
RICE UNIVERSITY

Fault Detection and Fault Tolerance Methods for

Robotics

by

Monica L. Visinsky

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Dr. Joseph R. Cavallaro, Co-Chairman

Assistant Professor

Electrical and Computer Engineering

Dr. Ian D. Walker, Co-Chairman

Assistant Professor

Electrical and Computer Engineering

Dr. John B. Cheatham

Professor

Mechanical Engineering and Materials

Science

Houston, Texas

December, 1991

Fault Detection and Fault Tolerance Methods for

Robotics

Monica L. Visinsky

Abstract

Fault tolerance is increasingly important in modern autonomous or industrial robots.

The ability to detect and tolerate failures allows robots to e�ectively cope with inter-

nal failures and continue performing designated tasks without the need for immediate

human intervention. To support these fault tolerant capabilities, methods of detect-

ing and isolating failures must be perfected. This thesis presents new fault detection

algorithms which detect failures in robot components using analytical redundancy

relations. The robot components critical to fault detection are revealed using an

extended fault tree analysis. The thesis validates the algorithms using a simulated

robot failure testbed. An intelligent fault tolerance framework is proposed in which a

fault tree database and the detection algorithms work together to detect and tolerate

sensor or motor failures in a robot system. Future work will expand the detection

and tolerance routines and embed the framework into a more exible expert system

package.

Acknowledgments

I would like to express my appreciation to Dr. Joseph Cavallaro and Dr. Ian Walker

for their support and encouragement throughout the writing of this thesis. Their

eccentric view of the world gave birth to this thesis. I am grateful for all the lively

discussions which brought about many of the answers to questions within the research.

Dr. Cheatham's willingness to be on my committee and patience throughout the

revision process are also appreciated. I hope they are all ready for two more years!

My deepest love and gratitude goes to my mother, father, and sister who did not

complain of the frequent and frantic calls home. Their constant interest in my work

and concern for my problems have enabled me to work through the most troubling

and stressful points of writing a thesis. Nanny, Chris, the Dalys and the Houston

Visinsky Clan have my love and thanks for all the encouragement and wonderful

dinners. The often humorous e-mail from Scott has kept up my spirits. The e-mail

hugs and admonishments to `get to work' were always appreciated. The restful visit

spent with Katy and Scott in Indiana revitalized my drive and determination.

Arati and Deidre have my respect and thanks for their contributions to the dragon.

Thanks are also due to Larry, J.D. and Dr. Johnson for their constant help in keeping

my computer alive. The support of my friends Jay, Jim, Jonathan, Julia, and Michele

has been invaluable.

This work was funded in part by the National Science Foundation under grants

MIP-8909498 and MSS-9024391 and by DOE Sandia National Laboratory Contract

#18-4379A. The work was further supported by a Mitre Corporation Graduate Fellow-

ship and NSF Graduate Fellowship RCD-9154692.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vi

List of Tables ix

1 Introduction 1

1.1 Contributions of Thesis . 3

1.2 Overview of Thesis . 6

2 Previous Work in Fault Tolerance 8

2.1 Computer Fault Tolerance . 8

2.2 Robot Computer Architecture Fault Tolerance 10

2.3 Redundancy Based Robotic Fault Tolerance 11

2.4 Kinematic Fault Tolerance . 12

3 Robotic Fault Tree Analysis 14

3.1 Analysis Technique . 15

3.2 Failure Propagation/Probability Analysis 16

3.3 Fault Tree Pruning . 17

3.4 Riceobot Fault Trees . 18

3.5 Riceobot Fault Detection . 27

3.6 Analyzing Fault Trees for Fault Tolerance Capabilities 28

4 Robot Fault Detection Simulator 31

v

4.1 Planner . 34

4.2 Host Computer Model . 35

4.3 Robot Model . 36

4.4 Failure Modes . 43

4.5 Problems in Distinguishing Real Failures 47

5 Fault Detection Algorithms 50

5.1 Thresholds . 50

5.2 Algorithm 1 - Trajectory Dependent Fault Detection 51

5.3 Analytical Analysis of Detection Relations 56

5.4 Algorithm 2 - Trajectory Independent Fault Detection 63

5.5 Algorithm Summary and Results . 67

6 Integration of Fault Detection and Fault Trees 78

6.1 Fault Tolerance of Joint Failures . 78

6.2 Fault Detection Layer . 81

6.3 Fault Tree Database . 83

7 Conclusions and Future Work 87

Bibliography 89

Illustrations

1.1 Types of Joints. 2

1.2 Types of Internal Sensors. 3

1.3 Fault Detection and Fault Tolerance Framework. 4

2.1 Triple Modular Redundancy. 9

3.1 Riceobot Fault Tree. 19

3.2 Shoulder Joint Fault Tree. 20

3.3 Shoulder Z-axis Motion Fault Tree. 20

3.4 Spherical Wrist Fault Tree. 21

3.5 Elbow Joint Fault Tree. 22

3.6 Gripper Fault Tree. 23

3.7 Motor Fault Tree. 24

3.8 Power Supply Fault Tree. 24

3.9 Internal Sensor Fault Tree. 25

3.10 Computer System Fault Tree. 26

3.11 Restructuring Trees by Analysis of Fault Tolerant Ability. 29

4.1 Four Link, Planar Robot. 31

4.2 Four Link, Planar Robot Fault Tree. 32

4.3 Fault Detection Simulator Flow Chart. 33

4.4 Joint 0 Response to Encoder 0 Failure at Time-step 2. 38

vii

4.5 Joint 3 Response to Encoder 0 Failure at Time-step 2. 38

4.6 Joint 3 Response to Encoder 3 Failure at Time-step 2. 39

4.7 Joint 2 Response to Encoder 3 Failure at Time-step 2. 40

4.8 Joint 1 Response to Encoder 3 Failure at Time-step 2. 40

4.9 Joint 0 Response to Encoder 3 Failure at Time-step 2. 41

4.10 End E�ector Response to Encoder 3 Failure at Time-step 2. 41

4.11 Part of TDM Graphics Simulation Environment. 42

4.12 Oscillatory End E�ector Response to Tach 0 Failure at Time-step 2. . 45

4.13 Oscillatory End E�ector Response to Tach 3 Failure at Time-step 2. . 46

5.1 State Diagram for Algorithm 3. 70

5.2 Joint 0 Response using Algorithm 3 when Encoder 0 Fails at

Time-step 2. 72

5.3 Sensor Position Estimates for Joint 0 when Algorithm 3 Detects

Encoder 0 Failure at Time-step 2. 73

5.4 End E�ector Response using Algorithm 3 when Encoder 0 Fails at

Time-step 2. 74

5.5 End E�ector Response using Algorithm 3 when Both Sensors Fail in

Joint 0 at Time-step 0. 75

5.6 End E�ector Response using Algorithm 2 when Motor 2 Fails at

Time-step 1.5. 76

5.7 Algorithm 3 Detection of Motor 2 Failure at Time-step 1.5. 77

6.1 Virtual Link Created by Joint Fault Tolerance. 79

6.2 Joint 2 Response to Motor 2 Failure at Time-step 1.5. 80

6.3 Joint 3 Response to Motor 2 Failure at Time-step 1.5. 81

6.4 End E�ector Response to Motor 2 Failure at Time-step 1.5. 82

6.5 Propagation of a Sensor Failure Among Framework Layers. 85

viii

6.6 Propagation of a Joint Failure Among Framework Layers. 86

Tables

3.1 Fault Tree Analysis Symbols . 15

5.1 Failure Situations and Detection Actions for Increasing Desired Angles 54

5.2 Failure Situations and Detection Actions for Decreasing Desired Angles 55

5.3 Algorithm Usage of Various Detection Tests 68

1

Chapter 1

Introduction

Robots are often used in inaccessible or hazardous environments in order to alleviate

some of the time, cost and risk involved in preparing humans to endure these condi-

tions. In order to perform their expected tasks, the robots are often quite complex,

thus increasing their potential for failures. However, if people are frequently sent

into these environments to repair every component failure in the robot, the advan-

tages of using the robot are quickly lost. Fault tolerant robots are needed which can

e�ectively detect and adapt to software or hardware failures in order to allow the

robots to continue working until repairs can be realistically scheduled. This research

builds a foundation for fault tolerant robots by developing new algorithms which de-

tect hardware failures in the robot system and trigger the appropriate fault tolerant

actions.

In general, a robot is a mechanical structure consisting of links connected by joints

which typically move around one axis (i.e., have one degree of freedom) [29, 30].

Unlike the human arm and hand which together have over thirty degrees of freedom,

most robots only have six, the minimum number of degrees necessary to position and

orient the robot in three dimensions. Robots with more than six joints can choose

between several con�gurations of the links to place the end of the robot (the end

e�ector) at a speci�c position. These robots are considered kinematically redundant.

Kinematics [32] is the mathematical process relating the end e�ector position (x, y,

z) and orientation (roll, pitch, yaw) to the joint con�guration (�1; � � � ; �n), where n

is the number of joints. The joints may be either rotational or prismatic (see Figure

2

1.1), and each is driven by an actuator either directly or through a combination of

gears, chains, and belts. The most common robot actuators are electric motors [29].

Prismatic Joint Rotational Joint

Figure 1.1 Types of Joints.

A computer control system called the controller commands the robot to move

through its workspace based on a plan or desired trajectory of the robot end e�ector.

The plan is developed using an inverse kinematics algorithm which computes the next

desired joint con�guration given the current con�guration and the next desired end

e�ector position (see Section 4.1). The plan may be pre-computed o�-line and stored

in the controller's memory or computed dynamically during the assigned task.

Using the dynamics equations described in Section 4.2 and explained in [32], the

controller computes the necessary torque to apply to each motor in order to move

the robot from the given current position into the next desired position. Information

about the current position or velocity of the robot joints are relayed to the controller

from internal sensors (Figure 1.2). Most robots do not have an extensive number of

internal sensors and may only have an encoder to read the position or a tachometer to

read the velocity at each joint. More advanced robots have a force/torque sensor at

the wrist joint of the end e�ector to monitor the contact forces when the end e�ector

is manipulating an object. The robot computer can also use the sensors to determine

the errors in joint positions, velocities, or forces so that the computer can compensate

for these errors using feedback control (see Section 4.2).

3

JOINT SENSORS:

POSITION
TRANSLATIONAL
Potentiometer, Variable Transformer

ROTATIONAL
Optical Encoder, Resolver

FORCE/TORQUE
Strain Gauge, Torque Sensor

SPEED
Tachometer

ACCELERATION
Servo-return sensor

Figure 1.2 Types of Internal Sensors.

1.1 Contributions of Thesis

The main contribution of this research is the introduction of several new algorithms for

robotic fault detection which form part of a proposed intelligent framework for fault

tolerance in robotics (Figure 1.3). In developing the algorithms, this thesis explores

the a�ects of failures in an example robot using a technique called Fault Tree Analysis.

Fault trees are initially developed based on the structural interaction of component

failures within the robot system. The focus of the trees is then shifted through

simple manipulations to highlight the functional failure relations for the robot. These

functional relations reveal the components which are the most critical in maintaining

the health and capabilities of the system. For robots, the critical components are

the internal sensors and the motors. The full, structurally based fault trees are

used within the proposed framework as a database which receives failure information

from the detection algorithms, prunes the trees accordingly, and ultimately alerts

the operator. The trees would also enable the database to dynamically itemize the

possible causes of any given failure or to provide a map of backup components for

fault tolerance.

4

Based on the fault tree analysis, the fault detection algorithms developed in this

thesis are designed to quickly detect failures in sensors or motors and enable the robot

to tolerate these failures. For example, when a sensor failure is detected because the

sensor reading exceeded a predetermined threshold when compared with the expected

value, the algorithms no longer rely on information from the failed sensor and, in-

stead, send only data from the remaining working sensors on to the controller. The

algorithms, thus, shield the robot controller from erroneous sensor information and

tolerate sensor failures.

Controller Robot

Sensors

Fault Tree
Database
and Pruner

Fault
Detection

Joint
Failure
Detection
Loop

Sensor
Failure
Detection
Loop

Intelligent
Path
Planner

(Inverse
Kinematics)

Figure 1.3 Fault Detection and Fault Tolerance Framework.

When all the sensors in a joint fail, however, the robot controller is unable to

reliably command the joint to move as the controller can no longer see the joint

response. The algorithms developed in this thesis must actually shut down and lock

a joint which has no working sensors in order to prevent the controller from becoming

unknowingly blind to the joint. If a motor fails without a backup, the joint again

becomes locked and the robot is unable to use that joint. In either case, the robot

5

loses part of its range of motion and the robot's ability to perform its assigned tasks

becomes limited.

Previous research has concentrated on providing fault tolerance through duplica-

tion of components such as motors (see Section 2.3). Although redundancy is a useful

tool for fault detection and fault tolerance, duplicating parts increases the size of the

robot, the cost involved in building it, and the weight and inertia which a�ect the

robot controller. Many of the existing robots today do not have redundant motors to

help tolerate motor failures, but the more advanced robots have redundant degrees

of freedom which allow multiple con�gurations of the robot for the same end e�ector

position. This kinematic redundancy is mainly used to provide obstacle avoidance

options to a healthy robot, but the extra degrees of freedom can also allow the robot

to withstand several joint failures without losing its range of motion. To tolerate the

loss of a joint, information about detected or instigated joint failures is relayed to

the planner which then adjusts the plan to redistribute the workload of the failed

joint among the survivors. Kinematic redundancy allows the planner to maintain the

desired robot end e�ector trajectory despite the joint failure.

The fault detection and fault tolerance algorithms developed in this research are

examined and tested using a robot simulator originally designed by Hamilton [17] to

simulate the control and dynamics of a generic four link, planar robot. The simulator

also integrates modules derived from Trick [1], a robotics software testbed developed

at NASA's Johnson Space Center in Houston, Texas by Leslie J. Quiocho and Robert

Bailey. Data modules provided by Trick allow the user to build customized robots

with various types of sensors, joints, and links. The Trick software package already

contains information to model the seven-joint Robotic Research Arms, the Space

Shuttle RMS, and the full Rice University Riceobot with base and two arms. The

exibility of the Trick software allows the failure analysis explained in this thesis

to be extended to a variety of di�erent robots. This research modi�es Hamilton's

simulator so as to simulate failures and support the fault detection and fault tolerance

6

algorithms developed. An inverse kinematics routine developed by Deo [10, 11] was

also added to the basic simulator to provide real time planning for the end e�ector

trajectory. Hamilton is expanding her work on the control and dynamics algorithms

of the simulator in order to apply them to a distributed processing environment [18].

The algorithms in this research are thus designed to utilize the advantages of the

existing structure and not require the addition of extra components to the robot [9,

39]. The algorithms are also capable of performing varying degrees of fault detection

and tolerance of motor and sensor failures. The algorithms can be used to at least

detect failures in robots which have little or no redundancy with which to tolerate

the failures. Kinematically redundant robots or robots with multiple sensors per joint

can use these algorithms to obtain more extensive failure detection and tolerance

capabilities.

The framework for tree analysis and detection algorithms proposed in this the-

sis will be embedded into the CLIPS expert system environment [3, 16] a NASA-

developed public domain software package commonly used by government agencies.

The integrated expert system will use the fault trees as a ow chart of failures while

the fault detection algorithms will form the basis for the rules of the expert system.

Speci�c fault tolerant actions will be activated by the rules and will allow the expert

system to take advantage of inherent backup or alternate paths charted by the robot

fault trees. By maneuvering around the trees, the expert system will perform fault

tolerant recovery actions as a sequence of smaller, simpler actions.

1.2 Overview of Thesis

To strengthen the foundation for the proposed fault tolerance algorithms, some of the

computer system methods of dealing with internal failures are discussed along with

the previous work in robotic fault tolerance in Chapter 2. Chapter 3 briey describes

fault tree analysis and discusses how to use the trees to reveal robot fault detection

and tolerance capabilities. This research began by speci�cally analyzing fault trees

7

for the Rice University robot, the Riceobot, but the results described in Chapter 3

apply to most robots. The fault detection algorithms developed from the fault tree

analysis and the system used to test these algorithms are given in Chapters 4 and 5.

Next, the relation between the fault trees and detection routines is de�ned for the

proposed intelligent framework (Chapter 6). Much of the previous work described

in Chapter 2 can be drawn into this framework to provide robotic fault tolerance.

Finally, Chapter 7 gives a brief summary of the results and future extensions.

8

Chapter 2

Previous Work in Fault Tolerance

Many fault tolerant systems have been developed for computer, airplane, and indus-

trial systems [8, 15, 21, 26, 41, 42]. Several of these techniques have provided models

for robotic fault tolerance schemes such as those presented in [35]. However, the trend

in robotics seems to be to use only those schemes which rely on physical redundancy

of components. Many methods of fault tolerance exist which do not alter the physical

system.

2.1 Computer Fault Tolerance

A common method used to provide fault tolerance in computer systems is Triple

Modular Redundancy (TMR) [27, 37] in which three processors all work on the same

problem and compare their results (see Figure 2.1). If one of the processors is faulty

and its result does not agree with the results of the other two processors, the faulty

processor is voted out of the �nal decision and the correct result is passed on to

the rest of the system. Only one faulty processor can be tolerated by this system,

however.

More failures can be detected and isolated by increasing the number of redun-

dant components. For example, the NASA Space Shuttle uses �ve redundant general

purpose computers (GPCs) in an expanded TMR voting scheme [31]. Four of the

computers are exact duplicates and work redundantly to perform the same tasks

given the same input data. By comparing the output commands, the four computers

vote on the results and can detect up to two ight-critical computer failures. After

two failures, the two computers remaining in this redundant set use comparison and

9

?

??

?

?

?

result to send out
Vote on correct

Output Data

Input Data

Communication Line for Voting

Processor
Faulty

Processor
Fault-free

Processor
Fault-free

Figure 2.1 Triple Modular Redundancy.

self-test methods to tolerate a third failure [31]. The �fth computer runs the Backup

Flight Software and generally performs non-ight-critical functions. Because it is pro-

grammed on a di�erent system than the other four computers [28], the �fth computer

could be used as a backup if the failure is due to an architectural design aw in the

main GPCs.

To avoid adding a multitude of redundant parts to computer systems, other meth-

ods were developed which recon�gure the data or code in the computer among the

working parts once one part has failed [37]. Some computer fault tolerant systems

handle a fault by allowing a graceful degradation in functionality or speed. The lit-

10

erature discusses time redundancy [6] in which a computational cycle is lengthened

so a fault-free part (or parts) will have enough time to handle the tasks of a faulty

component. Other systems use set-switching (see Section 2.2) or processor-switching

schemes [6] for recon�guration. In processor-switching, fault-free components are col-

lected to form a basic subpart, such as a row of an array, of the desired con�guration

until the full con�guration is achieved. This method may, however, require many

extra interconnections between components. In software, arithmetic codes are used

to �nd and correct errors in matrix computations like those performed in robot kine-

matics [19]. Check bits and error correction codes help monitor data transmissions

and allow a reconstruction of the original data if the transmission line is faulty.

Analytical redundancy is another concept for failure detection and isolation which

uses only the available sensor components in a system to generate residuals from which

failures can be identi�ed. Chow, Willsky and Stengel give thorough reviews of the

various methods of analytical redundancy [7, 33, 43]. By comparing the histories

of sensor outputs versus the actuator inputs, results from dissimilar sensors can be

compared at di�erent times in order to check for failures. In [7], Chow and Willsky

develop a useful mathematical approach for determining the various redundancies

that are relevant to the failures under consideration. This research utilizes this type

of process to identify the detection tests used in the algorithms developed in Chapter

5.

2.2 Robot Computer Architecture Fault Tolerance

The original focus for this work is an eight joint, kinematically redundant robot

with a proposed parallel VLSI architecture [40] to compute real-time control for the

robot. This system is currently being developed by Cavallaro and Walker at Rice

University. The design represents a unique approach towards mapping the coordinate

rotation (CORDIC) and the Singular Value Decomposition (SVD) algorithms used

11

in computing inverse kinematics for the robot onto a high performance VLSI array

in combination with an array of controlling Digital Signal Processor (DSP) chips.

The opportunity for parallel implementation of the robotic algorithms has been

exploited in the design [17] and could provide a valuable foundation for tolerance of

processor failures within the controller. A traditional approach to dynamic recon�gu-

ration for arrays, sometimes called set-switching [6] removes an entire row, column, or

diagonal of the array to isolate the faulty processor. The algorithm is then modi�ed

to deal with the new dimensions of the mesh. Only a few errors can be tolerated

before the mesh is reduced to an unusable size.

Work has already been done by Cavallaro on devising a dynamic fault recon�g-

uration scheme for the CORDIC SVD processor array [5]. This dynamic recon�g-

uration method isolates just the faulty processor and its communication links and

then reassigns the faulty processor's data to the fault-free neighbors. If a processor is

chosen to perform the extra calculations, it uses its idle cycles (necessary for the sys-

tolic propagation of information through the array) to work on the faulty processor's

data. Fault-free processors must also modify their communication paths to route data

around a faulty processor if it is a near-neighbor. A 5% increase in time is incurred

due to the rerouting of data around a faulty processor. The hardware also increases

by 5% as each processor needs extra registers to handle the data from a faulty near-

neighbor. This recon�guration scheme uses no additional spare processors, exploits

the idle time inherent in the array, and can handle many disjoint faults in the systolic

array.

2.3 Redundancy Based Robotic Fault Tolerance

Previous work on fault tolerance for the mechanical aspect of robots has concentrated

on those algorithms which rely on duplicated parts for their fault tolerant abilities.

These schemes generally deal with faults in one speci�c part of the robot (mechanical

failure in the motor, kinematic joint failure, etc.) with only token thought going to

12

the more critical, systemwide e�ects of the failures. Research done by Tesar, et al

[35] at the University of Texas in Austin and independently by Wu, et al [44] with

Lockheed at Johnson Space Center has explored methods of duplicating motors in a

robot joint. The two motors in a joint must be able to work together to provide one

output velocity for the joint. When one of the motors breaks, the other one takes

over the faulty motor's functions while adjusting to any transients introduced into the

system by the failed motor. If the robot is performing a time-critical or delicate task,

fault tolerance must allow the robot to get a run-away motor under control quickly

before any damage to the environment or the robot occurs.

The fault tolerant advantages of redundancy have also led to adding extra par-

allel structures, such as a backup arm or leg [35], in order to allow many di�erent

recon�guration possibilities in the presence of a failure. Redundant components o�er

an obvious solution to the recon�guration problem by providing a backup if one of

the components fail. As in Triple Modular Redundancy with computers, redundancy

may also give the robot system multiple components to check and vote among, thus

improving fault detection.

2.4 Kinematic Fault Tolerance

Many robots today have the advantage of being kinematically redundant. That is, the

robot has more degrees-of-freedom or motions than necessary to position and orient

the end e�ector which allows the robot to choose between multiple joint con�gurations

for a given end e�ector position in the robot workspace. This natural redundancy

can be used to create fault tolerant algorithms which use the alternate con�gurations

to aid in positioning a robot with failed joints. These algorithms would not require

the addition of extra motors, sensors, or other components to the robot but would

use the existing structure to provide fault tolerance [39].

Maciejewski at Purdue University has quanti�ed the e�ect of joint failure on the

remaining dexterity of a kinematically redundant manipulator [23]. He calculates

13

an optimal initial con�guration of redundant arms to maximize the fault tolerance

while minimizing the degradation of the system in the event of a failure. His method

currently only provides fault tolerance if the robot is near this initial con�guration

and can try and arrange its joints to mimic the fault-safe con�guration as close as

possible.

Robot controllers may further attempt to ease the transition through singular

con�gurations for the robot [11]. A con�guration is considered singular if the robot

is fully extended or folded in on itself in such a way as to hinder motion in one di-

rection without rapid changes in one or more joint positions. The joint velocities of

a manipulator become extremely high, even for redundant manipulators, when the

robot must move through one of these singularities. Fault detection routines might

interpret these jumps in the joint velocities as failures in the robot and erroneously

shut down a fault-free system. The optimal damped least-squares technique used

in the Singularity Robust Inverse (SRI) algorithm described in [10] and [11] ensures

feasible joint velocities with minimum end-e�ector deviation from the speci�ed tra-

jectory. This new inverse kinematics scheme enables the manipulator to avoid drastic

joint motions at or near singular con�gurations and helps eliminate false alarms in

the fault detection algorithms.

Previous results in robotic fault tolerance form various modules of the framework

proposed in this thesis. By using Deo's SRI algorithm [10, 11] in the robot controller,

the velocities of the robot during singular con�gurations are moderated eliminating

possible false alarms in the detection routines. Maciejewski's optimal con�guration

routine would receive failure information from the fault detection module developed

in this thesis (Chapter 6) which examines the fault tree module using the analysis

explained in Chapter 3. The trees provide a structural reference for Maciejewski's

algorithm to help in dynamically selecting optimal con�gurations during the life of

the robot.

14

Chapter 3

Robotic Fault Tree Analysis

In order to develop robotic fault tolerance algorithms based on the existing structure

of the robot, the possible failures must �rst be itemized in some manner. The in-

terdependence of the failures must also be determined. A useful tool for performing

both of these tasks is Fault Tree Analysis (Section 3.1) which analyzes the structure

of the robot and determines the ow of failures through the system.

For robots, there exist a multitude of possible failure events ranging from stripped

threads and loose chains to power failures and broken links. The robot itself may,

however, be unable to di�erentiate between two di�erent failures because it can only

see the e�ect of the failures. For example, if a motor is not driving a joint as it has

been commanded to do by the controller, the controller would be unable to determine

whether a chain in the gear-train has broken or an internal gear on the motor gear-box

has worn down. All the robot can see is that the motor has stopped working.

Sections 3.1 through 3.3 give an overview of Fault Tree Analysis and some of the

enhancements to this analysis technique. Section 3.4 presents an initial analysis of

the fault trees for the Rice University Riceobot. The failure events detailed in these

trees were determined based on a visual inspection of the robot structure. The robot

is only capable, however, of detecting failures through their a�ect on the internal

sensor readings. Section 3.6 describes the transitional steps necessary to reduce the

trees to reect the functional fault detection capabilities (using the sensors) of the

robot in preparation for designing the fault detection algorithms of Chapter 5.

15

3.1 Analysis Technique

Fault Tree Analysis (FTA) is a deductive method in which failure paths are identi�ed

by using a fault tree drawing or graphical representation of the ow of fault events

[2, 38]. FTA is a well-known analysis technique often used in industry for computer

control systems and large industrial plants. Each event in the tree is a component

failure, an external disturbance, or a system operation. The top event is the undesired

event being analyzed and, in this research, is the failure of the entire robot. The events

are connected by logic symbols to create a logical tree of failures. Some of the basic

symbols are explained in Table 3.1.

Table 3.1 Fault Tree Analysis Symbols

Symbol Function

AND gate All inputs required to produce out-

put event. A fraction, x/y, in the

gate means that more than x fail-

ures will produce the output event.

OR gate Any one input event causes the out-

put event.

Rectangle A malfunction which results from a

combination of fault events through

logic gates.

Diamond A fault event for which the causes

are left undeveloped.

Circle A basic fault event. This in-

cludes component failures whose

frequency and failure mode are

known.

Triangle A suppressed tree. The tree is de-

tailed in another �gure.

16

The explanation of Fault Tree Analysis in [2] promotes a top down development

of the fault tree. The top event is broken down into primary events that can, through

some logical combination, cause the failure at the top. This process is repeated to

deeper levels until a basic event or an undeveloped event is reached. Some conditions

or causes may be left undeveloped if the probability that they will occur is small

enough to be ignored.

3.2 Failure Propagation/Probability Analysis

The information available in the fault trees may be enhanced by a quantitative anal-

ysis of the failures. Failure rates are assigned to each input event and propagated

up the tree based on the rules of the connecting logic gates. The output of an OR

gate is the sum of the inputs. The resulting probability of the combined input events

is greater than the probability of an individual input event. The output of an AND

gate is the product of its inputs. The probability of all the events occurring is less

than the probability of any one occurring. The AND gate represents a redundant

measurement or capability and is more desirable in the tree since the probability of

a failure decreases through the combination of lower level events.

Analyzing failure probabilities and their propagation through the fault trees allows

the fault tolerance designer to focus on the components which are more likely to fail

in the robot and which are thus more important to the fault detection routines. Even

looking at the relative orders of magnitudes for failures can help the designer weed

out the unlikely failure events. For example, there is only a small possibility of a

link breaking during a typical robot task. The chains in the gear-train assemblies

often become loose, however, and would a�ect the performance of the motors. The

probability of a link failure is thus very small while the probability of a loose chain

is relatively large. The fault tolerance designer can therefore eliminate link failures

from his analysis and focus on detecting the e�ects of loose chains (i.e. ine�cient or

unresponsive motors).

17

A Markov or semi-Markov model approach to probability analysis has also been

developed as in the PAWS/STEM [4] and CARE III [34] reliability analysis packages.

These packages are capable of analyzing simpler fault trees as well as Markov chains,

but they are unwieldy and not necessarily optimized to handle simpler structures

[25]. These analysis tools were also not designed to take advantage of some of the

commonality within robot structures to simplify the analysis.

A numerical analysis provides a measure of the overall chance of a complete failure

for each robot. The structure provided by the fault trees organizes the probabilities

appropriately for the robot system and provides a simple map of how the events relate

to each other. Using the trees, robots of signi�cantly di�erent origin and structure

can be compared for fault tolerant abilities and survivability. The integrated expert

system proposed in this research will provide diagnostic capabilities based on the

robot fault trees. It can be used for o�-line comparisons of robots or for suggesting

or executing possible corrective actions on-line.

3.3 Fault Tree Pruning

A suggested drawback of FTA is that there is no way to ensure that all the causes

of a failure have been evaluated [2]. The designer tends to identify the important

or most obvious events that would cause a given failure. However, the events that

are not modeled normally have a low probability of occurring and can be ignored or

treated as a single basic event without overly biasing the analysis.

Several failures may be interconnected creating lateral branches or cycles in the

fault tree. In some robots, one motion at a joint may be coupled with another motion

such that failure of either motion causes a failure of the other. To keep the trees

simple, the two failures are considered one with twice the probability of occurring. It

is also sometimes di�cult to determine the relationship between failures. For example,

the failure of all internal feedback sensors at the elbow joint of a robot would make

the robot blind to the elbow's position. The elbow has not actually failed, however,

18

but the robot is unable to detect the results of commands sent to the elbow. Thus,

the sensor malfunctions do not contribute to a physical elbow failure but may cause

a functional failure of the elbow by blinding the robot controller to that joint. The

most appropriate position for the sensor subtrees in a structural analysis is thus in

the computer system tree as the sensors a�ect the communication link between the

computer and the robot. In a functional analysis (as in Section 3.6), the sensor

subtrees would be located beneath the joint failures.

3.4 Riceobot Fault Trees

To provide a foundation for the analysis of general robots, this thesis presents an

overview of the initial analysis of the arm of the Rice University Riceobot. The arm

has eight degrees of freedom: three motions in the shoulder (z translation, pitch, and

yaw), two motions in the elbow (roll and pitch), and three motions in the wrist (roll,

pitch, and yaw). The results obtained from the Riceobot apply to most general robots

especially since the Riceobot has a wide variety of commonly used link, joint, and

motor arrangements.

One drawback of focusing on the Riceobot is that the robot has only one optical

encoder per joint. Its feedback sensor capability is limited and a failure of an encoder

completely blinds the robot to that joint. As additional sensors would increase the

survivability of each joint by increasing the fault detection and tolerance capabilities,

analyzing the Riceobot can be considered a worst-case scenario where sensors are

concerned. This analysis thus provides insight into base case algorithms for fault

detection by revealing the important focal points for failures in the robot.

Overall Robot Failure

Several fault trees have been developed from an inspection of the robot structure

and are reproduced in the following pages. The top event is the failure of the entire

robot (Figure 3.1). The primary causes of a robot failure are power failure, computer

19

Failure of Robot

External

Failure of
Elbow

Failure of
Wrist

Failure of
Shoulder

Failure of
Computer
System

Failure of
Gripper

Power
Failure

Figure 3.1 Riceobot Fault Tree.

system failure, or a combination of failures of the joints. If a robot is kinematically

redundant, it can withstand the failure of the redundant joints and still continue its

tasks. By stablizing the faulty motion or joint (i.e., locking the joint), it becomes

possible for the other motions to still provide some functional capability to the robot.

This results in the AND gate combining the joint failures in Figure 3.1 and decreases

the probability of a failure of the enitre robot system. As the Riceobot has two

redundant degrees of freedom, it can tolerate as many as two joint failures.

Joint and End E�ector Failures

The Riceobot has two directly driven motions: the shoulder z-direction motion (Figure

3.3) and the wrist roll motion (Figure 3.4). The fault trees for these motions are quite

simple since only the failure of the motor plays an important role in the failure of

the motion. External causes of failures such as collisions or overly heavy loads are

infrequent in a controlled environment or in the vacuum and zero gravity of space.

The torques and inertias must be watched closely, however, so as not to put too much

stress on the joints.

20

Failure of
Shoulder

Failure of
Zed

Failure of
Shoulder Yaw

Failure of
Shoulder Pitch

ExternalFailure of
Motor

Gear-Train
Failure Link

Breaks

ExternalFailure of
Motor

Gear-Train
Failure Link

Breaks

Figure 3.2 Shoulder Joint Fault Tree.

Failure of
Motor

Failure of
Zed

External Threads
Strip

Figure 3.3 Shoulder Z-axis Motion Fault Tree.

21

Failure of
Wrist

Failure of
Wrist Pitch/Yaw

Failure of
Wrist Roll

External
Failure of
Universal
Joint

Failure of
Motor

Joint
Link
Becomes
Stuck

Joint
Breaks

Joint
Clamp
to Motor
Loosens

External
Gear-Train
Failure Link

Breaks

Failure of
Motor

Chain/
Cable
Loose

External Chain/
Cable
Snap

Cable
Guide
Wheel
Loose
or Off

Connector
Failure

Jacket
Unscrews

Cable
Comes
Free of
Clamp

Threads
Strip

Figure 3.4 Spherical Wrist Fault Tree.

The other motions of the Riceobot depend on some form of gear-train assembly

to allow the spatially separated motor to drive the joint. (See Figures 3.2, 3.4, and

3.5.) Failure of the gear-train can be caused by basic events as simple as a loosening

of the chain or cable. In practice, this basic event has had a high probability of

occurring and a special ellipse shaped guide was used to take up the slack in the

chain. Most robot chains are similar to bicycle chains and are unlikely to snap, but

the chain/cable assembly used for the Riceobot spherical wrist uses very delicate

chains. The likelihood of these chains snapping could be quite high depending on

how strongly the motor is driving the joint.

22

Failure of
Elbow

Failure of
Elbow Roll

External
Gear-Train
Failure Link

Breaks

Chains
Loose

Chains
Snap

Wear
on
Gears

Wear
 on
Guide
Wheel

Chain
Guide
Wheel
Loose

Failure of
Motor

Failure of
Elbow Pitch

ExternalLink
Breaks

Failure of
Motor

Gear-Train
Failure

Wear
on
Gears

Gears
Slip

Chains
Snap

Chains
Loose

Figure 3.5 Elbow Joint Fault Tree.

While the gear-train subtrees are presented as immediate causes of joint failures

within the de�nition of Fault Tree Analysis, the e�ects of a failed gear-train are

actually detectable only through the inability of the motor to perform its assigned

task. A faulty gear-train does not cause the motor to fail, it simply a�ects the motion

of the joint by directly a�ecting the output drive capability of the motor. In fault

detection algorithms, a gear-train failure would be undetectable as a separate event

and would instead be a possible cause of a detected motor failure.

If the robot has a gripper as an end e�ector, the gripper is most likely driven

by a motor through an arrangement of mechanical levers (Figure 3.6). The levers

transform the rotary motion of the motor into translational motion to open and close

the gripper. While it is unlikely the levers will break, the probability of their becoming

stuck is relatively high. If the levers fail in this manner, the gripper fails and undo

stress is put on the motor trying to move the grippers. If the limit switch for the

23

Failure of
Gripper

Gripper
Breaks

Gripper
Stuck

External
Failure of
Levers

Lever
Stuck

Lever
Breaks

Limit
Switch
Breaks

(There is
 a hard stop)

Figure 3.6 Gripper Fault Tree.

gripper breaks, there is typically a hard stop which will prevent the gripper from

opening too far. The robot will not be able to detect the problem immediately except

by noting that the end e�ector motor is straining but not producing any motion.

Motor and Sensor Failures

Detecting motor failures has been an important focus so far in this analysis. The

probability of a motor failure is dependent on the type of motor used (Figure 3.7).

The Riceobot contains both brushless DC and stepper motors. Each motor has a

gear box which may fail due to gear slippage or wear. A power failure (Figure 3.8)

a�ects all motors as well as any other electrically driven parts in the robot, but each

motor could lose power separately if its speci�c power cables break. Some motors

have internal sensors which detect motor failures by noting when the drive current

surges or when a limit in the range of motion has been reached. Motor failures may

also be detected based on their a�ect on the joint sensors of the robot. A motor

failure could, however, conceivably be the cause of a sensor failure (Figure 3.9) as

24

many sensors are mounted on the shafts of the motors. If the motor breaks, it may

do so in such a way as to damage or arrest the sensor output.

Internal
Motor
Failure

Gear Box
Failure

Failure of
Motor

 Local
Power Lines
 Fail

Gears
Slip

Wear
on
Gears

Figure 3.7 Motor Fault Tree.

Power
Failure

External
 Failure of
Power Supply
 Board

Battery
Failure

Battery
Dead

Corrosion
of
Connectors

Figure 3.8 Power Supply Fault Tree.

Sensors are also a�ected by incorrect calibration and external noise or vibrations

although some of the errors due to these causes are absorbed by the feedback control

25

algorithms. Each sensor could lose its power lines or have a faulty connection to the

ampli�er cards. Sensors are critical to fault detection as they are generally the only

window into the robot world for the controller. Errors in the sensors thus need to be

detected quickly in order for fault tolerance algorithms to reliably allow the robot to

continue its tasks.

Sensor
Failure

 Local
Power Lines
 Fail

Incorrect
Callibration

 Sensor
Logic Board
 Failure

 External
Damage/
 Noise

Failure of
Motor

Connection
to Amp Failure

Cable
Strip
Loose/
Broken

Connector
for Cable
Strip
Faulty

Figure 3.9 Internal Sensor Fault Tree.

Computer System Failures

The computer control system of the Riceobot consists of three main parts: (1) am-

pli�ers which read from the optical encoders and drive the motors, (2) servo control

chips which store information about the di�erent motors and convert the desired

angles into currents for each motor, and (3) an on-board host computer which is pro-

grammed in the C language and computes the desired angles for the desired motions

(Figure 3.10). These three parts each contain at least one board �lled with TTL

chips, capacitors, power transistors, resistors, and other analog and digital circuit

26

Failure of
Computer System

Card Cage
Failure

External
Host Computer
Failure

Amplifier
Board Failure

Failure of
Components

 transistors,
capacitors, or
 resistors,
 fail

 TTL chips,
processors,
ROM, RAM
 fail

 soldering,
 chip sockets,
 etc, fail

Servo-Control
Board Failure

 bonding,
status indicators,
 sockets
 fail

Sensor
Failures

Failure of
Components

Sensor
Failures

Failure of
Components bonding,

status indicators,
 etc., fail

Sensor
Failure (1)

Sensor
Failure (2)

Sensor
Failure (n)

Figure 3.10 Computer System Fault Tree.

components. A failure within the host computer may corrupt the commands sent

to the robot. By distributing the control algorithms amongst several processors [18],

it becomes possible for the robot to withstand failures in the host computer by ap-

plying fault tolerance schemes to the set of processors. The robot cannot, however,

currently withstand the failure of all the servo controllers or all the ampli�ers because

it would no longer be able to communicate with or, more importantly, monitor the

joints. Failure of an entire board is thus generally terminal to the robot unless backup

boards exist.

Detecting a non-terminal failure in the computer system requires some form of

testing circuitry or the ability to poll components to see if they are still alive [22].

The IEEE standard 1149.1 Test Access Port may be incorporated into any VLSI chip

on the boards and could be used for active testing. Correction code bits can be used

27

to check data transfers and could identify a bus failure if the bits were consistently

wrong. If no internal testing capabilities are provided, the robot could possibly use its

vision system or some other external sensor to check the status lights on the various

boards. If something went wrong, the robot could even attempt to press the reset

buttons on these boards to try to get them running again. A frequent problem with

the Riceobot was that the servo controller boards often needed to be reset. The robot

would not be able to move to reset the board if all the servo controllers were down,

but if it could still move one arm, it could conceivably reset the boards.

3.5 Riceobot Fault Detection

In analyzing the fault trees, important information is learned about the fault detection

capabilities of the Riceobot. If the power supply fails, the robot will fail completely

unless it has a backup power source since it will no longer be able to control the

motors. The robot will also be inoperative if the ampli�er or servo control boards fail

completely without a backup.

Motor failures and other component failures in the mechanical robot can only be

detected by sensors. A human teleoperator can detect certain failures in the robot

if they drastically a�ect the robot's performance [13]. However, to detect failures

quickly without depending on a human's senses, the robot must rely only on the

information it can glean from its internal and external sensors where internal sensors

are part of the internal control feedback loop and external sensors are used to provide

feedback about the environment.

With only one sensor at each joint, the Riceobot represents the worst case scenario

for detecting sensor and joint failures. This situation provides a foundation for the

fault detection algorithms developed in Chapter 5. The only option available to the

fault detection software is to compare the sensed angles with the calculated desired

angles. After accounting for a predetermined threshold to mask any precision errors in

the calculations or sensing equipment, any di�erence between the sensed and desired

28

values must be considered the result of a failure. The computer is, however, unable

to di�erentiate between a sensor failure and an actual joint failure due, for example,

to a frozen motor. Because the Riceobot is kinematically redundant, it is possible

for the robot to recon�gure its model of itself (see Section 6.1) and distribute the

workload of the failed joint to the surviving joints. The Riceobot thus provides a

base case for fault detection, but can still utilize the more advanced fault tolerance

routines proposed in this thesis.

Fault detection for the Riceobot could be improved using an external sensor such

as the vision system. With the computer calculation and the internal sensor reading,

the additional joint angle information from the vision system would help distinguish

between a sensor error and a real joint failure. The Riceobot could then function in

the presence of one sensor failure. Using the vision system for this task, however,

increases the load on the image processing software and may hinder the system's

ability to perform its normal vision tasks.

3.6 Analyzing Fault Trees for Fault Tolerance Capabilities

The fully detailed fault trees are useful in understanding and mapping the possible

structural interactions of failures within the robot. To emphasize fault detection

capabilities, however, the trees must be modi�ed to focus on the functional interaction

of failures. In practice, the tree events should also be grouped into events which can

be detected by the sensors or intelligent fault detection algorithms. The full analysis

of the Riceobot has revealed that the health of motors and sensors are an important

consideration in the survivability of robots. The fault detection designer must use the

information gleaned from the full trees to appropriately readjust the full fault trees

to reect the detection functionality of the failures.

Failure events may not structurally cause a failure in a speci�c component but

might still limit the robot's ability to use that component (see also discussion in

Section 3.3). A gear-train failure, for example, does not break the motor to which the

29

chain is connected but does result in the robot being unable to use the motor. All the

failure events which would a�ect the performance of a component should therefore

be relocated beneath that component's failure event. For example, the \Gear-Train

Failure" and \Failure of Universal Joint" subtrees in Figure 3.4 would be combined

through an OR gate with the existing subtrees of the appropriate motor failures to

create a new subtree for the motor failure events. Because the new subtrees are

combined through an OR gate, the probability of failure of the complete tree is not

a�ected. All failure events with low probabilities such as links breaking or external

failure events are removed from the analysis to simplify the original fault tolerance

algorithm design. This does decrease the probability of failure of the tree slightly,

but the change is small. Figure 3.11 illustrates these steps using the \Failure of Wrist

Roll" subtree of Figure 3.4.

Original Structural Subtree

Failure of
Motor

Failure of
Universal
Joint

Joint
Link
Becomes
Stuck

Joint
Breaks

Joint
Clamp
to Motor
Loosens

New Functional Subtree

External
Failure of
Universal
Joint

Failure of
Motor

Joint
Link
Becomes
Stuck

Joint
Breaks

Joint
Clamp
to Motor
Loosens

Figure 3.11 Restructuring Trees by Analysis of Fault Tolerant Ability.

The full Fault Tree Analysis technique develops the trees needed in the fault tree

database (Section 6.3) in order to allow the expert system to determine possible causes

30

of detected failures. The database can then report the list of possible causes to an

operator for future inspection and repair. However, the trees produced by fault tree

analysis display the structural interconnection of failures and do not always reveal the

functional a�ects of failures. By performing the above reduction analysis, the fault

tolerance algorithm designer can determine the signi�cant paths within the detailed

structural fault trees for detecting and tolerating the more critical functional failures

of the robot system. The pruned trees illustrate the structural support available for

developing fault detection and fault tolerance algorithms of Chapter 5.

31

Chapter 4

Robot Fault Detection Simulator

Analysis of the Riceobot fault trees has revealed the importance of focusing on sen-

sor or motor failures in developing fault tolerance algorithms and of detecting these

failures quickly. With only one sensor per joint, however, the Riceobot provides only

the most basic functionality for detecting failures. To explore more advanced algo-

rithms, this research extended a simulator of a planar, four link robot (Figure 4.1)

developed originally by Hamilton [17] and executed on a Silicon Graphics Personal

Iris computer. For this thesis, the simulator was enhanced to simulate two sensors per

joint and to include failure instigation routines to test the detection algorithms for

the robot. By simulating the algorithms developed in this research, the failure inter-

action information derived from the tree analysis is expanded to show how modeling

errors and other uncertainties a�ect fault detection.

Target

Jnt 1
Enc 1
Tach 1

 Jnt 2
 Enc 2
Tach 2

Jnt 3
Enc 3
Tach 3

Base:
 Jnt 0
 Enc 0
 Tach 0

Figure 4.1 Four Link, Planar Robot.

32

The robot used in the simulations consists of four cylindrical links connected end-

to-end (see Figure 4.1). All joints are rotational and move in the same plane. A

simulated optical encoder and tachometer were added for each joint. The fault tree

for this robot is relatively simple (see Figure 4.2). The possibility of link breakage or

global power failure has not been included in the simulation as these failures generally

have very low failure probabilities and can be ignored as per Section 3.6. The motors

are in essence direct drive as the gear-train subtrees are seen by the robot only through

motor failures. In a quantitative analysis, the probability of a gear-train failure would

be added to that of the actual motor failure to produce the probability of the motor

failure in this reduced robot fault tree.

Failure of
Joint 1

Failure of Robot

Failure of
Joint 2

Failure of
Joint 3

Failure of
Joint 4

Failure of
Motor

Failure of
Motor Parts

Failure of
Tachometer 1

Failure of
Encoder 1

2/4

Figure 4.2 Four Link, Planar Robot Fault Tree.

It is important to note that it is the fault detection software which allows the joint

to survive in the presence of a single sensor failure thus creating the AND gate under

each motor failure in the tree. If both sensors fail at a joint, the host computer is

blind to that joint and the fault detection routine forces the motor to shut down so

as to prevent the joint from moving too far without computer supervision. Thus, the

33

fault detection algorithm makes the dual sensor failure subtree a cause of the motor

failure event so as to protect the controller from erroneous information when it is

blind to a joint.

θ θ θ

θ
e

θ
t

Fault
Detection

Encoders

Tachs

Robot

(real
 accelerations,
 velocities,
 and angles)

Host Computer
(calc torques)Planner

Report of
Failures

fail motor
signal

τθ
d

θ
d

θ
d

θ
d

θ
d

θ
d

θr

θr

YX

Interface Layer Servo Layer

motor
failed
signal

Z

Figure 4.3 Fault Detection Simulator Flow Chart.

The structure of the simulator is shown in Figure 4.3. The ow of information is

from the simulated host computer through the robot and then the sensors to the fault

detection program and �nally back to the host computer. The host computer uses a

vector of desired angles, �d computed by a planner routine and the estimated present

position of the robot derived from the sensor readings �e and _�t to calculate the torque

vector, � , necessary to move each link to its desired destination. The controller is a

standard proportional-derivative (PD) computed torque type controller. The robot

routine takes the calculated torques and determines the new position, velocity, and

acceleration (�r; _�r; ��r) vectors for the joints. The actual values of �r, _�r, and ��r are

not observable by the controller except through the approximations provided by the

sensors. The optical encoders estimate the joint positions by truncating the value of

each angle based on each encoder's precision. The resulting encoder estimates of the

positions are in the vector �e. The joint velocities pass through a �rst order �lter

34

based on a predetermined motor lag time to produce the tachometer reading vector

�t. Both sensors are derived from modules of the NASA developed Trick simulation

package [1].

The estimates of the angles and velocities are then passed into the fault detection

procedure which checks for failures using the new methods of Chapter 5. This proce-

dure either passes to the host what it considers to be good estimates of the position,

velocity, and acceleration (�; _�; ��) or signals the motor of a joint with two bad sensors

to shut down. The planner, host computer, robot model, and fault detection routines

are described in more detail in the following subsections.

4.1 Planner

The planner produces the desired trajectory through a velocity level inverse kine-

matics routine [10]. The algorithm computes the 2 � 4 Jacobian matrix, J , using

the desired angles and the known link lengths. Originally, the pseudo-inverse was

computed as

J+ = JT (JJT)�1; (4.1)

where JJT is a 2� 2 matrix. Equation 4.1 only holds, however, if J has full row rank

or there are no zero eigenvalues of JJT .

To avoid this limitation, a Singular Value Decomposition [24] routine developed

by Deo [11] was used to compute the pseudo-inverse. If the transpose of the Jacobian

is decomposed as follows:

JT = V�TUT ; (4.2)

then the pseudo-inverse becomes

J+ = V�+UT : (4.3)

35

�+ is a diagonal matrix with diagonal elements �1 � � ��m which are the inverses of

the corresponding non-zero diagonal elements of �. Zero diagonal elements of � are

replicated in �+.

The desired velocities are then derived from the equation:

_�d = [J+] _x; (4.4)

where _x is a 2� 1 vector containing the x and y end e�ector velocities input by the

user.

4.2 Host Computer Model

The simulated host computer uses the following dynamics equation as a model for

the robot [17]:

� = [M(�)]�� +N(�; _�); (4.5)

where � is the joint torque vector, [M] is the inertia matrix, and N is the Coriolis

and centrifugal torque vector (further described in Section 4.3). The host computer

uses sensed estimates of each robot joint's actual position to calculate the inertial,

Coriolis, and centrifugal e�ects using [M] and N . If a sensor is damaged, however,

and the failure remains undetected, the controller will receive incorrect information

about the joint and the resulting [M] matrix and N vector will be in error. Gravity

is considered orthogonal to the plane of motion and, as the simulated robot is planar,

there are no resultant gravity torques to consider. Friction is also neglected in this

model.

The PD controller for this model becomes:

� = [M(�)]f��d + [KP](�d � �) + [KD](_�d �
_�)g+N(�; _�): (4.6)

36

The matrices [KP] and [KD] are the position and derivative gains, respectively, and

are used to control tracking and steady state errors by feedback control. For critical

damping, the gains become:

[KD] = 2!; [KP] = !2; (4.7)

where ! is the natural frequency input by the user.

4.3 Robot Model

The robot simulation takes the computed torque from the simulated host computer

and determines the resulting four robot angle accelerations based on the equation:

��r = [M̂]�1� � [M̂]�1(N̂): (4.8)

Here, [M̂] and N̂ are the inertia matrix and Coriolis and centrifugal torque vector,

as before, but are now based on the actual robot angles instead of the sensed angles.

The matrices can also be injected with small constant errors to simulate modeling

inaccuracies due to errors in mass or length measurements.

Each robot joint angle, �r, and its �rst derivative are estimated by the equations:

_�ri =
_�ri�1 + (�t)��ri ; (4.9)

�ri = �ri�1 + (�t) _�ri : (4.10)

Being able to lock a motor in the event of a failure is critical in developing the fault

tolerance scheme of Section 6.1. To simulate the e�ects of a locked motor, ��r and

_�r are set to zero and the dynamics equation (4.8) is modi�ed so that the failed

motor ignores the torque sent to it by the controller and also remains una�ected

by the inertias and momentums of other moving joints. The position of the joint

thus remains constant. Only the locked motor is currently simulated, but other

failure modes such as runaway motors or free-spinning motors would be simulated by

constant or random torque inputs to the motors.

37

Because the robot links are interconnected, the movement of one link will pull and

twist the neighboring links. These coupling e�ects between the links are ennumerated

in the inertia matrix and the Coriolis and centrifugal torque vector. The degree to

which a link a�ects its neighbors depends on the position and velocity of the link

which can only be viewed through the internal sensors. The well-being of the sensors

is thus emphasized so that the host computer (Section 4.2) can calculate these e�ects

accurately.

Figures 4.4 through 4.9 show two examples of the e�ects of coupling by demon-

strating how unexpected motions of a speci�c joint, which occur due to an undetected

failure within the joint, a�ect the remaining joints. Both examples look at the e�ects

of encoder failures although in di�erent joints. The tachometers remain healthy and

thus the controller is receiving the correct velocity readings. Because the controller

sees only erroneous information from the failed encoder, however, it miscalculates the

inertia matrix and Coriolis and centrifugal torque vector. The controller then uses

these incorrect values in determining the next control torques (equation 4.6). The

torques drive the robot joint farther o� course, but the host is unable to see this

e�ect. This unexpected motion of the failed joint pulls at the other joints, drawing

them o� course to varying degrees.

The �rst example (Figures 4.4 and 4.5) illustrates the joint responses to an en-

coder failure in joint 0 at time-step 2. The error in joint 0 is quite marked (Figure

4.4). However, this erroneous motion of joint 0 is smooth and steady. Joint 0 is not

pulling on the other joints strongly and, thus, does not a�ect their expected motion

remarkably as exempli�ed in Figure 4.5. There is little deviation between the actual

and desired motions of joint 3 in the �gure. The end e�ector response to this unde-

tected failure is, however, quite drastic as the deviation in joint 0 is magni�ed at the

end e�ector. The resulting path can be seen in Figure 5.4 following the discussion of

the new detection algorithms in Chapter 5.

38

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10

oo
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

time - 0.1 increments

an
gl

e
-

ra
di

an
s

Joint 0 when Encoder 0 fault undetected = ooo
Desired Joint 0 angles for fault-free case = ___

Figure 4.4 Joint 0 Response to Encoder 0 Failure at Time-step 2.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 1 2 3 4 5 6 7 8 9 10

oo
o
o
o
o
o
o
o
o
o
o
o
o
ooooooooooooooooo

time - 0.1 increments

an
gl

e
-

ra
di

an
s

Joint 3 when Encoder 0 fault undetected = ooo
Desired Joint 3 angles for fault-free case = ___

Figure 4.5 Joint 3 Response to Encoder 0 Failure at Time-step 2.

39

The next example shows how the motion of one joint can signi�cantly a�ect all the

other joints. Figure 4.6 shows the deviation of joint 3 in response to an undetected

encoder failure in the joint at time-step 2. The error is �rst decreasing and then

increasing causing the joint to pull unexpectedly on its neighbor around time-step 7

(the transition point). The motion of joint 3 a�ects the inertia and forces within the

robot system and thus changes [M̂] and N̂ in equation 4.8. The joints respond to

these changes by drifting o� course. Joint 2 is a�ected at the transition time when

the motion of joint 3 crosses its desired values (Figure 4.7). The error is spread back

through joints 1 and 0 (Figures 4.8 and 4.9).

-1.5

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

ooo
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

time - 0.1 increments

an
gl

e
-

ra
di

an
s

Joint 3 when Encoder 3 fault undetected = ooo
Desired Joint 3 angles for fail-free case = ___

Figure 4.6 Joint 3 Response to Encoder 3 Failure at Time-step 2.

The inertial, Coriolis, and centrifugal e�ects decrease over distance along the

robot. Thus, joint 0 is least a�ected by the pull of joint 3 as it is the farthest removed

from joint 3. It is interesting to note that half of the steady-state errors are positive

(joint 3 and joint 1) while the rest are negative (joint 2 and joint 0). The result is that

the end e�ector trajectory hovers around the desired path briey before the errors

become large enough to swing the robot completely o� course (see Figure 4.10).

40

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

0 1 2 3 4 5 6 7 8 9 10

o
o
o
o
o
o
o
o
o
o
o
o
o
oo

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
ooooooooooooo

an
gl

e
-

ra
di

an
s

time - 0.1 increments

Joint 2 when Encoder 3 fault undetected = ooo
Desired Joint 2 angles for fault-free case = ___

Figure 4.7 Joint 2 Response to Encoder 3 Failure at Time-step 2.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

0 1 2 3 4 5 6 7 8 9 10

oo
o
o
o
o
o

time - 0.1 increments

an
gl

e
-

ra
di

an
s

Joint 1 when Encoder 3 fault undetected = ooo
Desired Joint 1 angles for fault-free case = ___

Figure 4.8 Joint 1 Response to Encoder 3 Failure at Time-step 2.

41

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 1 2 3 4 5 6 7 8 9 10

ooo
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

time - 0.1 increments

an
gl

e
-

ra
di

an
s

Joint 0 when Encoder 3 fault undetected = ooo
Desired Joint 0 angles for fault-free case = ___

Figure 4.9 Joint 0 Response to Encoder 3 Failure at Time-step 2.

-3

-2

-1

0

1

2

3

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

...

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r

Desired End Effector path = ...
Path when Encoder 3 failure undetected = ___

Figure 4.10 End E�ector Response to Encoder 3 Failure at Time-step 2.

42

The robot's position, velocity, and acceleration calculated in the robot model

procedure of the simulator are sent to the sensor routines. The robot position is also

sent to the TDM graphics simulator which displays the motion on the screen (see

Figure 4.11). This is the same graphics program as used by NASA's Trick simulation

package. In Figure 4.11, the origin or base of the robot is the rounded end of joint 0

in the lower left-hand corner. The end e�ector is the at end of joint 3 which is in

the lower right-hand corner of the �gure. The path of the end e�ector is displayed by

a dotted line which is also visible in Figure 4.11.

Figure 4.11 Part of TDM Graphics Simulation Environment.

When a failure is instigated by the simulator, a small red ag appears in the upper

right corner of the screen (not shown in the �gure). Joints which are fault-free are

displayed in green. A joint (and its associated link) will change color when a failure

43

within the joint is detected. A detected encoder failure makes the joint yellow. A

detected tachometer failure results in an orange joint. A red joint (see joint 2 in

Figure 4.11) means that a motor failure has been detected. The delay between the

instigation of a failure (when the ag appears) and the detection of the failure (when

the joint changes color) can thus be readily observed in the graphics. The simulator

also outputs messages to the screen when failures are instigated or detected in case

the graphics routine is not being used during a run.

4.4 Failure Modes

In this simulator, the encoders break in a frozen mode, continuously reporting the

last value read before the failure. Most encoders consist of small, slotted wheels with

a light source which shines through the spinning wheel to a detector. A count is kept

of the number of ashes of light as seen by the detector and the direction of motion

is also detected by special marks on the wheel. A frozen failure mode thus results if

the light source fails, the detector breaks, or the wheel stops spinning as the detector

is no longer able to count light ashes. Tachometers commonly fail by continuously

reporting zero velocities and thus constant positions.

If a sensor breaks and the failure goes undetected, the host computer will be

performing its calculations using erroneous information. With these failure modes,

the host watches the error between the sensed reading and the desired value grow for

a joint with a faulty sensor and subsequently increases the appropriate output torque

to the robot to try to compensate for the error. Since the calculations for each joint

are based on knowledge of where the other joints are located, all of the output torques

are computed incorrectly and the joints may all stray away from their desired paths

(Section 4.3). Encoder and tachometer failures a�ect the robot's path in di�erent

ways, however.

An undetected encoder failure in a joint creates an error between the desired value

and the sensed reading. Assuming the tachometer is still functional, the sensed _� and

44

�� are still fairly accurate. In trying to overcome the position error, the controller

increases the torque as the error increases in order to drive the joint to the desired

angle. Because the sensed reading does not change and the error continues to increase,

the controller pushes the joint harder and harder by increasing the torques. The

joint is thus driven o� course as the robot responds to these increasing torques even

though the controller cannot see the response. As the steady-state error grows, the

end e�ector swings smoothly away from its desired path (see Figures 4.10 and 5.4).

A tachometer failure which remains undetected causes wilder deviations in the end

e�ector trajectory. While a tachometer failure a�ects the error between the sensed

and desired velocity, the position readings are still accurate as they are obtained

from the encoder. During its normal adjustment of the joint position using feedback

control, the controller discovers that the robot has overshot or undershot the desired

position. It has missed because the sensed velocity reading is incorrect and the applied

control torque is thus unable to move the joint to the desired position with the joint's

actual velocity. In the next iteration, the controller tries to compensate in the other

direction. The joint and ultimately the end e�ector thus experience an oscillatory

motion which grows farther and farther away from the desired values as the errors

accumulate (see Figures 4.12 and 4.13).

When a motor fails, it locks in position and the joint is then unable to move. If

a motor failure goes undetected, the sensors are still reading the correct information.

In reality, the motor failure would probably result in a sensor failure as well because

the sensor is mounted on the motor's output shaft, but the result would still be that

both sensors are reporting a constant joint angle. The control equations try to push

the broken joint closer to the desired value but the frozen motor does not respond to

the torques. Since the sensors are still reporting the actual position of the joint, all

the other calculations are based on correct data and the other joints continue with

their normal motions. The plan must be modi�ed, however, to get the end e�ector

to its desired location (see Section 6.1).

45

-3

-2

-1

0

1

2

3

0.2 0.4 0.6 0.8 1 1.2 1.4

...

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r

Desired End Effector path = ...
Path when Tach 0 failure undetected = ___

Figure 4.12 Oscillatory End E�ector

Response to Tach 0 Failure at Time-step 2.

46

-3

-2

-1

0

1

2

3

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

...

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r

Desired End Effector path = ...
Path when Tach 3 failure undetected = ___

Figure 4.13 Oscillatory End E�ector

Response to Tach 3 Failure at Time-step 2.

47

4.5 Problems in Distinguishing Real Failures

A discrepancy in the sensor readings versus the expected results may actually be

caused by erroneous inputs, payload variations or noise in the system instead of

a real part failure in the robot. For example, if a robot is sent to pick up what it

expects to be an empty bucket and the bucket is actually full, the torque values which

the robot controller has calculated based on the known weight of an empty bucket

will produce insu�cient drive in the motors to lift the weight of the full bucket. The

sensors will show that the joints are not moving as expected and that the motors are

straining unexpectedly. The result is the same as a human going to pick up an object

and expecting the object to weigh less than it actually does; both the human and

the robot experience a jerk in their arms due to the unexpected weight of the object.

This jerk in the system does not necessarily mean a joint has failed.

It can be argued that in space applications, the robot will only be dealing with a

very ordered environment in which the masses of objects are well known. Errors can

still occur, however, if the robot expects a tool to be tethered and the tether breaks

or if damage has changed the size of a module. Sensors, especially encoders, are also

susceptible to noise in the environment and backlash or overshoot of gear trains and

motors. Jostling the robot can lead to errors in the encoder readings which could fool

the system into thinking a failure has occurred.

These problems in detecting a real failure in the robot are similar to a problem

which arises in computer systems which deal with several processors such as the

Triple Modular Redundancy fault tolerance scheme [27] discussed in Chapter 2. The

three processors used in TMR may be unsynchronized and the results which are

read for voting purposes might come from di�erent points in the calculations. The

di�erences in the values would then seem to indicate that a processor had failed. A

solution developed for this problem was to give the system a certain amount of time

to synchronize the processors' calculations [41]. If a time-out occurred before the

processors were synchronized, an error would be recorded. When this error count

48

reached a prede�ned error tolerance, the system would record a fault and initiate its

fault tolerance algorithms.

This method can be applied to the robotic system. Most intelligent robots use

the values from the sensors compared with the expected results to correct for errors

introduced during the calculations. The robot can be given some time to try and

eliminate errors using this feedback control method. If the errors were not eliminated

before the time-out occurred, an error would then be recorded as in the computer

system. When the error count became too large, the robot would decide that the

errors were actually caused by a fault and recon�gure appropriately.

Through experimentation and analysis, it has been noted that data errors a�ect

the rest of the system rather quickly. If the failure was actually due to a sensor failure,

the information fed into the controller would be in error. Because the calculations

performed in the control algorithms use these sensor readings to compute the next

torque values for each motor, the torques for all the motors would be incorrect. This

would cause the entire robot to move o� course and would trigger more false alarms

in the fault detection routines. Sensor failures must be discovered before the robot

controller is infected by erroneous information.

Work has been done in designing controllers that are able to detect payload varia-

tions and improve the performance of the robot in the presence of unknown payloads

[36]. The robot can quickly determine when it has dropped a payload, locate it with

its vision system and readjust the planned trajectory to complete the task with this

new situation. The robot controller may also be able to poll all the joint sensors and

note if several sensors are recording incorrect motions for the robot at the same time.

If an assumption is made that it is unlikely for two or more joints to fail at the same

time, several sensors producing erroneous information would imply that there was

actually an input error and not a mechanical failure.

A number of possible detection scenarios are described in this section to enable

the robot to di�erentiate between real failures and failures due to model uncertainties.

49

This research, however, is mainly concerned with developing a basic foundation for

fault detection in robots. Chapter 5 thus develops fault detection algorithms which

can detect and tolerate real sensor or motor failures. This thesis focuses on designing

algorithms with fast failure response times regardless of whether the errors are due

to component malfunctions or model uncertainties. The algorithms can eventually be

extended to enable the robot to detect the above scenarios and respond appropriately.

50

Chapter 5

Fault Detection Algorithms

5.1 Thresholds

The discussion in Section 4.4 of how undetected failures can corrupt the system reveals

the importance of getting accurate sensor readings and of detecting a sensor failure

quickly. A frozen motor is not as critical a failure in most cases and can be dealt with

at a more leisurely pace. Since the sensors are not perfectly accurate, an acceptable

bound or threshold, thrsh, for the di�erence between the desired value and the sensor

reading, (�desired � �sensor) must be chosen such that

j�desired � �sensorj � thrsh: (5.1)

The thresholds are currently constant values determined by experimentation on

fault-free simulation runs of the robot arm. Because of the varying speeds of the

joints, the tolerances may need to grow or shrink to provide more adequate checks for

failures. To provide the system with variable thresholds, the algorithms must monitor

the history of the desired velocities. The longer a certain velocity is maintained, the

tighter the threshold can be made up to a base case threshold for the robot. A time

period of widely varying velocities may need to have a relatively loose threshold.

Even during normal operation, the di�erence between the desired and sensed

values can be relatively large especially at the beginning of a run before the controller

has had time to bring the error under control. Choosing the maximum error found

during a fault-free run typically results in a threshold that is so large, it may take

several time-steps to notice the error from a broken sensor. By the time the failed

51

sensor is detected, the robot controller has already been infected with the erroneous

information and the robot is either o� course or has damaged itself.

The size of the error is further a�ected by the fact that the controller cannot

place the robot precisely at the desired location due to modeling inconsistencies. The

robot also reacts di�erently in response to the changing inertia of the system as the

robot moves through various con�gurations during a run (see Section 4.3). Thus, the

robot position di�ers unpredictably from the desired position although the di�erence

is typically small. Because the sensors follow the robot, their deviation from the

desired values are also more unpredictable.

Fortunately, the error between two sensor readings is typically very small during

normal operation even after integrating the tachometer reading to get the angular

position. Modeling errors and errors induced by unpredicted loads should a�ect both

sensors in a similar manner. Thus, a tight threshold can be chosen for a comparison

of the two sensed positions. If this threshold is exceeded, the fault detection software

assumes that one of the sensors has failed and attempts to �nd the working sensor

from which to take the recorded data. The larger thresholds from the typical error

between the sensed and desired angles are still monitored and provide a means of

checking for a motor failure or a second sensor failure.

5.2 Algorithm 1 - Trajectory Dependent Fault Detection

Initially, the simulator did not have an inverse kinematics routine to control the end

e�ector. Each joint angle followed a sine wave path which caused the robot arm to

repetitively wave back and forth in the plane of motion. In this situation, there were

some very speci�c relationships between the desired value and the two sensor readings

[38] which were monitored along with the thresholds.

For this simulator, an initial, simple fault detection algorithm (Algorithm 1) was

developed using the thresholds described above to check for failures. The algorithm

was able to detect single sensor failures quickly and would eventually detect a second

52

sensor failure or a motor failure. There were cases, however, where the routine could

not decide which sensor had failed when the small threshold was exceeded. To avoid

possibly infecting the rest of the system with erroneous data, the detection algorithm

chose to shut down the joint in question even though a working sensor probably existed

for that joint. If faulty information from a broken sensor did infect the system, the

errors could push other joints o� the desired path (Section 4.3) and the fault detection

routine would shut down more joints than necessary. The routine would, however,

still prevent the wild motion that the robot would undergo without a fault detection

algorithm to detect failures.

The pseudo-code for the fault detection checks of Algorithm 1 is reproduced below.

The angle �d and its derivatives are the desired values. The variables �t, _�t, and ��t

are the values derived from the tachometer reading. The results based on the encoder

are �e, _�e, and ��e. Finally, � and its derivatives are the \trusted" values sent to the

robot controller based on the pass through the fault detection procedure (see Figure

4.3).

Fault Detection Algorithm 1:

1. If ((encoder working) and (tachometer working))f

� = �e; _� = _�t; �� = ��t
2. If ((j�t � �ej) >= enc-tach-threshold)f

3. if (encoder working)f

tachometer = failed

� = �e; _� = _�e; �� = ��e
gelsef

encoder = failed

� = �t; _� = _�t; �� = ��t
g

gelsef

4. if ((j�d � �tj) >= tachometer-threshold)

tachometer = failed

5. if ((j�d � �ej) >= encoder-threshold)

encoder = failed

g

g

53

6. If ((tachometer == failed) and (encoder != failed))f

7. if ((j�d � �ej) < encoder-threshold)f

� = �e; _� = _�e; �� = ��e
gelsef

encoder = failed

motor = failed

send stop motor signal to robot

g

g

8. If ((encoder == failed) and (tachometer != failed))f

9. if ((j�d � �tj) < tachometer-threshold)f

� = �t; _� = _�t; �� = ��t
gelsef

tachometer = failed

motor = failed

send stop motor signal to robot

g

g

In determining which sensor has failed and which is still working (check 3) when

the small threshold (enc-tach-threshold of check 2) is exceeded, one would intuitively

expect the sensor with a reading closer to the desired value to be the working sen-

sor and would switch to obtaining all the information from that sensor. However,

experiments showed that, using this scheme, the fault detection software chose the

correct sensor only when the desired values were increasing. If the desired angles were

decreasing in value, Algorithm 1 consistently selected the failed sensor as the working

one.

This problem arises due to the time it takes the controller to bring the errors under

control and the failure modes for the sensors. Both the encoders and the tachometers

fail by reporting a constant angular position, either directly or by integration of a zero

velocity. First, let us assume the sensors always read less than the desired value. If a

sensor fails and gets stuck at a speci�c value while the desired values are increasing,

the error will grow and the fault detection routine should take the angle information

54

from the sensor that reads closer to the desired value. However, if the sensor fails

while the desired values are decreasing, the desired values are approaching the failed

value. The error starts decreasing and the surviving sensor is often the one whose

absolute error is larger. The opposite relationships hold if both sensors are reading

values greater than the desired angle. A failed sensor would then have the smaller

error during an increase in desired angles and the larger error during a decrease in

desired angles.

Table 5.1 Failure Situations and Detection

Actions for Increasing Desired Angles
Angle Error Ordering

Ordering dt > de de > dt
�d < �t; �e Encoder Failed Tach Failed

(choose tach) (choose encoder)

�t; �e < �d Tach Failed Encoder Failed

(choose encoder) (choose tach)

�t < �d < �e Encoder or Tach Encoder Failed

(Shut Down Joint) (choose tach)

�e < �d < �t Tach Failed Encoder or Tach

(choose encoder) (Shut Down Joint)

The various sensor failure situations that arise in the presence of increasing desired

values are listed in Table 5.1. The variable dt is the tachometer error or j�d� �tj, the

absolute di�erence between the desired value and the tachometer value. Similarly, de

is the encoder error j�d��ej. The bold faced entries are the actual sensor failures which

occur given the speci�ed orderings of the angles and sensed angle errors. The entries

enclosed in parentheses are the action taken by Algorithm 1, taking into account the

ordering situations described in the preceding paragraph. The intuitive, more naive

algorithm would always choose the encoder as the survivor for the case where dt > de

and would always choose the tachometer otherwise. The table for decreasing desired

55

values is shown in Table 5.2. The reasoning behind the entries is similar to that used

for Table 5.1.

Table 5.2 Failure Situations and Detection

Actions for Decreasing Desired Angles
Angle Error Ordering

Ordering dt > de de > dt
�d < �t; �e Tach Failed Encoder Failed

(choose encoder) (choose tach)

�t; �e < �d Encoder Failed Tach Failed

(choose tach) (choose encoder)

�t < �d < �e Tach Failed Encoder or Tach

(choose encoder) (Shut Down Joint)

�e < �d < �t Encoder or Tach Encoder Failed

(Shut Down Joint) (choose tach)

By checking whether the desired values are increasing or decreasing and perform-

ing the appropriate comparisons to choose the surviving sensor, Algorithm 1 can

correctly isolate the failed sensor in 75% of the cases instead of 50% for the naive

algorithm. The remaining 25% of the cases are inconclusive as either sensor fail-

ure could produce the same sensed angle ordering for the given order of the angles.

In the case where �e < �d < �t and �d is increasing, for example, an encoder failure

would result in the encoder error growing larger while the tachometer error still tracks

the desired value. Thus, de would most likely be greater than dt. However, if the

tachometer failed, the desired value approaches the static tachometer value, and de

would again be greater than dt (assuming the angle ordering does not change). Both

failures result in the same ordering of the sensor errors. The algorithm shuts down

the appropriate joint to avoid choosing the wrong sensor which would feed erroneous

information to the controller and cause other joints to swing o� course.

Algorithm 1 provided the robot with fault tolerance of most single sensor failures

by obtaining the angle information solely from the surviving sensor. Through the

56

detection and isolation of a sensor failure, the algorithm was able to make use of the

redundant information provided by the other sensor. When the algorithm could not

isolate the failure, it still protected the system from the hazards of faulty sensor read-

ings by shutting down the joint in question. However, the end e�ector position was

not controlled for the trajectory used in this analysis and the end e�ector moved away

from the nominal trajectory when a joint failed or was shut down by the detection

routine.

With the addition of an inverse kinematics routine to Algorithm 1 in order to

provide end e�ector control [10], it quickly became apparent that the original fault

detection routine was too limited in scope to deal with the variety of paths and

velocities now available. The fault detection structure proved to be highly trajec-

tory dependent as the derived directional relationships depended on the accuracy of

the robot controller and where the actual robot was located with respect to the de-

sired values. It can thus be useful for industrial robots with highly repetitive paths.

Relationships, like those developed here, would be determined through analysis and

experimentation for these industrial robots. Algorithms could then be designed to

use these derived checks to successfully detect most sensor and motor failures and

either allow the robot to continue its task by switching to valid data from a working

component or prevent the robot from damaging itself or the environment by shutting

down failed joints.

5.3 Analytical Analysis of Detection Relations

In order to develop fault detection algorithms which are independent of the robot

trajectory, new fault detection tests need to be found which can be applied to a more

general dynamic robot system. There are established results for the generation of

such checks, or residuals, for general systems using the concept of analytical redun-

dancy (see Section 2.1). A mathematical characterization of analytical redundancy is

described in [7]. This section develops the analytical redundancy results for general

57

robotic systems along the lines of Chow and Willsky's characterization for dynamic

systems [7] which can be modeled as:

x(k + 1) = [A]x(k) +
qX

j=1

bjuj(k); (5.2)

yj(k) = cjx(k); j = 1; � � � ; m: (5.3)

The N-dimensional vector x is the state vector. [A] is a constant N�N matrix, bj

is a constant column N-vector, and cj is a constant row N-vector. The scalar uj is

the known input to the jth actuator and yj is the scalar output of the j
th sensor.

For the four link robot modeled in this thesis, the number of sensors is two per

joint (m = 2) and there are two states (N = 2, position and velocity) per joint. This

analysis needs to only determine the detection equations for one joint as each joint

has the same type of sensors, and thus the number of actuators, q, is 1. For the four

link robot, the dynamics equations are derived from:

x(k + 1) =

2
64 �(k + 1)

_�(k + 1)

3
75 =

2
64 �(k) + (�t) _�(k)

_�(k) + (�t)��(k)

3
75 ; (5.4)

y(k) =

2
64 c1

c2

3
75x(k) =

2
64 �(k)

_�(k)

3
75 ; (5.5)

which can be factored into the following matrix format:

x(k + 1) =

2
64 1 (�t)

0 1

3
75 x(k) +

2
64 0

(�t)

3
75 u(k); (5.6)

y(k) =

2
64 1 0

0 1

3
75 x(k); (5.7)

u(k) = ��(k): (5.8)

58

To simplify the calculations, it is initially assumed that the sensors read the exact

values for the position and speed of the robot.

For robots, the input control torque produces an output acceleration based on the

equation:

u(k) = ��(k) = [M̂(t)]�1�(k)� [M̂(t)]�1(N̂(t)) (5.9)

as discussed in Section 4.3. In substituting this equation into equation 5.6, b is no

longer constant because M and N are not constant and there is a non-linear bias

([M̂(t)]�1N̂(t)) added to the equation. We assume the linearization performed by

the computed torque controller (Section 4.2) to eliminate the time varying and non-

linear aspects of equation 5.9 is reasonably accurate and thus work with the linearized

system whose input is given by

u(k) = ��d(k) + [KP](�d(k)� �(k)) + [KD](_�d(k)� _�(k)): (5.10)

The resulting coe�cient matrices for equations 5.6 and 5.7 are:

A =

2
64 1 (�t)

0 1

3
75 ;

b =

2
64 0

(�t)

3
75 ;

c1 =

�
1 0

�
; and c2 =

�
0 1

�
:

By analyzing Cj(k) = [cj; cjA; � � � ; cjA
k]T ; (k = 0; 1; : : : ; j = 1; 2), the observable

subspaces [7] for the encoder (j = 1) and the tachometer (j = 2) are derived as:

C1(n1) =

2
666664

1 0

1 (�t)

1 2(�t)

3
777775

(5.11)

59

and

C2(n2) =

2
64 0 1

0 1

3
75 ; (5.12)

and the ranks of these arrays are n1 = 2 and n2 = 1. These ranks imply that no

new information can be gained after observing the encoder for two time-steps and the

tach for one time-step. Taking n =
P

m

i=1(ni+1) =
P

2

i=1(ni+1) = 3+2 = 5 and N =

2, the analysis of Chow and Willsky in [7] observes that there are only (n � N) = 3

linearly independent !'s satisfying:

�
!1 !2

� 264 C1(n1)

C2(n2)

3
75 x(k) = 0; x(k) 2 RN: (5.13)

If
 is the (n�N)�n matrix containing these three independent !'s as its rows, then

by observation
 becomes

 =

2
666664

0 0 0 �1 1

1 �2 1 0 0

1 �1 0 (�t) 0

3
777775

(5.14)

where equation 5.13 is satis�ed because

2
666664

0 0 0 �1 1

1 �2 1 0 0

1 �1 0 (�t) 0

3
777775

2
6666666666664

1 0

1 (�t)

1 2(�t)

0 1

0 1

3
7777777777775

= 0: (5.15)

Each row of the
 matrix represents di�erent comparisons among the encoder and

tachometer readings. The �rst row is concerned only with the tachometer values (i.e.:

the non-zero elements are in position to multiply C2(n2)). The second row focuses

only on the encoder values (non-zero elements multiplied by C1(n1)). The third row

60

is concerned with both the encoder and tachometer readings. When
 is multiplied

by the appropriate histories of x, the result should be zero. That is:

2
6666666666664

x1(k)

x1(k + 1)

x1(k + 2)

x2(k)

x2(k + 1)

3
7777777777775

= 0: (5.16)

Equation 5.16 is testing the inputs to the sensors (xi, the actual robot positions)

which are not observable by fault detection routines. The detection routines can only

see the outputs of the sensors (see Figure 4.3). To make this switch, equations 5.2 and

5.3 are rearranged to get x in terms of y, b, and u(k). The result, multiplied by
, is

the parity vector (equation 5.17) which now de�nes all the observable relationships for

detecting failures in terms of obtainable values. It compares the appropriate known

output values of the sensors to the expected values of the system response based on

the relations de�ned by
. The general de�nition of the parity vector, including the

e�ects of the inputs u(k), is:

P (k) =

8>>>>><
>>>>>:

2
666664

Y1(k; n1)
...

Ym(k; nm)

3
777775
�

2
666664

B1(n1)
...

Bm(nm)

3
777775
U(k; n0)

9>>>>>=
>>>>>;
; (5.17)

where

Yi(k; ni) =

2
666666664

yi(k)

yi(k + 1)
...

yi(k + ni)

3
777777775
; (5.18)

61

Bi(ni) =

2
6666666666666664

0 0 � � 0

cib 0 � � 0

� cib 0 � 0

� � � � �

� � � � �

ciA
ni�1b ciA

ni�2b � � cib

3
7777777777777775

; (5.19)

and n0 = max(ni); for i = 1; : : : ; m and q = number of actuators = 1.

In the fault-free case, P (k) = 0. With simple noise (due to inexact linearization

in the controller, for example), P (k) becomes a random vector with zero mean. With

noise and failures, P (k) will become biased away from zero indicating a failure. For

this analysis, P (k) is de�ned by the matrices

Y1(k; n1) =

2
666664

y1(k)

y1(k + 1)

y1(k + 2)

3
777775
; (5.20)

Y2(k; n2) =

2
64 y2(k)

y2(k + 1)

3
75 ; (5.21)

B1(n1) =

2
666664

0 0

0 0

(�t2) 0

3
777775
; (5.22)

B2(n2) =

2
64 0 0

(�t) 0

3
75 ; (5.23)

and, since n0 = max(n1; n2) = 2,

U(k; n0) =

2
64 u(k)

u(k + 1)

3
75 : (5.24)

Substituting these matrices into equation 5.17 and setting P (k) = 0, the following

relations are found:

62

y2(k + 1)� y2(k)

(�t)
= u(k); (5.25)

(y1(k + 2)� y1(k + 1))� (y1(k + 1)� y1(k))

(�t2)
= u(k); (5.26)

y1(k + 1)� y1(k)

(�t)
= y2(k): (5.27)

Equation 5.25 compares the di�erentiated tachometer reading to the input accel-

eration. The second derivative of the encoder reading is compared with the input

acceleration in equation 5.26. Finally, the di�erentiated encoder is compared to the

tach reading in equation 5.27. These comparisons monitor the changes or histories of

the variables instead of the direction of motion. The three tests are fundamentally

the only independent tests which can be performed using the input (u) and sensor

output information (y1 and y2) on the system de�ned by equations 5.2 and 5.3. This

is shown in more detail in [7].

In the next section, this thesis investigates the relevance of these tests for robotics

applications, where there is speci�c knowledge of the system and types of sensors in

use. The comparisons developed above must be modi�ed to be useful for trajectory-

independent fault detection checks for robotics. This research applies the derived

robot detection tests in a new fault detection algorithm (Section 5.4). Substituting

this new algorithm for Algorithm 1 improves the fault detection and fault tolerance

capabilities of the simulated four link, planar robot (Section 5.5). The history based

scheme could be extended to include other forms of analytical redundancy which use

�lters [26, 43], adaptive thresholds [20], or residuals based on parity relations [7].

63

5.4 Algorithm 2 - Trajectory Independent Fault Detection

The mathematical analysis of Section 5.3 focuses on sensors to provide useful detection

checks for failures. However, the amount of uncertainty about the system dynamics

present in most robotic control systems makes several of the methods proposed for

general applications impractical in robotics. The generation of residuals using parity

relations is one example of a method which is unsuitable in its purest form for robotic

applications [20]. The frequent variations in state and control for a robot during a

task make it di�cult to determine coe�cients for the parity relations which would

produce a residual that is close to zero in the fault-free case [7]. The algorithms

developed for other systems need to be modi�ed for robotics applications.

Because of the inaccuracies of the sensors and robot models, thresholds must be

added to equations 5.25 through 5.27 to de�ne acceptable ranges of the sensor readings

around the expected values. Equation 5.25 transforms into the following detection

check:

j��c � ��tj � (tach� accel� threshold); (5.28)

where ��c is the acceleration derived from the computed torque (equation 4.6) and

��t is the acceleration derived from the �rst derivative of the tachometer reading.

Tach-accel-threshold is a constant threshold determined by experimentation. If this

comparison does not hold, a tachometer failure is implied.

Equations 5.26 and 5.27 must also be modi�ed due to the truncating e�ects of

encoders. When an encoder senses the position of a joint, it truncates the value and

thus loses some precision. In the equations, the encoder is di�erentiated once or twice

in order to compare it with the tachometer reading or the computed input accelera-

tion. The loss of precision is compounded through the di�erentiation as the change

in the encoder reading is divided by the time-step which is typically small. The com-

parison against the computed acceleration was thus determined to be unacceptable

64

for robotic applications as it would either need a very large threshold or would catch

a lot of false alarm encoder failures.

To eliminate this problem, the encoder reading is compared to the expected po-

sition derived from the planner or to the integrated tachometer reading. The desired

acceleration and tachometer reading are not truncated values and do not lose preci-

sion through the integrations. Comparison 5.26, when implemented in the detection

algorithms, thus becomes:

j�d � �ej � (enc� pos� threshold); (5.29)

where �d is the desired position found from the integrated acceleration and �e is the

encoder reading. Using �t, the position derived from the tachometer, equation 5.27

transforms into:

j�e � �tj � (enc� tach� threshold): (5.30)

The thresholds are again determined by experimentation. If equation 5.29 is false, the

encoder has failed. Failing the comparison in equation 5.30 only reveals that a sensor

has failed but does not indicate which type of sensor failed. Equations 5.28 through

5.30 are the basic robotics tests used to implement the comparisons of equations 5.25,

5.26 and 5.27. In practice, these tests can be modi�ed to more easily �t the speci�cs

of the robot system.

As the sensors fail in a frozen mode for the simulated robot of this research, the

fault detection routine modi�es comparison 5.29 slightly by checking if the change in

the encoder reading is zero when a sensor failure is implied by the 5.30 check (for

example, check 3 in the Algorithm 2 pseudo-code below: (��e = 0) AND (j��dj >

resolution)). The change in the desired values must also be checked to insure that

the path did not require zero motion in that joint. For an encoder with no variation

in its reading, the desired values must change by more than the encoder resolution

to suggest a failure. The threshold in equation 5.29 is thus the encoder resolution.

65

To allow for a di�erent failure mode such as free spinning, an additional check can

be included which chooses the sensor with a reading closer to the desired value as the

survivor if a sensor failure is indicated by the small enc-tach threshold ((j�d � �ej) <

(j�d � �tj), for example). This check chooses correctly if the failed sensor spins away

from the desired value while the working sensor continues to track the desired path.

If the failed sensor spins closer to the desired value, the routine could select it as the

survivor and the system would start relying on incorrect data, spawning false alarms

in other joints. The fault detection routine would shut down more of the system than

necessary, but this does prevent the robot from damaging itself or the environment.

The pseudo-code for Algorithm 2 is as follows.

Fault Detection Algorithm 2:

1. If (all joint components well)f

� = �e; _� = _�t; �� = ��t
2. If ((j�t � �ej) � enc-tach-threshold)f

3. if ((��e = 0) AND (j��dj > resolution))f

encoder = failed

g

4. if ((j��c � ��tj) � tach-accel-threshold)f

tachometer = failed

g

g

5. If ((j�d � �ej) >= enc-threshold)

encoder = failed

6. If ((j�d � �tj) >= tach-threshold)

tachometer = failed

g

7. If (only tachometer failed)f

8. If (((��e = 0) AND (j��dj > resolution)) OR

((j�d � �ej) >= enc-threshold))f

encoder = failed

gelsef

� = �e; _� = _�e; �� = ��e
g

g

9. If (only encoder failed)f

66

10. If (((j��c � ��tj) � tach-accel-threshold) OR

((j�d � �tj) >= tach-threshold))f

tachometer = failed

gelsef

� = �t; _� = _�t; �� = ��t
g

g

11. If (both sensors failed and motor not shut down)f

motor = failed

send \stop motor" signal to robot

g

This new fault detection algorithm allows the robot to detect and isolate single

and double sensor failures, motor failures, and combination sensor and motor failures

by monitoring the history of changes in the sensor readings through such checks as

((��e = 0) AND (j��dj > resolution)) and ((j��c � ��tj) � tach-accel-threshold). The

checks from Algorithm 1, ((j�d � �ej) >= enc-threshold) and ((j�d � �tj) >= tach-

threshold in 5 and 6 above), are maintained for completeness. The indeterminate

cases of Algorithm 1 have been eliminated.

Experimentation revealed that Algorithm 2 as de�ned above was unable to detect

simultaneous double sensor failures before the erroneous information had infected the

system and had driven the entire robot o� course. The reason was that the small

threshold check (check 2 above) derived from equation 5.30 was never breached since

both sensors stopped changing while they were still within the desired range of each

other. The algorithm was only able to catch the double sensor failure when the

error between the desired values and the failed values exceeded the larger thresholds

(enc-threshold and tach-threshold in checks 5 and 6). This took several time-steps

depending on the velocity of the joint. During that time, the controller was using the

failed readings from both sensors and incorrectly drove all the joints o� their desired

trajectories.

The test of equation 5.30 can only reveal that a sensor has failed and does not

indicate which sensor failed. Equations 5.28 and 5.29, however, speci�cally determine

67

whether the encoder or tachometer has failed independent of the health of the other

sensor. If the sensors failed at the same time, these checks would be able to detect

both failures. The check developed from equation 5.30 provides information which

is easily obtainable from the other tests (checks 3 and 4). Checks 3 and 4 also have

the advantage of being able to isolate any sensor failures. Therefore, by removing

the small threshold check (check 2) and using only checks 3 and 4, simultaneous

double sensor failures can be detected and the remaining detection functionality of

the algorithm is left intact. Thus, while the rest of the algorithm remains the same

as in Algorithm 2 the \ALL-WELL" section of Algorithm 3 becomes:

Fault Detection Algorithm 3 All-well Section:

1. If (all joint components well)f

� = �e; _� = _�t; �� = ��t
2. if ((��e = 0) AND (j��dj > resolution))f

encoder = failed

g

3. if ((j��c � ��tj) � tach-accel-threshold)f

tachometer = failed

g

4. If ((j�d � �ej) >= enc-threshold)

encoder = failed

5. If ((j�d � �tj) >= tach-threshold)

tachometer = failed

g

...

5.5 Algorithm Summary and Results

The algorithms developed in this chapter use a variety of tests and comparisons to

detect sensor and motor failures within the robot. Table 5.3 summarizes which tests

are used in which algorithms. The tests are based upon di�erences between desired

or computed values and sensor readings (tests 1 - 3 and 5 - 7), histories of sensor

readings (test 4), or direction and ordering information (test 8).

68

Table 5.3 Algorithm Usage of Various Detection Tests
Tests Trajectory Direct Trajectory Advanced

Based On: Dependent Analytical Independent Trajectory

Redundancy Independent

(Alg. 1) (Alg. 2) (Alg. 3)

1. ��c � ��t X X X

2. ��c � ��e X

3. _�e � _�t X

4. ��e = 0 X X

5. �e � �t X X

6. �d � �t X X� X�

7. �d � �e X X� X�

8. �d "; #

�e < or > �d X

�t < or > �d
* - These tests are maintained for completeness.

In conjunction with information on the direction of change of the desired value

and the ordering of the sensor readings versus the desired value (test 8), Algorithm

1 checks the di�erences between the encoder and integrated tachometer (test 5), the

desired position and integrated tachometer (test 6), and the desired position and

encoder reading (test 7). Algorithm 1 was capable of detecting all single sensor

failures and tolerated most of these failures by obtaining angle information for the

controller only from the surviving sensor. In the cases where the failed sensor could

not be isolated, the algorithm shut down the joint in question to avoid infecting the

rest of the system with incorrect data. Simultaneous double sensor failures took time

to detect and thus caused several false alarms, but the detection algorithm was able

69

to prevent the wild motion associated with these failures. The algorithm could also

detect and tolerate all motor failures using the large threshold checks (6 and 7 in

Table 5.3) and the joint fault tolerance scheme described in Section 6.1. One obvious

limitation of Algorithm 1 was that it was trajectory dependent due to the ordering

and directional information in the detection tests. It would therefore only be useful

for robots with highly repetitive paths such as industrial assembly robots.

To improve the detection algorithms for more general robots, this research devel-

oped several detection tests based on the mathematical conceptualization of analytical

redundancy [7] as shown in Section 5.3. Two of the tests derived directly from analyti-

cal redundancy compared the appropriate derivative of each sensor to the acceleration

computed from the input torque (tests 1 and 2 in Table 5.3). The third test compared

the derivative of the encoder reading to the tachometer value (test 3) for each joint.

In the ideal case, both sensor readings would have in�nite precision and the tests

derived from analytical redundancy would be directly applied to robot fault detec-

tion. However, neither the tachometer nor the encoder simulated in this thesis are

exact and roundo� errors may accumulate over time. These errors would generally be

absorbed by the thresholds added to the tests in Section 5.4. The encoder, however,

accumulates more errors because it loses many digits of precision through truncation.

For this simulation, the encoder only carries two signi�cant decimal digits. In taking

the derivative, the truncated encoder value is divided by the time-step which is less

than one and another digit of precision is lost. The tests using the various encoder

derivatives grow increasingly imprecise resulting in an increase of false alarms as the

detection algorithm tries to compare these inexact values to the tachometer or the

computed acceleration. Algorithm 2 therefore adjusted tests 2 and 3 to eliminate,

through integration of the test elements, the use of the encoder's derivatives. The

integration resulted in tests 4 and 5 of Table 5.3 above. Tests 6 and 7 were actually

maintained from Algorithm 1 for completeness but in practice contributed little to the

detection of failures with the given failure modes. Using these new tests, Algorithm

70

2 could now detect and tolerate all single sensor failures and motor failures. The

indeterminate cases of Algorithm 1 were eliminated and Algorithm 2 proved to be

trajectory independent. The algorithm, however, still took too long to catch a simul-

taneous double sensor failure, allowing the errors to propagate through the system,

and subsequently shut down more of the robot system than necessary.

The �nal fault detection algorithm, Algorithm 3, is trajectory independent and can

detect all single sensor failures and motor failures. The reasoning behind eliminating

detection test 5 is explained below, but the result is that the algorithm becomes able

to quickly detect and tolerate simultaneous double sensor failures. Algorithm 3 has

the advantage of being straight-forward and executable in real-time. The following

state diagram (Figure 5.1) illustrates the simple ow of the algorithm for one joint as

failures are detected. In the initial state, all of the joint components are considered

well and the algorithm uses checks 2 through 4 to monitor the health of the sensors.

The algorithm remains in this state as long as none of the thresholds are exceeded

and sends to the controller the encoder read joint position and the velocity derived

from the tach. When any of the tests are violated, the algorithm sets the appropriate

sensor ag to FAILED. If both sensors fail at the same time, both the encoder and

tachometer ag are set to FAILED. Once any ag has been changed to FAILED, the

system transitions into another state.

 Snsrs
 Failed/
Shut Down
 Motor

 Tach
 Failed/
Use/Check
 Enc

 Enc
 Failed/
Use/Check
 Tach

 Joint
 Well/
Check
 All

Tach=Failed
 AND
 Enc=Well

Enc=Failed
 AND
Tach= Well

Tach=Failed AND Enc=Failed

Enc=Failed

Tach=Failed

Joint
Failed

Figure 5.1 State Diagram for Algorithm 3.

71

If only one sensor has failed, the state becomes either TACH FAILED or ENC

FAILED and the algorithm starts checking for a failure in the surviving sensor using

checks 7 or 9 (checks 8 or 10 in Algorithm 2). As long as the survivor is considered

healthy, the algorithm passes the joint angle information derived from the readings

of that sensor on to the controller. If the surviving sensor fails and the check is

breached, the appropriate ag is set to FAILED and the state transitions into the

SNSRS FAILED state. If both sensors pass their respective tests at the same time in

the initial state either due to actual sensor failures or a motor failure, the algorithm

transitions immediately into the SNSRS FAILED state.

In the SNSRS FAILED state, the algorithm sends a signal to the robot to shut

down the faulty motor and sends a signal to the planner to accommodate the joint

failure (more in Chapter 6). The motor ag is now set to FAILED and the state

becomes JOINT FAILED. The algorithm will remain in this state until at least the

motor failure ag has been reset to WELL. Currently, failures are considered perma-

nent and the ags can only be reset by the operator. If the concept of temporary

failures is included, the algorithm itself would reset a ag when the component passed

the appropriate test. Work is currently being done by Hamilton [18] to allow for tem-

porary motor failures which are instigated when a hard stop limit is reached by a

joint and reset when the joint would move back into the range of motion for that

joint.

The tolerance of single sensor failures using Algorithm 3 is graphically displayed

in Figures 5.2, 5.3, and 5.4. Figure 5.2 compares the response of joint 0 when the

encoder fails at time-step 2.0 is detected by Algorithm 3 (+++ line) to both the

desired response for joint 0 (solid line) in the fault-free case and the response of joint

0 when the failure goes undetected (dotted line). The fault detection routine is able

to detect the sensor failure so quickly that the robot experiences no deviation in the

joint trajectory. All of the joints remain on course.

72

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10

+++

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

time - 0.1 increments

an
gl

e
-

ra
di

an
s

Joint 0 when Encoder 0 fault detected = +++
Joint 0 when Encoder 0 fault undetected = ...

Desired Joint 0 with no failures = ___

Figure 5.2 Joint 0 Response using Algorithm 3

when Encoder 0 Fails at Time-step 2.

To illustrate how the algorithm detects and tolerates the failure, the sensor read-

ings versus the actual joint angle for joint 0 are shown in Figure 5.3. At time-step 2.0,

the simulator fails the encoder at joint 0 and the encoder's value becomes constant.

Algorithm 3 detects the failure because the encoder reading stops changing while the

desired value continues to change (thus check 2 is breached). The encoder ag is set

to FAILED and the algorithm enters the \ONLY ENCODER FAILED" code of check

8 (check 9 of Algorithm 2). The algorithm now relies only on the tachometer value as

long as the tachometer is healthy and does not breach check 9 of Algorithm 3 or check

10 of Algorithm 2. As the tachometer never fails it continues to track the actual joint

values as seen in Figure 5.3 and provides the controller with valid angle information

for the joint. The response using Algorithm 2 is the same as that of Algorithm 3

because the small threshold check is violated when the sensor fails and the algorithm

then uses the same test as Algorithm 3 to isolate the encoder failure.

73

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10

ooo
+++

time - 0.1 increments

an
gl

e
-

ra
di

an
s

Encoder = ooo
Tachometer = +++
Actual Joint = ___

Figure 5.3 Sensor Position Estimates for Joint 0 when

Algorithm 3 Detects Encoder 0 Failure at Time-step 2.

The end e�ector trajectory (the path of the end of joint 3) for this failure situation

when Algorithm 3 catches the failure is shown in Figure 5.4 (+++ line). The resulting

path almost exactly follows the desired values (solid line) for the fault-free case. The

small deviation is due to the inaccuracy of the sensors. The detection routine is able

keep the robot on the desired trajectory by detecting the failure and relying only on

the surviving sensor. The end e�ector trajectory when the failure is not detected is

also shown in the �gure (dotted line). The e�ect of this undetected local failure in

a joint a�ects the expected motion of the remaining joints only slightly (see Section

4.3). Because the failure is in the base joint, however, the deviation of the base joint

position is multiplied out to the end e�ector. Thus, even a small error in the base

joint position will create a large error in the end e�ector position.

Algorithms 1 and Algorithm 2 would eventually detect a double sensor failure

but may have allowed enough erroneous sensor readings through to the controller

that other joints were knocked o� course and shutdown as well. Both algorithms,

however, still prevented the wild motion associated with a failure when no fault

74

-3

-2

-1

0

1

2

3

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

+++

..
.

.
.

.
.

.
.

.
.

.
.
.

.

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r

Desired End Effector Path = ___

Without Fault Detection = ...
With Fault Detection = +++

Figure 5.4 End E�ector Response using Algorithm

3 when Encoder 0 Fails at Time-step 2.

detection routine is active. By removing the small threshold check of Algorithm 2,

Algorithm 3 is able to detect simultaneous sensor failures quickly and keep the robot

end e�ector on track.

Figure 5.5 shows the results of this modi�cation to the algorithm. The desired end

e�ector path is the dotted line. The dashed line reveals the wild motion of the end

e�ector when the two sensor failures in joint 0 failures remain undetected. Algorithm

1 and the unmodi�ed Algorithm 2 would start to follow this path but would quickly

shut down all the joints as they deviated from their desired values. The solid line

shows how Algorithm 3 is able to detect both sensor failures and keep the end e�ector

on the desired path until the robot folds in on the locked joint and reaches the end

of its workspace (which causes the end e�ector to jump at the end).

A comparison of the abilities of Algorithms 2 and 3 to detect and tolerate a motor

failure is displayed in Figures 5.6 and 5.7. Figure 5.6 shows the end e�ector response

when Algorithm 2 is used. The dashed line is the path of the end e�ector when there

75

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r

Desired path = ...
Detected Joint 0 double sensor failure = ___
Undetected Joint 0 double sensor failure = ---

Figure 5.5 End E�ector Response using Algorithm 3

when Both Sensors Fail in Joint 0 at Time-step 0.

is no fault detection routine to catch or recover from the motor failure. Even though

the sensors for joint 2 are providing accurate information so that the controller is

not blind to the joint, the controller is still expecting the joint to contribute to the

overall motion of the end e�ector. The end e�ector path deviates drastically from

the desired path as time progresses because no action is taken to allow the working

joints to assume the workload of the failed joint.

As discussed before, Algorithm 2 takes some time to discover the double sensor

failure, thus the end e�ector path initially starts to deviate along the same path as

the undetected case (solid line). When the failures are detected, Algorithm 2 sends a

signal to the planner to initiate the joint-level fault tolerance algorithm (Section 6.1)

and distribute the workload of the failed joint to the survivors. The end e�ector is

76

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

...

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r
Desired End Effector Path = ...
Path With Fault Detection = ___
Without Fault Detection = - - -

Figure 5.6 End E�ector Response using

Algorithm 2 when Motor 2 Fails at Time-step 1.5.

drawn back to a path parallel to the desired path but with a constant error which is

dependent on the time it took to detect the failure and, thus, the size of the larger

thresholds.

Algorithm 3 is able to detect the simultaneous double sensor failure almost imme-

diately. The result is that the deviation from the desired path is decreased by more

than 95%. Figure 5.7 shows the resulting end e�ector path (solid line) compared to

the desired path (dotted line) for Algorithm 3. (The results can also be seen in the

same context as Figure 5.6 in Figure 6.4.) Note that the path now only deviates

from the desired path by about 0.01 in the x-direction when the failure is detected

(upper right corner of graph) instead of as much as 0.2 in the x-direction for the

unmodi�ed algorithm. The deviation of the rest of the path is due to the model and

sensor inaccuracies of the system. It is assumed, for now, that the robot can with-

77

stand this small, essentially constant deviation between the desired and new paths.

A force-torque sensor would be able to draw the robot back on target for insertion or

other contact tasks.

-3

-2

-1

0

1

2

3

1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.2 1.21

...

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r

Desired End Effector Path = ...
Path With Fault Tolerance = ___

Figure 5.7 Algorithm 3 Detection of Motor 2 Failure at Time-step 1.5.

By detecting and isolating sensor failures, Algorithm 3 is able to make use of

the redundant information from surviving sensors to provide basic single sensor fault

tolerance for the robot system. Additionally, the algorithm can detect double sensor

failures or motor failures and initiates the actions necessary to tolerate the resulting

joint failures (Section 6.1). With this fault tolerant ability, the robot is able to

maintain its range of motion in the presence of joint failures up to the kinematic

redundancy of the robot. This scheme thus increases the fault tolerance of the system

from the basic tolerance of sensor failures provided by the fault detection algorithms.

The planner and the controller work together with the fault detection algorithm to

keep the robot arm tracking the new desired values.

78

Chapter 6

Integration of Fault Detection and Fault Trees

The fault trees and the detection algorithms form two supervisory layers in the pro-

posed overall intelligent framework for robotic fault tolerance (Sections 6.2, 6.3). The

fault detection algorithm monitors various levels of data from the robot and passes

the failure information on to the fault tree database. The database uses the infor-

mation to prune the tree and develop new strategies to use the existing structure of

the robot. Both layers interact with the planner in order to keep the robot on the

desired course in the presence of failed joints. This replanning provides another level

of fault tolerance in addition to the tolerance of sensor failures and the detection of

motor failures provided by the fault detection algorithm.

6.1 Fault Tolerance of Joint Failures

To enable the robot to follow the desired path in the presence of joint failures, the

detection and database layers of the framework must alert the planner when a joint has

failed. The simulated four-link robot is kinematically redundant and should be able

to withstand up to two joint failures without limiting the end e�ector range of motion.

In order to maintain the desired trajectory in a failure situation, the corresponding

columns of the Jacobian are removed during the calculation of the desired joint values

and the locked position of each failed joint is used in the calculations of the other

elements of the matrix as shown in the following example.

Example of Jacobian Reduction:

Assume joint 3 fails when �3 = 0:5 radians;

and let:

79

J =

2
666664

j j j j

J1 J2 J3 J4

j j j j

3
777775
:

Then the reduced Jacobian would be:

J 0 =

2
666664

j j j

J1(�3 = 0:5) J2(�3 = 0:5) J4(�3 = 0:5)

j j j

3
777775
:

The inverse kinematics algorithms were modi�ed to be able to handle the variations

in the Jacobian's matrix dimensions.

This method provides fault tolerance by creating a virtual link (Figure 6.1). The

virtual link is, in essence, the vector addition of link (i � 1) and link i where joint i

has failed at angle c. The robot can now continue performing its assigned task in the

presence of up to two motor failures as well as any single sensor failures.

Lin
k i

-1

Link i
Jnt i

C

Virtu
al Link

θ
i-1

Figure 6.1 Virtual Link Created by Joint Fault Tolerance.

Graphs of the desired and actual robot angles in the presence of a motor fail-

ure show how this method provides fault detection and fault tolerance along with

80

Algorithm 3 and keeps the robot on the desired path (Figures 6.2, 6.3, and 6.4).

Figure 6.2 shows the planned desired angle (solid line) and the actual robot angle

(dotted line) for joint 2 during a run in which motor 2 fails at time-step 1.5. The

robot angle becomes constant at time-step 1.5 when the failure occurs. The encoder

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

0 1 2 3 4 5 6 7 8 9 10

.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

time - 0.01 increments

an
gl

e
-

ra
di

an
s

Desired= ___
Actual= ...

<- Sensors exceed threshold

Motor
Fails

Figure 6.2 Joint 2 Response to Motor 2 Failure at Time-step 1.5.

and tachometer readings (not shown) also become constant and track the robot angle.

At time-step 3.6, the sensor readings di�er from the desired angle by more than the

threshold of 0.25 radians and the fault detection routine detects the motor failure.

The desired value for joint 2 becomes the last known position of joint 2 as the robot

can expect no more help from this joint.

By eliminating column 2 of the Jacobian in the pseudo-inverse calculations when

the failure is detected, the desired values of the other angles are modi�ed to take over

the work of the now incapacitated joint 2 and keep the end e�ector moving in the

desired direction. The change in the planned desired values of the remaining working

joints is best displayed by joint 3 in Figure 6.3. In this example, the fault tolerance

scheme also alters the desired course for joint 0 and joint 1, but the e�ect is not as

81

sharp a change as in joint 3. The actual joint angles for all the surviving joints follow

the new paths closely.

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 1 2 3 4 5 6 7 8 9 10

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

time - 0.01 increments

an
gl

e
-

ra
di

an
s

Desired= ___
Actual= ...

V Detected
 | Failure

Figure 6.3 Joint 3 Response to Motor 2 Failure at Time-step 1.5.

Figure 5.7 which displays the end e�ector position for this example is reproduced

here as Figure 6.4 with the addition of the end e�ector trajectory when the motor

failure goes undetected (dashed line). The scale of the x-axis in the �gure has thus

been increased to twenty times that of Figure 5.7. The desired path (dotted line) is

a straight line. The resulting path when the fault detection algorithm is active (solid

line) deviates slightly from the desired values due to the time it has taken to catch

the failure and the inherent modeling errors of the system, but the algorithm is able

to tolerate the joint failure and quickly bring the path back under control.

6.2 Fault Detection Layer

The detection layer is divided into several levels of fault detection and basic fault

tolerance. Level A monitors the di�erence between the two sensor readings for each

82

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

...

x position of end effector

y
po

si
tio

n
of

 e
nd

 e
ff

ec
to

r

Desired End Effector Path = ...
Path With Fault Detection = ___
Without Fault Detection = - - -

Figure 6.4 End E�ector Response to Motor 2 Failure at Time-step 1.5.

joint and, if the small threshold is exceeded, checks the changes in each sensor reading

to determine which sensor has failed (see example in Figure 6.5). Level A also provides

fault tolerance of a single sensor failure in a joint by automatically voting the faulty

sensor out of the results. The detection routine, at this point, sends only the data

received from the surviving sensor on to the other detection levels and the controller.

Level B receives the information from Level A on which sensors have failed. It then

keeps track of the inaccuracy of the working sensors compared to the desired values.

If Level A reported one sensor failed and Level B notices that the other sensor's error

exceeds the large threshold or if Level B notices that the errors of both sensors exceed

the threshold, Level C is noti�ed of a joint failure and the controller is now blind to

that joint (see Figure 6.6). Level C removes the appropriate columns of the Jacobian

matrix for the planner (as explained above) based on Level B's report. Thus, Level A

detects, isolates and recovers from single sensor failures; Level B detects and isolates

double sensor or motor failures; and Level C recovers from motor failures.

83

6.3 Fault Tree Database

The fault tree layer of the framework receives the failure reports from the fault detec-

tion algorithms and prunes the trees accordingly. The fault tree database then relays

information back to the detection routine on which components are still available as

replacements. The work done by Tesar, et al [35] and Wu, et al [44] would increase the

redundancy of the motors and sensors and provide a wider range of survivor choices

for the detection algorithm.

Figure 6.5 shows the database removing the encoder for Joint 2 when the fault

detection routine indicates that the encoder has failed. The database reveals that the

tachometer is available to functionally replace the encoder as they are connected by

an AND gate and the failure does not move any farther up the tree. In Figure 6.6, the

motor failure propagates through the OR gate all the way up to the top level AND

gate. The database therefore must remove the entire Joint 0 subtree. Fault tolerant

options are still available, however, at the joint level as only one joint has failed so

far and the tree indicates that the robot can withstand as many as two joint failures.

As discussed in Chapter 3, the full, structural fault trees would provide the expert

system with a map of failure interactions. Given a failure, the expert system could

traverse down the appropriate subtree to accumulate a list of components which

could have caused the failure. The list would then be sent to an operator for future

inspections and repairs. The trees would also direct the detection routine on which

component or subsystem failures might occur given a speci�c failure. When pruning

the trees of failed components, the database would search for interactions which might

indicate that another component is likely to fail because it is linked either structurally

or functionally to the failed component. More advanced detection routines could then

be more alert to the possibility of failures in these components while monitoring the

system for failures.

Maciejewski's work on kinematic fault tolerance [23] can be integrated into the

fault tree database to provide the planner with information on new optimal con�g-

84

urations for the robot in the presence of failures. When the fault trees are pruned

due to detected failures, a new optimal con�guration can be drawn up to provide

a more dynamic preventive maintenance measure. The optimal con�gurations will

also keep the robot away from singularities where the fault detection routine picks

up the inconsistent motion of the robot as failures. The fault trees can also recom-

pute the failure probabilities of various subsystems based on the failure reports from

the detection algorithm. The probabilities could be sent to the planner which would

then reorganize the plan to try to avoid overloading parts with high probabilities of

failing.

85

Real World
Robot/Controller
(Servo Layer)

Jn
t

1Jn
t

2

Jn
t

3

Jn
t

0

ta
rg

et

L
ev

el
 C

:
Jn

t[
i]

=F
ai

le
d

;

P
la

n
n

er

∆θ
e

∆θ
t

L
ev

el
 A

:
θ e

θ t
−

L
ev

el
 B

:
θ e

θ d
−

θ t
θ d

−
E

n
c[

2]
=F

ai
le

d
; Fault Detection

(Interface Layer)

Fault Trees
(Supervisor Layer)

F
ai

lu
re

 o
f

R
o

b
o

t

Jn
t

n

Jn
t

2

M
o

to
r

T
ac

h
E

n
c

Jn
t

0

2/
n

Figure 6.5 Propagation of a Sensor Failure Among Framework Layers.

86

Real World
Robot/Controller
(Servo Layer)

Jn
t

1Jn
t

2

Jn
t

3

Jn
t

0

ta
rg

et

L
ev

el
 C

:
Jn

t[
i]

=F
ai

le
d

;
Jn

t[
0]

=F
ai

le
d

;

P
la

n
n

er

∆θ
e

∆θ
t

L
ev

el
 A

:
θ e

θ t
−

L
ev

el
 B

:
θ e

θ d
−

θ t
θ d

−

Ja
co

b
_c

o
ls

--
;

Fault Detection
(Interface Layer)

Fault Trees
(Supervisor Layer)

F
ai

lu
re

 o
f

R
o

b
o

t

Jn
t

0

M
o

to
r

T
ac

h
E

n
c

Jn
t

n

Jn
t

1

2/
n

Figure 6.6 Propagation of a Joint Failure Among Framework Layers.

87

Chapter 7

Conclusions and Future Work

The space program and programs involved in other hazardous environments have

increased the need for reliable robots which can withstand failures in their systems

without requiring immediate repairs [12, 14]. The main objective of this research has

been to develop several general methods of fault detection for robotic systems as a

basis for robotic fault tolerance. The emphasis is on software algorithms that use the

existing structures of the robots without requiring additional joints, motors, or other

components. These methods could thus be used to provide fault tolerance to the wide

variety of robots which have already been developed to perform tasks for the space

program as well as industrial and other programs.

This research utilizes the theory behind analytical redundancy to design accept-

able fault detection tests for the robots. The tests derived by applying to robotics

the mathematical characterization for analytical redundancy are modi�ed slightly to

provide accurate fault detection despite the inexactness of the robot dynamics models

and sensors. Any built-in redundancy of the robot and its control computers is also

exploited in the algorithms. The novel fault detection algorithms developed in this

research utilize the redundant capabilities of the system to hide a part failure within

the system in real-time and concurrently with the execution of the robot's task by

relying on a functionally equivalent component to perform the work of the failed com-

ponent. Simulation results verify the performance of the fault tolerance algorithms

developed. The performance criterion used in testing the algorithms are the speed of

the fault tolerant transformation, the speed at which any transients resulting from

the fault are damped out, and the robot's resulting range of motion and accuracy. By

88

monitoring the changes in sensor readings, the algorithms are able to quickly detect

and respond to single or double sensor failures and motor failures for a frozen failure

mode.

This thesis has presented a new application in fault tree analysis in developing

fault detection for robot manipulators. A structural fault tree analysis for the Rice

University Riceobot has proven useful in pointing out the interaction between failures

within the robot system. The importance to robot survivability of certain compo-

nents and the severity of di�erent failures are revealed by the functional fault trees.

For robots, the good health of the internal sensors is shown to be extremely desirable.

Erroneous data from even one sensor at a joint can cause the whole robot to deviate

drastically from its course if the failure is not detected quickly. Without the sensors,

the robot also loses much of its capability to detect faults. The fault detection algo-

rithms developed in this thesis are thus focused on providing early detection of sensor

malfunctions.

The fault trees are also useful within the fault tolerance framework discussed in

this thesis. Through an analysis of the robot structure displayed by the trees, dynamic

recon�guration strategies can be developed which maintain the health of the internal

nodes in the presence of failures in their children. The trees also provide a runtime

report on the health and probability of failure of the robot system.

Once a failure can be detected and isolated, a fault tolerant expert system com-

bining the fault tree and fault detection layers of the proposed framework can proceed

with the appropriate actions to make use of the existing robot structure, redundancy,

and alternate paths. Currently, work is beginning on a CLIPS expert system frame-

work for the fault tolerance structure described in this thesis. The fault detection

algorithms will be divided into rules for the expert system. The algorithms will be

made more general to allow for expansion such as applying the algorithms to di�erent

failure modes. This system will provide a more intelligent and exible fault detection

and fault tolerance framework.

89

Bibliography

[1] R. W. Bailey and L. J. Quiocho. Trick Simulation Environment Developer's

Guide. NASA JSC Automation and Robotics Division, Beta-release edition,

February 1991.

[2] H. P. Bloch and F. K. Geitner. An Introduction to Machinery Reliability Assess-

ment. Van Nostrand Reinhold, 1990.

[3] A. A. Bou-Ghannam and K. L. Doty. A CLIPS Implementation of a Knowledge-

Based Distributed Control of an Autonomous Mobile Robot. In Proc. SPIE

Applications of Arti�cial Intelligence IX, pages 504{515, Orlando, FL, April

1991.

[4] R. W. Butler and P. H. Stevenson. The PAWS and STEM Reliability Anal-

ysis Programs. NASA Technical Memorandum 100572, NASA Langley

Research Center, March 1988.

[5] J. R. Cavallaro, C. D. Near, and M. �U. Uyar. Fault-Tolerant VLSI Processor Ar-

ray for the SVD. IEEE Int. Conf. on Computer Design, pages 176{180, October

1989.

[6] M. Chean and J. A.B. Fortes. A Taxonomy of Recon�guration Techniques for

Fault-Tolerant Processor Arrays. IEEE Computer, 23(1):55{67, January 1990.

[7] E. Y. Chow and A. S. Willsky. Analytical Redundancy and the Design of Ro-

bust Failure Detection Systems. IEEE Transactions on Automatic Control, AC-

29(7):603{614, July 1984.

90

[8] R. A. Collacott. Mechanical Fault Diagnosis and Condition Monitoring. Chap-

man and Hall, London, 1977.

[9] I. J. Cox. C++ Language Support for Guaranteed Initialization, Safe Termina-

tion and Error Recovery in Robotics. In 1988 IEEE International Conference

on Robotics and Automation, pages 641{643, Philadelphia, PA, April 1988.

[10] A. S. Deo. Application of Optimal Damped Least Squares Methods to Inverse

Kinematics of Robotic Manipulators. Master's thesis, Department of Electrical

and Computer Engineering, Rice University, Houston, TX, April 1991.

[11] A. S. Deo. Robot Subtask Performance with Singularity Robustness using Opti-

mal Damped Least Squares. In 1992 IEEE International Conference on Robotics

and Automation, Nice, France, May 1992. Submitted to conference.

[12] Department of Energy, Washington, DC. Environmental Restoration and Waste

Management Robotics Technology Development Program Robotics 5-Year Plan.

DOE/CE-0007T, Vol. 1-3.

[13] J. V. Draper, S. Handel, and C. C. Hood. The Impact of Partial Joint Failure

on Teleoperator Task Performance. In Proceedings of the Fourth ANS Topical

Meeting on Robotics and Remote Systems, pages 433{439, Albuquerque, NM,

January 1991.

[14] W. Fisher and C. Price. Space Station Freedom External Mainenance Task Team

Final Report. NASA Johnson Space Center, 1990.

[15] D. Galler and G. Slenski. Causes of Aircraft Electrical Failures. IEEE Aerospace

and Electronic Systems Magazine, pages 3{8, August 1991.

[16] J. Giarratano and G. Riley. Expert Systems: Principles and Programming. PWS-

Kent Publishing Company, Boston, MA, 1989.

91

[17] D. L. Hamilton. A Simulation of Robot Motion Control. Project Advisors:

I.D. Walker and J.K. Bennett, Rice University, Department of Electrical and

Computer Engineering, Houston, Texas, April 1991.

[18] D. L. Hamilton. A Parallel Robot Control Architecture with Fault Tolerance.

In 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems,

Raleigh, NC, July 1992. Submitted to conference.

[19] J. Y. Han. Fault-Tolerant Computing for Robot Kinematics. In 1990 IEEE In-

ternational Conference on Robotics and Automation, pages 285{290, Cincinnati,

OH, May 1990.

[20] D. T. Horak. Failure Detection in Dynamic Systems with Modeling Errors. Jour-

nal of Guidance, Control, and Dynamics, 11(6):508{516, November-December

1988.

[21] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai. MAFT

Architecture for Distributed Fault Tolerance. IEEE Transactions on Computers,

37(4):398{405, April 1988.

[22] J. C. Lien and M. A. Breuer. A Universal Test and Maintenance Controller for

Modules and Boards. IEEE Transactions on Industrial Electronics, 36(2):231{

240, May 1989.

[23] A. A. Maciejewski. Fault Tolerant Properties of Kinematically Redundant Ma-

nipulators. In 1990 IEEE Conference on Robotics and Automation, pages 638{

642, Cincinnati, OH, May 1990.

[24] A. A. Maciejewski and C. Klein. The Singular Value Decomposition: Computa-

tion and Applications to Robotics. International Journal of Robotics Research,

8(6):63{79, 1989.

92

[25] A. L. Martensen and R. W. Butler. The Fault-Tree Compiler. NASA Techni-

cal Memorandum 89098, NASA Langley Research Center, January 1987.

[26] W. C. Merrill, J. C. DeLaat, and W. M. Bruton. Advanced Detection, Isola-

tion, and Accommodation of Sensor Failures - Real-Time Evaluation. Journal of

Guidance, Control, and Dynamics, 11(6):517{526, November-December 1988.

[27] V.P. Nelson. Fault-Tolerant Computing: Fundamental Concepts. IEEE Com-

puter, 23(7):19{25, July 1990.

[28] P. G. Norman. The New AP101S General-Purpose Computer (GPC) for the

Space Shuttle. Proceedings of the IEEE, Special Issue on Progress in Space -

From Shuttle to Station, 75(3):308{319, March 1987.

[29] H. H. Poole. Fundamentals of Robotics Engineering. Van Nostrand Reinhold,

1989.

[30] B. Z. Sandler. Robotics: Designing the Mechanisms for Automated Machinery.

Prentice Hall, 1991.

[31] J. R. Sklaro�. Redundancy Management Technique for Space Shuttle Computers.

IBM Journal of Research and Development, pages 20{28, January 1976.

[32] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley &

Sons, Inc., 1989.

[33] R. F. Stengel. Intelligent Failure-Tolerant Control. IEEE Control Systems,

11(4):14{23, June 1991.

[34] J. J. Sti�er and L. A. Bryant. CARE III Phase II Report - Mathematical

Description. NASA Contractor Report 3566, NASA Langley Research

Center, 1982.

93

[35] D. Tesar, D. Sreevijayan, and C. Price. Four-Level Fault Tolerance in Manipula-

tor Design for Space Operations. In Proc. of the First International Symposium

on Measurement and Control in Robotics, Houston, TX, June 1990. Pre-print.

[36] K. P. Valavanis, C. A. Jacobson, and B. H. Gold. Integration Control and Failure

Detection with Application to the Robot Payload Variation Problem. Journal

of Intelligent and Robotic Systems, 4:145{173, 1991.

[37] M. L. Visinsky, I. D. Walker, and J. R. Cavallaro. Fault Detection and Fault

Tolerance in Robotics. Technical Report #9102, Department of Electrical and

Computer Engineering, Rice University, February 1991.

[38] M. L. Visinsky, I. D. Walker, and J. R. Cavallaro. Fault Detection and Fault

Tolerance in Robotics. In Proceedings of NASA Space Operations, Applications,

Research Symp., Houston, TX, July 1991. In Press.

[39] I. D. Walker and J. R. Cavallaro. Fault Tolerant Robotic Architectures and

Algorithms. In SIAM International Conference on Industrial and Applied Math-

ematics, Washington, DC, July 1991.

[40] I. D. Walker and J. R. Cavallaro. Parallel VLSI Architectures for Real-Time

Control of Redundant Robots. In Proc. Fourth Topical Meeting on Robotics and

Remote Systems, pages 299{310, Albuquerque, NM, February 1991.

[41] J. H. Wensley. Fault-Tolerant Computers Ensure Reliable Industrial Controls.

In V. P. Nelson and B. D. Carroll, editors, Tutorial: Fault-Tolerant Computing,

pages 198{204. IEEE Computer Society Press, 1987.

[42] J. H. Wensley and C. S. Harclerode. Programmable Control of a Chemical

Reactor Using a Fault Tolerant Computer. In V. P. Nelson and B. D. Carroll,

editors, Tutorial: Fault-Tolerant Computing, pages 205{211. IEEE Computer

Society Press, 1987.

94

[43] A. S. Willsky. A Survey of Design Methods for Failure Detection in Dynamic

Systems. Automatica, 12:601{611, 1976.

[44] E. Wu, M. Diftler, J. Hwang, and J. Chladek. A Fault Tolerant Joint Drive Sys-

tems for the Space Shuttle Remote Manipulator System. In 1991 IEEE Interna-

tional Conference on Robotics and Automation, pages 2504{2509, Sacremento,

CA, April 1991.

