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Abstract 

We describe a numerical approach for the detection of discontinuities of a two dimensional function 
distorted by noise. This problem arises in many applications as computer vision, geology, signal 
processing. The method we propose is based on the two-dimensional continuous wavelet transform 
and follows partially the ideas developed in [2], [6] and [8]. It is well-known that the wavelet 
transform modulus maxima locate the discontinuity points and the sharp variation points as well. 
Here we propose a statistical test which, for a suitable scale value, allows us to decide if a wavelet 
transform modulus maximum corresponds to a function value discontinuity. Then we provide an 
algorithm to detect the discontinuity curves from scattered and noisy data. 

AMS Subject Classifications." 65R30, 65D15, 65R10. 
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1. Introduction 

We describe a method to detect the curves across which a two dimensional 
function distorted by noise is discontinuous. Before starting, we state the 
problem. Our aim is to detect a discontinuity curve from a set of functional data 
{zi}7= 1 which has been sampled at some points {ri}7= 1 of a parameter domain 
Q c R2. The values {zi}i"= 1 can be thought as a realization 

z i = f ( r i )  + e( r i ) ,  i = 1 , . . . , n  (1) 

of a process 

z (x ,y )  =f (x ,  y) +e(x,  y), (2) 

where the trend f(x, y) is discontinuous across an unknown curve / of Q and 
smooth in any neighbourhood of Q which does not intersect / ;  e(x, y) is white 
noise with expected value E{e} = 0 and variance E{e 2} = o v2 < 00; 

We suppose / being a Q one-curve with equation y = l(x) (all the things we 
prove, hold also for the case x = l(y)). Without loss of generality we will suppose 
Q to be the unitary square [0,1] × [0,1]. 

This problem arises in many applications as computer vision, geology, signal 
processing. In fact, the most important information of a particular phenomenon 
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is often carried by irregular structures. The accurate detection of such discon- 
tinuity curves is then of basic importance to analyze and recover the considered 
phenomenon correctly. We can think, for instance, about subsoil or depth faults 
which represent discontinuities in geological layers caused by severe movements 
of the earth crust. Their localization provides useful information for geologists 
about, for instance, the occurrence of oil reservoirs. 

The method we propose in this paper is based on the two-dimensional continu- 
ous wavelet transform and follows partially the ideas developed in [2], [6] and [8]. 

It is well-known (see for instance [4], [6]) that a signal can be well localized in 
time and frequency by the wavelet transform which is therefore well-adapted to 
describe transient phenomena like signal sharp variation and singularities. 
Moreover, it is possible to characterize the local regularity by theorems relating 
the Lipschitz exponent to the wavelet transform evolution across scales. It is 
known [6], [7] that the important information is carried by the wavelet transform 
modulus local maxima which locate either the strong function variation or the 
discontinuities. 

The question is how to distinguish between maxima corresponding to discon- 
tinuities and maxima corresponding to sharp but continuous variation. The noise 
fluctuations, then, introduce false discontinuities and, as consequence, we could 
also find maxima due to the noise. 

For the one-dimensional case, Mallat and Hwang provide in [6] a numerical 
procedure to estimate the Lipschitz exponent for some kind of singularities 
when the function is not distorted by noise. They also provide a denoising 
algorithm, for one and two dimensional signals, which removes the maxima due 
to the noise by studying their evolution across different scales. Moreover, for the 
two dimensional case, they discriminate the irregularities due to the noise also 
using some coherence hypotheses: the singularities belong to regular curves and 
vary smoothly along these curves while the noise, usually, does not produce 
smooth curves. In this way they detect the signal important structures. But, as 
already proved in [2] for the one dimensional case and how it will be shown 
later, this is not enough to solve our problem. 

For this reason we propose a method, based on a statistical test, which, for a 
suitable scale value, allows us to decide if a wavelet transform modulus maxi- 
mum corresponds to a function value discontinuity. In Section 2 we will 
introduce the two dimensional wavelet transform; according to Canny's edge 
detection [3], we will define the wavelet transform modulus maxima and we'll 
prove a theorem which characterizes the wavelet transform behaviour in a 
neighbourhood of a maximum corresponding to a function value discontinuity. 
We will consider the presence of the noise in Section 3 and, using the results 
obtained in Section 2, we will perform a statistical test to detect the discon- 
tinuity curve. In Section 4 we shall provide a detection algorithm from data 
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collected on scattered points {ri}i~ 1 of Q. In applied problems we often deal 
with this situation which presents more difficulties than the case of gridded data 
already studied in [8]. Finally, some numerical results are shown in Section 5. 

2. Introductory Material and the Characterization Theorem 

In this section we recall, following [6], some notations and definitions which will 
be largely used in the paper. 

For any function h(x, y), ha(x , y) denotes the dilation of h(x, y) by the scale 
factor a, a ~ ~, a > 0 

1 Ix  y~ 
h°(x, y) : ) 

Let us call smoothing function any function ~b(x) such that ~b(x) = O(1/(1 + x2)) 
and whose integral f~ ~b(x)dx is nonzero. We call two-dimensional smoothing 
function, any function O(x, y) whose double integral is nonzero. We define two 
basic wavelets ~l(x,y), qt2(x,y) that are, respectively, the partial derivative 
along x and y of a smoothing function O(x, y) 

0 0 
q , l ( x , y ) = ~ 0 ( x , y ) ,  # , 2 ( x , y ) = ~ 0 ( x , y ) .  (3) 

The two-dimensional wavelet transform of a function f(x,  y) ~ LZ(~ 2) defined 
with respect to Ol,=(x, y) and 02,a(x, y) has two components 

Wl,f,a(bl, 62) = f  • tPl,a(b 1, bz), 

W2,f,a( bl,b2) = f :~ ~t2,a( bl,b2). 
Let us consider the vector 

Wf,=(ba, 62) = (Wl,f,a(bl, b2) , W2,f,a(bl, b2));  (4) 

we call wavelet transform modulus at the scale a the modulus of Wl, ~, that is the 
function 

SWf,a(bl, b2) = ~/W12,,f,a(61,62) -'~ W22,f,a(bl, b2). (5) 

We consider the angle 

( W2,f, a(bl'b2) ) 
O~w(bl, b2) = arctan Wl,f,a(bll b2 ) (6) 

between the vector (4) and the horizontal. 

One can easily prove that the two components of the wavelet transform are 
proportional to the gradient vector of f smoothed by 0 a. Canny [3] defines the 
edge points at the scale a as the points where the modulus of (4) is maximum in 
the direction where the vector points to. This direction is where f has the 
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sharpest variation. Using this approach, Mallat and Hwang have defined the 
modulus maxima. As in [6] we call wavelet transform modulus maxima, the 
points (2, y) of Q where the function SWr, a is locally maximum along the 
direction given by a,,(ff, y). Namely a point (if, y) is called modulus maximum if 
the restriction of SWI, a(bl, b 2) to the straight line of Q, b 2 = tan(aw(ff, y))(b a - 
2) +y,  is locally maximum at b 1 =2. Then the modulus maxima locate the sharp 

i 

Figure 1. Top: the function, bottom: the modulus of its wavelet transform 
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variation of f ,  and the angle (6) indicates locally the direction where the signal 
has the sharpest variation. 

From above it is clear that the modulus maxima of SWy,a locate either the 
discontinuity curve / or the sharp but continuous variation points of f .  The 
example of Fig. 1 explains what is stated above: the function f is shown in the 
top picture, while its wavelet transform modulus is displayed on the bottom. As 
we can easily see, the graphic shows two curves of modulus maxima: the straight 
line x = 0.65 across which f is discontinuous and the straight line x = 0.325 
across which f varies sharply. 

It follows that it is not possible to tell which is the discontinuity curve analysing 
SWa, I only. 

It is then necessary to dispose of an instrument to distinguish between this 
different situation. Our approach is based on Theorem 2.1 which, for a fixed 
scale a, gives the wavelet transform modulus value at the points belonging to a 
neighbourhood of a discontinuity point (see the following relation (8)). Theorem 
2.1 has been proved in the particular case a constant C exists such that the 
function f (x ,  y) is equal to a constant k 1 for all (x, y) ~ Q with l(x) <y < l(x) 
+ C, and equal to a different constant k 2 for all (x,y)  ~ Q with l(x) - C <y < 
l(x). 

Theorem 2.1. Let f (x ,  y) ~ L2([~ 2) and suppose f(x ,  y) be discontinuous across the 
planar curve / of equation y = l( x ). Let the following conditions hold 

i) a constant C exists such that V(x,y) E Q with l(x) < y < l(x) + C, f (x ,  y) is 
equal to a constant k I and equal to a different constant k 2 V(x, y) with 
l(x) - C < y  < l(x); let O = {(x, y) ~ Q such that l(x) - C < y < l(x) + C} 

ii) let l(x) be continuous and piecewise derivable with II'(x)l <_ H < ~. 
Let us consider a family of wavelets q~l.,, 02,a such that 

iii) O(x,y) is equal to 4)(x)ch(y), where d) is a one-dimensional smoothing 
function; let 0 be the first derivative of  49; 

iv) the basic wavelets (3) have compact support I - A ,  A] × I - A ,  A]. 
Set for simplicity 

C (x 'Y )=  f-AAdP(t)ch( l(at +x)a 

d (x 'Y )  = f-AA ch(t)dP( l(at +x) a 

and 

- Y  )l'( at +x)dt ,  

- Y  )dt, 

G( x, y) = 1/c2( x, y) + d2( x, y) .  

Let (Xo, Yo) be a point belonging to f . If  the scale parameter a is such that the 
support of  ~bl.a(x - Xo, y - Yo) and O2,~(x - Xo, y - Yo) is included in 12, that 
is 
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[x o - aA, x o + all] × [Yo -- aA, Yo + aA] c ~ ,  

we have 

SWLo( Xo, Yo) = lk~ - k f iG(  x o, Yo), (7) 

where G(xo, Yo) 4: 0. 
Moreover, let (bl, b 2) be such that the support of  ~ l , . ( x -  bl, y - b  2) and 
~Oz,,,(x - b~, y - b 2) is included in gl, that is [b 1 - aA, b I + aA] × [b e - 
aA, b 2 + aA] c ~0. Then, if 
( b l , b z ) belongs to the neighbourhood of  ( x o , Y o ), I ( x o , Yo) = [xo - aA/2 ,  x o 
+ aA/2]  X [Yo - aA/2,Yo + aA/2]  but not t o / ,  

we have that the value of  the wavelet transform modulus in (bl, b~) is given by 
the following relation 

a ( b , ,  b,)  SW~,.(xo,Yo)" (8) 
SWf.o(bl,bz) = G(xo,Yo) 

Proof" Let (Xo, Yo) be a point of f and consider Wl,f,.(x o, Yo), Wz,fe(Xo, Yo). By 
definition and by iv) 

 (yo+OA fXo+.Af(x, . / x - x o  Y-Yo) 
Wl'f'"( x°' Y°) = a2 Jyo-~ xo-aA a 

l fyo+°A Xo+~ f ( x ,  ( x - x °  Y - Y °  )dxdy" 
W2"f'a(X°'Y°) = a z Jyo-oA Lo- .A Y)~z  a ' a 

Observe that the domain of integration is the union of the two sub-domains 
having f as common boundary. Let a be such that they are normal with respect 
to x or to y. Let us suppose they are normal with respect to x (the other case is 
the same). So, if v) holds, splitting the domain of integration, making the change 
of variables t = (x - xo)/a, u = (y - yo)/a,  using iii) and using i), we get 

Wlj , . (xo ,  Yo) -- k l f  A d t [  A @(t) d~(u)du 
J - A  J ~  

rA ft(at+xn)-Y~ 
+k2] AdtJ_A" ~ ( t ) ¢ ( u ) d u ,  (9) 
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Integrating (9) and (10) we obtain 

Wl'f'a( x°' Y°) = ( kl - k 2 )  fAA~b( t ) 4'( l( at + x°) -Y°  ) l'( at + a (11) 

cA . .  . [ l (a t+xo)  ) 
Wz ' f 'a (X° 'Y°)=(kz -k l )J_A*( t )4~[  a -YO,dt .  (12) 

Then, from (5), (11), and (12) we get (7). 

Let us observe that G(xo, Yo)4: O. This follows immediately from the assump- 
tions on the smoothing function 0. 

Consider a point (b 1, b 2) such that ]b I - x  0] < aA/2 ,  ]b 2 -Y01 < a A / 2  and such 
that [b 1 - aA, b x + aA] × [b 2 - aA, b 2 + aA] c S2. Going on as in the previous 
part of the proof, we get 

Wl , f , a (b l , b2 )=(k l - k2 )  _ 4(t)4~ a l ' (a t+bl)dt ,  (13) 

t W2, ,o(bl,b2) = (k2-kl)  f_A 4404, dt. (14) 
A a 

Then from (5), (13), and (14) we get 

SWf,~(bl,b2) = [ k , - k 2 [ ¢ c 2 ( b l , b 2 )  +d2(bl ,b2).  (15) 

Combining (7) with (15) we get (8). 

Remark 1. It is not difficult to show that when (bl, b 2) ~ (x o, Yo), G(bl, b2)-* 
G(xo, Yo)" 

The theorem has been proved in a particular case. Usually a function which is 
discontinuous across a curve does not satisfy to i). For the general case we have 
the following result. 

Corollary 2.2. Let the hypotheses of Theorem 2.1 hold and replace i) with 
I) f(x,  y) ~ CIV(x, y) with y < l(x) and V(x, y) with y > l(x). 

Let (Xo, Yo) be a point of f . Then for all points (bl, b 2) satisfying to condition vi) 
of Theorem 2.1, we have 

sw f z (b  I b 2 ) =  G2(bl'b2) SWZ,(Xo,Yo)+e(bl ,b2,a) ,  (16) 
' G2(xo,Yo) 

where for all fixed a, e(b 1, b 2, a) --, 0 when (bl, b 2) ~ (x o, Yo)- 

Proof." Using the mean value theorem and taking into account Remark 1, we get 
the proof. 
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Then if (bl, b z) belongs to a suitable neighbourhood of a discontinuity point 
(xo,Yo), G2(bl, b2)/G2(xo, Yo)SWf~a(XO, YO) will approximate the value 
Sl'Vf2,(b,, b2). 

Finally we want to show how relation (8) of Theorem 2.1 is modified when we 
choose a non compactly supported wavelet. 

Corollary 2.3. Let the assumptions of Theorem 2.1 hold except for iv), and consider 
as smoothing function 

[ _/3x2 ~ [ _/3y2 
O(x,y) = expt - - 7 -  )expt  ~ ),  

with /3 > 1. LetAbe a real number such that [x 0 - a ~  Xo+ acT] × [Yo - a ~  Y0 + 
aA-] c 12. Then if (bl, b 2) belongs to I(xo, Y0_) = [x0 - aA/2 ,  x 0 + aA/2]  × [Y0 - 
aA--/2,y o + a.2/2] but not to / and if [b 1 - aA, b 1 + aA] x [b 2 - aA, b 2 + aA-] c 12, 
relation (8) becomes 

SWfZ, a(bl,b2)= Gz(bt'b2) ( ( - / 3 A - 2 ) )  
, Ge(xo,Yo) SWfZ, a(Xo,Yo)+0 exp ~ , (17) 

where in the expression of G, A has been changed with 

Proof." The proof follows immediately from the exponential decay of the wavelets 
we considered. 

Thus, if we choose /3 and .4  properly, SI.Vf~.(b t, b 2) can be approximated by 
(G:2(B1, Bz ) /  G2(xo, Yo))SWt~a( Xo, Yo). 

The results of Theorem 2.1, Corollary 2.2 and Corollary 2.3, suggest how to 
detect the function value discontinuities. Let us remember that the modulus 
maxima of SWL~ locate the discontinuities and the sharp variation as well, but 
only the maxima corresponding to discontinuities will satisfy (8), (16) or (17). 

Then, if there is a wavelet transform modulus maximum in (2, ~), we can match 
G2(bl, b2)/G2( y,, y)SWf~a(2, Y) with SWfZ~(bl, b2), for (b 1, b 2) ~ 1(2, y). A suc- 
cessful matching will indicate that the wavelet maximum (~, ~) belongs to the 
discontinuity curve / .  

3. Detection of  f from the Process z 

The previous section results provide a method to tell if a maximum belongs to 
the discontinuity curve / .  Now we consider the presence of the noise. Let us 
consider the process (2), its two-dimensional continuous wavelet transform 

Wz,a(bl, b2) = Wf,a(ba ,  b2)  + We,a(bl, b2)  , (18) 

and its wavelet modulus maxima. 
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Usually abrupt changes due to the noise may introduce false discontinuities. It is 
known that when the scale a increases, the noise fluctuations decrease; in fact 
the signal-to-noise ratio, as proved in [2] for the one dimensional case and in 
the following Proposition 3.1 for the present situation, is proportional to a. 
Moreover (see [2] and [6]) the expected number of maxima due to the noise is 
proportional to 1/a.  By consequence, when a increases, the signal dominates 
the noise and the maxima due to the noise are expected to disappear. 

It is important to point out that, on one hand, the noise cannot be completely 
removed and, on the other increasing a means to loose information on the 
underlying function (see, for instance Example 3 of Section 5). Hence the choice 
of a is very important. If we choose a "too small" the noise dominates the signal 
and it may destroy all the knowledge given by the wavelet transform. If we 
choose a "large", the signal prevails on the noise but we can loose significant 
information. It is then important to find the right balance between reducing the 
spurious responses and preserving the information on the trend. 

Taking into account the above considerations, we have studied a method based 
on a statistical test which, for a suitable scale a, allows us to discriminate the 
maxima corresponding to discontinuity points either from the sharp variation 
points or from the maxima due to the noise. 

To this purpose we associate to each maximum (~, Y) of the wavelet transform, 
the random variable 

SWz2,a( bl, b2) 
RZ(bl, b2) = G2(b,, b2) (19) 

y) a2( ,y) 

where (bl, b2) belongs to a neighbourhood of (~, 9). 

In Section 3.1 we will study the properties of (19) and we will show that if a 
maximum belongs to / and if we choose a properly, then the realizations of (19) 
are between 0.5 and 1.5 with probability close to one. These results are used in 
Section 3.2 to perform a test which detects the maxima belonging to / .  

Proposition 3.1. The inverse of  the signal-to-noise ratio p of  the process SVV.2, at a 
generic point (bl, b 2) is 

118 2  t 1 t m ~ D 

p a S W f 2 ~ l l b 2 )  1 + a SWf2a(bl,b2) 
(20) 

where T = 114'1112 = 11412112 a n d  ~r 2 : E {e2} .  

Proof." Relation (20) is obtained from the definition of the signal-to-noise ratio p 
[1], and from the statistic of the processes W 1 ..... W2 ..... SWe~" 
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3.1. The Properties of R2(bl, b 2) 

In the following propositions are stated the properties of (19) associated to the 
maxima belonging to the discontinuity curve. Namely, in Proposition 3.2 we shall 
prove that the expected value and variance of R E are respectively 1 + O(1/a) 
and O(1/a). These results will then be used in Proposition 3.3 to prove that the 
realizations of R 2 are between 0.5 and 1.5 with probability close to one. 

Proposition 3.2. Let (x o, Yo) be a modulus maximum belonging to / .  Let the 
assumptions of Theorem 2.1 hold, and set for simplicity 

G2(bl'b2) swfZa(xo, Yo). 
7 = IIq, lll~ = IIq,21l~, g a2(xo,Yo) 

Then g(b~, b 2) satisfying to condition vi) of Theorem 2.1, the expected value and 
the variance of (19) are 

1 20.27 
E(RZ(bl ,b2))--  1 + - ~  (21) 

a K 

Var(R2(bl,b2)) 1 4 y 1 + - - -  (22) 
a a K ' 

where 0 .2 = E{e 2} 

Proof." Consider a point (bl, b2)~I(xo,Y o) defined as in vi) of Theorem 2.1. 
From (5) and (8) we get 

SW~2,~( b~, b2) = K + SWe2.( b 1, b2) 

+ 2Wl,y,.(ba, b2)Wa,e,.(hl, b2) 

+ 2Wz,f.~(b~,b2)We . . . .  (bl ,b2) .  
Then 

2Wl&~(b,,b2)Wt,<~(bt,b2) SW~2,.(bx,b2) 
R2(bl,b2) = 1 + + 

K K 
2W2,f,a( bl, b2)W2,e,a( bl, b2) + 

K 
Using the statistic of the processes W 1 ..... W2,e,~, SWe2~, relations (21), (22) are 
achieved by simple calculations. 

Proposition 3.3. Let (Xo, Yo) be a modulus maximum belonging to f . I f  a >> ~, 
then V(bl, b 2) satisfying to condition vi) of Theorem 2.1, the realizations of 
R2(ba, b 2) fall between 0.5 and 1.5 with probability P almost one. 

Proof." From the well-known Chebyshev inequality we have that 

P{.5 <RZ(bl,b2) < 1.5} = P { - . 5  < R Z ( b , , b 2 ) -  1 < .5} 

> l _  E((Re(bt ,b2) - l) 2) 

(.5) 
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Using (21), and (22), and if a >> ~ we have that 

Then 

E( (R2(b l ,b2)  - 1) 2) << (.5) 2. 

225 

P{.5 <R2(b l ,b2 )  < 1.5} = 1. 

4(f6- + 2)o -2 
By simple algebra, it is not difficult to prove that 

Ilfll  
Therefore, if we select a in (a, + o0) and if (x 0, Y0) is a maximum corresponding 
to a discontinuity, then 

• from Proposition 3.1 we have that the signal prevails on the noise and we can 
suppose that 

SW~o (Xo, Y0) = SWL( x0, Y0); 

• from Propositions 3.2 and 3.3 we have that V(b a, b 2) ~ I ( x  o, Y0), the realiza- 
tions of R2(bl ,  b 2) are between 0.5 and 1.5 with probability almost one 

3.2. The Detection Test 

The results of the previous sections suggest a detection scheme. We can perform 
an hypothesis test to decide if a wavelet modulus maximum (~, Y) is a discon- 
tinuity point. The test is based on the fact that if (.~, 9) ~ / a n d  if we choose a 
as stated above, then V(bl, b 2) belonging to the neighbourhood I(ff, Y) defined 
as in Theorem 2.1, the realizations of R2(bl, b 2) are between 0.5 and 1.5 with 
probability close to one. Hence the test steps are: 

. fix a significance level 6; 
• extract a random sample R2(bl.j ,  b2, j) j = 1 . . . .  , N ,  

(bl,j, bz,j) E 1(2, 9); 
• evaluate the relative frequence ~r of the event 

S:{ .5<R2(bl ,b2)  <1.5, ( h i , b 2 )  el(if,y)}. 

Since ~r estimates the probability that (~, Y) belongs to f ,  if ~-> 1 -  6 we 
accept it as discontinuity point and reject it otherwise. 

4. Detection from Scattered and Noisy Data: an Algorithm 

In several applied problems, we are given a set of noisy data collected on 
scattered points of the domain Q. Let us consider n scattered points r i ~ Q = 
[0,1] × [0,1], and a realization (1) of the process (2). 
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The method we have studied, has essentially two phases: the first is to find the 
wavelet modulus maxima and the second is to discriminate, by the detection test, 
the maxima corresponding to discontinuities. 

In the first phase of the method, we need to approximate the continuous wavelet 
transform Wz, ~ of the process (2) by a function obtained from the sample. In 
order to do this, we consider a partition of the domain Q in n rectangles Qi, 
i = 1 , . . . ,  n such that in each rectangle Qi, only one point ri falls, and 

n 

N Qi =0, 
i = 1  

?i 

U Qi=Q • 
i = 1  

Since the trend f is discontinuous across the curve f ,  we approximate the 
process (2) with the function 

g(x,y) =z i V(x,y) cQi. 

Then we approximate VCz,~ by the wavelet transform "¢¢g,a of g(x, y). It is not 
difficult the prove that W~, o = Wg,, + O(1/n) .  

Regarding the phase two of the method, let us observe that when we perform 
the test described in Section 3.2, we need to compute G(x, y) which depends on 
the unknown f equation y = l(x). But we may observe (see [6]) that if (2, y) 
belongs t o / ,  the direction along which the modulus of the wavelet transform is 
maximum is approximately orthogonal to the tangent to / in (2, 9)- So, in the 
neighbourhood of (2,~),  defined in Theorem 2.1, we can approximate the 
equation y = l(x) with the tangent 

Y 

We can now sketch the algorithm. Chosen a suitable value of a and a signifi- 
cance level 8, the main steps are 

1. To compute Wg,a and SWg,a. 
2. To compute the modulus maxima (2~, ~)  of the wavelet transform. Let s be 

their number. 
3. For ~ = l , . . . , s ,  m = 0  

extract a random sample (B 1 j, B 2 j) ~ I(2,, y~) j = 1 . . . .  , N. 
For  j = 1 , . . . ,  N compute R2(B141B2,j); 
if 0.5 < R2(B14, Be, j) < 1.5 then m = m + 1, else next j; next j 
~" = N, if 7r > 1 -- 6 then accept (2~, p~) else reject it; next 

4. Using the selected points, y = l(x) is reconstructed by some smoothing 
method. 
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Figure 2. The scattered data: top n = 100, bot tom n = 225 

5. Numerical  Results 

In the numerical  experiments we have considered n scattered points r i i = 
1 , . . . ,  n in the unitary square of  R 2 and the corresponding functional values 
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distorted by noise 

Z i = f ( r i )  + e(ri)  , i = 1 , . . . ,  n. 

The scattered points ri, are displayed in Fig. 2. 

The algorithm has been successfully tested on several functions with different 
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Figure 3. Example 1. Top: the exact function, bottom: the algorithm results for a = 0.03 
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kinds of discontinuity curves, different sample dimension n and different stan- 
dard deviation o-. 

For all the examples presented here, we have fixed the significance level 6 equal 
to 0.1 and N = 100. We have chosen O(x, y) = exp ( - x 2 / 2 )  exp ( - y 2 / 2 )  and, 
accordingly with Corollary 2.3, A =  4. 
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F igu re  4. E x a m p l e  2. Top :  the  exac t  f u n c t i o n ,  b o t t o m :  t h e  a l g o r i t h m  resul ts  fo r  a = 0.04 
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The results achieved are shown in Figs. 3, 4, 6 and 7. On the top is shown the 
exact function, on the bottom the algorithm results: the dots are the wavelet 
transform modulus maxima, the diamonds are the points detected as discont- 
inuities. 

In these examples the curve / (dashed line) has been reconstructed using the 
least squares method (continuous line). Generally, the chosen method for the 
reconstruction depends on the informations we have on the curve itself. 

Example 1. 

fl(x,y)= {f,(o,2Y ) _  . if x> l/4sin(4y) 

where f~(x, y) is the well-known Franke's function [5]. We have considered 
n = 225 and o-= 0.01. The trend is discontinuous across the curve of equation 
x = 1/4sin(4y) + 0.2. On the bottom of Fig. 3, the discontinuity points detected 
by the algorithm for a = 0.03 are shown together with the approximation of the 
Curve. 

Example 2. 

fx(X,y)={f , (o ,2Y ) if x_< 0.6 
- . otherwise 

We have considered n = 100 and o-= 0.05. The trend is discontinuous across 
x = 0.6 which, as shown on the bottom of Fig. 4, is recovered by the algorithm 
having chosen a = 0.04. 

0.1o 

Figure 5. SWg,,~ of Example 2 
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Remarks. We may observe that in both the examples the surface has two 
extrema near to the discontinuity curves. As shown by Fig. 5, this closeness 
makes the behaviour of the modulus of the wavelet transform unclear. By 
consequence it is difficult to detect / by analysing only the wavelet transform. 
Moreover the smooth variations due to the extrema are detected by the modulus 
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Figu re  6. E x a m p l e  3. a The  exact  funct ion,  b the a lgor i thm results  for a = 0.03, c SWg,a with  
a = 0.05, d the modu lus  m a x i m a  and  the  de tec ted  points  for a = 0.05 

maxima (see Figs. 3 and 4: bottom) and, without the detection test, they could be 
confused with irregular behaviours. 

Example 3. 

10(x + y )  - 10.3 
f3(x'Y)= 0 

if y > 0.1cos(10x - 5) + 1 /2  
otherwise 
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Figure 7. Example 4. The algorithm results for a = 0.05 

1.0 

We have considered n = 225 and ~r = 0.2. Picture b of Fig. 6 shows the results 
achieved for a --0.03. 

Remarks. Across the curve f :  y = 0.1 cos(10x - 5) + 1/2,  the jumps of discon- 
tinuity go to zero. In this case, the points corresponding to small discontinuity 
jumps could be confused with noise fluctuations. But, as shown by Picture b of 
Fig. 6, our method gives good results and detects these critical points too. 
Moreover when we increase the scale a, the number of maxima due to the noise 
decreases but at the same time we loose important information on the underly- 
ing function. In fact (see Figs. 6 c,d) the wavelet transform modulus and its 
modulus maxima do not locate anymore the discontinuity curve and we may also 
observe how the maxima, due to noise, seem to vary smoothly along some lines 
of Q. 

Example 4. Finally let us consider the example discussed in Section 2. 

= / a r c t a n ( 8 ( 3 x -  1) +0 .2 )  if x_> 0.65 
f4(x,Y) 

- 0.1 otherwise 

We have considered n = 225 and o-= 0.05. As shown in Fig. 7, the algorithm 
discriminates, for a = 0.05 the discontinuity curve from the curve across which f 
varies sharply. 
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