 and TE-AR9 are based on AR(5) and AR(9)
models, respectively.

Fig. 4 with increasing SNR for a fixed 𝑓𝑑𝑇𝑠 = 0.01, and is
slightly worse in Fig. 5 for a fixed SNR of 10dB and varying
Doppler spreads. On the other hand, while the performance
of TE-AR9 is slightly better than that of TE-BEM(400) (the
two approaches have comparable computational complexity)
in Fig. 4 with increasing SNR for a fixed 𝑓𝑑𝑇𝑠 = 0.01, it
is significantly worse in Fig. 5 for a fixed SNR of 10dB and
varying Doppler spreads. While increasing the BEM period 𝑇𝑝
improves performance, increasing the AR model order does
not necessarily do so: we get inconsistent performance. A
possible reason is that, as noted in [31], AR model fitting to a
given correlation function can be numerically ill-conditioned
for “large” model orders; it turned out to be so for AR(9)
model and we followed the recommendations of [31] in
choosing the regularization parameter for the matrix inversion
involved. Such inconsistent behavior is also seen in Fig. 6
where we compare performance of various schemes (including
TE-BEM(100) with 𝑇𝑝 = 100 and 𝑄 = 3, and AR3 with order
𝑃 = 3) for different SNR’s under normalized Doppler spread
𝑓𝑑𝑇𝑠 = 0.004. It is seen that increasing the BEM period 𝑇𝑝
improves performance but increasing the AR model order does
not necessarily do so. Moreover, for the same computational
complexity, BEM models outperform AR models.

In Figs. 4 and 5 the scheme TE-LE refers to the approach of
[29] that uses the linear MMSE equalizer (e.g. [11]) coupled
with modified RLS channel estimation. It is seen that this
approach only works for normalized Doppler spread values of
≤0.002. In Fig. 4 we also present the performance of the turbo
equalizer based on the fixed-lag Kalman filter with knowl-
edge of the true channel (curves with plus sign marker and
labeled “TrueCH”) in order to illustrate the effectiveness of
the proposed channel estimation approach; as there was little
improvement beyond the second iteration, we only show the
second iterative result with dotted curve labeled “TrueCH”. It
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Fig. 6. BER vs SNR under 𝑓𝑑𝑇𝑠 = 0.004, 𝑙𝑝 = 5, 𝑙𝑠 = 20 (20%
training overhead), for 1st and 4th iterations. TE-BEM(𝑇𝑝) is the proposed
turbo equalizer using CE-BEM with BEM period 𝑇𝑝: TE-BEM(100) is based
on 𝑇𝑝 = 100, 𝑄 = 3; TE-BEM(200) is based on 𝑇𝑝 = 200, 𝑄 = 5;
TE-BEM(400) is based on 𝑇𝑝 = 400, 𝑄 = 9. TE-ARP refers to the turbo
equalizer of [13] using symbol-wise AR(P) channel model: TE-AR3, TE-
AR5 and TE-AR9 schemes are based on AR(3), AR(5) and AR(9) models,
respectively.

is seen that there is a slightly more than 2dB SNR penalty due
to channel estimation. As has been noted in the literature, the
Kalman filter based equalization is a sub-optimum equalizer
compared to the trellis-based MAP (BCJR) equalizer [30].
In Fig. 4 we present the performance of the turbo equalizer
based on the optimum BCJR method with knowledge of the
true channel (curves with asterisk marker and labeled “Opt-
MAP-TrueCH”) in order to illustrate loss in performance due
to suboptimality of the Kalman equalizer; as there was little
improvement beyond the second iteration, we only show the
second iterative result with dotted curve labeled “Opt-MAP-
TrueCH”. It is seen that while there is a large difference in
performance initially (see 1st iteration results for “TrueCH”
and “Opt-MAP-TrueCH” where both are dashed curves with
plus sign and asterisk markers, respectively), just one turbo
iteration yields very close performance (see the two dotted
curves). That is, at least for this example, performance loss
in using Kalman equalizer instead of the BCJR equalizer is
quite negligible.

In Fig. 7, a smaller information block size (𝑇𝑖 = 1000)
in the BICM transmitter is considered leading to a coded
block size of 2000 bits and an interleaver length of 2000 bits
also. Thus, we have a smaller interleaver size compared to
6000 bits in our earlier setting, designed to reduce the overall
delay at turbo equalization receiver output. We compare the
performance of TE-BEM with 𝑇𝑝 = 200 and 𝑄 = 5 under
different SNR’s and normalized Doppler spread 𝑓𝑑𝑇𝑠 = 0.01
for two different interleaver lengths (equivalently different
information block sizes). It is seen that a smaller interleaver
length results in a “small” deterioration in BER (when five
iterations are considered).

In Fig. 8 we show the BER performance of schemes TE-
BEM(200) and TE-BEM(400) for different values of 𝛼. It is
seen that while the performance is not sensitive to the choice
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Fig. 7. BER vs SNR under different interleaver lengths, for the proposed
turbo equalizer using CE-BEM with 𝑇𝑝 = 200 and 𝑄 = 5 (TE-BEM(200)
scheme), under 𝑓𝑑𝑇𝑠 = 0.01, 𝑙𝑝 = 5, 𝑙𝑠 = 20 (20% training overhead), for
1st, 3rd and 5th iterations. 𝑇𝑖 = information block size in bits, interleaver
length = 2𝑇𝑖.

𝛼 over a relatively wide range of values, it does deteriorate
as 𝛼 approaches one. Note that 𝛼 = 1 in (18) implies time-
invariance and 𝛼 < 1 permits tracking by discounting older
values of the channel BEM coefficients – smaller the value
of 𝛼 higher this discounting effect but discrepancy with the
value of 𝛼 obtained from (19) also increases.

VI. EXIT CHART ANALYSIS

The extrinsic information transfer (EXIT) chart is a useful
semi-analytic tool [26]–[28] to analyze the exchange of mutual
information between the equalizer and the decoder and to de-
scribe the convergence of the iterative receiver algorithm. The
EXIT chart makes it possible to predict the system trajectory
from extrinsic mutual information transfer functions without
performing simulations on the complete iterative receiver. The
(extrinsic) mutual information 𝐼(𝐿; 𝑐) between the equally
likely 𝑐 ∈ {+1,−1} and the symmetric LLR 𝐿 simplifies
to [26], [27]

𝐼(𝐿; 𝑐) = 1− 𝐸
[
log2(1 + 𝑒−𝐿) ∣ 𝑐 = +1

]
. (52)

Under ergodicity, for a large sample of size 𝑇𝑟, we have [27]

𝐼(𝐿; 𝑐) ≈ 1− 𝑇−1
𝑟

𝑇𝑟∑
𝑡=1

log2(1 + 𝑒−𝑐(𝑡)𝐿{𝑐(𝑡)}). (53)

We observe the mutual information 𝐼𝑀𝑒 =
𝐼(𝐿𝑀𝑒 {𝑐(𝑛)} ; 𝑐(𝑛)) at the equalizer output and
𝐼𝐷𝑒 = 𝐼(𝐿𝐷𝑒 {𝑐(𝑛′)} ; 𝑐(𝑛′)) at the decoder output. The
EXIT chart combines the equalizer transfer function and
the decoder transfer function. Since the output LLR’s from
the equalizer are input to the decoder and vice versa, both
transfer functions are drawn in the same plot with the
axes being flipped for the decoder transfer function. The
system trajectory of the turbo equalization receiver forms a
“zigzag-path” between the two transfer functions where each
equalization (or decoding) task is represented as a vertical
(or horizontal) arrow.
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Fig. 8. BER vs 𝛼 for the proposed turbo equalizers TE-BEM(200) and TE-
BEM(400) for the first three turbo iterations under 𝑓𝑑𝑇𝑠 = 0.01, SNR=10dB,
𝑙𝑝 = 5, 𝑙𝑠 = 20 (20% training overhead).

The simulation setup to generate the extrinsic information
transfer function is shown in Fig. 9. Following [26] (and oth-
ers), 𝐿𝑀𝑒

{
𝑐𝑖(𝑛′)

}
(input to the SISO decoder) is modeled as

independent and identically distributed (i.i.d.) Gaussian with
mean 𝑐𝑖(𝑛′)𝜎2

𝐿/2 and variance 𝜎2
𝐿; then mutual information

𝐼𝑀𝑒 and 𝐼𝐷𝑒 at the input and output, respectively, of the decoder
are functions of a single parameter 𝜎𝐿. For a range of values of
𝜎𝐿 and randomly generated 𝐿𝑀𝑒

{
𝑐𝑖(𝑛′)

}
, we can estimate 𝐼𝑀𝑒

and 𝐼𝐷𝑒 (the same for all channel models) via simulations using
(53). The interleaved random extrinsic LLR’s 𝐿𝐷𝑒

{
𝑐𝑖(𝑛)

}
are input to the “LLR to symbol” block in Fig. VI together
with the corresponding a priori LLR 𝐿𝑀𝑒

{
𝑐𝑖(𝑛)

}
, the input

LLR’s of the decoder, in order to obtain the a posteriori
LLR’s 𝐿𝑎

{
𝑐𝑖(𝑛)

}
. Then we can estimate input-output mutual

information 𝐼𝐷𝑒 and 𝐼𝑀𝑒 of the equalizer (dependent upon
the channel model) using the input LLR’s 𝐿𝐷𝑒

{
𝑐𝑖(𝑛)

}
(not

𝐿𝑎
{
𝑐𝑖(𝑛)

}
) and output LLR’s 𝐿𝑀𝑒

{
𝑐𝑖(𝑛)

}
, respectively, of
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(a) Decoder

(b) Equalizer

Fig. 9. Simulation setup for generating extrinsic information transfer
functions. 𝑁(𝑚, 𝜎2) denotes a Gaussian distribution with mean 𝑚 and
variance 𝜎2. In (b) the equalizer block is shown “blocked” and shaded in the
left-bottom side while the right-side generates the entitiy needed to generate
a posteriori LLR L𝑎 {c(𝑛)} (see also Fig. 2).
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Fig. 10. EXIT charts for the proposed turbo equalizer using CE-BEM with
𝑇𝑝 = 200 and 𝑄 = 5 (TE-BEM(200) scheme) under 𝑓𝑑𝑇𝑠 = 0.008 for
different SNR’s; 𝑙𝑝 = 5, 𝑙𝑠 = 20 (20% training overhead). The “bottom”
solid black curve is the decoder transfer function; the other curves are the
equalizer transfer functions for different SNR’s.

a given SISO equalizer. For a given equalizer we plot curves
(transfer function) with input 𝐼𝐷𝑒 along horizontal axis and
output 𝐼𝑀𝑒 along the vertical axis; the axes are “flipped” for the
decoder. The iteration process between equalizer and decoder
can be visualized by using a trajectory trace where each
vertical trace represents equalization task and each horizontal
trace represents decoding task and the trajectory starts at the
(0,0) point (see Fig. 10 for instance).

Using the set-up and parameters of Fig. 4 but with the
information block size set to 30000 bits (the coded block size
𝑇𝑟 = 60000), the normally distributed LLR’s were generated
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(a) Turbo equalizer of [13] using symbol-wise
AR(5) channel model
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(b) Proposed turbo equalizer using CE-BEM
with 𝑇𝑝 = 200 and 𝑄 = 5

Fig. 11. EXIT charts under 𝑆𝑁𝑅 = 10𝑑𝐵 for different 𝑓𝑑𝑇𝑠’s; 𝑙𝑝 = 5,
𝑙𝑠 = 20 (20% training overhead). The “bottom” solid black curve is the
decoder transfer function; the other curves are the equalizer transfer functions
for different channel models and Doppler spreads. Part (a) shows results for
the approach of [13] (TE-AR5 scheme) based on symbol-wise AR(5) model.
Part (b) shows results for the proposed turbo equalizer using CE-BEM with
𝑇𝑝 = 200 and 𝑄 = 5 (TE-BEM(200) scheme).

with values of 𝜎2
𝐿 ∈ [

10−2, 102
]
, and then 𝐼𝑀𝑒 and 𝐼𝐷𝑒

were calculated. We analyze the EXIT charts of our CE-BEM
based approach with 𝑇𝑝 = 200 and 𝑄 = 5 (TE-BEM(200)
scheme) and the symbol-wise AR-model-based approach in
[13] using AR(5) model (TE-AR5 scheme). In Fig. 10, EXIT
charts for TE-BEM(200) are shown under a fixed normalized
Doppler spread 𝑓𝑑𝑇𝑠 = 0.008 for different SNR’s. In Fig.
10 we show the trajectory trace for SNR=10 dB where the
first iteration is not visible as it is “cramped” in the lower
left corner. Note that, as SNR increases, the output mutual
information of the SISO equalizer increases. In Fig. 11, EXIT
charts for TE-BEM(200) and TE-AR5 schemes are depicted
under SNR = 10dB for different normalized Doppler spreads.
Table I compares the BER’s obtained via full Monte Carlo
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TABLE I
COMPARISON BETWEEN ACTUAL BER (VIA SIMULATIONS) AND PREDICTED BER (VIA EXIT CHARTS)

Via Monte Carlo runs (predicted by EXIT charts): SNR=10dB
𝑓𝑑 (𝑓𝑑𝑇𝑠) iteration TE-BEM(200) TE-AR5
80𝐻𝑧 1st 1.2× 10−1 (1.4× 10−1) 0.8× 10−1 (1.2 × 10−1)

(0.002) 2nd 2.3× 10−2 (2.4× 10−2) 8.5× 10−3 (1.5 × 10−3)

3rd 1.9× 10−3 (1.5× 10−5) 6.3× 10−4 (< 10−5)

160𝐻𝑧 1st 1.3× 10−1 (1.5× 10−1) 1.5× 10−1 (1.7 × 10−1)

(0.004) 2nd 2.7× 10−2 (5.5× 10−2) 4.8× 10−2 (9.0 × 10−2)

3rd 2.1× 10−3 (2.0× 10−4) 7.0× 10−3 (2.4 × 10−3)

240𝐻𝑧 1st 8.5× 10−2 (1.1× 10−1) 6.6× 10−2 (8.5 × 10−2)

(0.006) 2nd 6.9× 10−3 (2.2× 10−3) 3.3× 10−3 (4.0 × 10−4)

3rd 1.9× 10−4 (< 10−5) 7.1× 10−5 (< 10−5)

320𝐻𝑧 1st 1.4× 10−1 (1.7× 10−1) 1.1× 10−1 (1.6× 10−1)

(0.008) 2nd 3.9× 10−2 (7.0× 10−2) 1.8× 10−2 (4.5× 10−2)

3rd 2.9× 10−3 (1.3× 10−3) 7.2× 10−4 (2.5× 10−4)

simulations (as in Sec. V, Fig. 5, with 𝑙𝑝 = 5, 𝑙𝑠 = 20 and
SNR=10 dB) and predicted by EXIT chart analysis (shown in
parentheses). It is seen that while the two sets of BER’s are
“close,” there are discrepancies. One reason for this is that
while EXIT charts are based on the assumption of infinite
interleaver length, simulation results are based on finite length
interleaver. Furthermore, drawing of trajectory traces is subject
to “manual” errors.

VII. CONCLUSIONS

We extended the single-user turbo equalization approach
of [13] based on symbol-wise AR modeling of channels to
channels based on CE-BEMs where the adaptive equalizer
using nonlinear Kalman filters is coupled with an SISO
decoder to iteratively perform equalization and decoding using
soft information feedback. The proposed adaptive equalizer
jointly optimizes the estimation of BEM channel coefficients
and data symbol decoding in each iteration with the assistance
of a priori information for the data symbols given by the
SISO decoder. Unlike [13], an EXIT chart analysis of the
proposed approach was also provided. Simulation examples
demonstrated that our CE-BEM-based approach had signifi-
cantly superior performance over the symbol-wise AR model-
based turbo equalizer of [13] for comparable computational
complexity.
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