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The paper deals with techniques for the enhancement of magnetic resonance (MR) images

using the wavelet analysis, which is assessed from the viewpoint of choosing the mother

wavelet and the thresholding technique. Three parameters are used as objective criteria

of  the quality of image enhancement: the signal-to-noise ratio (SNR), image contrast, and

linear approximation of edge steepness. Unlike most of the standard methods, which work
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exclusively with image magnitude, we also examined the influence of image phase, i.e. the

image  is processed as a complex signal. In addition to the interpretation of results, a short

summary is given that deals with the choice of the optimal mother wavelet and thresholding

technique for different types of MR images.

© 2011 Elsevier Ireland Ltd. All rights reserved.

nature of the noise distribution.
1. Introduction

The time of MRI  (Magnetic Resonance Imaging) is limited by
patients’ comfort, non-stabilities and artifacts of the tomogra-
phy system, and physical limits during dynamical applications
such as heart imaging or functional MRI. At present, fast
methods of magnetic resonance (EPI) are used, which allows
significant reductions of investigation time. Retrieved images
have a low signal-to-noise ratio (SNR) and a small contrast.
In MR  imaging microscopy or for very thin slices of plants
it is possible to use the time averaging of signal for SNR
improvement, which has no effect on spatial resolution in the
image.  Extending the measurement time is acceptable for such
objects. But this is not feasible in medicine and therefore a
post-process image  filtering (image de-noising) has to be used
for SNR improvement. The drawback of any digital image  fil-
tering technique is the reduction in sharpness, resolution, and
image contrast.
It is well known that magnitude image  data of magnetic
resonance obey the Rician distribution. Unlike additive Gaus-
sian noise, Rician “noise” is signal-dependent, and separating
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signal from noise is a difficult task. Rician noise is especially
problematic in low SNR regimes, where it not only causes ran-
dom fluctuations but also introduces a signal-dependent bias
into the data, which reduces image  contrast.

The application of wavelets for the de-noising of MR images
has been pioneered by Weaver et al. [1],  who  applied their
de-noising scheme to MR images of the human neck. They
concluded that the de-noising scheme can reduce noise by
10%–50% without reducing edge sharpness.

De-noising techniques operating with magnitude images
have been proposed in most cases only for disease diagnos-
tic from MR images with a low SNR. Henkelman [2] shows the
relationship between the true signal amplitude and that which
is measured in real and magnitude images in the presence
of noise. Correction factors for actual experimental measure-
ments are demonstrated. Some recent work by Nowak  [3]
employs a wavelet-based method for de-noising the square
magnitude images, and explicitly takes into account the Rician
A few works have been devoted to phase image  de-noising,
despite the existence of important applications like current
density imaging (CDI), MRI  and functional MRI. Alexander [4]

erved.
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Fig. 1 – MR  image of the phantom for the contrast

WT is an integral transform for the “time–frequency” descrip-
tion of the signal being analyzed. It can be used in various
signal processing applications, e.g. signal compression, fea-
ture extraction, and noise removal. In our case, we  use the
c o m p u t e r m e t h o d s a n d p r o g r a m s 

pplies a wavelet de-noising algorithm directly to the com-
lex image  obtained as the Fourier transform of the raw
-space two-channel (real and imaginary) data. By retaining
he complex image,  he is able to de-noise not only magni-
ude images but also phase images. A multi-scale (complex)
avelet-domain Wiener-type filter is derived. The algorithm
reserves the edges when the Haar wavelet rather than
moother wavelets, such as those of Daubechies, are used.
aroubi [5] presents a fast post-processing method for noise
eduction of MR  images, termed complex de-noising. The

ethod is based on shrinking noisy discrete wavelet trans-
orm coefficients via thresholding, and it can be used for any
RI  data-set with no need for high power computers. The

e-noising algorithm is applied to the two orthogonal sets
f complex MR  images separately. Cruz-Enriquez [6] applies

 group of de-noising algorithms in the wavelet domain to
he complex image,  in order to recover the phase informa-
ion. Significant improvements in SNR for low initial values
re achieved by using the proposed filters.

. Materials  and  methods

.1. SNR,  contrast  and  slope  edge  estimates

or phantom MRI  images with different SNR, the improvement
f the SNR, contrast and linear slope edge approximation are
easured before and after the application of de-noising algo-

ithm. The SNR and contrast are computed in two regions of
nterest in each image: the first region contains only noisy
ackground, while the second region contains, in addition, the
ignal. We use the definition of parameters according to Eqs.
1) and (4).  The linear slope edge approximation is estimated
ver a selected sharp edge in the MRI  image.

The SNR in an MR  image  is computed as the squared mean
ntensity of the selected area relative to the underlying Gaus-
ian noise variance �N

2. The SNR of the image  magnitude is
efined as [3]:

NR = 10log10

(
I2mean

�2
N

)
, (1)

here Imean is obtained as the mean value of intensity I in
 homogenous region-of-interest (ROI) inside the image  (sig-
al), and �N is the standard deviation of the ROI without signal

background). If we  take into consideration the averaging of
he number of MR  acquisitions Nacq, the standard deviation of
oise is equal to:

eff = �N√
Nacq

. (2)

The contrast of image  intensity I is defined as:

AB = |IA − IB| .  (3)

The relative contrast is defined as a contrast which is

elated to reference image  intensity Iref (Iref = (IA + IB)/2):

rel =
(

CAB

Iref

)
= 2

|IA − IB|
IA + IB

, (4)
definition.

where IA and IB are the mean image  intensities of A and B
image areas, as shown in Fig. 1.

The linear slope edge approximation m can be estimated
using Eq. (5) applied to a selected sharp edge, which is repre-
sented as 1D signal. Due to the presence of noise in the MR
image, the measurement is realized on several places of the
edge and the median of measurements is computed:

m = �y

�x
, (5)

where �y and �x represent the gradients of image  intensity
and scale, respectively, as shown in Fig. 2.

2.2.  De-noising  algorithms

As already mentioned above, we utilize a wavelet-based algo-
rithm for MR image  noise reduction. The wavelet transform
Fig. 2 – Example of the linear slope edge estimation.
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two-dimensional dyadic discrete-time wavelet transform 2D-
DTWT, which uses mother wavelet function ϕ to decompose
a digital image  into a multilevel set of approximations: verti-
cal, horizontal and diagonal wavelet coefficients cl, cl, cl and
cl, where l = 1, 2,. . .,  L gives the level of decomposition. A more
detailed description of the wavelet transform and its proper-
ties can be found, for example, in [7].

The most frequently used technique for MR image  noise
reduction using the wavelet coefficients is thresholding. It is
assumed that the wavelet coefficients with values lower than a
particular threshold value T corresponds to noisy samples and
they can be therefore cancelled, which leads to noise reduc-
tion in the image  domain. When the remaining coefficients
are unaffected, it is called hard thresholding:

ĉ(x, y) =
{

c(x, y)
∣∣c(x, y)

∣∣ ≥ T

0
∣∣c(x, y)

∣∣ < T
. (6)

Another often used kind of thresholding technique is the
so-called soft thresholding, defined as:

ĉ(x, y) =
{

sign [c(x, y) ]
[∣∣c(x, y)

∣∣ − T
] ∣∣c(x, y)

∣∣ ≥ T

0
∣∣c(x, y)

∣∣ < T
.  (7)

It can be generally said that soft thresholding yields a better
SNR while hard thresholding better preserves the slope edge.
There are other thresholding techniques such as semi-soft,
hyperbolic, non negative garrote, etc. [8].

The most important part of the de-noising algorithm is the
estimation of the optimal threshold value. When the thresh-
old value is too low, then the noise reduction is inefficient,
and, on the other hand, when it is too high, then details of
image  information can be lost. In our work, we  consider one of
the most frequently used estimation algorithms, the so-called
universal threshold, defined as [10]:

T = �est

√
2 log(N), (8)

where N is the number of input image  pixels, �est represents
the standard deviation of noise, which can be estimated by the
Donoho and Johnstone theorem [9] as the statistical median
MAD  of detailed wavelet coefficients cl, cl, and cl from the first
decomposition level divided by the constant 0.6745 [9].  This
threshold is then applied to all detailed wavelet coefficients of
each decomposition level:

�est = MAD(cl
D)

0.6745
. (9)

When we consider de-noising a complex MR image,  we
have to first separate it into the real and imaginary parts.
Then we process both parts by the wavelet transform sepa-
rately, we  estimate the unique threshold values for each part,
and then threshold the wavelet coefficients. After that we
reconstruct the image  domain from the thresholded wavelet

coefficients and, finally, combine them to form a de-noised
complex image.  The noise in both parts is assumed to be
independent. The type of mother wavelets and thresholding
techniques can differ for both parts.
 b i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) 480–488

In addition to the standard de-noising technique operating
with thresholding, we also implement a method described in
[4] with the Wiener filter applied to the complex wavelet coeffi-
cients (composed of the wavelet coefficients from the real and
imaginary image  parts). The method defined in Eq. (10) can
be described as a multiplication of l-th decomposition level of
detailed complex wavelet coefficients cl(x,y) by the complex
value of “attenuation” factor ˛l(x,y):

ĉl(x, y) = ˛l(x, y)cl(x, y). (10)

According to [4],  the attenuation factor for each wavelet
coefficient can be evaluated using the magnitude value of the
particular coefficient and the estimated standard deviation of
noise �est:

˛l(x, y) =
[∣∣ cl(x, y)

∣∣2 − �2∣∣ cl(x, y)
∣∣2

]
+

. (11)

Negative values of the attenuation factor are zeroed, i.e.
coefficients with lower values than the estimated standard
deviation of noise are eliminated, which can be computed as:

�est =
√

�2
est(R) + �2

est(I), (12)

where �est(R) is the estimated standard deviation of noise from
the real MR  image  part and �est(I) from the imaginary MR  image
part, with Eq. (9) taken into consideration.

Eq. (11) is extended by introducing an optional parameter
� ≥ 1, which allows the removal of the lower-value coefficients.
Various values of � are suitable for different images [4]:

˛l(x, y) =
[∣∣ cl(x, y)

∣∣2 − ��2∣∣ cl(x, y)
∣∣2

]
+

. (13)

An advantage of this method is the combination of hard
thresholding for high values of

∣∣ cl(x, y)
∣∣ (˛l(x, y) ≈ 1), which

yields a small bias (better contrast and slope edge), and soft
thresholding for coefficients with values close to the level of
noise, which yields a small variance (better SNR).

3.  Experiments  and  results

3.1.  MRI  data

For real MRI data, a set of 2D phantom MR  single-slice
data from the same volunteer was acquired on a 4.7T MRI
scanner (Magnex magnet, MR  Solution electronics and soft-
ware) in ISI Brno, using the standard spin-echo sequence.
The sample applied was a square container (40 × 40 × 40 mm)
filled with water. Relaxation times of water were reduced
by the application of nickel sulphate. The cylindrical cuvette
of 20 mm diameter was filled with gel water sample, whose

relaxation times are short (11 ms), and then inserted into a
dish. The tested MR images with different SNR (TE = 20 ms,
TR = 500 ms,  MA = 512 × 512, FOV = 60 × 60 mm)  were coronal
slices of variable thickness (0.2–0.5–1–2 mm).  In addition, MR

dx.doi.org/10.1016/j.cmpb.2011.08.008
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Fig. 3 – (a) Original phantom MRI  with SNR = 11.4 dB, (b) magnitude image wavelet coefficients filtering with SNR = 27 dB, (c)
c .
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omplex image wavelet coefficient filtering with SNR = 25 dB

mages of head (with TMJ-Temporomandibular Joint) were
cquired on the Philips ACHIEVA MRI  system (DS = 1.5 T) in the
aculty Hospital Brno-Bohunice. The measurement parame-
ers were: T2W-FSE pulse sequence: TE = 20 ms,  TR = 1600 ms,
A  = 256 × 256, FOV = 160 × 160 mm,  sagittal slice 2 mm.

.2.  Experiment  background

ur experiment can be divided into two parts. In the first part,
he wavelet-based de-noising algorithms described above are
pplied to the phantom MRI, mentioned in Section 2.1.  Several
iscrete mother wavelets (wavelet filters) are applied and the
esults are compared with the help of three described param-
ters (Section 2.1). In the experiment, we use two images with
ifferent SNR (11.4 dB and 19.1 dB) obtained by varying the slice
hickness. The contrast and the linear approximation of the
lope edge are related to the reference image  (ratio expres-
ion) with SNR = 35 dB, because of the unreliable measurement
f these parameters from noisy images. In the second part of
ur experiment, the same procedure is performed on the MR

mage  of head with SNR = 33 dB, as mentioned in Section 2.1.
The choice of mother wavelets has been inspired by a paper

11] dealing with an analytical study of wavelet filters (mother
avelets) for image  compression. The first change is the mod-

fication via replacing the Daubechies mother wavelet of the
th order by the same mother wavelet of the 2nd order (more
requently used in MR  de-noising) and by adding the dis-
rete Meyer mother wavelet (often used in MR de-noising [12]).
nother change consisted in applying the following mother
avelets: Haar, Daubechies 2nd and 9th orders, bi-orthogonal

nd.2nd and 4th.4th orders, Symlet 5th order, Coiflet 5th order,
nd discrete Meyer. According to experiments in paper [4],  the
evel of the wavelet decomposition is 3. The complex image
avelet coefficient filtering is only considered, because filter-

ng the coefficients of magnitude image  wavelets introduces a
ignal-dependent bias, as shown in Fig. 3.

.3.  Results
esults of de-noising the phantom MR image  with
NR = 11.4 dB are given in Table 1, and given graphically

n Fig. 4, where the values are normalized according to the
reference value corresponding to the maximum value of a
particular parameter.

The hard thresholding technique best preserves the slope
edge for all wavelet filters, but it yields a lower SNR value
in comparison with the soft thresholding technique. Using
the Wiener filtering technique, we  reach the greatest balance
between the values of SNR and slope edge for all wavelet types
(except for bior2.2) and, in addition, we also obtain the best
contrast. Generally, the contrast value should be the highest
for a thresholding technique yielding the lowest bias, i.e. hard
thresholding, but in the case of a low original MR  image  SNR
the contrast is strongly affected by the presence of noise and
therefore better results can be achieved even by a technique
with higher bias, i.e. soft thresholding.

The results of de-noising the phantom MR image  with
SNR = 19.1 dB are given in Table 2 and Fig. 5. There is a
great amount of similarity with previous results excluding
the contrast value, where a higher value is achieved for hard
thresholding than for soft thresholding because of the better
SNR of the original MR image.

While the first tested image  (the MR phantom image) does
not include almost any detailed information and the image
could be evaluated by measuring only one significant edge, in
the case of the second tested image  (the MR  image of head)
the measurement of two various edges was applied, which
differed in the magnitude of intensity change in the neigh-
bourhood of the relevant edge (see Fig. 6). The values measured
are summarized in Table 3, where m1 defines the linear slope
edge approximation with the higher intensity change, and m2

with the lower intensity change. The resultant graphs can be
seen in Fig. 7, but the contrast is not depicted here because of
unimportant changes in contrast in individual thresholding
techniques and the mother wavelets used.

It can be seen from Fig. 7 that the influence of thresholding
itself on the resultant MR image  of head approximately cor-
responds to the results for the MR phantom image. Therefore
it is possible to say that the choice of threshold method does
not depend much on the type of the image  being processed.
On the other hand, the results of the processed MR  images
are pretty dependent on the choice of the mother wavelet. It

has been shown that it is advantageous to assign the mother
wavelet to the chosen threshold method. The following com-
binations can be given as examples: hard thresholding and the

dx.doi.org/10.1016/j.cmpb.2011.08.008
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Table 1 – Results of de-noising the phantom MR  image with SNR = 11.4 dB.

Wavelet filter Hard thresholding Soft thresholding Wiener filtering

SNR Crel m SNR Crel m SNR Crel m

haar 16.4 0.74 1.17 22.2 0.80 1.14 24.4 1.03 1.17
db2 16.3 0.75 0.50 21.3 0.81 0.41 24.6 1.02 0.52
db9 16.8 0.70 0.51 22.2 0.80 0.44 25.1 0.97 0.41
bior2.2 14.4 0.63 0.66 20.7 0.78 0.50 19.4 0.84 0.50
bior4.4 16.0 0.71 0.55 21.9 0.80 0.43 23.5 0.98 0.46
sym5 15.8 0.69 0.55 22.1 0.80 0.47 23.0 0.97 0.48

2.1 

1.8 
coif5 16.4 0.72 0.54 2
dmey 15.0 0.63 0.60 2

Haar wavelet, soft thresholding and the bi-orthogonal wavelet
2.2 or the Wiener filtering and the Coiflet wavelet of the 5th
order. But the greatest influence on the processing of degraded
image can be seen in the choice of the mother wavelet. It is
evident both from the differences between the tested images
(the Haar wavelet used for the MR  phantom image  or the bi-

orthogonal wavelet 2.2 used for the MR  image  of head), and
even from partial areas of the individual MR  images. If we fol-
low the slope ratio of two edges, m1 and m2, for various types
of mother wavelet, we suppose that, generally, the slope edge

Fig. 4 – Results of de-noising the phan
0.80 0.48 24.3 1.00 0.55
0.79 0.47 21.3 0.90 0.50

m2 is less than m1. The ratio is thus high for some types of
mother wavelet (the Haar wavelet, for example), but for other
wavelets m1 it can be approximately equal to m2; m2 can even
be higher than m1 (the discrete Meyer wavelet, for example).
4.  Discussion

In this part of the paper, both an interpretation of the results
obtained from experiments and a brief summary of how to

tom MR  image with SNR = 11.4 dB.

dx.doi.org/10.1016/j.cmpb.2011.08.008
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Table 2 – Results of de-noising the phantom MR  image with SNR = 19.1 dB.

Wavelet filter Hard thresholding Soft thresholding Wiener filtering

SNR Crel m SNR Crel m SNR Crel m

haar 25.2 0.93 1.10 30.4 0.95 1.07 34.7 1.06 1.14
db2 24.7 0.93 0.85 29.6 0.96 0.61 34.1 1.05 0.70
db9 25.5 0.91 0.73 30.4 0.95 0.47 34.2 1.03 0.49
bior2.2 22.5 0.87 0.73 28.9 0.95 0.64 28.4 0.98 0.66
bior4.4 24.5 0.91 0.72 29.9 0.95 0.48 32.9 1.04 0.52
sym5 24.0 0.90 0.68 30.1 0.95 0.54 32.1 1.03 0.60

0.1 

0.0 

c
t

4

G
a
t
c

coif5 25.2 0.92 0.75 3
dmey 23.2 0.87 0.72 3

hoose optimal parameters for the enhancement of different
ypes of MR  image  are given.

.1.  Interpretation  of  results
enerally speaking, the contrast depends on bias, and thus
lso on the sharpness of the whole image,  which is defined by
he high slope of edges. Taking in account our experiments, we
an claim that this only holds for less degraded input images.

Fig. 5 – Results of de-noising the phan
0.95 0.56 34.4 1.05 0.65
0.95 0.54 30.3 1.01 0.60

For other input images, the contrast is more  dependent on
enhancing the SNR than on preserving the steepness of edges.

The effect of the thresholding methods used can be char-
acterized as follows: hard thresholding preserves the edge
steepness of the input image  and then the resultant contrast
is higher. At the same time, SNR is not so high because of the

discontinuities between cancelled and retained wavelet coef-
ficients. On the other hand, soft thresholding thanks to fewer
discontinuities among wavelet coefficients improves the SNR,
but reduces the edge steepness (the image  is more  blurred),

tom MR  image with SNR = 19.1 dB.

dx.doi.org/10.1016/j.cmpb.2011.08.008
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Table 3 – Results of de-noising the MR  image of head with SNR = 33 dB.

Wavelet filter Hard thresholding Soft thresholding Wiener filtering

SNR Crel m1 m2 SNR Crel m1 m2 SNR Crel m1 m2

haar 47.1 0.97 0.99 0.94 50.7 0.97 0.87 0.35 49.8 0.97 0.95 0.79
db2 43.5 0.97 0.97 0.91 47.9 0.97 0.78 0.62 46.9 0.98 0.83 0.72
db9 42.3 0.97 0.98 0.97 49.0 0.97 0.79 0.60 47.4 0.97 0.82 0.86
bior2.2 38.8 0.97 0.98 0.97 46.6 0.97 0.96 0.79 44.4 0.97 1.00 0.91
bior4.4 42.6 0.97 0.97 0.88 49.5 0.97 0.81 0.77 48.4 0.97 0.84 0.87

 

 

 

sym5 43.9 0.97 0.86 0.93 49.8
coif5 42.7 0.97 0.97 0.73 48.8
dmey 41.2 0.97 0.98 0.96 48.4

and bias is inserted and results in less contrast. The Wiener
filtering of the wavelet coefficients suppresses the disadvan-
tages of the two above-mentioned thresholding methods, but
only on condition that parameter � is known a priori. Its value
depends on the particular MR  image.  Therefore, the Wiener fil-
tering is not useful for full automatic processes. It can be said
that hard thresholding is useful for high SNR input images, soft
thresholding is more  convenient for low SNR input images,
and, finally, the Wiener filtering is useful for all MR  images, but
only if an optimum parameter � can be estimated in advance.

The choice of the mother wavelet (wavelet filter) greatly
affects the resultant image  quality. Eight different mother
wavelets were taken into account in this paper. The Haar
wavelet was the most useful for simple images (not many
details) with high slope edges (sharp transitions), espe-
cially with hard thresholding. The greatest disadvantage of
hard thresholding is the difficulty of obtaining smoothly
reconstructed images, which is manifested by disturbing rect-
angular artifacts. Mother wavelets of the Daubechies type are
typical representatives of non-symmetrical wavelets, which
are used with both plain images and images with many
details (so complicated) to obtain a higher SNR value (but less
steep edges, of course). It is the reason why they are com-
bined with soft thresholding. If the order of the Daubechies

wavelets increases, then the slope steepness tends to decrease
and, on the contrary, SNR becomes higher. Bi-orthogonal
wavelets, which belong to symmetrical wavelets, yield a

Fig. 6 – Test MR  image of head with areas of slope edge
measurement.

(

0.97 0.83 0.59 48.7 0.97 0.86 0.86
0.97 0.80 0.58 47.7 0.97 0.84 0.67
0.97 0.85 0.80 47.1 0.97 0.88 0.90

good balance between high slope edge and high SNR for all
threshold methods. Consequently, they are optimal wavelets
for much complicated images in order to obtain a good
balance between SNR and image  sharpness. Higher-order bi-
orthogonal wavelets give outputs similar to wavelets of the
Daubechies type. Wavelets of the Coiflet or Symlet type give
identical results for plain images. They give a high SNR at
the cost of lower slope edge. When the Coiflet and Symlet
wavelets were applied to more  complicated images, they dif-
fered in edge slope ratios m1 and m2 for hard thresholding. It
can be said that they behave like the Daubechies wavelets. The
discrete Meyer wavelets exhibit advantages that can, in partic-
ular, be seen when the Wiener filtering of wavelet coefficients
is used for more  complex images. A high degree of correspon-
dence between SNR and the preservation of the steepness of
the two image  edges measured, m1 and m2, was obtained. A
similar correspondence was obtained in the application of soft
thresholding. The discrete Meyer wavelet is recommended to
be used as a universal mother wavelet for processing compli-
cated images in combination with soft thresholding.

4.2.  A  brief  summary  of  how  to  select  optimal
parameters

The choice of optimal parameters for noise suppression in MR
images using the wavelet analysis can be divided into several
steps depending on the image  type:

(a) Format. It is recommended to process both the image  mag-
nitude and the image  phase in order to suppress bias in
the resultant image  (while preserving a higher contrast).
However, it is not always that the phase is available.

(b) Quality. It is recommended to use the hard thresholding for
images with a high SNR ratio while the soft thresholding
is preferably used for images of bad quality, which require
a substantial increase of the SNR.

(c) Structure. The mother wavelets of the Haar or the
Daubechies type should be used for images with a sim-
ple structure (for example, test image  of phantom), the
mother wavelets of the Mayer or the Symlet type should
be used for images with a more  complex structure (for
example, test image  of the head).

d) Fineness of resolution. If preserving the highest possible

degree of image  detail is required, it is recommended
to use the hard thresholding together with the discrete
Mayer mother wavelet or the Daubechies mother wavelet
of higher order.

dx.doi.org/10.1016/j.cmpb.2011.08.008
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Fig. 7 – Results of de-noising the

e) In the case of semi-automatic image  enhancement, the
Wiener filter should be used with optimal setting of
parameter �.

.  Conclusion

n this paper, an evaluation of the wavelet-based de-noising
fficiency for various mother wavelets is described. The real
nd imaginary parts of the MR  image  are filtered separately
nd the evaluation of filtering efficiency is realized on the out-
ut complex MR  image,  using three parameters: SNR, image

ntensity contrast, and intensity gradient in chosen parts of
he MR  image.  To determine the influence of the choice of

other wavelet in combination with various types of thresh-
lding on the monitored parameters (SNR, image  contrast,
nd edge steepness of the linear approximation) both phan-
om and real MR  images with different SNR values were used.
ased on the results achieved, individual combinations were

valuated and a recommendation was made for attenuating
oise in various types of image,  complemented with a brief
ummary of how to choose optimal parameters of wavelet
nalysis with the aim of attenuating noise in MR images.
image of head with SNR = 33 dB.
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