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ABSTRACT

Robot manipulators can be used to navigate and perform tasks in unstructured and haz-

ardous environments where human safety is a primary concern. For example, they are used

for nuclear waste disposal, space exploration, nuclear power industry, military surveillance,

etc. A number of such robot manipulators are being used but the concern is that these

robots should be able to complete their critical tasks in the event of failures that they en-

counter working in such environments. One of the most common failures of field robots is

an actuator failure. This type of failure affects the joints of the robots inducing failures like

locked-joint failures and free-swinging joint failures. To design a fault tolerant system the

robot has to rely on the incorporation of redundancy into its system. This redundancy takes

several forms: sensor redundancy, analytical redundancy, and kinematic redundancy. This

work focuses on using kinematic redundancy to deal with the issue of multiple locked-joint

failures in the robotic systems.

The goal of this work was to analyze and design optimally fault-tolerant manipulators.

The robots designed are able to finish their required task in spite of a failure in one or more

of its joints. In order to design optimally fault tolerant manipulators, it is necessary to

quantify fault tolerance. The approach taken here was to define fault tolerance in terms of

a suitable objective function based on the robot’s manipulator Jacobian. In the case of the

relative manipulability index, local fault tolerance is characterized by the null space of the

manipulator Jacobian. Since the null space can be used to identify locally fault tolerant

manipulator configurations, one goal of this work was to develop procedures for designing

fault tolerant manipulators based on obtaining a suitable null space for the manipulator

Jacobian.

In this work, optimally fault tolerant serial manipulators are designed that are fault

tolerant to two locked-joint failures simultaneously. Furthermore, the symmetry of the

xi



manipulators is studied using positional and orientational Jacobians; and examples are

presented to investigate condition number as a measure of fault tolerance and comparing it

with other fault tolerance measures established in the literature. Lastly, a methodology for

designing an optimally fault tolerant 4-DOF spherical wrist type mechanism was presented.

It was shown that the orientational Jacobian must have a certain form for the manipulator to

have the best possible relative manipulability index value. An optimal configuration along

with the corresponding DH parameters was presented. Furthermore, it was pointed out

that isotropic configurations of a 4-DOF spherical wrist type mechanism are fault tolerant

and optimal in the sense that they have the largest possible manipulability index prior to

a failure. Lastly, a geometric argument on finding the closed form solution was contributed

and an example of an orientational Jacobian was presented for a 6-DOF spherical wrist that

is equally fault tolerant for any two joint failures.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Robotic manipulators are designed to perform tasks that are either difficult for human

beings or too time consuming. With this benefit comes the downside that the robotic

manipulators are not free from failures. Failures in robots have significant consequences

ranging from economic impact in industrial applications to potentially catastrophic losses

in remote and hazardous environments like space exploration, deep sea exploration, nuclear

waste cleanup, etc.

Even though the failures in robotic manipulators are to be anticipated, unfortunately the

probability of joint failures increases when operating in remote and hazardous environments

causing costly down-time or even jeopardizing the entire operation. In such situations it

is important that the robot finishes its critical task even if there are some joint failures

because it is very difficult, if not impossible, to perform maintenance operations in such

environments. Under such conditions, operational reliability of the robotic systems is of

prime importance. This motivates the problem of analyzing and designing optimally fault

tolerant serial and parallel manipulators for such applications.

One way to address the issue of fault tolerance in robotic systems is to use kinemati-

cally redundant manipulators. These manipulators have more degrees of freedom or motion

than necessary to position and/or orient the end-effector allowing it to choose between

multiple joint configurations to achieve the required end-effector position in the manipula-

tor’s workspace. This enables the manipulator to become fault tolerant using the existing

structure without the need of additional motors or sensors and it is able to provide greater
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dexterity prior to failures, minimize the immediate impact of a failure, and guarantee task

completion by ensuring a reachable post-failure workspace. However, simply adding kine-

matic redundancy does not guarantee fault tolerance; rather it should be strategically added

to ensure optimally fault tolerant system.

In order to design optimally fault tolerant manipulators, it is first necessary to quantify

fault tolerance. The approach taken here is to define fault tolerance in terms of a suitable

objective function based on the robot’s manipulator Jacobian. Such an objective function

can be defined locally or globally. Local measures can be based on dexterity measures

that are commonly functions of the manipulator Jacobian of the robot, e.g., a natural

measure of local fault tolerance is the relative manipulability index, which is given by the

ratio of post-failure dexterity and the pre-failure dexterity where dexterity is given by the

well-known manipulability index. An example of a global measure would be the volume

of a guaranteed fault tolerant workspace. Global measures are more appropriate for tasks

that require large motions throughout the workspace, whereas local measures are more

appropriate for dexterous operations in a relatively small location, e.g., laser pointing and

manipulation of nuclear material.

This study investigates the fault tolerance of serial manipulators using local fault tol-

erance measures to investigate the degree of fault tolerance of a robotic system design, to

improve the fault tolerance of existing robotic systems, to determine optimally fault tolerant

designs, where optimality is defined in terms of the worst case relative manipulability index,

and to analyze different performance metrics for fault tolerance. Furthermore, the research

will contribute in the analysis and design of an optimally fault-tolerant wrist manipulator.

Having fault tolerance in different parts of the robot could be a very useful tool depending

on the application in which the robot would be utilized.

1.2 Problem Statement/Literature Review

Kinematically redundant manipulators have been the focus of research over the past few

years as it offers several advantages over conventional non-redundant manipulators such as

higher mobility than required for the task, avoiding singularities over the manipulator’s

workspace, potential for obstacle avoidance, torque minimization, and greater dexterity.

2



Another very important attribute of kinematic redundancy is the property of fault tolerance,

which is the focus of this research.

Fault tolerance is the ability of a manipulator to perform the specified task even when

there is a loss of a degree of freedom (DOF) due to a joint failure. The nature of joint

failures that have been studied include locked-joint [6, 7] and free-swinging joint failures [8],

the former one being the focus of this research.

A number of research groups have investigated the properties of the locked-joint failures

and its effects of reduced manipulability and suggested methods of incorporating fault tol-

erance for this failure. Maciejewski [9] did some of the earliest work in the area of kinematic

fault tolerance where he used the minimum singular value of the manipulator Jacobian ma-

trix as a local worst-case measure of a robot’s tolerance to a joint failure. He then used

this measure to define optimal fault tolerant configurations. Roberts et al. [6] define two

local measures of fault tolerance due to joint failures based on the manipulability index as

a measure of dexterity, namely the reduced manipulability index and the relative manipu-

lability index. They also establish a relationship between these measures of fault tolerance

and the null space of the manipulator Jacobian.

Lewis and Maciejewski [7] define a global measure of fault tolerance for locked-joint

failures based on self-motion manifolds. They use this measure to determine the necessary

constraints on the joints of the manipulator that would guarantee the reachability of the

task points after a joint failure. Jamisola et al. [10] address the problem of fault tolerant

path planning in the presence of obstacles with any single locked-joint failure. They also

use a global measure of fault tolerance based on the self-motion manifolds.

Roberts et al. [11] examine the issue of designing kinematically redundant manipulators

that are optimally fault tolerant to multiple joint failures and discuss the fundamental

limitations on the design of fault tolerant manipulators to multiple joint failures. They also

provide a general method for finding a family of 8-DOF GSPs with optimal worst case fault

tolerance for up to two failures. Furthermore, they also suggest other measures of fault

tolerance that could be used for designing optimally fault tolerant manipulators.

Paredis and Khosla [12] study fault tolerance with respect to manipulator workspace

and reach. They define the fault tolerant workspace of the manipulator and suggest task-

3



based design of manipulators for a desired level of fault tolerance using iterative techniques.

Other works which also address the issue of fault tolerant workspace include [7, 10]. Ting et

al. [13] explore control algorithms for fault tolerant operation of manipulators by studying

the types of manipulators (serial, parallel, hybrid) that are better suited for fault tolerance

and on improving the failure recovery process. Hamilton et al. [14] present specifications to

measure and compare the effectiveness of robot fault tolerance strategies.

Monteverde and Tosungolu [15] developed a measure for fault tolerance that allowed the

comparison of different architectures of serial and parallel manipulators by using kinematic

redundancy and dual actuation on robot manipulators. Notash and Haung [16] conducted

a failure analysis study of manipulators to suggest design methodologies for fault toler-

ant parallel manipulators and in [17] Notash presented a methodology for actuator failure

recovery in parallel manipulators.

Jing et al. [18, 19, 20, 21] and Abdi et al. [22, 23] use the sudden change in joint

velocity, at the moment of a locked-joint failure, to quantify the fault tolerant motion of the

manipulators. The former group addresses the issue of reducing the jump velocity to allow

for failure recovery along with an algorithm to control motion of the manipulator, while

the later focuses on finding the optimal configuration of the manipulator in the recovery

process, where optimality is defined by the minimum end-effector velocity jump.

Ukidve et al. [24] use the relative manipulability indices [6] measure of fault tolerance to

study the fault tolerance of a class of parallel manipulators called Gough-Stewart Platforms

(GSPs). They identified a class of Orthogonal GSPs (OGSPs) that possess optimal fault

tolerant manipulability for single joint failures based on maximizing the minimum relative

manipulability index about an operating point.

From the above review it can be observed that one approach to the problem of designing

fault-tolerant robots is to optimize some measure of fault tolerance. This measure can

either be a global measure, i.e., over a specified region of workspace, or local, i.e., at a

specific configuration. Global measures as discussed by Jamisola et al. [10] and Lewis

and Maciejewski [7] are more appropriate for tasks that require large motions throughout

the workspace, where as local measures such as those mentioned by Maciejewski [9] and
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Roberts [25] are more appropriate for dexterous operations in a relatively small location,

e.g., laser pointing [26] and handling nuclear material [27].

The next section mentions the contributions of this research in terms of extending some

of the work mentioned above by analyzing and designing optimally fault tolerant manipula-

tors to multiple failures, studying some geometric properties of the manipulator Jacobian,

and analyzing some performance metrics of fault tolerance to investigate the performance

of one of the newer measure of fault tolerance with respect to the measures established in

the literature over the past two decades.

1.3 Contributions

This work starts by summarizing the results obtained in [11], which addressed the issue

of identifying optimally fault tolerant configurations and a special case in which the robot

is equally fault tolerant to multiple failures. Equally fault tolerant configurations are con-

figurations in which any combination of a fixed number of locked-joint failures results in the

same reduced manipulability. Such configurations are optimally fault-tolerant in a worst

case sense, but it was shown that it is impossible to design a fully spatial robot configu-

ration that is equally fault-tolerant to two or more joint failures. Instead, a class of 6 × 8

manipulator Jacobians was identified that are optimally fault-tolerant to two failures.

The work in [11] only addressed the fully spatial case. In the current work, for the

first time, the family of non-fully spatial manipulator configurations is characterized that

are equally fault tolerant to two simultaneous failures. In particular, it is shown that the

only manipulator Jacobians that are equally fault tolerant to two failures are given by a

family of 3 × 6 matrices of a certain form. Each such Jacobian is related to a certain

canonical 3 × 6 matrix whose columns have a particularly nice geometric structure. The

Jacobian is then used to generate DH (Denavit Hartenberg) parameters for the manipulator

and the manipulator designs are presented using MATLAB as the simulation medium. A

detailed analysis was conducted to explore the correlation between the geometric structure

of the manipulator Jacobian and the corresponding DH parameters. This was done by

permuting the columns of the manipulator Jacobian and multiplying them by −1, as that

does not change the fault tolerance of the manipulator, and noticing the effect of it on
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the DH table rows and the resulting structure of the manipulator. A particular pattern

was observed and generalized with respect to the permutation of Jacobian columns with

the rows of the DH table. When permuting columns, all the resulting manipulators were

of different structure. When the Jacobian columns were multiplied by −1, it resulted in

the same structure of the manipulator. Combining these observations, one can characterize

a family of non-isomorphic manipulator structures, which would allow one to investigate

optimally fault tolerant manipulators that are also optimal in terms of other criteria such

as workspace volume.

Next, an investigation is performed on the performance of one of the newer measures

for fault tolerance, i.e., the condition number using the planar 3R example and simulating

the characteristics of the condition number using MATLAB. The results are compared with

other well known measures of fault tolerance, also using a planar 3R example and simulating

the behaviors of these measures. From the investigation it was concluded that the condition

number is not a reliable measure of fault tolerance. To this effect, an example was provided

which illustrated that there can be cases where the manipulator Jacobian would have a

higher condition number without any joint failures, yet after a joint failure, the condition

number is at its optimum value of 1, which raises a flag on the performance of the condition

number as a measure of fault tolerance due to a better condition number after a failure in

the manipulator.

Lastly, a methodology for designing an optimally fault tolerant 4-DOF spherical wrist

type mechanism was presented. This approach was based on maximizing the minimum

relative manipulability index. It was shown that the orientational Jacobian must have a

certain form for the manipulator to have the best possible relative manipulability index

value of 1/2. An optimal configuration along with the corresponding DH parameters was

presented. It was also pointed out that isotropic configurations of a 4-DOF spherical wrist

type mechanism are fault tolerant in this sense and furthermore, isotropic configurations

for these types of mechanisms are also optimal in the sense that they have the largest

possible manipulability index prior to a failure. Another contribution was an illustration of

a geometric argument on finding closed form solutions of the orientational Jacobian and its

singular value decomposition (SVD). In addition, an example of an orientational Jacobian
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for a 6-DOF spherical wrist that is equally fault tolerant for any two joint failures was also

presented.

1.4 Dissertation Organization

The dissertation is organized in the following manner:

• Chapter 2. Mathematical Preliminaries

This chapter provides a review of some of the mathematical concepts that are essential to

the understanding of the concepts behind fault tolerant manipulators. Important tools like

Singular Value Decomposition (SVD) and principal minors are discussed.

• Chapter 3. Robotics Background

In this chapter the background of robotics with emphasis on serial and parallel manipulators

are briefly discussed. Later essential topics dealing with the fundamentals of robotics are

discussed that form the basis for studying fault tolerance in the next chapter.

• Chapter 4. Fault Tolerance Background

This chapter provides a background of some of the classic fault tolerance measures like

manipulability index and its various variations for the purposes of designing kinematically

redundant optimally fault tolerant manipulators. The relationship between the nullspace of

the manipulator Jacobian and the relative manipulability index measure is reviewed, and

the measure of relative manipulabity index is used in Chapter 5 as the measure of fault

tolerance when designing optimally fault tolerant manipulators to multiple failures.

• Chapter 5. Designing Equally Fault Tolerant Configurations

Building on the background from Chapter 4 and some of the important results in [11], the

design of optimally fault tolerant manipulators to multiple failures is studied under the

context of equally fault tolerant configurations. Equally fault tolerant configurations are

configurations in which any combination of a fixed number of locked-joint failures results

in the same reduced manipulability. In this chapter, the analysis and design for equally

fault tolerant configurations for all workspaces with m degrees of freedom, where m = 2
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to 5, are tested and solutions are presented if they exist. Also, an analysis is presented on

the correlation between the geometric structure of the manipulator Jacobian and its DH

parameters and the conclusions are drawn about its generalization and significance.

• Chapter 6. Performance Analysis of Fault Tolerance Measures

In this chapter a review is performed on some of the measures of fault tolerance, and a

newer measure of fault tolerance, i.e., the condition number is presented and investigated.

Planar 3R examples are provided for a number of measures along with simulations and the

results are discussed to elaborate on the performance of the different measures.

• Chapter 7. Fault Tolerant Spherical Wrist Design

In this chapter the methodology for analyzing and designing an optimally fault tolerant 4-

DOF spherical wrist mechanism is presented. The proposed method uses a local approach

based on the manipulator Jacobian. Once the form of an optimal Jacobian is identified,

a family of mechanisms can be designed so that the device possesses an optimally fault

tolerant nominal configuration. The method is illustrated by example for a specific device

and the DH parameters of this device are given. Furthermore, the optimal Jacobian has

enough geometric structure that its closed form expression is derived. Lastly, an example

of a 6-DOF spherical wrist mechanism that is equally fault tolerant to two simulataneous

failures is presented.

• Chapter 8. Conclusions and Future Research

Lastly, conclusions and contributions from the research are presented along with the prospects

of future research that can be conducted to advance the work presented.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

A thorough understanding of basic matrix theory is fundamental for understanding this

work. In this chapter, a discussion of the necessary matrix concepts is presented. Some of

the major concepts covered in this chapter that will be used later include the null space

projection operator, the concept of principal minors, and the Singular Value Decomposition

(SVD).

2.1 Linear Independence

Linear independence is a basic concept in linear algebra which is used to further define

other terms and hence important to briefly discuss.

Given a set of vectors u1, . . . ,uk in Rn, we consider the set of linear combination c1u1+

· · ·+ ckuk that give the zero vector 0. One possible solution for the coefficients ci of course

is the trivial solution, i.e., c1 = 0, · · · , ck = 0. If this solution is the only solution to this

equation then the vectors u1, · · · ,uk, are said to be linearly independent. Otherwise, they

are said to be linearly dependent, and it can be shown that one of the vectors is a linear

combination of the others.

2.2 Rank

The row rank of a matrix A is the maximum number of linearly independent row vectors

of A, and the column rank of matrix A is the maximum number of linearly independent

column vectors of A. It turns out that the row rank and the column rank are always equal

to each other. The number of linearly independent rows or columns is simply called the
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rank of A. The rank of an m× n matrix A is thus less than or equal to min{m,n}, and we

say that a matrix A has full rank if the rank of A is equal to min{m,n}. For example, a

square n× n matrix A has full rank precisely when its rank is equal to n. If a matrix does

not have full rank, then we say that the matrix is rank-deficient.

A matrix A is said to be singular if there is a non-zero vector x such that Ax = 0. It is

well known that a square matrix is singular precisely when its determinant is equal to zero.

The term singular matrix is used somewhat differently in robotics. In the field of robotics,

finding the rank of a manipulator Jacobian matrix provides important information about the

manipulator. For instance, if the manipulator Jacobian is rank-deficient, i.e., not of full rank,

then the manipulator has a loss of full end-effector motion. We describe this situation by

saying that the robot is in a kinematic singularity. When discussing kinematically redundant

manipulators where the manipulator Jacobian is of size m × n where m < n, the concept

of a singular manipulator Jacobian means that the manipulator Jacobian is rank-deficient.

This is in contrast to the usual usage of that word in linear algebra where a singular matrix

A is a matrix with a non-trivial null space. Therefore, the concept of singular manipulator

Jacobian implies that the manipulator is at a singularity as its Jacobian is rank-deficient.

One way to avoid singularities in the manipulator’s operation is to use workspace boundaries

to keep the manipulator away from reaching kinematic singularities. Unfortunately, such

approaches can lead to what are called algorithmic singularities [28].

2.3 Null Space

The homogeneous equation is Ax = 0. Obviously, the zero vector is always a solution

to the homogeneous equation. When A is an m×n matrix with m < n, there are infinitely

many solutions. The family of solutions is a subspace of Rn, known as the null space of A.

By definition a subspace of a vector space is a subset that is closed under vector addition

and scalar multiplication. A more geometric description of the null space of A, denoted as

Nul(A), is that it is the set of all vector x in Rn that are mapped into the zero vector of

Rm through the linear transformation x → Ax.
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2.4 Orthogonality of Vectors

Two vectors in the same vector space are said to be orthogonal if they are perpendicular

to each other, or in other words, if their dot product is equal to zero. For example, if x and

y are vectors in Rn, where
∑n

i xi · yi = 0, then x and y are orthogonal.

The quantity
∑n

i xiyi can also be written as xTy, i.e., as the product of a 1× n matrix

(the row vector xT ) with an n× 1 matrix (the column vector y):

xTy =
[
x1 · · · xn

]


y1
...
yn


 = x1y1 + · · ·+ xnyn. (2.1)

This quantity, xTy, is also known as the inner product of the (column) vectors x and y in

Rn. Furthermore, a well-known theorem states that if a set of vectors S = {v1, · · · ,vp} is

an orthogonal set of nonzero vectors in Rn, then the vectors in S are linearly independent

and therefore form a basis for the subspace spanned by S.

2.5 Orthogonal Matrices

An orthogonal matrix is an invertible square matrix U such that its inverse is equal to

its transpose (U−1 = UT ). The columns of the orthogonal matrix are orthonormal, which

implies that the sum of the square of each column entries is equal to one. This also means

that UTU = I. Since U is square and is full rank, UT is both a left and right inverse.

This implies that UTU = UUT = I. Note that in this case, both U and UT are orthogonal

matrices. In addition, the rows of an orthogonal matrix are also orthonormal.

Theorem 1: Let A be an n× n orthogonal matrix and let x and y be in Rn, then

1. ∥Ax∥ = ∥x∥,

2. (Ax) · (Ay) = x · y,

3. (Ax) · (Ay) = 0 if and only if x · y = 0.

A common example of an orthogonal matrix is the two-dimensional rotation matrix

U =

[
cos θ − sin θ
sin θ cos θ

]
. (2.2)
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Multiplying a vector by U results in a planar rotation of that vector by an angle θ. Also,

according to property 1 of the theorem above, the length of the vector remains the same

when the rotation matrix acts on it. From property 3 of the theorem, it is observed that

the orthogonality is also preserved.

2.6 Pseudoinverse

An under-constrained system is one in which there are more unknowns in the equations

than the number of equations themselves. Such a system may have either an infinite number

of solutions or no solutions. A consistent system on the other hand is a system that has at

least one solution. In this section we are interested in under-constrained systems that are

consistent. In this case one often looks for an optimum solution. An important example of

an optimal solution x of a consistent underconstrained system of linear equations Ax = b

may be defined as the vector x with the smallest 2-norm ∥x∥ satisfying Ax = b. The unique

solution to this problem is x = A+b, where A+ = AT (AAT )−1 is called the pseudoinverse

of A. Thus, the general solution to Ax = b is

xo = A+y + (I −A+A)z. (2.3)

For a kinematically redundant manipulator, the first term of the above equation is the

minimum norm solution and is obtained when the null space term is set equal to zero. The

second term of the equation can be used to optimize secondary criteria such as singularity

avoidance, obstacle avoidance, energy minimization, and torque minimization.

The following properties apply to the pseudoinverse matrix:

1. A+ is an n×m matrix.

2. The column space of A+ is equivalent to the row space of A, and the row space of A+

is equivalent to the column space of A.

3. The rank of A equals the rank of A+.

4. The pseudoinverse of A+ is A itself.

5. When A has full rank and m < n then AA+ = I.
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2.7 Eigenvectors and Eigenvalues

Let A be a square matrix. A non-zero vector x is called an eigenvector of A if and only

if there exists a scalar λ such that Ax = λx. If the scalar λ exists, it is called the eigenvalue

of A, and x is called the eigenvector associated with the eigenvalue λ.

In general for a square matrix A of order n, the eigenvalues λ of A is given by

det(λIn −A) = 0. (2.4)

This equation is called the characteristic equation or characteristic polynomial of A. Since

the equation is an nth order polynomial, it will not have more than n roots or solutions. As

a result, the square matrix A of order n will not have more than n distinct eigenvalues.

2.8 SVD

Matrix decomposition is an important technique in linear algebra that provides a method

of factoring a matrix, which may contain data of interest, into a simpler and more meaningful

form. For instance, the singular value decomposition (SVD) of an m × n matrix A is a

factorization of the form A = UΣV T , where U is an m × m orthogonal matrix, V is an

n× n orthogonal matrix, and Σ is an m× n rectangular diagonal matrix of the form

Σ =



σ1 0 · · · 0

. . .
...

. . .
...

σm 0 · · · 0


 if m < n, (2.5)

and

Σ =




σ1
. . .

σn
0 · · · 0
...

. . .
...

0 · · · 0




if m > n, (2.6)

where σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 represents the singular values of A with k = min(m,n). The

rank r of the matrix A is simply the number of its nonzero singular values. In the SVD form,

the m columns of U are called the left singular vectors since they are the eigenvectors of

AAT , while the n columns of V T are called the right singular vectors as they are eigenvectors

of ATA.
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The case when m < n is of interest to this research. This is the case of redundant

manipulators, where the number of degree-of-freedom of the joint space (n) is greater than

the number of degree-of-freedom of the workspace (m) of the manipulator.

Writing A in the SVD format is very useful because once the SVD of A is known, the

pseudoinverse is easily obtained as

A+ = V Σ+UT , (2.7)

where the pseudoinverse of Σ is

Σ+ =



σ−1
1 0 · · · 0

. . .
...

. . .
...

σ−1
n 0 · · · 0


 if m > n, (2.8)

and

Σ+ =




σ−1
1

. . .

σ−1
m

0 · · · 0
...

. . .
...

0 · · · 0




if m < n. (2.9)

Other applications of SVD include determining the rank, range, and null space of a

matrix. In the field of robotics, the SVD has been a very important tool for quantifying

dexterity measures like manipulability [29] (which can be represented as the product of

singular values), proximity to singularities (using the minimum singular value) [9], finding

the invertibility of a matrix (using the condition number, a ratio between the maximum

singular value to the minimum singular value) [30], etc. Chapter 6 uses the concept of SVD

in the MATLAB programs to compute the different dexterity measures and analyzes them

for the purposes of fault tolerance.

2.9 Principal Minors

A k× k minor of an n× n matrix A = [aij ] with k < n is a subdeterminant of the form

A

(
i1 · · · ik
j1 · · · jk

)
,

∣∣∣∣∣∣∣∣∣

ai1j1 ai1j2 · · · ai1jk
ai2j1 ai2j2 · · · ai2jk
...

...
. . .

...
aikj1 aikj2 · · · aikjk

∣∣∣∣∣∣∣∣∣
(2.10)
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where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n. If (j1, . . . , jk) = (i1, . . . , ik), then

this quantity is called a principal minor of A. A principal minor is called a leading principal

minor if (i1, · · · , ik) = (1, · · · , k).
There are several results concerning principal minors. For example, it is well known that

the coefficients of the characteristic polynomial pA(λ) = |λI−A| = λn+an−1λ
n−1+ · · ·+a0

of A are given in terms of the sums of the principal minors of A:

an−k = (−1)k
∑

1≤i1<···<ik≤n

A

(
i1 · · · ik
i1 · · · ik

)
. (2.11)

Another well-known result is the following. If A is symmetric then A is positive definite if

and only if its leading principal minors are all positive.

Furthermore, principal minors of the null space projection matrix directly determine the

fault tolerance of the robot to the various possible combinations of joint failures [11, 31].

Therefore for the purposes of analysis and design of optimally fault tolerant manipulators,

the principal minor problem can be used to study the proper incorporation of redundancy

into a robotic system (i.e., how to spread out redundancy). One possible approach for more

general manipulators is to generate a suitable null space matrix with prescribed principal

minors [32, 33]. Another approach would be to spread out points on a unit sphere. Both of

these problems turn out to be challenging.
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CHAPTER 3

ROBOTICS BACKGROUND

The term “Robot”, as used today, is defined by the Robot Institute of America (RIA) as ‘A

reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or

specialized devices through various programmed motions for the performance of a variety

of tasks.’ The term itself was first coined by a Czech playwright Karel Capek in his 1920

play “R.U.R” or “Rossum’s Universal Robots.” The root for the word robot comes from the

Czech word “robota” which means forced labor or slave labor. The word “robot” has been

used since to refer to any mechanical device that operates with some degree of autonomy

under computer control. The term “Robotics” refers to the study and engineering of robots

and was coined by writer Isaac Asimov.

3.1 Introduction

Even though the field of robotics has always been exciting in science fiction, it was

only in the last 50 years or so that the field of robotics picked up momentum in fields like

manufacturing, medical robotics, search and rescue, etc. The advantages that robots offer

include increased productivity, quality and consistency of products in cases of manufacturing

which requires repetition of certain tasks, higher precision that has further advanced the

field of medical science like surgery, and performing dangerous tasks that would be harmful

or burdensome to the humans, e.g., remote area explorations like space, deep sea, volcanoes,

searching out landmines, monitoring a nuclear plant, search and rescue operations, nuclear

waste disposal, etc. In simple words, robots make humans more productive in the tasks for

which they are designed for. In this chapter the developments in the fields of robotics are

briefly mentioned in terms of the serial and parallel manipulators.
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To understand the discussion of topics in robotics it is essential to know the basic terms

and concepts in the field of robotics. For instance, robot manipulators are made up of many

links connected together by joints to form a kinematic chain. The links are also referred

to as “arm” in robotics. Typically the joints are revolute or prismatic (sliding). Revolute

joints allow rotational motion of one link with respect to the other. In prismatic joints the

motion between two links is translational. Thus each joint represents an interconnection

between two links. The axis of rotation of a revolute joint is denoted by zi if the joint is

the interconnection of links i and i + 1. Similarly, the axis along which a prismatic joint

translates is also represented by zi if the joint is the interconnection of links i and i+ 1.

Figure 3.1: Symbolic representation of robot joints. Each joint allows a single degree of
freedom of motion between adjacent links of the manipulator. The revolute joint produces
a relative rotation between adjacent links. The prismatic joint produces a linear motion
between adjacent links [2].

Another component of a robot is the end effector, which is the device or tool at the end

of a robotic arm. Its purpose is to interact with the environment and its structure is based

on the task the robot is supposed to perform. The joints in the kinematic chain between

the arm and end effector are referred to as the wrist. The wrist joints are nearly always all

revolute [2].

The pose of the robotic manipulators is referred to as a configuration and gives a com-

plete specification of the location of every point on the manipulator. The set of all con-

figurations is called the configuration space. Since the individual links of the manipulator
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are assumed to be rigid and the base of the manipulator is assumed to be fixed, the con-

figuration of the manipulator, q, can be given by a set of values for the joint variables like

q1, · · · , qn with qi = θi for revolute joints and qi = di for prismatic joints.

For a robot manipulator, the number of joints determines the degrees of freedom (DOF)

it possesses. For a manipulator to reach a point in workspace in an arbitrary orientation

it needs six DOF: Three for positioning and three for orientation. A manipulator with

fewer than six DOF would therefore not be able to reach every point in its workspace

with arbitrary orientation, while a manipulator with more than six DOF is referred to as

a kinematically redundant manipulator and the numbers of joints describe the degrees of

freedom of the manipulator.

There are two distinct classes of manipulators: Serial manipulators and parallel manip-

ulators. In serial manipulators, the links are arranged as open kinematic chains and can

be described by different types of geometry based upon the first three joints of the arm.

Examples of these types of geometry are: articulated/Revolute (RRR), cartesian (PPP ),

spherical (RRP ), SCARA (RRP ), cylindrical (RPP ), etc., where R implies a revolute joint

and P implies a prismatic joint. On the other hand, parallel manipulators have links that

are arranged in a closed kinematic chain and it has two or more kinematic chains connect-

ing the base to the end effector resulting in greater structural rigidity, and hence greater

accuracy, than open chain robots. Table 3.1 gives a comparison between the articulated,

cartesian, and spherical geometries. It should be further noted that the articulated manip-

ulator is also called a revolute, elbow or anthropomorphic manipulator as all of its joints

are revolute.

The work space of a manipulator constitutes the total volume that can be swept by the

end effector as it goes through all possible motions. It is further classified into a dexterous

workspace and reachable workspace. The dexterous workspace is a set of points that the

manipulator can reach with an arbitrary orientation of the end effector, while the reachable

workspace is the total volume that the manipulator’s end effector can reach in at least one

orientation. Therefore, dexterous workspace is a subset of reachable workspace. Lastly,

the size and shape of the work space is constrained by the geometry of the manipulator,

the mechanical constraints on the joints, and the number of degrees of freedom. The
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Table 3.1: Comparison of robot configurations [1]

Robot Joints Coordinates

Advantages

Articulated Revolute waist Maximum flexibility
aka Revolute shoulder Smaller working volume than prismatic joints
Revolute Revolute elbow Covers a large workspace relative to volume of robots

Revolute joints are easy to seal
Suits electric motors
Can reach over and under objects
Disadvantages

Complex kinematics
Difficult to visualize
Control of linear motion is difficult
Structure not very rigid at full reach

Advantages

Cartesian Prismatic waist Linear motion in three dimension
Prismatic shoulder Simple kinematic model
Prismatic elbow Rigid structure

Easy to visualize
Can use inexpensive pneumatic drives for pick and
place operation
Disadvantages

Requires a large volume to operate in
Workspace is smaller than robot volume
Unable to reach areas under objects
Guiding surfaces of prismatic joints
Must be covered to prevent ingress of dust

Advantages

Spherical Revolute waist Covers a large volume from a central support
Revolute shoulder Can bend down to pick objects up off the floor
Prismatic elbow Disadvantages

Complex kinematic model
Difficult to visualize

next two sections provide some of the applications of the serial and parallel manipulators

respectively with a brief overview of the initial developments in the areas of serial and

parallel manipulators. Also differences between the two types of manipulators are discussed.
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3.2 Serial Manipulators

The origin of the industrial robot happened from the junction of two early technolo-

gies, namely the teleoperator and the numerical control milling machine. Teleoperators, or

master-slave devices, were developed during the Second World War to handle radioactive

materials by allowing a human operator to utilize a remote control to direct the robot’s

movement, hence the name master-slave manipulator. The numerically controlled milling

machine was developed from a desire to have great accuracy in machining particular parts,

particularly components of aircrafts that required precision. Thus the industrial robot was

formed by combining the mechanical linkages of the teleoperator design along with the

autonomy and programmability of numerically controlled milling machines. The most pop-

ular robotic structure in industrial applications is a serial manipulator where the mechanical

structure of the manipulator resembles that of a human arm. It is composed of a number of

rigid links connected by joints which typically moves around one axis (i.e., have one degree

of freedom (DOF)).

The first industrial robots were the Unimates developed by George Devol and Joe En-

gelberger in the late 50’s and early 60’s. The first patents were by Devol for parts transfer

machines, but since Englelberger started the manufacturing company ’Unimation’, which

stood for universal automation, and was the first to market robots he has been called the ’fa-

ther of robotics.’ Their first robot was nicknamed the ’Unimate’ and it made its appearance

at General Motors assembly line performing dangerous and repetitive tasks.

Most serial robots have six degrees of freedom, the minimum number of degrees necessary

to position and orient the robot in three dimensions. Robots with more than six joints are

kinematically redundant manipulators and can choose between several configurations of the

links to place the end of the robot (the end effector) at a specific position. Applications

where serial manipulators are used include welding, deburring, etc, where the manipulator

is required to be able to function within a relatively wide workspace.

Even though serial manipulators are the most popular form of manipulators in the

industry due their ability to cover large workspace and their dexterous maneuverability,

their structure makes them susceptible to bending at high load and vibration at high speeds
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Figure 3.2: Unimate PUMA 562 robot arm [3]

leading to lack of precision, which brings the discussion to the other popular industrial robot

also known as parallel manipulators.

3.3 Parallel Manipulators

In general, a parallel manipulator is a closed-loop kinematic chain mechanism made

up of an end-effector platform (also known as moving platform) with n degrees of freedom,

which is linked to a fixed base platform by at least two independent kinematic chains, where

actuation takes place through n simple actuators.

In the last couple of decades, parallel manipulators have been a subject of renewed

interest in the robotics community in the academia as well as in the industry. This trend

can be observed by the number of publications and conferences dedicated to the topics in

parallel manipulators along with the new applications in industry that demand such devices

like medical assisted robot surgeries.

One of the first parallel mechanisms that were patented was by James E. Gwinnett in

1931, when he proposed a motion platform, based on a spherical parallel mechanism. Its

purpose was to serve as an amusement device for the entertainment industry and is illus-
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trated in Figure 3.3.

Figure 3.3: Possibly the first spatial parallel robot, patented in 1931 (US Patent No.
1,789,680) [4]

In 1942, a new parallel robot was patented for automated spray painting by Willard

L.V. Pollard, which is also well known as the first industrial parallel robot design. Un-

fortunately, Pollard’s robot was never built. Figure 3.4 illustrates the design of the first

industrial parallel robot.

Figure 3.4: The first spatial industrial parallel robot, patented in 1942 (US Patent No.
2,286,571) [4]
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A few years later, in 1947, Eric Gough, who was a distinguished automotive engineer

at Dunlop Rubber Co., England, invented a new parallel robot, which became the most

famous parallel device. It was called ’the variable-length-strut octahedral hexapod’, also

known as the universal tire-testing machine, and most popularly known as the “Gough

Platform”. It was invented as a universal tire testing machine in order to determine the

properties of tires under combined loads and hence to deal with the problem of aero-landing

loads. The key feature of this device was the arrangement of the six struts and since Gough

needed relatively large ranges of motion, he selected the symmetrical arrangement forming

an octahedron. The device, shown in Figure 3.5, was built in the early 1950s and was fully

operational in 1954.

Figure 3.5: The first octahedral hexapod or the original Gough platform at birth in 1954
(Proc. IMechE, 1965-66 (courtesy of Mike Beeson, Dunlop Tyres). [4]

In 1965, Stewart published a paper in which he proposed a six-degree-of-freedom (DOF)

parallel platform for use as a flight simulator. Due to the attention this paper received from
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many researchers the octahedral hexapod parallel manipulators started to be referred as

the “Stewart platform”.

At the same time when Stewart was publishing his paper, in 1967 Klaus Cappel patented

a motion simulator based on a hexapod. Later, in 1978 Hunt suggested that the mechanism

of the flight simulators can be used as parallel robots and that a further study of parallel

robots was required in the context of robotic applications to take advantage of the accuracy

and rigidity of these platforms. Therefore since the early days, parallel manipulators have

increased and found applications in many fields. Some important applications include flight

simulators, milling machine, robotic cranes, medical robots, remote handling, machine tools,

etc.

Based on the idea of Gough and Stewart, researchers defined the Gough-Stewart Plaform

(GSP) as a mechanical design that consists of two rigid bodies (fixed base platform and a

moving platform) which are held in relative position to each other by means of six rigid

joints (also known as legs). Each joint consists of a prismatic actuator that allows one to

control the length of the joint, thus enabling relative motion between the fixed and moving

platforms, and two passive spherical joints that connect the rigid joints to the base and

moving platform. Placing the actuators for the prismatic joints in the fixed base allows for

a lighter construction as the mass of the actuators does not have to be moved, while using

the spherical joints as the end points of the joints, to connect to the two platforms, allows

the links to feel only traction or compression, not bending, and this increases their position

accuracy.

As compared to the structure of serial manipulators, the parallel structure of the Gough-

Stewart platform provides higher structural stiffness and better dynamic-response charac-

teristic due to the fact that the overall load on the system is evenly distributed among

the actuators. Therefore parallel manipulators have very good performance in terms of

accuracy (as the errors are averages compared to being additive in serial manipulators),

velocity, rigidity (as the end-effector is connected to more links) and the ability to manip-

ulate large loads. Their major drawback is their limited workspace, i.e., they cannot reach

around obstacles and that they lose stiffness completely in singular positions. They have

been used in a large number of applications ranging from astronomy to flight simulators,
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and are becoming increasingly popular in high speed/high precision applications, with lim-

ited workspace, like milling machines, assembly of printed circuit boards (PCBs), medical

robots, laser tracking, etc.

The next section gives some insight into the mathematical aspects of the manipulators

discussed.

3.4 Robot Kinematics

In its most general form, a serial manipulator consists of a number of rigid links con-

nected by joints. The mathematical relationship between the manipulator’s end effector

position (x, y, z) and orientation (roll, pitch, yaw) to the joint configuration (θ1, · · · , θn),
where n is the number of joints, is described as ‘Kinematics’, which means the study of

motion without reference to the forces that cause the motion. Kinematics is of two types:

Forward kinematics and Inverse Kinematics. Forward kinematics is the method used to

compute the position and orientation of the end effector given the joint variables of the

robot, while Inverse Kinematics is the method of computing joint variables given the posi-

tion and orientation of the end effector.

The position and orientation of the robotic manipulator’s end effector can be expressed

in terms of its joint variables by the kinematic equation

v = f(θ), (3.1)

where v ∈ Rm is the linear/angular velocity of the end effector, θ ∈ Rn is the vector

of joint variables, and m and n are the dimensions of the task space and joint space,

respectively. Redundant manipulators, by definition, have more degrees of freedoms (DOFs)

than required for a task, i.e., n > m, where n−m is the degree of redundancy.

3.5 Robot Dynamics

Robot dynamics is the study of the relationship between the forces acting on a robot

mechanism and the accelerations they produce. Dynamics is also of two types: Forward

dynamics and inverse dynamics. Forward dynamics is the method used to compute acceler-

ations given the forces, while inverse dynamics is the method of computing the forces given
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the accelerations. The standard dynamic equations of motion for a robot are given by

H(θ)
..
θ + f(θ,

.
θ ) + g (θ) = τ

where θ is the n-vector of joint variables, H is the inertia matrix of the manipulator of size

n × n, f is a vector of torques caused by centrifugal and Coriolis forces, g (θ) corresponds

to gravitational torques of size n× 1, and τ is the vector of torques applied at the joints of

size n× 1. The manipulator inertia matrix maps the joint accelerations to the joint forces.

It is used in analysis, in feedback control to linearize the dynamics, and is an integral part

of many forward dynamics formulations [34].

3.6 Manipulator Jacobian

To express the relationship between the joint velocities and the end-effector angular and

linear velocities, a transformation matrix is introduced that relates the differential changes

from one frame to another known as the Manipulator Jacobian. In an n-link manipulator,

the Jacobian is the transformation matrix relating the n-vector joint velocities and the

6-vector end-effector velocities (angular and linear). Thus, the end effector velocity v̇ is

expressed in terms of the joint velocity θ̇ as

v̇ = Jθ̇, (3.2)

where J ∈ Rm×n is the manipulator Jacobian.

The manipulator Jacobian plays an important role in the study of robotics. Locally, the

Jacobian determines how the joints affect the end-effector motion. In addition to its use

for motion control, the Jacobian can be used to quantify the manipulator’s dexterity and

to choose optimal operating configurations.

For redundant manipulators, (3.2) is underconstrained and there are an infinite number

of solutions which can be expressed as

θ̇ = J+v̇ + (I − J+J)z, (3.3)

where J+ is the pseudoinverse of the Jacobian, and z ∈ Rn. The first term on the right in

(3.3) corresponds to the least-square minimum-norm solution, while the second term is the

projection of the vector z onto the null space of the Jacobian.
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In the next chapter, some measures of fault tolerance are discussed based on the robot

kinematics and the manipulator Jacobian.

3.7 Self-Motion Manifold

In Section 3.4, the redundant manipulator was defined as a manipulator which has more

degrees of freedom than the required task. There are many techniques that exploit this

redundancy to improve the performance of the manipulator and one such technique is the

self-motion manifold. In a redundant manipulator the infinite number of joint configura-

tions due to a given end-effector position can be represented by a finite set of manifolds

in the configuration space, each manifold containing an infinite number of configurations

continuously connected. These are called self-motion manifolds due to the end effector stay-

ing motionless as the joints move along the same self-motion manifold. In simple words,

self-motion are those motions in which the joints take a different configuration while main-

taining the same position and/or orientation of the end effector. The self-motion technique

has a number of advantages as it has been used to avoid singularities, to avoid obstacles in

the manipulator’s path, finding fault tolerant paths, etc.
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CHAPTER 4

FAULT TOLERANCE BACKGROUND

Robotic manipulators are designed to perform tasks that are either difficult for human beings

or too time consuming. With this benefit comes the downside that robotic manipulators

are not free from failures. Failures in robots have significant consequences ranging from

economic impact in industrial applications to potentially catastrophic losses in remote and

hazardous environments like space exploration, deep sea exploration, nuclear waste cleanup,

etc. With the increased probability of kinematic failures in manipulators operating in remote

and hazardous environments, fault tolerance is a key issue in robotics [35]. Kinematic

redundancy is one approach to the problem of compensating for the failure of individual

joints. However, kinematic redundancy in the manipulator should be added strategically to

ensure optimally fault tolerant system.

One approach to analyzing and designing kinematically redundant fault-tolerant robots

is to optimize some measure of fault tolerance. But before one can do that, one must first

be able to quantify what is meant by fault tolerance. For example, any robotic system

working in a remote and hazardous environment is required to be as dexterous as possible,

where dexterity is defined as the ease of the robotic system to maintain its function even

after one or more of its joints have failed. In this case, the dexterity of the manipulator is

a measure to quantify its fault tolerance. Ideally, the system would be able to perform well

under any condition which would imply that the manipulator is dexterous. In this chapter

the measure of fault tolerance used in [11] is discussed and the research is summarized so

as to form a basis of extending the research results in the next chapter.
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4.1 Kinematic Manipulability Index

One of the popular measures of manipulator dexterity is the manipulability index pro-

posed by Yoshikawa [29]. This measure is based on the determinant of the manipulator

Jacobian and it defines the kinematic manipulability index of J as

w(J) =
√

det(JJT ), (4.1)

where J denotes the manipulator Jacobian and w(J) is a nonnegative number that is pre-

cisely zero when the manipulator is in a singular configuration, i.e., when J does not have

full rank. In general, configurations with a relatively high value for w(J) are considered to

be dexterous configurations while small values of w(J) correspond to nondextrous config-

urations and indicates that the manipulator configuration is approaching a singularity. At

a kinematic singularity, this measure is exactly equal to zero. Therefore the manipulabil-

ity index can be used in the analysis and design of a robot’s geometry thus giving insight

into the configurations that should be avoided while designing a robot. For non-redundant

robots, m = n, the manipulability index measure reduces to w(J) = |det(J)|. Furthermore,

the manipulability can also be expressed as

w(J) = σ1σ2 · · ·σm,

where σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 are singular values of the Jacobian matrix obtained using

singular value decomposition (SVD) of the Jacobian matrix. For kinematically redundant

manipulators, the manipulability index is

det(JJT ) =
∑

1≤i1≤···≤im≤in

(det[ji1 , · · · , jim ])2, (4.2)

where ji1 represents the i-th column of the Jacobian matrix.

Geometrically, the manipulability is proportional to the volume Ve of the manipulability

ellipsoid whose principal axes have the same magnitude as singular values of the Jacobian

matrix [36]: Ve = dW , where d = πm/2 /(Γ (m/2 + 1)) , W is the manipulability index,

and Γ (·) is the gamma function.
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4.2 Reduced Manipulability Index

For redundant kinematic manipulators there are two types of joint failures: A free-

swinging failure, in which the failed joint becomes passive; and a locked-joint failure, where

the manipulator joint fails and locks. Here the later type is addressed. When a locked-joint

failure occurs, say in joint i, that component of the joint velocity is zero. Consequently, the

end-effector motion is characterized by iJ , i.e., the Jacobian J with its i-th column removed.

Multiple locked-joint failures are handled in the same way, i.e., the corresponding columns

of the Jacobian are removed. This motivates the definition of the reduced manipulability

index which is given as

wi1,··· ,if (J) = w(i1···ifJ) =
√

det(i1···ifJ i1···ifJT ), (4.3)

where wi1,··· ,if (J) is the reduced manipulability index after the i-th joint has failed and

i1···ifJ denotes the manipulator Jacobian after the columns i1 · · · if corresponding to the

failed joints are removed. This measure gives the degradation of the performance of the

manipulator after the failure of the joints. Next, the original manipulability index and

the reduced manipulability index are used to define another measure called the relative

manipulability index.

4.3 Relative Manipulability Index (RMI)

The relative manipulability index is simply the ratio of the reduced manipulability index

to its original manipulability index. This quantity is a local measure of the amount of

dexterity that is retained when a manipulator suffers one or more locked joint failures; and

its value ranges between zero and one. The relative manipulability index corresponding to

locked-joint failures in joints ii, · · · , if is defined as

ρi1,··· ,if =
w

i1,··· ,if
(J)

w(J)
=

w
(
i1···ifJ

)

w (J)
(4.4)

When the relative manipulability index is zero, it would imply a loss of full end-effector

motion at that configuration after the failed joints are locked, i.e., the robot is fault in-

tolerant to that configuration of joint failure. In other words, at this configuration, the
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reduced manipulator Jacobian i1···ifJ does not have full rank. On the other hand, if the

relative manipulability index is one, then the locked joint i does not locally affect the overall

manipulability of the robot at that configuration, i.e., the failed joints do not contribute

to the end-effector motion at that configuration before their failure and thus only produce

self-motion [6, 37].

The relative manipulability index measure has also been used to study the fault tolerance

of redundant Gough-Stewart platforms, which are a class of the parallel manipulators. In

[24], a class of OGSPs was identified that possesses optimal fault tolerant manipulability for

single joint failures based on maximizing the minimum relative manipulability index about

an operating point. In [11], this measure is used to design nominal manipulator Jacobians

that are optimally fault tolerant to one or more joint failures.

4.4 Dynamic Manipulability Index

In this section the dynamics of the robot are considered when a failure occurs in a certain

joint. It was mentioned in chapter 3 that the standard dynamic equations of motion for a

robot are given by

H(θ)
..
θ + f(θ,

.
θ ) + g (θ) = τ, (4.5)

where θ is the n-vector of joint variables, H is the inertia matrix of the manipulator of size

n × n, f is a vector of torques caused by centrifugal and Coriolis forces, g (θ) corresponds

to gravitational torques of size n × 1, and τ is the vector of torques applied at the joints

of size n × 1. It is well known that the inertia matrix for realistic systems is at all times

invertible.

Manipulator joints can be described as either active or passive. Active joints have both

actuators and position sensors, whereas a passive joint is equivalent to a failed joint that has

a holding brake in place of an actuator. The dynamic equation of motion (4.5) is modified

based on whether or not the failed joint is locked or free-swinging. When the failed joint is

free-swinging (unlocked), the equation of motion becomes

[
Haa Hap

Hpa Hpp

] [..
θ a
..
θ p

]
+

[
ba
bp

]
=

[
τa
0

]
, (4.6)
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where θa corresponds to the active joints and θp corresponds to the passive joints. When the

passive joints are locked, the corresponding components of the torque vector are removed

and the corresponding joint velocities and accelerations are set to zero. Thus it can be

noted in this particular case that the torque corresponding to the passive joint is set to zero

so the joints are mainly controlled by the motion of the active joints. In such a case the

robot dynamics equation (4.5) becomes

Haa

..
θ a + ba = τa, (4.7)

where the passive joint configuration is fixed. In this case, the performance of the manip-

ulator can be tested by the dynamic manipulability index also introduced by Yoshikawa.

The dynamic manipulability index is defined as

d(J) = w(JH−1). (4.8)

From this equation, the relationship between dynamic manipulability index and the kine-

matic manipulability index can be observed. It can be noted that if w(J) is zero then d(J)

will also be equal to zero.

Theorem 2 [25]: Consider a kinematically redundant manipulator with n joints working

in an m degree-of-freedom task space. Suppose the robot is in a nonsingular configuration

and that N is any n × m matrix whose columns form an orthonormal basis for the null

space of J . Then the dynamic manipulability is

d(J) = w(J)
w(NTH)

detH
, (4.9)

where w(J) is the kinematic manipulability index, N is the null space matrix with null

space vectors as columns, and H is the inertia Matrix. It can be noted that the term

w(NTH)/detH can be interpreted as a measure of how much the inertial matrix wraps the

null space of J .

4.5 Reduced Dynamic Manipulability Index

In kinematics when there is a loss of manipulator joint there is a reduced manipulability

that can be measured; similarly, in dynamics, the measurement is expressed as the reduced

dynamic manipulability. This measure can be looked at in three cases:
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(a) when all passive joints are locked,

(b) when all passive joints are unlocked, and

(c) when there are both locked and unlocked passive joints.

For the remainder of this section, let na indicate the number of active joints, np indicate

the number of failed joints, and m indicate the degrees of freedom in the workspace.

(a) All passive joints are locked Consider a robot with np = p passive joints.

If each of the passive joint, labeled here as i1, i2, · · · , ip, is locked, the reduced dynamic

manipulability index of the robot is found from (4.8) by removing the columns of J and

H−1 associated with the locked joints and removing the same rows of H−1:

dli1···ip(θ) = w
[
i1···ipJ i1···ip

i1···ip
(
H−1

)]
, (4.10)

where the superscript ”l” denotes the fact that the joints in question are locked and where

i1···ip
i1···ip

(
H−1

)
denotes the matrix H−1 with its i1, i2, · · · , ip rows and columns removed. We

consider some special cases of (4.10).

First, consider a robot with a single passive joint which we will assume is joint i. The

reduced dynamic manipulability of the robot when the i-th joint is locked is

dli(θ) = w
[
iJ i

i(H
−1)

]
, (4.11)

where i
i(H

−1) denotes the matrix H−1 with its i-th row and i-th column removed. For the

case when na = m and np = 1, iJ and i
i(H

−1) are square matrices so (4.11) can be written

as

dli(θ) =
∣∣det iJ

∣∣ det
[(

i
iH

−1
)]

. (4.12)

The first term on the right is, by definition, wi(J), and, by matrix inversion, the second

term is hii/detH, where hij denotes the (i, j) component of H.

In [6], it was shown that

wi1···ip(J) = w(J)

√
det

(
NT

i1···ipNi1···ip
)
. (4.13)

It then follows from (4.12) and (4.13) that for a robot with a single degree of redundancy,

the reduced dynamic manipulability index is

dli (θ) =
wi(J)hii
detH

=
wi(J)hii |n̂i|

detH
, (4.14)
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where n̂i is the i-th component of the unit length null vector n̂J . Note that because H

is a symmetric positive-definite matrix, hii is necessarily positive. Also note that for a

nonsingular configuration, dli (θ) = 0 precisely when wi = |ni| = 0.

For larger values of np, the corresponding columns of J and H and the corresponding

rows of H are removed. For the case when na = m and np = 2, the reduced dynamic

manipulability index when the passive joints i and j are locked is

dlij(θ) =
w(J)

∣∣∣det
(
N̂ij

)∣∣∣ det (Hij)

detH
, (4.15)

where N̂ij is the 2× 2 matrix composed of the i-th and j-th columns of NT and

Hij =

[
hii hij
hji hjj

]
. (4.16)

Note that because H is a symmetric positive-definite matrix, detH and detHij are neces-

sarily positive. More generally, we have the following result.

Theorem 3: Consider an n degree-of-freedom robot working in an m-dimensional task

space. If the f = n−m joints i1, i2, · · · , if are locked, then

dli1···if (θ) =
w(J)

∣∣∣det
(
N̂i1···if

)∣∣∣ det
(
Hi1···if

)

detH
, (4.17)

where N̂i1···if is the f × f matrix composed of the corresponding columns of NT and

Hi1···if =



hi1i1
...

hif i1

· · ·
. . .

· · ·

hi1if
...

hif if


 . (4.18)

(b) All passive joints are unlocked We next consider the case when each of the

passive joints is unlocked. In this case, the corresponding components of the torque vector

are zero. The dynamic manipulability index (4.8) then becomes

dui1···ip = w
(
i1···ip [JH−1

])
= w

(
J i1···ip [H−1

])
, (4.19)

where the superscript ”u” denotes the fact that the joints in question are unlocked.

The reduced dynamic manipulability for free-swinging passive joints is characterized

essentially in the same way as the reduced kinematic manipulability was for locked passive
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joints except one now deals with the null space of JH−1. For the case when na = m and

np = 1, the reduced dynamic manipulability when the passive joint i is free becomes

dui =
|πi (HnJ)|
detH

=
w (J) |πi (Hn̂J)|

detH
, (4.20)

where πi (w) = wi is the projection that picks off the i-th component of a vector. When

na > m,

dui =
w(J) ∥πi (NH)∥

detH
, (4.21)

where NH is any matrix whose columns form an orthonormal basis for the null space of

JH−1 and πi (NH) is the i-th row of NH . Note that although the columns of HN form a

basis for the null space of JH−1, they do not necessarily form an orthonormal basis. The

reduced dynamic manipulability for multiple free passive joints is given by

dui1···ip =
w(J) det

[
πi1···ip(NH)Tπi1···ip (NH)

]

detH
, (4.22)

where πi1···ip(NH)T is the matrix consisting of the rows i1, · · · , ip of NH .

(c) There are both locked and unlocked passive jointsWhen there are both locked

and unlocked passive joints, the manipulability index is given by removing the columns of

J and H−1 associated with the locked joints, removing the rows of H−1 associated with

the locked joints, and removing the columns of H−1 associated with the unlocked passive

joints. For example, suppose there are two passive joints i and j and that joint i is locked

and joint j is unlocked. Then the dynamic manipulability is given by

w
[
iJ ij

i

(
H−1

)]
. (4.23)

4.6 RMI and the Null Space of the Manipulator Jacobian

The reduced and relative manipulability indices are strongly related to the null space

of the manipulator Jacobian. This relationship is particularly nice when there is only one

degree of redundancy. In this case, the reduced manipulability is given by

wi(J) = |det(iJ))| (4.24)
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and the null space of J is given by the null vector nJ . Recall that the null vector satisfies

JnJ=0. The null vector in this case is given component wise by

ni = (−1)i+1det(iJ), (4.25)

where ni is the i-th component of nJ . Taking absolute value on both sides of (4.25) the

equation can be written as:

|ni| = |det(iJ)|. (4.26)

From (4.24) and (4.26), it can be observed that wi(J) = |ni|, which gives the result that

the null vector nJ = [n1, n2, · · · , nn]
T is related to the manipulability index as follows

w (J) = ∥nJ∥ . (4.27)

By letting n̂J be the unit length null vector

n̂J =
nJ

∥nJ∥
, (4.28)

one has

wi (J) = |ni| = |n̂i|w (J) , (4.29)

where n̂i is the i-th component of n̂J . Using this relationship, the relationship between the

relative manipulability indices and the null space of the Jacobian can be given as

ρi = |n̂i| for i = 1, 2, · · · , n, (4.30)

where ρi = |n̂i| denotes the i-th component of unit length null vector n̂J = nJ/∥nJ∥ . The

values of n̂i and w (J) are given directly by the singular value decomposition J = UΣV T as

|n̂i| = |vin| and w (J) = σ1σ2 · · ·σm, where J is an m×n manipulator Jacobian of full rank

with m < n and vin is the (i, n) element of V . Therefore, relative manipulability indices

can be defined as

wi (J) = |vin|σ1σ2 · · ·σm. (4.31)

Then the manipulability index after a failure of the i-th joint is given by

w
(
iJ
)
=

∥∥∥N̂i

∥∥∥w (J) . (4.32)
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Hence the relative manipulability index ρi is given by
∥∥∥N̂i

∥∥∥.
For multiple joint failures it was shown [6] that the relative manipulability index is

related to the null space matrix by the following relationship

ρi1,··· ,if = w
(
Ni1,··· ,if

)
=

√∣∣∣Ni1,··· ,ifN
T
i1,··· ,if

∣∣∣, (4.33)

where Ni1,··· ,if is the f × r matrix consisting of rows i1, · · · , if of the matrix N , f is the

number of locked joints and r = n−m, where m denotes the dimension of the manipulator

workspace, n denotes the number of joints and r denotes the degree of redundancy. The

matrix N is also called a null space matrix of J if the columns of N form an orthonormal

basis for the null space of J . Although the null space matrix N is not unique for a given J ,

any two null space matrices N and N
′

of J are related by an orthogonal matrix Q in the

following way: N
′

= NQ.

This shows that the relative manipulability indices are strictly a function of the null

space of the manipulator Jacobian. This motivates the problem of designing operating

configurations for robotic mechanisms based on choosing the manipulator Jacobian to have

a prescribed null space.

Additionally, Roberts et al. [11] also establish the relationship between the relative

manipulability indices and the null space of the manipulator Jacobian using the principal

minors or the null space projection operation. This methodology was formulated as it

is easier to use it to establish identities and inequalities for the relative manipulability

indices. It was shown in this reference that the relative manipulability index squared,

ρ2i1,··· ,if , is given by the principal minor of null space projection PN = NNT = I − J+J,

where J+denotes the pseudoinverse of J :

ρ2i1,··· ,if = PN

(
i1 · · · if
i1 · · · if

)
. (4.34)

Here the authors in [11] used the standard notation that a k × k minor of an n× n matrix

A = [aij ] with k < n is a subdeterminant of the form

A

(
i1 · · · ik
j1 · · · jk

)
,

∣∣∣∣∣∣∣∣∣

ai1j1 ai1j2 · · · ai1jk
ai2j1 ai2j2 · · · ai2j2
...

...
. . .

...
aikj1 aikj2 · · · aikjk

∣∣∣∣∣∣∣∣∣
, (4.35)
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where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n. Based on this formulation it can

be shown that
∑

1≤i1<···<if≤n

ρ2i1,··· ,if =

(
r
f

)
. (4.36)

Furthermore, it was noted in [24] that equation (4.36) can be used to obtain an upper

bound for the worst case relative manipulability index by noting that the minimum value

of any set of numbers must be less than or equal to the average so that

min
1≤i1<···<if≤n

ρi1,··· ,if ≤

√√√√
(
r
f

)
(
n
f

) . (4.37)

This equation is later used in Chapter 5 as the basis for analyzing and designing opti-

mally fault tolerant manipulator Jacobians.

4.7 Self-Motion Manifold

In Chapter 3, the self-motion manifold technique was mentioned along with some of its

potential applications. Here, some of the research related to it is mentioned as a measure

of fault tolerance. In the last few years, researchers have looked at the self-motion manifold

method for the purposes of increasing fault tolerance in kinematically redundant manipula-

tors due to locked-joint failures. This is done by making sure that the self-motion manifold

corresponding to the desired end-effector position and orientation is reachable even after a

joint failure. To visualize this concept physically, the effects of the joint failure on the ma-

nipulators manipulability in joint space can be described by a hyper-plane, the position of

which is determined by the locked joint. If this hyper-plane intersects with the self-motion

manifold corresponding to the desired end-effector position and/or orientation then the ma-

nipulator is fault tolerant to that joint failure. In [7], Lewis and Maciejewski introduced

the concept of determining bounding boxes enclosing the self-motion manifolds for a given

set of critical task points, where the intersection of the bounding boxes provided a set of

artificial joint limits, which when used would guarantee that if the manipulator fails while

operating within the bounding box, it would always be able to complete its critical task by

maintaining reachability over the entire workspace. Thus the size of the self-motion mani-

fold bounding box is a measure of the inherent fault tolerance of its associated workspace
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position. In [10] Jamisola et al. addressed a more global problem by using the measure

of self-motion manifolds to find a fault tolerant (collision free) path for the manipulator in

presence of obstacles despite a single locked-joint failure.
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CHAPTER 5

DESIGNING EQUALLY FAULT TOLERANT

CONFIGURATIONS

In Chapter 4, the importance of the relationship between the relative manipulability index

and the null space of the manipulator Jacobian was discussed in detail. This chapter builds

up on that discussion and analyzes the possibility of designing optimally fault-tolerant

manipulator Jacobians for non-spatial (m < 6) manipulators. First the fully spatial case

(m = 6) is briefly reviewed from the work in [11] and then for the first time the non-spatial

cases are analyzed [35] followed by a study of the relationship between manipulator Jacobian

columns and the corresponding DH parameters.

5.1 Introduction

Some mechanism configurations such as the one shown in Figure 5.1 are naturally fault-

tolerant due to symmetry. In this particular example, it is clear that each strut has the

same overall influence on the motion of the device. Consequently, this manipulator is equally

fault-tolerant to any single joint failure. However, it was shown in [31] that this design is

fault-intolerant to certain combinations of two simultaneous joint failures. In particular,

locking the joints corresponding to two even numbered struts or to two odd numbered

struts results in a reduced Jacobian that is singular, e.g., ρ13 = 0. Thus, additional care

must be given if one wants to address fault tolerance to multiple failures.

Equation (4.37) served as a motivation in [24] for defining a manipulator operating about

a single point in the workspace to be optimally fault-tolerant to f ≤ r failures if all of its

relative manipulability indices ρi1,··· ,if are equal, i.e.,
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Figure 5.1: An 8-DOF symmetric mechanism. The geometric symmetry ensures enough
algebraic symmetry in the manipulator Jacobian and the null space matrix that optimal
fault tolerance is guaranteed for single joint failures. However, in spite of having two degrees
of redundancy, the manipulator is fault intolerant to certain combinations of failures in two
joints.

ρi1,··· ,if =

√√√√√√√√

(
r
f

)

(
n
f

) (5.1)

for 1 ≤ i1 < · · · < if ≤ n. Here, we prefer to say that a manipulator is equally fault tolerant

to f ≤ r failures at an operating configuration if (5.1) holds for 1 ≤ i1 < · · · < if ≤ n at that

configuration. Note that equal fault tolerance is a local property since it would apply to

specific configurations and would be most applicable for manipulators operating in a small

workspace. If a manipulator is equally fault tolerant to f ≤ r failures, then by (4.37) it is

optimally fault tolerant in a worst case relative manipulability index sense to f ≤ r failures.

However, while it is clear that an optimal value exists, it is possible that a manipulator may

not have a configuration that is equally fault tolerant to f failures. In this case, the optimal

value is smaller than the bound given in (4.37). It is the goal of this section to shown that

this is typically the case.
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In order to study equally fault-tolerant configurations, we use the following result, which

was proved in [11]:

Theorem 4: If a manipulator is equally fault tolerant to f failures where 1 < f ≤ r,

then it is also equally fault tolerant to f − 1 failures. Furthermore, the manipulator is

equally fault tolerant to k failures for k = 1, 2, · · · , f .

Theorem 4 has some important implications. This follows from the fact that the theo-

rem forces PN , principal minor of the null space projection operator, to have a particularly

simple structure when the manipulator is equally fault-tolerant to more than one failure.

To see this, first note that if J is equally fault-tolerant to a single failure, then the diag-

onal elements of PN are all equal to r/n. If J is equally fault-tolerant to f ≥ 2, then by

Theorem 4 it is equally fault-tolerant to single failures and to two failures. Hence, the (i, j)

principal minor of the symmetric matrix PN is

∣∣∣∣
r/n pij
pji r/n

∣∣∣∣ =
r2

n2
− p2ij =

r (r − 1)

n (n− 1)
, (5.2)

where we have used the fact that pji = pij and where the last equality follows from the

assumption of equal fault tolerance to two failures. Solving for pij gives

pij =
±1

n

√
r (n− r)

n− 1

for all 1 ≤ i < j ≤ n. Hence, when J is equally fault tolerant to f ≥ 2 failures, the diagonal

elements of PN are all equal and the off-diagonal elements of all have the same magnitude.

To simplify matters further, note that multiplying any of the columns of J by -1 does not

affect the fault tolerance properties of J . In doing so, the corresponding rows and columns

of PN are also multiplied by -1 so that we can assume without loss of generality that PN

has the form

PN =




a b b · · · b
b a ±b · · · ±b
b ±b a · · · ±b
...

...
...

. . .
...

b ±b ±b · · · a



, (5.3)
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where

a =
r

n
and b =

−1

n

√
r (n− r)

n− 1
.

We use the property that PN is a projection to determine restrictions on the number of

degrees of redundancy that a fully spatial manipulator can have for the equal fault tolerance

property to hold. As a projection, P 2
N = PN so that for j > 1,

b = p1j = (PN )1j =
(
P 2
N

)
1j

= 2ab+ qb2, (5.4)

where q is the integer, i.e., q = n1 − n2 − 1, n1 denotes the number of elements in the j-th

column of PN that are equal to b, and n2 denotes the number of elements equal to −b.

Clearly n1 + n2 = n− 1 as (PN )jj = a and (PN )ij = ±ib for i ̸= j. Since b ̸= 0, (5.4) yields

q =
1− 2a

b
. (5.5)

Next, we use this principle in finding the possible solutions for the various cases of fully

spatial and non-spatial manipulators.

5.2 Fully Spatial Manipulator

For a fully spatial rmanipulator, m = 6 and n = r+ 6. Substituting the expressions for

a and b into (5.5) gives

q =
1− 2r

n

−1
n

√
r(n−r)
r−1

= (r −m)

√
r +m− 1

mr
. (5.6)

The requirement that q is an integer is a necessary condition for the existence of a manipu-

lator having r > 1 degrees of redundancy with the property that it is equally fault tolerant

to two failures.

Unfortunately, the requirement that q is an integer automatically eliminates most spatial

manipulator designs since only specific values of r are feasible. It was shown in [11] that

regardless of a manipulator’s geometry or the amount of kinematic redundancy present in

a manipulator, no fully spatial manipulator Jacobian (m = 6) can be equally fault-tolerant

to two joint failures.
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5.3 Non-Spatial Manipulators

In [11], the problem of designing nominal manipulator Jacobians that are optimally

fault-tolerant to multiple joint failures for the fully spatial case (m = 6) was studied. In

this work, the problem of designing nominal manipulator Jacobians that are equally fault

tolerant to multiple failures is extended for cases when the manipulator is not fully spatial,

i.e., for two dimensional workspace up to five dimensional workspace, i.e., m = 2, 3, 4, and 5

[31, 38].

From (5.5), the requirement that q is an integer is a necessary condition for the existence

of a manipulator having r > 1 degrees of redundancy with the property that it is equally

fault-tolerant to two failures. Unfortunately, the requirement that q is an integer automati-

cally eliminates most spatial manipulator designs since only specific values of r are feasible.

Indeed, it was shown in [11] that regardless of a manipulator’s geometry or the amount of

kinematic redundancy present in a manipulator, no fully spatial manipulator Jacobian can

be equally fault-tolerant to two joint failures.

We now present some results for the case when m < 6 [31, 38]. We begin by identifying

those positive integers r such that the resulting q in (5.6) is an integer. First, consider the

following simpler problem. If q is an integer, then so is

mq2 = r2 − (m+ 1)r −m(m− 2) +
m2(m− 1)

r
. (5.7)

Since the first three terms in the expansion of mq2 are integers, so is the last term,

m2(m− 1)/r, i.e., r divides m2(m− 1).

Case: When m = 2 (Two-dimensional workspace)

For non fully spatial manipulator with m = 2, we have that r divides 4 so that r = 2 or

4. These two possibilities correspond to q = 0 and
√

5/2, respectively. As q is an integer,

we are left with r = 2 as the only possible candidate for m = 2. Unfortunately, a careful

examination of the structure of the corresponding null space matrix excludes this candidate

as well. Thus we have the result that no full rank 2×n Jacobian with n ≥ 4 can be equally

fault-tolerant to two failures. In particular, no planar nR manipulator configuration can be

equally fault-tolerant to two or more locked-joint failures.
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Case: When m = 3 (Three-dimensional workspace)

Next we consider the case m = 3. In this case, m2(m − 1) = 18 so that the candidate

values for r are 2, 3, 6, 9, and 18. The requirement that q is an integer further reduces the

candidate list to r = 3 and 6. Furthermore, the required structure of the null space matrix

eliminates the case r = 6. It turns out that there are suitable null space matrices for r = 3.

A particular example is

N =




0 0 1√
2

0
√

2
5

1√
10

−
√

5+
√
5

20

√
5−1

2
√
10

1√
10

−
√

5−
√
5

20
−
√
5−1

2
√
10

1√
10√

5−
√
5

20
−
√
5−1

2
√
10

1√
10√

5+
√
5

20

√
5−1

2
√
10

1√
10




. (5.8)

In this case, there is a nice geometric interpretation for the rows of N , which is illustrated

in Figure 5.2. The rows of N correspond to points on a sphere of radius 1/
√
2 with the

first row of N corresponding to the North Pole and the remaining five rows corresponding

to the vertices of a pentagon located at a latitude of 90 − arccos(1/
√
5).

Any other null space matrices corresponding to an equally fault-tolerant configuration

for a 6-DOF manipulator with a 3-DOF workspace would have a similar geometric structure:

each column would lie on a sphere of radius 1/
√
2 centered at the origin and would be at

an angle of ±arccos(1/
√
5) from the other columns.

The null space matrix (5.8) determines a family of equally fault-tolerant 3×6 positional

Jacobians. A particular example is

J =




0.7071 0.0000 0.0000
−0.3162 0.0557 −0.6300
−0.3162 0.3253 0.5424
−0.3162 −0.5820 −0.2476
−0.3162 0.6164 −0.1418
−0.3162 −0.4153 0.4770




T

. (5.9)

Other Jacobians can be generated from (5.8) by permuting the rows of N , by multiplying

one or more of the rows by −1, or by a combination of these operations. This will not affect

fault tolerance, but it will generally result in a different Jacobian.
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Figure 5.2: A geometric representation of the null space matrix N given in equation (5.8).
The labeled points represent the corresponding rows of N , e.g., the point labeled 1 corre-
sponds to the first row of N .

Clearly, one can generate a serial manipulator geometry corresponding to a pure po-

sitional or a pure orientational Jacobian given by (5.9), but this is not true for pla-

nar workspaces that include orientation. For a planar nR serial manipulator whose 3D

workspace includes orientation, the orientational row of the Jacobian consists of all ones.

Unfortunately, this additional row requirement precludes the manipulator from being equally

fault-tolerant to two failures in the above sense. To see this, note that the null space matrix

for any equally fault-tolerant configuration can be chosen to have a similar form as given in

(5.8) where some of the rows may be multiplied by −1 and/or permuted. In any case, the

last column can be chosen to consist of one element equal to ±1/
√
2 and the rest equal to

±1/
√
10. The product of the orientational row with the last row of N would then have the

form ±1/
√
2 + k(1/

√
10) where k is an integer. Since N is a null space matrix of J , this

product should be zero, which is impossible as this would require the integer k to equal the

irrational number ±
√
5. Hence, no planar manipulator can be equally fault tolerant to two

failures if orientation is included in the workspace. From (5.9) the positional Jacobian can
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Table 5.1: DH parameters for an optimally fault tolerant 3 × 6 positional manipulator
Jacobian given in (5.10)

i αi(deg) ai θi(deg) di

1 90 0.7175 0 0.000

2 -35.8 0.1875 90 -3.5297

3 72.7 1.5783 -180 3.1908

4 55.7 1.9165 180 -0.9162

5 64.4 1.7179 -180 -1.1308

6 0 1.0000 137.6 0.5449

be written as

J =




1 −0.4472 −0.4472 −0.4472 −0.4472 −0.4472
0 0.0788 0.4600 −0.8231 0.8717 −0.5873
0 −0.8910 0.7671 −0.3502 −0.2005 0.6746
0 0.1735 0.7171 0.8787 0.8898 0.7956
0 0.9848 0.6970 −0.4774 0.4564 −0.6058
1 0 0 0 0 0



. (5.10)

A set of DH parameters for a robot configuration having this manipulator Jacobian was

determined using the formulation given in [39] and are presented in Table 5.1. These DH

parameters are then used to generate a robot model and the result is displayed in Figure 5.3.

Next, (5.9) is viewed from an orientational Jacobian. First, the Jacobian is extended to

a fully spatial manipulator Jacobian as

J =




1 0 0 0 0 0
0 0.9848 0.6970 −0.4774 0.4564 −0.6058
0 0.1735 0.7171 0.8787 0.8898 0.7956
0 −0.8910 0.7671 −0.3502 −0.2005 0.6746
0 0.0788 0.4600 −0.8231 0.8717 −0.5873
1 −0.4472 −0.4472 −0.4472 −0.4472 −0.4472



. (5.11)

The corresponding set of DH parameters are then given in Table 5.2. These parameters are

then used to generate a a robot model as displayed in Figure 5.4.

Case: When m = 4 (Four-dimensional workspace)

Lastly, we note that there are no manipulator configurations that are equally fault-

tolerant to two or more joint failure for the cases when the workspace dimension is m = 4.

For m = 4, we have m2(m− 1) = 22 · 3 so that there are 10 possible candidates for r. Each
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Figure 5.3: A serial mechanism corresponding to the DH parameters given in Table 5.1.
This manipulator is an equally fault tolerant manipulator with m = 3 (workspace) and
n = 6 (joints) in a configuration that is also an optimally fault tolerant 3 × 6 positional
manipulator Jacobian. The robot is generated from a positional Jacobian. (This image was
generated using the Robotics Toolbox described in [5].)

of these 10 candidates are eliminated by (5.6) with the exception of r = m = 4, which in

turn is eliminated in the process of generating a candidate N matrix.

Case: When m = 5 (Five-dimensional workspace)

Similarly, for m = 5, we have m2(m − 1) = 22 · 52 so that there are 9 candidates of

which only r = 1 and 5 satisfy the requirement that q in (5.6) is an integer. The candidate

r = 1 is eliminated by the requirement that the manipulator is fault-tolerant to any two

simultaneous joint failures and the candidate r = 5 is eliminated due to a contradiction

encountered when generating a corresponding N matrix. Thus, there are no equally fault-

tolerant configurations for the cases m = 4 or 5.
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Table 5.2: DH parameters for an optimally fault tolerant 3 × 6 orientational manipulator
Jacobian given in (5.11)

i αi(deg) ai θi(deg) di

1 116.6 0.8021 0 0.000

2 -116.6 0.1226 144 -2.1105

3 116.6 1.6849 -72 -2.3009

4 116.6 1.7696 108 -1.1252

5 116.6 1.7328 108 -1.2328

6 0 0.9999 171.2 -0.8230

5.4 Manipulator Jacobian and DH Table Properties

Due to the symmetric nature of the designed manipulator Jacobian for the case of

m = 3, the different geometric structural possibilities of the Jacobian were explored. In

the following case, the orientational Jacobian was used and its columns were permutated

to study the properties of the corresponding DH parameters and hence the structure of the

manipulator.

The original orientational Jacobian is given by (5.11) and is reproduced here along with

its DH parameters for the purpose of discussion in this section.

J =




1 0 0 0 0 0
0 0.9848 0.6970 −0.4774 0.4564 −0.6058
0 0.1735 0.7171 0.8787 0.8898 0.7956
0 −0.8910 0.7671 −0.3502 −0.2005 0.6746
0 0.0788 0.4600 −0.8231 0.8717 −0.5873
1 −0.4472 −0.4472 −0.4472 −0.4472 −0.4472




(5.12)

Consider that the columns of the Jacobian given in (5.12) are permuted. For simplicity,

consider that columns 2 and 3 are swapped. Under this configuration, the Jacobian looks

as given in (5.13) and the DH parameters calculated for (5.13) are given in Table 5.4.

J =




1 0 0 0 0 0
0 0.6970 0.9848 −0.4774 0.4564 −0.6058
0 0.7171 0.1735 0.8787 0.8898 0.7956
0 0.7671 −0.8910 −0.3502 −0.2005 0.6746
0 0.4600 0.0788 −0.8231 0.8717 −0.5873
1 −0.4472 −0.4472 −0.4472 −0.4472 −0.4472




(5.13)

It can be observed that when columns 2 and 3 are swapped as shown in (5.13), the resulting
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Figure 5.4: A serial mechanism corresponding to the DH parameters given in Table 5.2. This
manipulator is an equally fault tolerant manipulator with m = 3 (workspace) and n = 6
(joints) in a configuration that is also an optimally fault tolerant 3×6 manipulator Jacobian.
The robot generated is from an orientational Jacobian. (This image was generated using
the Robotics Toolbox described in [5].)

DH parameters, Table 5.4, indicate a change in all the rows of the DH table except rows 5 and

6 when compared to the DH parameters in Table 5.3 of the original orientational Jacobian

(5.11). With these changes, the serial manipulator obtained is presented in Figure 5.5.

Similarly, when columns 5 and 6 are swapped of the original manipulator Jacobian as

shown in (5.14), the result is a change in all the rows of the DH table parameters except

rows 1, 2, and 3 as can be noted from Table 5.5. The serial manipulator for these DH

parameters is given in Figure 5.6.

J =




1 0 0 0 0 0
0 0.9848 0.6970 −0.4774 −0.6058 0.4564
0 0.1735 0.7171 0.8787 0.7956 0.8898
0 −0.8910 0.7671 −0.3502 0.6746 −0.2005
0 0.0788 0.4600 −0.8231 −0.5873 0.8717
1 −0.4472 −0.4472 −0.4472 −0.4472 −0.4472




(5.14)
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Table 5.3: DH parameters for an optimally fault tolerant 3 × 6 orientational manipulator
Jacobian in (5.12)

i αi(deg) ai θi(deg) di

1 116.56 0.8021 0 0.000

2 -116.57 0.1226 144.00 -2.1105

3 116.57 1.6849 -72.01 -2.3009

4 116.57 1.7696 107.99 -1.1252

5 116.57 1.7328 107.99 -1.2328

6 0 1.0000 171.18 -0.8230

Table 5.4: DH parameters for a 3× 6 orientational manipulator Jacobian given in (5.13)

i αi(deg) ai θi(deg) di

1 -116.56 1.6593 0 0.000

2 -116.57 0.1226 36.00 1.2161

3 63.44 1.4743 108.00 2.5608

4 116.57 1.7696 -144.00 -1.3454

5 116.57 1.7328 107.99 -1.2328

6 0 1.0000 171.18 -0.8230

Therefore, a generalization can be stated as follows. Consider a permutation of the columns

of J . If this permutation contains a sequence of elements in proper order j, j + 1, · · · , k,
then the link parameters associated with j+1, · · · , k−1 are unaffected by the permutation.

Another case of the permutation of the Jacobian columns is where a series of columns

are shifted in order. For example, consider the the 6×8 Jacobian from [40] (equation (47)),

which is given in (5.15) along with its DH parameters in Table 5.6; and Figure 5.7 illustrates

the manipulator that was obtained from these DH parameters.

J =




1 0.0223 −0.9878 0.1851 −0.6558 0.4505 −0.1501 −0.0246
0 0.7775 −0.1554 −0.9784 0.3045 0.1982 −0.874 0.4298
0 −0.6284 −0.0002 −0.0917 0.6908 0.8705 −0.4622 −0.9026
0 0.413 −0.0978 0.5393 0.7384 0.8588 0.5993 0.7442
1 −0.5796 0.6228 0.1791 0.4491 −0.3626 −0.4523 0.6108
0 −0.7024 −0.7762 −0.8229 0.503 −0.3619 0.6606 0.2706




(5.15)

If a series of columns are shifted together in (5.15), for example, moving column 2 in place

of column 8 and shifting columns 3 to 8 left by a column each then the following Jacobian
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Figure 5.5: A serial mechanism corresponding to the DH parameters given in Table 5.4.
This robot is generated from a 3x6 orientational Jacobian with its columns 2 and 3 swapped.
(This image was generated using the Robotics Toolbox described in [5].)

(5.16) and the DH parameters (Table 5.7) are obtained along with Figure 5.8 representing

the serial manipulator.

J =




1 −0.9878 0.1851 −0.6558 0.4505 −0.1501 −0.0246 0.0223
0 −0.1554 −0.9784 0.3045 0.1982 −0.874 0.4298 0.7775
0 −0.0002 −0.0917 0.6908 0.8705 −0.4622 −0.9026 −0.6284
0 −0.0978 0.5393 0.7384 0.8588 0.5993 0.7442 0.413
1 0.6228 0.1791 0.4491 −0.3626 −0.4523 0.6108 −0.5796
0 −0.7762 −0.8229 0.503 −0.3619 0.6606 0.2706 −0.7024




(5.16)

A comparison between Table 5.6 (DH parameters of the original 6x8 Jacobian) and Table

5.7 illustrates that the rows 3 to 6 of Table 5.7 have the same values as rows 4 to 7 of the DH

parameters of the original Jacobian. Thus the following generalization can be observed. If

the original indices of three successive columns of the new Jacobian are in numerical order,

e.g., Ji−1, Ji, Ji+1, then the DH parameters corresponding to the middle of these columns

will be the same as the DH parameters of the i-th row of the original DH table.
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Table 5.5: DH parameters for a 3× 6 orientational manipulator Jacobian given in (5.14)

i αi(deg) ai θi(deg) di

1 -116.56 1.6593 0 0.000

2 -116.57 0.1226 36.00 1.2161

3 63.44 1.4743 108.00 2.5608

4 116.57 1.7696 -144.00 -1.3454

5 116.57 1.7328 107.99 -1.2328

6 0 1.0000 171.18 -0.8230

Figure 5.6: A serial mechanism corresponding to the DH parameters given in Table 5.5.
This robot is generated from a 3x6 orientational Jacobian with its columns 5 and 6 swapped.
(This image was generated using the Robotics Toolbox described in [5].)

Multiplication of a Jacobian matrix column with -1 and its effects on the DH

table parameters

Another important observation was that when any one of the columns of the Jacobian

were multiplied by -1, the DH table parameters illustrated a specific change in its rows.
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Table 5.6: DH parameters for a 6× 8 orientational manipulator Jacobian given in (5.15)

i αi(deg) ai θi(deg) di

1 -125.42 1.4600 0 0.000

2 -81.73 0.6589 151.13 -1.8307

3 45.77 1.5584 -32.72 0.6112

4 86.29 1.2191 -71.40 -0.2998

5 73.18 0.0669 135.15 0.5906

6 -63.92 1.2365 58.87 1.1461

7 69.60 1.6814 78.59 -1.3864

8 0 1.0000 149.22 -0.4173

Figure 5.7: A serial mechanism corresponding to the DH parameters given in Table 5.6.
This robot is generated from a 6x8 orientational Jacobian. (This image was generated using
the Robotics Toolbox described in [5].)

Consider that the Jacoban in (5.15) has its 4th column multiplied by -1. This gives the

following Jacobian (5.17) along with the corresponding DH parameters in Table 5.8. It

can be noted that in (5.17), the fourth column is boldfaced to illustrate that the column
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Table 5.7: DH parameters for a 6× 8 orientational manipulator Jacobian given in (5.16)

i αi(deg) ai θi(deg) di

1 51.48 0.3237 0.00 0.000

2 45.77 1.5584 -62.91 -1.7754

3 86.29 1.2191 -71.40 -0.2998

4 73.18 0.0669 135.15 0.5906

5 -63.92 1.2365 58.87 1.1461

6 69.60 1.6814 78.59 -1.3864

7 -103.69 0.7165 81.91 0.7789

8 0.00 0.9999 109.32 1.1796

Figure 5.8: A serial mechanism corresponding to the DH parameters given in Table 5.7.
This robot is generated from a 6x8 orientational Jacobian with its 2nd column moved to
the 8th column and columns 3 to 8 were each shifted left by one column. (This image was
generated using the Robotics Toolbox described in [5].)

is changed by multiplying by -1. As a result of that, the corresponding changes in the DH

table are illustrated in Table 5.8, which are also marked by boldfaced numbers, and Figure
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Table 5.8: DH parameters for a 6× 8 orientational manipulator Jacobian given in (5.17)

i αi(deg) ai θi(deg) di

1 -125.42 1.4609 0 0.000

2 -81.73 0.6589 151.13 -1.8308

3 -134.23 1.5584 -32.72 0.6112

4 -93.71 1.2191 71.40 0.2998

5 73.18 0.0669 135.15 0.5906

6 -63.92 1.2365 58.87 1.1461

7 69.60 1.6814 78.59 -1.3864

8 0 1.0000 149.22 -0.4173

5.9 illustrates the resulting manipulator.

J =




1 0.0223 −0.9878 −0.1851 −0.6558 0.4505 −0.1501 −0.0246
0 0.7775 −0.1554 0.9784 0.3045 0.1982 −0.874 0.4298
0 −0.6284 −0.0002 0.0917 0.6908 0.8705 −0.4622 −0.9026
0 0.413 −0.0978 −0.5393 0.7384 0.8588 0.5993 0.7442
1 −0.5796 0.6228 −0.1791 0.4491 −0.3626 −0.4523 0.6108
0 −0.7024 −0.7762 0.8229 0.503 −0.3619 0.6606 0.2706




(5.17)

It can be observed that the manipulator shape in Figure 5.9 is the same as in Figure 5.7,

which is the manipulator for the original manipulator Jacobian in (5.17). The only change

caused by multiplying the 4th column of the manipulator Jacobian by -1 was that the

DH table had the element α (1, 4) change by (α (1, 4) + π); the element α (1, 3) change

by (α (1, 3) + π), the element θ (1, 4) change by (θ (1, 4)× (−1)), and the element d (1, 4)

change by (d (1, 4)× (−1)). It was further observed that this pattern carries out when any

other column is multiplied by -1 and that the resulting manipulator is of the same shape.

This analysis indicates that multiplying the columns of the Jacobian with -1 result in the

same manipulator structure.

5.5 Conclusions

The problem of designing kinematically redundant manipulators that are optimally

fault-tolerant to multiple joint failures is an interesting and challenging problem. In previ-

ous work, it was shown that no manipulator configuration can be equally fault-tolerant to

three or more failures and that no fully spatial manipulator can be equally fault-tolerant
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Figure 5.9: A serial mechanism corresponding to the DH parameters given in Table 5.8.
(This image was generated using the Robotics Toolbox described in [5].)

to two locked-joint failures. However, the case of a two, three, four, and five dimensional

workspace was not addressed. In this chapter, it was shown that no manipulator working

in a two, four, or five dimensional workspace can be equally fault-tolerant to two or more

failures while one can design a family of Jacobians for a six degree-of-freedom manipulator

operating in a three dimensional workspace that are equally fault-tolerant to two simulta-

neous locked-joint failures provided that the workspace is not planar with orientation as its

third degree of freedom [35].

Furthermore, a thorough analysis of the structure of the manipulator Jacobian was

performed by swapping its columns and multiplying them by -1. It was observed that

swapping columns of the orientational Jacobian results in a different manipulator that

is also fault tolerant, but multiplying the columns of the Jacobian with a -1 results in a

specific change in the corresponding row of the DH table although the resulting manipulator

has the same structure. Combining these observations, we can characterize the family of
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non-isomorphic manipulator structures. The fact that there are a limited number of non-

isomorphic structures is significant and makes the problem of investigating the various

possible structures more tractable. In addition, it would allow one to investigate optimally

fault tolerant manipulators that are also optimal in terms of other criteria such as workspace

volume.
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CHAPTER 6

PERFORMANCE ANALYSIS OF FAULT

TOLERANCE MEASURES

With the increased probability of kinematic failures in manipulators operating in remote and

hazardous environments, fault tolerance is a key issue in robotics. Kinematic redundancy is

one approach to the problem of compensating for the failure of individual joints. However,

kinematic redundancy in the manipulator should be added strategically to ensure optimally

fault tolerant system. In this chapter, an analysis is performed on various fault tolerance

measures used in designing optimally fault tolerant manipulator Jacobians using kinematic

redundancy. Condition number as a fault tolerance measure is also presented and analyzed.

Planar 3R examples for a few of the measures are presented and the results noted with

regards to the effectiveness of the different measures.

6.1 Introduction

Since the past two decades, kinematically redundant manipulators have been proposed

for use in remote or hazardous environments due to their potential for tolerance to joint

failures [41], and a number of researchers [9, 42, 43, 44] have shown that by carefully design-

ing the kinematic structure of a redundant manipulator, fault tolerance of the manipulator

can be supported. To design a kinematically redundant fault tolerant manipulator struc-

ture, first one must decide on the definition of fault tolerance, i.e., quantify a measure of

fault tolerance. This measure can be either a local measure, i.e., at a specific configuration

like centered around the manipulator Jacobian [9, 45, 46], or a global measure, i.e., over

a specified region of the workspace of the manipulator [7, 12]. Both of these measures
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are related since workspace boundaries result in manipulator singularities that are easily

identified through the manipulator Jacobian. In the next section, we review some of the

measures that have been used in the literature, provide examples of a few of them, and later

compare it with one of the newer measures for fault tolerance, i.e., the condition number,

and analyze its effectiveness as a fault tolerance measure.

6.2 Background

A number of research groups have investigated the properties of the locked-joint fail-

ures and its effects of reduced manipulability and suggested methods of incorporating fault

tolerance for this failure based on both, local and global, measures. In [9], some of the

earliest work in the areas of kinematic fault tolerance is presented where Maciejewski used

the minimum singular value of the manipulator Jacobian matrix as a local worst-case mea-

sure of a robot’s tolerance to a joint failure. He then used this measure to define optimal

fault tolerant configurations. In [46], two local measures of fault tolerance due to joint

failures based on the manipulability index are defined, namely the reduced manipulability

index and the relative manipulability index (RMI). Both these measures are based on the

classical measure of manipulability index introduced by Yoshikawa in [29]. In [24], Ukidve

et al. use the relative manipulability indices measure of fault tolerance to study the fault

tolerance of a class of parallel manipulators called Gough-Stewart Platforms (GSPs). In

[11], Roberts et al. examine the issue of designing kinematically redundant manipulators

that are optimally fault tolerant to multiple joint failures and discuss the fundamental lim-

itations on the design of fault tolerant manipulators to multiple joint failures. In [22, 23],

Abdi et al. use the condition number as a measure for fault tolerance and derive an optimal

configuration for fault recovery of the manipulator based on the optimality of the condition

number.

In [7], Lewis and Maciejewski define a global measure of fault tolerance for locked-joint

failures based on self-motion manifolds, or in other words, based upon the workspace of

the end effector of the manipulator. They use this measure to determine the necessary

constraints on the joints of the manipulator that would guarantee the reachability of the

task points after a joint failure. In [10], Jamisola et al. addresses the problem of fault-
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tolerant path planning in the presence of obstacles and any single locked-joint failure. They

also use a global measure of fault tolerance based on the self-motion manifolds.

6.3 Specific Performance Metrics

From the above quoted literature, there are a variety of kinematic measures that have

been proposed. In this section we list a few of the measures briefly that have been used

to study the dexterity of the manipulators. Heuristically, the term dexterity is meant to

signify the ease in which the manipulator can move its end effector.

6.3.1 Manipulability Index

One of the classical measures of manipulator dexterity is the manipulability index pro-

posed by Yoshikawa [29]. This measure is based on the determinant of the manipulator

Jacobian for a non-redundant manipulator and was used by Paul and Stevenson [47] to

access the kinematic performance of spherical wrists. For a kinematically redundant ma-

nipulator the manipulability index is defined by Yoshikawa as

w(J) =
√

det (JJT ),

where J is the manipulator Jacobian, J ∈ Rm×n, which relates the manipulator’s joint

velocity to its end-effector velocity v by the Jacobian equation v = Jθ̇. The manipulability

index, w(J), is a nonnegative quantity that takes on the value zero precisely at the singular

configurations of the manipulator, i.e., when J does not have full rank. Configurations

that result in a relatively large manipulability index are usually considered to be dexterous

configurations. On the other hand, configurations with relatively lower manipulability index

correspond to non-dexterous configurations and indicate that the manipulator configuration

is approaching a singularity. Thus the manipulability index measure can be used to obtain

insight into the configuration that should be avoided while designing a robot.

6.3.2 Manipulability Index Based Measures

Based on the manipulability index, a number of measures were derived in the literature

to define a way of measuring fault tolerance. Table 6.1 gives a few of the measures based

on the original manipulability index.
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Table 6.1: Manipulability index and some of its variations

Measure Equation
Eq.
No.

Manipulability Index w(J) =
√

det (JJT )
(6.1)

Reduced Manipulability
Index

wi1,··· ,if (J) = w
(
i1···ifJ

)
=

√
det

(
i1···ifJ i1···ifJT

)
(6.2)

Relative Manipulability
Index

ρi1,··· ,if =
wi1,··· ,if

(J)

w(J) = w(
i1···if J)
w(J)

(6.3)

Dynamic Manipulability
Index

d(J) = w(JH−1)
(6.4)

Reduced Dynamic
Manipulability when passive
joints are locked

dli (θ) =
wi(J)hii

detH = wi(J)hii|n̂i|
detH

(6.5)

Reduced Dynamic
Maniplability when all
passive joints are unlocked

dui = |πi(HnJ )|
detH = w(J)|πi(Hn̂J )|

detH
(6.6)

6.3.3 Minimum Singular Values

The properties of the manipulator Jacobian can be illustrated through the use of the

singular value decomposition (SVD) which can be defined as

J = UΣV T ,
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where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and

Σm×n =




σ1 0 · · · 0 0 · · · 0

0 σ2
. . .

... 0 · · · 0
...

. . .
. . . 0

... · · · 0
0 · · · 0 σm 0 · · · 0




is an m × n diagonal matrix consisting of the singular values, denoted by σi, which are

typically given in descending order: σ1 ≥ · · · ≥ σm ≥ 0. The singular values have been used

to form a variety of kinematic dexterity measures for manipulators. In terms of worst-case

dexterity, the most important singular value is σm, the minimum singular value, since it is

by definition the measure of proximity to a singularity. It is also a measure of the worst-case

dexterity over all possible end-effector motions. It is represented as σm(J).

Thus the manipulability index can be viewed as an overall measure of dexterity while

the minimum singular value as a worst-case measure over all possible end-effector motions.

6.3.4 Condition Number

A number of local dexterity measures have been defined in the literature in terms of

simple combinations of the singular values. For instance, the manipulability index [29]

is simply the product of the singular values of the manipulator Jacobian, the minimum

singular value which is the lowest singular value of the Jacobian matrix [48], the condition

number which is the ratio between the maximum and the minimum singular value of the

Jacobian matrix, proposed by Salisbury and Craig [49], etc. In this section, the condition

number and its properties are discussed for the purposes of fault tolerance. The condition

number measure of the Jacobian can be written as

C (J) =
σmax

σmin
, (6.7)

where σmax and σmin denote the maximum and the minimum singular value of J . The

value of C is bounded between 1 and ∞, where a singularity is characterized by an infinite

condition number while a condition number of one indicates an isotropic configuration of

the robot where the singular values of the manipulator Jacobian are all equal [50, 51]. In

[6], condition number is proposed as one of the possible measures for fault tolerance while

in [22, 23], it is used as a fault tolerance measure to derive an optimal configuration for
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Figure 6.1: A planar 3R manipulator configuration shown with no failures in any joints. The
robot has three joints, n = 3, in a two-dimensional workspace, m = 2, with a redundancy
of one (r = n−m).

fault recovery of the manipulator based on the optimality of the condition number. In the

next section, we will look at a 3R planar example and analyze condition number as the

measure of fault tolerance and compare it with some of the common measures based on the

manipulability index.

6.4 Specific Metric Examples

The planar 3R manipulator shown in Figure 6.1 will be considered for comparison of

kinematic and dynamic manipulability and its reduced measures along with the condition

number measure.

For each link in the planar 3R manipulator, consider the link length to be 1 meter, and

the mass of the links to be 10 kgs. Since manipulability index is a measure based upon the

manipulator Jacobian, as can be observed from Table 6.1, the first task is to calculate the

Jacobian to the 3R manipulator.

For Figure 6.1, the end-effector position of the 3R manipulator is given as

[
x
y

]
=

[
l1c1 + l2c12 + l3c123
l1s1 + l2s12 + l3s123

]
, (6.8)

where c12 is cos(θ1 + θ2) and s12 is sin(θ1 + θ2), etc. Since the Jacobian is the partial

derivative of the end-effector position it can be written as

J =




∂x
∂θ1

∂x
∂θ2

∂x
∂θ3

∂y
∂θ1

∂y
∂θ2

∂y
∂θ3


 (6.9)
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By applying (6.9) to (6.8) the general Jacobian of this specific robot can be written as:

J =

[
−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

]
. (6.10)

For this particular manipulator, the null space of J(θ) can be found by taking the cross

product of the two rows of the Jacobian in (6.8), which produces the null space vector as

follows

nJ =




l2l3s3
−l2l3s3 − l1l3s23
l1l2s2 + l1l3s23


 . (6.11)

Once the Jacobian (6.10) and the null space vector (6.11) is determined one can compute

the different manipulability indices. The details are covered in the next section where a few

selected metrics are computed.

6.4.1 Kinematic Manipulability Index

Consider a planar 3R manipulator with unit length links; l1 = l2 = l3 = 1m. In this

case, (6.11) becomes

nJ =




s3
−s3 − s23
s2 + s23


 =




sin θ3

−2 cos
(
θ2
2

)
sin

(
θ3 +

θ2
2

)

2 cos
(
θ3
2

)
sin

(
θ2 +

θ3
2

)


 . (6.12)

The null space vector (6.12) not only determines the self-motion of the robot but also

the kinematic manipulability. If all joints are active then the norm of nJ determines the

manipulability, while the absolute value of each component determines the manipulability

if the corresponding joint is locked. When a particular component of (6.12) is zero then

full end-effector control is lost if that joint is passive and locked. For instance, a singularity

will occur if θ3 is a multiple of 180◦ degrees and the first joint is locked. In addition, by

locking joints 2 or 3 when θ3+
θ2
2 or θ2+

θ3
2 are multiples of 180◦ will produce a singularity,

respectively.

Consider the following configuration of the 3R planar manipulator where θ1 = 0◦, θ2 =

30◦, and θ3 = −60◦ as shown in Figure 6.2. As can be observed, the configuration of the

joints gives the following sets of angles

θ =




0◦

30◦

−60◦


 . (6.13)
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Figure 6.2: A planar 3R manipulator configuration which is intolerant to failures with
respect to joint three and becomes a locked failed joint.

By entering the values of θ from (6.13) into the Jacobian equation (6.10), we have

J =

[
0 0 1

2

1 +
√
3

√
3

√
3
2

]
. (6.14)

Substituting θ from (6.13) into the null space equation (6.11) provides the following expres-

sion

nJ =




−
√
3

2
1+

√
3

2
0


 . (6.15)

It can be observed that the vector in (6.15) illustrates that if the third joint fails and is

locked this configuration will be fault intolerant.

For an optimally fault tolerant manipulator, each component of the null space vector

should be of the same magnitude. One can show that this is equivalent to (θ2 + θ3) = kπ.

Furthermore, it can be observed from equation (6.12) that θ1 does not play a role while

computing the dexterity of the manipulator. Therefore, the measure of fault tolerance based

on the minimum reduced and relative manipulability index is a function of θ2 and θ3 as

illustrated in Figures 6.3 and 6.4 respectively.

6.4.2 Dynamic Manipulability Index

To illustrate the dynamic manipulability for a planar 3R manipulator, let the links be

of unit length, i.e., l1 = l2 = l3 = 1m, the mass of each link be 10 kg. To find the inertia
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Figure 6.3: Minimum reduced manipulability index contour plot for a planar 3R manipulator
with equal link lengths.

matrix for a planar 3R manipulator, the following equations are used [52]:

a1 = m1r
2
1 +m2l

2
1 +m3l

2
1 + I1

a2 = m2r
2
2 +m3l

2
2 + I2

a3 = m3r
2
3 + I3

b1 = m2l1r2

b2 = m3l1l2

b3 = m3l2r3

b4 = m3l1r3,

where mi is the link mass, li is the link length, ri is the center of mass, and Ii is the moment

of inertia for the i-th link. If the links are modeled as uniform thin rods, then ri =
1
2 li and

the moments of inertia of the links is given by

I =
1

12
ml2,
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Figure 6.4: Minimum relative manipulability index contour plot for a planar 3R manipulator
with equal link lengths.

where m is the total mass of the thin rods and l is the total length of the links. If the 3× 3

inertia matrix H is written as

H =



h11 h12 h13
h21 h22 h23
h31 h32 h33


 ,

then

h11 = a1 + a2 + a3 + 2b1 cos (θ2) + 2b2 cos (θ2) + 2b3 cos (θ3) + 2b4 cos (θ2 + θ3)

h12 = a2 + a3 + (b1 + b2) cos (θ2) + 2b3 cos (θ3) + b4 cos (θ2 + θ3)

h13 = a3 + b3 cos (θ3) + b4 cos (θ2 + θ3)

h22 = a2 + a3 + 2b3 cos (θ3)

h23 = a3 + b3 cos (θ3)

h33 = a3.

Substituting the values for the mass, length, moments of inertia, etc, of the links, the inertia

matrix H for a 3R planar manipulator can be given by

H =



40 + 30c2 + 10c3 + 10c23

50�3 + 15c2 + 10c3 + 5c23
10�3 + 5c3 + 5c23

50�3 + 15c2 + 10c3 + 5c23
50�3 + 15c3

10�3 + 5c3
10�3 + 5c3 + 5c23

10�3 + 5c3
10�3


 . (6.16)
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Figure 6.5: A planar 3R manipulator in an unlocked failed-joint fault intolerant configura-
tion. The first two joints are active while the third joint has failed and is unlocked. Note
that if the failed-joint is locked, the robot would have full end-effector control.

Careful manipulation of (6.16) shows that

detH = 250

(
112

27
− 3c22 −

7

3
c23 −

4

3
c223 + 3c2c3c23

)
, (6.17)

and

HnJ =
5

3



−s2 + 11s3 − 5s23 + 6c2s3 − 6c2s23

−s2 − 6s2c3 + s23
−s2


 . (6.18)

If all three joints are active, the dynamic manipulability is given by d = ∥HnJ∥/detH,

where nJ is the canonical null vector given by (6.12).

Reduced Dynamic Manipulability

If joint i is passive, then the reduced dynamic manipulability is given by (6.5) if joint i is

locked and by (6.6) if joint i is free. For example, the reduced dynamic manipulability if

joint 3 is passive and locked is

du3 =
|s2|

50
(
112
9 − 9c22 − 7c23 − 4c223 + 9c2c3c23

) . (6.19)

In the event that joint 3 is locked, then the reduced dynamic manipulability is given by

dl3 =
|s2 + s23|

25
(
112
9 − 9c22 − 7c23 − 4c223 + 9c2c3c23

) . (6.20)

Now consider an example of an unlocked failed-joint singularity shown in Figure 6.5. The

configuration of joints for this scenario is given by

θ =




0◦

0◦

60◦


 . (6.21)
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Substituting the values of θ from (6.21) in (6.16) the inertia matrix becomes

H =
5

6



96 47 10
47 26 7
10 7 4


 . (6.22)

Also, the Jacobian, i.e., (6.10), given by these values of θ, i.e., (6.21), can then be given by

J =
1

2

[
−
√
3 −

√
3 −

√
3

5 3 1

]
, (6.23)

where the null vector is

nJ =

√
3

2




1
−2
1


 . (6.24)

Multiplying H from (6.22) to nJ in (6.24) gives

HnJ = 5
√
3




1
1/6
0


 , (6.25)

which indicates that if the third joint fails and is left unlocked then this particular config-

uration is fault intolerant, i.e., the robot is in a singularity. On the other hand, the third

component of (6.24) shows that it the failed joint was locked the configuration would be

deemed fault tolerant since the value is not zero. Therefore it is important to not only look

at the kinematic measures but also the dynamic measures at a specific configuration.

Furthermore, it can be observed from equation (6.19) and verified by Figure 6.6 and

Figure 6.7 that in the event that the third joint becomes passive and is unlocked, the

singularity (zero of du3) occurs when θ2 is zero or a multiple of π. On the contrary, from

(6.20), Figure 6.8, and Figure 6.9 it can be observed that for a third joint that is passive and

locked, the singularity (zero of dl3) occurs when θ3 equals ±π and when θ3 equals 2π− 2θ2.

6.4.3 Minimum Singular Value

The minimum singular value is a measure of how close the manipulator is to a singularity.

This measure of fault tolerance was defined and used for designing optimal fault tolerant

manipulators in [9], where the optimally fault tolerant configuration is defined as one in

which all the joints contribute equally to the motion of the end effector, i.e., the Jacobian

is in an isotropic configuration (a configuration where all the singular values are equal and

nonzero). It can be observed that it is generally not possible to obtain close form solution
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Figure 6.6: A mesh plot illustrating the effect of reduced dynamic manipulability index
when joint 3 is passive and unlocked.
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Figure 6.7: A contour plot illustrating the effect of reduced dynamic manipulability index
when joint 3 is passive and unlocked.

for minimum singular value of the reduced Jacobian unless the original Jacobian was in an

isotropic configuration. Furthermore, this measure is dependent on the dimensions used. In
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Figure 6.8: A mesh plot illustrating the effect of reduced dynamic manipulability index
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Figure 6.9: A contour plot illustrating the effect of reduced dynamic manipulability index
when joint 3 is passive and locked.

[7] it is noted that an appropriate scaling of the rows associated with the linear components

of the manipulator Jacobian must be performed before this measure becomes meaningful.
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6.4.4 Condition Number and Manipulability Index

In this section, the condition number is used as a measure of performance of a 3R

manipulator shown in Figure 6.1. Once the Jacobian is obtained as in (6.10), the condition

number for the Jacobian is computed using MATLAB. The results for the mesh plot and

the contour plots are presented in Figure 6.10 and Figure 6.11 respectively.
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Figure 6.10: A mesh plot illustrating the use of condition number as a measure of fault
tolerance. Note that there is a singularity at θ2 = θ3 = 0.

The mesh plots for the condition number (Figure 6.10) and manipulability index (Figure

6.12) show that the effect of singularity can be clearly observed from both the figures. The

difference is that one graph illustrates the singularity at the center of the graph facing

downwards while the other pointing upwards. The contour plots of both, the condition

number (Figure 6.11) and the manipulability index (Figure 6.13), show the effect of the

singularity, showing that the intensity is more towards the center of the graphs.

While the condition number has been successfully used as a measure of manipulator

dexterity [50], it is not as well-suited as a means of measuring fault tolerance. In fact, the

condition number of a Jacobian can actually improve after a locked-joint failure. To see
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Figure 6.11: A contour plot illustrating the use of condition number as a measure of fault
tolerance.
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Figure 6.12: A mesh plot illustrating the use of manipulability as a measure of fault tolerance
for comparison with condition number.

this, consider

J =

[
1 0 1
0 1 1

]
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Figure 6.13: A contour plot illustrating the use of manipulability as a measure of fault
tolerance for comparison with the condition number.

which has the condition number C (J) =
√
3 while the condition number of 3J , the Jacobian

matrix with its third column removed due to failure in joint 3, i.e.,

3J =

[
1 0
0 1

]
,

is equal to 1, the best possible value for a condition number despite a failure in joint 3.

Thus it would not be one of the best measures of fault tolerance.

6.5 Conclusions

First, the chapter presented several measures of fault tolerance. Then some of these

measures were presented with examples. In the end, the condition number as a measure

of fault tolerance was tested and compared to measures based on the manipulability index.

Furthermore, conclusions are derived with regards to the importance of condition number

as a measure of fault tolerance, which is one of the newer measures used in this capacity [53].

Part of the contribution of this chapter is to analyze existing measures and compare the

validity of the condition number as a measure of fault tolerance. As pointed out earlier with

an example, condition number is not as well suited for fault tolerance as other measures used

75



in literature. One disadvantage of measures such as the minimum singular value and the

condition number is their dependence on the singular values of the manipulator Jacobian,

which are not invariant under changes in units. This is also true of the manipulability index.

An advantage of using the relative manipulability index as compared to the other local

measures discussed is that it is not dependent upon the units of the Jacobian. However,

while the relative manipulability index is defined in terms of the manipulability index, it is

a ratio of the manipulability index of two Jacobians and is not dependent upon the units

chosen. In fact, as a function of the null space of the manipulator Jacobian, the relative

manipulability index is a geometric property of the manipulator and is independent of the

coordinate frame and units chosen by the operator.
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CHAPTER 7

DESIGN OF A FAULT TOLERANT

KINEMATICALLY REDUNDANT WRIST

7.1 Introduction

The amount of fault tolerance that a manipulator possesses is closely related to the null

space of the manipulator Jacobian [11]. Indeed, the relative manipulability index can be

completely characterized in terms of the null space of the manipulator Jacobian. Let J be

a full rank m × n matrix with m < n and let r = n − m. For a manipulator, m denotes

the dimension of the workspace, n denotes the number of joints, and r denotes the degree

of redundancy. We will call an n × r matrix N a null space matrix of J if the columns of

J form an orthonormal basis for the null space of J . Although the null space matrix N

is not unique for a given J , any two null space matrices N and N ′ of J are related by an

orthogonal matrix Q in the following way: N ′ = NQ.

In [6], it was shown that the relative manipulability index ρi is given by the norm of the

i-th row of N . In the case of a single degree of redundancy, one has

ρi = |ni|, i = 1, 2, · · · , n, (7.1)

where ni is the i-th component of the unit length null vector n̂J . Thus the relative ma-

nipulability is strictly a function of the null space of J . This important observation allows

for the design of a fault tolerant manipulator based on the null space of the manipulator

Jacobian.

Furthermore, we note that
n∑

i=1

ρ2i = 1, (7.2)
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so that the minimum relative manipulability index is less than or equal to 1/
√
n. Since one

would want to maximize the minimum relative manipulability index, it is desirable to have

configurations where the components of the unit length null vector are all equal, i.e., where

n̂J =
1√
n




1
1
...
1


 . (7.3)

Thus it can be observed that a manipulator with a single degree of redundancy is in an

optimally fault tolerant configuration in the sense of maximizing the minimum relative

manipulability if its null vector has components of equal magnitude. We will use this

observation to design an optimally fault tolerant 4-DOF spherical wrist type mechanism.

7.2 Closed form solution for the optimal Jacobian

Consider a full rank 3× 4 orientational Jacobian

J =
[
J1 J2 J3 J4

]
. (7.4)

The columns of such a matrix have unit length and represent the axes of rotation for the

corresponding joints. Without loss of generality we assume that the components of the unit

length null vector are all equal so that

n̂J =
1

2




1
1
1
1


 . (7.5)

We can accomplish this by multiplying certain columns of the Jacobian by −1 if necessary,

which does not essentially change the structure of the robot. Hence, an optimally fault

tolerant 3×4 orientational Jacobian has the property that its columns have unit length and

their sum is the zero vector. Traditionally, the first column of an orientational Jacobian is

given by

J1 =



0
0
1


 . (7.6)
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If the first twist angle is denoted by α, we can assume without loss of generality that the

second column of J is

J2 =




0
− sinα
cosα


 (7.7)

by applying a suitable rotation about the z-axis, i.e., we can choose the first angle so as to

zero out the first element of the J2.

When two vectors are added, their sum follows the parallelogram law, i.e., we can think

of the two vectors as corresponding to two adjacent sides of a parallelogram and their sum

given by the corresponding diagonal. This diagonal will appear at some angle between the

two vectors. In the case of two vectors with the same magnitude, say of unit length, the

vector sum will bisect the two vectors and will have a magnitude
√

2(1 + cosφ) = 2 cos(φ/2),

where φ is the angle between the two vectors with 0 ≤ φ < π. In order for four unit vectors

to sum to the zero vector, the sums of the first two vectors and the second two vectors must

have equal magnitudes and be in opposite directions. In the case here, we have

J1 + J2 =



0
0
1


+




0
− sinα
cosα


 = 2 cos

(α
2

)



0
− sin α

2
cos α

2


 , (7.8)

where we have assumed that 0 ≤ α < π. For all four unit vectors to sum to zero, the angle

between the other two columns of J should also be α and the bisector of J3 and J4 should

be −J1 − J2. It then follows that the family of suitable unit vectors J3 and J4 is obtained

by rotating −J1 and −J2 about the unit vector

k̂ =




0
− sin α

2
cos α

2


 . (7.9)

The rotation matrix R
k̂
(β) representing a rotation of β radians about k̂ is given by

R
k̂
(β) =



1 0 0
0 cos α

2 − sin α
2

0 sin α
2 cos α

2





cosβ − sinβ 0
sinβ cosβ 0
0 0 1





1 0 0
0 cos α

2 sin α
2

0 − sin α
2 cos α

2


 . (7.10)

Since J3 = −R
k̂
(β)J1 and J4 = −R

k̂
(β)J2, it follows that

J =



0 0 sin α

2 sinβ − sin α
2 sinβ

0 − sinα sinα sin2 β
2 sinα cos2 β

2

1 cosα − cos2 β
2 − sin2 β

2 cosα − sin2 β
2 − cos2 β

2 cosα


 . (7.11)
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Note that because J3 and J4 were obtained from J1 and J2 using the same rotation matrix,

it follows that the angle between J3 and J4 is equal to the angle between J1 and J2. This

implies that the DH parameters α1 and α3 must have the same magnitude.

Due to the nice geometric structure associated with the columns of J , it is easy to

identify α and β values that result in a rank-deficient matrix. For example, when α = 0,

it follows that J1 = J2 and J3 = J4 = −J1, thus implying that J only has rank one. If

α = 180◦, then J1 = −J2, and furthermore, J3 = −J4 would make an angle of β, implying

that J would have rank two. Lastly, if J1 and J2 are linearly independent, we observe that

if β = 0, we would have J1 = −J3 and J2 = −J4 so that J has rank two, and if β = 180◦

then J1 = −J4 and J2 = −J3; in both cases, J would have rank two.

Indeed, we can conclude from the geometric symmetry that all four reduced Jacobians

iJ have essentially the same structure. Thus, each iJ has the same singular values. In other

words, locking any single joint results in the same reduced manipulator dexterity.

In fact, J exhibits enough geometric structure that it has a closed form singular value

decomposition:

J = UΣV T , (7.12)

where

U = Rx(
α

2
)Rz(

β

2
) =




cos β
2 − sin β

2 0

cos α
2 sin β

2 cos α
2 cos β

2 − sin α
2

sin α
2 sin β

2 sin α
2 cos β

2 cos α
2


 , (7.13)

Σ = diag(2 sin
α

2
sin

β

2
, 2 sin

α

2
cos

β

2
, 2 cos

α

2
), (7.14)

and

V =
1

2




1 1 1 1
−1 −1 1 1
1 −1 −1 1

−1 1 −1 1


 . (7.15)

Note that in this case, the elements in Σ are not necessarily listed in any particular order

and that these can take negative values for certain values of α or β. However, it is easy

enough to reorder the necessary values and incorporate sign changes to make (7.12) into a

regular SVD. The manipulability index is given by the product of the three singular values,

i.e., w(J) = 2 sin α
2 sinα sinβ. Furthermore, since each component of the unit length null
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Table 7.1: DH parameters for a generic 4-DOF spherical wrist type mechanism in (7.16)

i αi(deg) θi(deg)

1 120 0

2 128.68 -106.10

3 -120 -73.90

4 0 -153.59

vector has value 1/2, it follows that each relative manipulability index is 1/2 and each

reduced manipulability index is wi(J) = sin α
2 sinα sinβ.

7.3 Two Simple Examples

As an example, let α = 120◦ and β = 120◦. In this case, the orientational Jacobian in

(7.11) becomes

J =



0 0 3

4
−3
4

0 −
√
3

2
3
√
3

8

√
3
8

1 −1
2

1
8

−5
8


 . (7.16)

Table 7.1 gives the DH table corresponding to (7.16) while Figure 7.1 shows a generic 4-

DOF spherical wrist type mechanism that can be placed into a fault tolerant configuration.

The singular values for this particular Jacobian are 3/2, 1, and
√
3/2, and the manipula-

bility index w(J) is 3
√
3/4 = 1.299, which compares reasonably well with the maximum

manipulability index of 8
√
3/9 = 1.5396. By design, the relative manipulability index is

ρi = 1/2 for any joint failure. This is the optimal value for maximizing the minimum

relative manipulability index over all possible failures.

Not every 4-DOF wrist mechanism satisfying the requirement that the twist angles α1

and α3 have equal magnitude necessarily has a configuration that is equally fault tolerant

to any locked joint failure. Consider a 4-DOF wrist with twist angles α1 = α2 = α3 = 90◦

such as the manipulator shown in Figure 7.2. The corresponding orientational Jacobian is

J =



0 s1 c1s2 c1c2s3 − s1c3
0 −c1 s1s2 s1c2s3 + c1c3
1 0 −c2 s2s3


 =



c1 −s1 0
s1 c1 0
0 0 1





0 0 s2 c2s3
0 −1 0 c3
1 0 −c2 s2s3


 , (7.17)
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Figure 7.1: A spherical wrist type mechanism that can be placed in an optimally fault
tolerant configuration.

and the canonical null vector, which is found from the 3× 4 sub-determinants of J , is

nJ =




s3
−s2c3
c2s3
−s2


 . (7.18)

In order for the four components of (7.18) to have equal magnitudes, each component must

be equal to zero. Otherwise, s3 is necessarily non-zero and equating the magnitudes of the

first and third components of nJ implies that c2 = ±1, which further implies that s2 = 0,

i.e., that the second and fourth components of nJ are equal to zero. This contradicts the

non-zero, equal magnitude requirement. It is interesting to note that when θ2 = 180◦ and

θ3 = 0, we do in fact have J
[
1 1 1 1

]T
= 0; however, in this case, the manipulator is

in a kinematic singularity. Clearly, such a configuration is undesirable and would not be

considered to be fault tolerant.

7.4 Fault Tolerance and the Isotropy Condition for
Orientational Jacobians

In designing a suitable fault tolerant orientational Jacobian, one would want to make

sure that the original manipulability at the design point is relatively large. One can show
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Figure 7.2: A spherical wrist type mechanism that is at a singularity.

that the largest possible value for the manipulability index of a 3×4 orientational Jacobian is

8
√
3/9. To see this, note that because the columns of J have unit norm, the Frobenius norm

squared ∥J∥2F , which is given in terms of the singular values of J by σ2
1+σ2

2+σ2
3, is equal to

4. Hence, we want to maximize σ1σ2σ3 subject to σ2
1 + σ2

2 + σ2
3 = 4. The optimal solution

is given by setting all three singular values to σi = 2/
√
3. In other words, the original

manipulability is maximized precisely when the manipulator is in an isotropic configuration,

i.e., a configuration where all three singular values of the orientational Jacobian are equal.

Interestingly, it can be shown that any isotropic orientational Jacobian is optimally fault

tolerant in the sense of maximizing the minimum relative manipulability index. To see

this, observe that the singular value decomposition of a 3 × 4 isotropic Jacobian has the

form J = σV T
1 , where the output vector matrix V1 consists of the first three columns of an

orthogonal matrix V =
[
V1 V2

]
, and σ is equal to the value of the three singular values

of J . The requirement that the columns of an orientational Jacobian J = σV T
1 are of

unit length dictates that the columns of V T
1 each have the same norm. Consequently, the

magnitudes of the elements of the vector V2 are all equal owing to the fact that V is an

orthogonal matrix so that each row of V has unit length. Since V2 is equal to the unit

length null vector n̂J , it follows that the manipulator is also optimally fault tolerant.

Kinematic isotropy has been studied by a number of researchers. In [51], the family of

DH tables for isotropic spherical wrists are presented. An example of such a DH table is
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Table 7.2: DH parameters for an optimally fault tolerant 3 × 6 orientational manipulator
Jacobian in (7.19)

i αi(deg) θi(deg)

1 116.6 0

2 -116.6 144

3 116.6 -72

4 116.6 108

5 116.6 108

6 0 171.2

given in Table 7.1.

Before concluding this chapter, we point out that the 3×6 Jacobian presented in Chapter

5 provides an example of an orientational Jacobian that is equally fault tolerant to two locked

joint failures:

J =



0 −0.8910 0.7671 −0.3502 −0.2005 0.6746
0 0.0788 0.4600 −0.8231 0.8717 −0.5873
1 −0.4472 −0.4472 −0.4472 −0.4472 −0.4472


 . (7.19)

Not only is this particular orientational Jaocobian optimally fault tolerant, it is also isotropic

and, consequently, has a maximum pre-failure manipulability index. A corresponding DH

Table is given in Table 7.2.

7.5 Conclusions

In this chapter, we presented a methodology for designing an optimally fault tolerant

4-DOF spherical wrist type mechanism. This approach was based on maximizing the mini-

mum relative manipulability index. It was shown that the orientational Jacobian must have

a certain form for the manipulator to have the best possible relative manipulability index

value of 1/2. An optimal configuration along with the corresponding DH parameters was

presented. It was also pointed out that isotropic configurations of a 4-DOF spherical wrist

type mechanism are fault tolerant in this sense, and furthermore, isotropic configurations

for these types of mechanisms are also optimal in the sense that they have the largest pos-

sible manipulability index prior to a failure. An example of an orientational Jacobian for a

6-DOF spherical wrist that is equally fault tolerant for any two joint failures was presented.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions and Contributions

Fault tolerance is a critical issue in the field of robotics, particularly for tasks requiring

robots to work in hazardous and remote environments where failures are common or even

inevitable. In such cases, the robot’s performance should degrade gracefully and the robot

should be able to complete its task. The emphasis of this work was to design manipulators

that are failure tolerant to one or more locked joint failures. By designing a class of optimal

manipulator Jacobians, local fault tolerance can be guaranteed. Optimality of course de-

pends on the choice of a fault tolerance metric. In this work, we compared several different

metrics and identified optimal manipulator configurations. Upper bounds for one particular

metric, the relative manipulability index, were identified, and it was shown that the upper

bound can be obtained for a particular class of 3× 6 manipulator Jacobians. This fact was

used to design an optimally fault tolerant 4-DOF and a 6-DOF orientational mechanism.

More specifically, the following are the contributions of this work presented chapter wise.

8.1.1 Design of Equally Fault Tolerant Manipulators for Non-Spatial
Cases

This work is primarily related to the design and analysis of kinematically redundant fault

tolerant manipulators. One approach to measure and design for fault tolerance is to quantify

a measure for fault tolerance. The measure used in this work is the relative manipulability

index initially introduced in [6]. First, after briefly reviewing the existing literature on

kinematically redundant manipulators, we examined the problem of designing manipulators

that are fault tolerant to two simultaneous locked-joint failures. The term used to define
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such manipulators is equally fault tolerant manipulators. In the literature the fully spatial

case (six-dimensional workspace, i.e., m = 6) for equally fault tolerant manipulator has

been analyzed in [11]. For the first time, the non-spatial cases (two dimensional workspace

(m = 2) up to five dimensional workspace (m = 5)) are investigated for the possibility of

existence of solutions for equally fault tolerant manipulators. It is shown that for a robot

manipulator working in a three-dimensional workspace to be equally fault-tolerant to any

two simultaneous joint failures, the manipulator must have precisely six degrees of freedom

[38]. A corresponding family of Jacobians with this property is identified. It is also shown

that the two-dimensional workspace problem has no such solution, and neither does the

workspace for m = 4 or m = 5 [35]. Thus non-fully spatial robot manipulators can be

designed that are equally fault-tolerant to any two simultaneous locked-joint failures only

when the robot is working in a three-dimensional workspace provided that the workspace is

not planar with orientation as its third degree of freedom. Furthermore, MATLAB software

is used to analyze the manipulator corresponding to the Jacobian identified for the three-

dimensional case. Another contribution of this aspect of research is the geometric analysis

of the family of fault tolerant Jacobian by analyzing the effect of column permutations of

the Jacobian on the DH table parameters. It was observed that if the column permutation

of the Jacobian contains a sequence of elements in proper order j, j + 1, · · · , k, then the

link parameters associated with j + 1, · · · , k − 1 are unaffected by the permutation. Also,

if the original indices of three successive columns of the new Jacobian are in numerical

order, e.g., Ji−1, Ji, Ji+1, then the DH parameters corresponding to the middle of these

columns will be the same as the DH parameters of the i-th row of the original DH table.

Lastly, multiplication of a Jacobian column with -1 results in a specific change in the DH

table parameters. This analysis indicates that multiplying the columns of the Jacobian

with -1 result in the same manipulator structure. Combining these observations, we can

characterize the family of non-isomorphic manipulator structures. The fact that there

are a limited number of non-isomorphic structures is significant and makes the problem

of investigating the various possible structures more tractable. This would allow one to

investigate optimally fault tolerant manipulators that are also optimal in terms of other

criteria such as workspace volume.
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8.1.2 Performance Analysis of Fault Tolerance Measures

In the literature a number of fault tolerance measures have been proposed but not all

have been implemented. Amongst such measures, the condition number has been proposed

as a measure for fault tolerance [6] and recently implemented for designing optimally fault

tolerant manipulators [53]. In this work, a review of various measures of fault tolerance is

conducted with simulation examples of a planar 3R manipulator to illustrate the behavior of

these measures. Then an investigation is performed on the performance of condition number

as a measure of fault tolerance using the planar 3R manipulator example and simulating

the characteristics of the condition number. The results are compared with other measures

of fault tolerance. From the investigation here, it appears that the condition number is not

a reliable measure of fault tolerance. Indeed, an example was provided to illustrate that in

a particular case, the condition number is at an optimum value of 1 after a failure in a joint

even though the condition number prior to failure can be chosen to be arbitrarily large.

8.1.3 Optimally Fault Tolerant Kinematically Redundant Wrist Design

In this part of the work, the main contribution is the design of an optimally fault

tolerant 4-DOF spherical wrist type mechanism. The design of this mechanism was based

on maximizing the minimum relative manipulability index. Once the form of an optimal

Jacobian is identified, a family of mechanisms can be designed so that the device possesses

an optimally fault tolerant nominal configuration. It was shown that the orientational

Jacobian must have a certain form for the manipulator to have the best possible relative

manipulability index value of 1/2. An optimally fault tolerant nominal configuration along

with the corresponding DH parameters was presented and a model of the 4-DOF wrist type

mechanism was derived. It was also pointed out that isotropic configurations of a 4-DOF

spherical wrist type mechanism are fault tolerant in this sense and furthermore, isotropic

configurations for these types of mechanisms are also optimal in the sense that they have the

largest possible manipulability index prior to a failure. Furthermore, the design example

presented was also shown to be isotropic. Next, a geometric argument on finding the closed

form solution is also contributed. Lastly, an example of a 6-DOF spherical wrist mechanism

that is equally fault tolerant for any two joint failures was also presented.
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8.2 Future Work

With respect to extending the work of this dissertation, even though there are no equally

fault tolerant configurations possible for the two-dimensional, four-dimensional, and five-

dimensional workspace, one can still design manipulators for worst case optimal fault tol-

erance for up to any two simultaneous failures at nominal configuration. Furthermore,

the fault tolerant wrist can be characterized more completely by looking at its workspace.

Lastly, current work only looks at the design of optimally fault tolerant manipulators from

the perspective of local measures. This can be extended by examining the design of manip-

ulators from the perspective of global measures, which are essential when the workspace of

the manipulator is large.
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