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1. Introduction

Present-day robotic tasks require high precision and stability of
their performance. Trajectory tracking seems to be a fundamen-
tal task in robot control. In order to fulfil aforementioned require-
ments, control algorithms should take into account the following
factors: model uncertainties, parameter variations and external
disturbances. However, they are, in fact, never known exactly in
practice. Therefore, it is particularly important to design control
algorithms that ensure accurate and fast convergence to the stable
equilibrium when trajectory tracking despite the existence of the
aforementioned factors. In such a context, several control schemes
for asymptotic tracking of manipulator trajectories can be found
in the literature (Corless, 1993; Galicki, 2008, 2012; Hsu & Fu,
2006; Slotine & Li, 1991; Utkin, 1978; Zhang, Dawson, de Queiroz,
& Dixon, 2000) which partially or fully take into account these
factors. Sliding-mode control seems to be one of the most effec-
tive approaches to cope with uncertainties. As is well known, slid-
ing mode is accurate and insensitive to disturbances (Edwards &
Spurgeon, 1998; Utkin, 1992). However, the main drawback of the
standard first-order sliding modes is mostly related to the unde-
sirable chattering effect (Fridman, 2002). The second- and higher-
order sliding techniques to eliminate the chattering have been
proposed (Bartolini, Ferrara, & Punta, 2000; Bartolini, Ferrara, Usai,
& Utkin, 2000; Bartolini, Pisano, Punta, & Usai, 2003; Bartolini &
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Pydynowski, 1996; Ferrara & Capisani, 2011; Levant, 1998, 2003,
2005, 2011; Levant & Michael, 2009; Mondal & Mahanta, 2014;
Shtessel, Shkolnikov, & Brown, 2003; Sira-Ramirez, 1992). Never-
theless, the approaches from Bartolini, Ferrara, Punta (2000), Bar-
tolini, Ferrara, Usai et al. (2000), Bartolini et al. (2003), Bartolini
and Pydynowski (1996), Ferrara and Capisani (2011), Mondal and
Mahanta (2014), Shtessel et al. (2003) and Sira-Ramirez (1992) are
able to steer a tracking error to zero asymptotically and those from
Levant (1998, 2003, 2005, 2011) and Levant and Michael (2009)
are only applicable to single input dynamic systems. In order to
both increase tracking accuracy and accelerate a convergence pro-
cess to the stable equilibrium, terminal sliding mode (TSM) control
techniques have been offered as a particularly useful tool for high
precision control of robotic manipulators. In such a context,
several approaches can be distinguished (Hong, Xu, & Huang,
2002; Su, 2009; Su & Zheng, 2011) that produce (non-smooth)
continuous controls but require the full knowledge of robot
dynamic equations. By using the regressor matrix technique,
adaptive-discontinuous TSM controllers have been designed in
works Barambones and Etxebarria (2002), Parra-Vega, Rodrigues-
Angeles, and Hirzinger (2001) and Tang (1998). An alternative ter-
minal sliding manifold has been proposed in Feng, Yu, and Man
(2002), Jin, Lee, Chang, and Choi (2009) and Yu, Yu, Shirinzadeh,
and Man (2005) to eliminate the singularity problem. Neverthe-
less, the common feature of the approaches from Feng et al. (2002),
Jin et al. (2009) and Yu et al. (2005) is necessity of knowledge
of the nominal robot dynamic equations whose construction may
not be a trivial task. Recently, a robust discontinuous TSM con-
trol for robotic manipulators has been proposed in Zhao, Li, and
Gao (2009). A similar approach with a singularity problem has
also been presented in Man, Paplinski, and Wu (1994). From the
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literature survey, it follows that all the aforementioned algorithms
are not able to generate continuous controls resulting in finite-time
stability of the equilibrium when both dynamic equations are un-
certain and (unbounded) disturbances act on the robotic manip-
ulators. Hence, there is a need to provide additional information
(including the joint position and velocity or its estimation) for a
control scheme to be designed further on. From the robotic point
of view, joint acceleration is such additional quantity. In general,
there are two approaches for the joint acceleration acquisition. The
first is based on the direct measurement of joint acceleration (De
Luca, Schroder, & Thummel, 2007; Godler, Akahane, Maruyama, &
Yamashita, 1995). The second approach uses a class of uniform ro-
bust differentiators (Levant, 2003; Levant & Livne, 2012). Based
on the available joint acceleration or its estimation, a new non-
singular TSM manifold is introduced in this study. The proposed
TSM manifold makes it possible to simultaneously join the first-
order sliding mode approach possessing the finite-time control
capabilities with the second-order sliding mode techniques gen-
erating the (absolutely) continuous controls. It is worth to em-
phasise that the finite-time control of robotic manipulators
subject to uncertain dynamic equations, absolute continuity con-
trol requirement and globally unbounded disturbances, is still a
non-trivial problem whose solution is based in this work on intro-
ducing a dynamic version of a static computed torque approach
presented in e.g. works Siciliano, Sciavicco, Villani, and Oriolo
(2009) and Spong and Vidyasagar (1989). The remainder of the pa-
per is organised as follows. Section 2 formulates the finite-time
trajectory tracking task. Section 3 sets up a class of robust abso-
lutely continuous controllers solving the trajectory tracking task
in a finite-time subject to uncertain robot dynamic equations and
unbounded disturbances. Section 4 presents computer examples of
trajectory tracking by a robotic manipulator consisting of two rev-
olute kinematic pairs. Finally, some concluding remarks are drawn
in Section 5. Throughout this paper, Amin(-) and Apax(-) denote the
minimal and maximal, respectively, eigenvalues of the symmetric
matrix (-). Moreover, the real branch of x%, where x € R; a, b are
positive odd numbers, and a < b < 2aq, is taken here into account.

2. Problem formulation

The dynamics of a rigid robotic manipulator of n-DoF is given
by the following general equations (Spong & Vidyasagar, 1989):

M(q)q +H(q, ¢) + G(q) + D(t, q, §) = v, (1)

where ¢ = (q1, ..., )7, g and g represent the position, velocity
and acceleration, respectively. The n x n inertia matrix M(q) is
positive definite and symmetric. The term H in (1) equals H =
B(q)(q - @) + C(q)(¢?), where B and C are the n x @ and
n x n matrices of coefficients of the Coriolis and centrifugal
forces, respectively. Quantities (§ - ¢) and (¢®) are the symbolic
notations for the ”(”T_l)—dimensional and n-dimensional vectors (§-
Q) = (@142, .- Gn1Gn)" and (@*) = (@7, ..., q3)", respectively.
Term v = (vq,...,v,)" stands for the n-dimensional vector of
controls (torques/forces). Term G(q) is the n-dimensional vector
of generalised gravity forces. Vector D(t, q, ¢) means the n-
dimensional external disturbance signal which is (by assumption)
at least absolutely continuous mapping with D(t, q, ) as being
a locally bounded Lebesgue measurable mapping (this implies
existence of control v). Moreover, ||D|| and || D|| are (by assumption)
upper estimated as follows

ID|| < ao(t), DIl < at1(D), (2)

where o, o7 stand for the known, non-negative functions. In the
sequel, useful properties of (1) are summarised which will be

utilised while designing the controller. The following inequalities
are satisfied (Spong & Vidyasagar, 1989):

0 < Amn(M™") < M| < Amax(M™1),

(3)
[B+Cll<ci, Gl = ¢,

where cq, c; are known positive scalar coefficients. In order to
obtain at least absolutely continuous control v, let us differentiate
the dynamic equations (1) with respect to time

d3q

M P

(@ 10

where F = M+B(q-q)+C(¢*)+B2 (q-)+C 4 (¢*)+G+D. Based

on the properties of (1), one obtains the following upper estimation
of ||F||:

IFIl < &, g, G, ©), (3)

where € = ¢3]|q||[1[1+callql>4-c5 14l +a1(t); c3, ca, cs are (known
by assumption) positive scalar coefficients for which the following
inequalities hold true: || 37”;’ I+1BI+ICH < cs5 |l ‘272 I <casll ";—S;“ I <
¢s. Motivated in part by the static computed torque methodology
(Siciliano et al., 2009; Spong & Vidyasagar, 1989), we propose now
a dynamically computed torque vector v of the form

+F(@q, ¢, ¢, ) =0, (4)

b =M(qu+F(q, 4. 4, t), (6)

where M and F denote known estimates of the corresponding
unknown terms M and F, respectively, in dynamic equations (4);
u € R" is a new control to be found. The use of (6) as a dynamic

3 ~ A .
non-linear control law gives M% + F = Mu + F = v. Since M is
invertible, we obtain

d*q
E—u—i—(ﬂ?—ﬂn)u—l—Q, (7)
where & = M~IM;Q = M~'(F — F); I, stands for the n x n
identity matrix. A task accomplished by the robotic manipulator
consists in tracking a desired trajectory qq(t) € R",t € [0, 0c0)
which is assumed to be at least triply continuously differentiable,
ie, qa(-) € C3[0, o0). By introducing the tracking error e =
(e1, ..., e)T = q—qq(t), we may formally express the finite-time
trajectory tracking control by means of the following equations:

lime(t) = lim é(t) = lim é(t) = 0, (8)
t—T t—T t—T

where 0 < T denotes a finite time of convergence of g to gqg.
The objective is to find an input signal u(t) and consequently a
control vector v(t) by solving the differential equations (6) such
that position vector q follows g4. The next section will present an
approach to the solution of the control problem (6)-(8) making use
of the Lyapunov stability theory.

3. Control of the robotic manipulator

In the sequel, we start the analysis of a controller design by
the assumption that joint positions, velocities and accelerations are
available from measurements. Let us note that the right-hand side
of (7) requires the knowledge of joint acceleration g. Recently, a lot
of techniques appeared in the literature which directly measure §
(De Lucaetal.,2007; Godler et al., 1995). Based on (3), we can make
the following remark:

@AM > 0)3p > O)(|R — Ll < p < D). 9)

Let us note that it is not difficult to find matrix M fulfilling
. o 2

relations (9). If we set M = —xmin(m—1)+)\mx(m—1)]1" (see e.g. Spong &

)\n1ax(M71)_)hmin(M71)

Vidyasagar, 1989)then p = T (=T T =Ty

satisfies inequality
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(9). Furthermore, based on (4), (5) and definition of Q in (7), an
upper estimation on ||Q || takes the form

el = wa. ¢. g, ),

where W = Apnax (M”)(III3 ||4+&). Before we propose our controller
and show its properties, some useful inequality will now be given.
For arbitrary @ = (ay, ..., a;)T € Rf, L > 1, the following relation
holds true (Yu et al., 2005):

(10)

L

B

L

1@ =) @ = [a* = (Z a?) ,
i=1

i=1

(11)

where @# = (af,...,af)T; B = 4§ Llets = (s1,...,5)" € R"be
the sliding vector variable. In order to overcome the limitations and
shortcomings of the first-order classic sliding variables (Feng et al.,
2002; Yu et al.,, 2005; Zhao et al., 2009), we propose the following
non-singular terminal sliding manifold:

t
s=¢ +/ (xzé3/5 + a2 + A3/7e)1/3) dr, (12)
0

where )\.0 = diag(km, ey )x(),n); )\.1 = diag(km, ey )x],n); )xz =
diag(Az1, ..., A2n); Aij stand for positive coefficients (controller
gains); i = 0 : 2;j = 1 : n. The potency of both e, ¢, € and
Xo, A1, Ao is defined component-wise. In what follows, we give a
useful result.

Lemma 1. If s = O then task errors (e, e, €) converge in a finite time
to the origin (e, é, €) = (0, 0, 0).

Proof. Identity s = 0 implies equality § = 0. From (12), it follows
that

de

de3
Expression (13) presents a known homogeneous triple integrator
system of negative degree equal to —%. The finite-time stability of
homogeneous system (13) was studied e.g. in Bhat and Bernstein
(2000) and Hong (2002). Moreover, the settling-time estimation
and the explicit form of the Lyapunov function candidate for (13)
have also been given in Hong (2002). Consequently, task errors
(e, é, €) converge fors = 0in a finite time to the origin (e, é, €) =
(0, 0,0. O

In order to fulfil equality constraints (8), a (simple) robust
control law is proposed as follows

+ 028 02237 40 7e) = 0. (13)

U= uy+ Uy, (14)
where
a . .
Uy = th3d — 85 — WP @ 40 )P — AP, (15)
A = diag(Aq, ..., Ay); A; denote constant, positive controller
gains and
S

————(pllupll + W) fors+#0
=1 T—plsl =" (16)

0 otherwise,

k is a positive constant gain to be specified further on. Conse-
quently, absolutely continuous control vector v can be found by
solving in the Filippov sense (Filippov, 1988), the following differ-
ential equations with u, and u, given by (15)-(16):

0 = M(u, +u) +F(q, ¢, 4, t). (17)

The aim is to provide conditions on controller gains Ag, A1, Az, A
and «, which guarantee fulfilment of equalities (8). Applying the
Lyapunov stability theory, we now derive the following result.

Theorem 1. If q, q, 4 are available and Ay, A1, A2, A > 0,k > 1
then control scheme (14)-(17) guarantees stable convergence in a
finite time of the tracking errors (e, é, €) to the origin (e, e, €) =
(0, 0, 0).

Proof. Consider the following Lyapunov function candidate:

v=1lis)
= —{(s, s),
2

where (, ) stands for the scalar product of vectors. Differentiating
(18) with respect to time and taking into account definition (12)
results in the following expression: V. = (s, % + 1835 4

2 e’ + e . Based on (7), and definition of task
A2 (@7 + 227e)1/3). Based on (7), (14) and definition of task
error e, one obtains that

(18)

d’e d3qq
E:un‘f—ur‘i‘(tﬂ_ﬂn)(un_kur)"_Q_ dt3 ° (19)
Inserting the right-hand side of (19) into V results in
T + 085w AP (@7 42 e) 1/
=\ Un de3 2 2/M 0
+ (s, ur) + (s, (R — L) (un + ur) + Q). (20)

Let us estimate the sum of the last two terms of V. Substituting
u, into (20) for the right-hand side of (16), we have after simple
algebra that

(s, ur) + (s, (R = L) (u, +uy) +Q)

< sl (olluall + W) (—lf—p+1+ﬂ). (21)

1—p

Based on the assumption of Theorem 1 for «, the last expression of
(21) is non-positive for arbitrary both u, and ‘W > 0. Hence,

(57 ur) + (5» (ﬁ - Hn)(un + ur) + Q) = 0. (22)

Inserting the right-hand side of (15) into (20) and taking into
account inequality (22) result in the following expression:

. n 148 ||2
V<-— ZA,-sl.Hﬂ < —min{A;} HST (23)
i=1 !
Applying (11) to inequality (23) results in
148
. n 2 148 148
V < —min{a} > s = —min{A2 2V z. (24)
i — i
Since min;{A;} > 0, expression (24) proves that TSM's = 0
1-8
is attainable in a finite time less or equal to V0O 2 7
mini{4;}(1-$)2 2

Consequently, from Lemma 1, it follows that the origin (e, e, €) =
(0, 0, 0) is attainable in a finite time T. O

A few remarks may be made regarding the control law (14)-(17)
and Theorem 1.

e Remark 1. Observe that controller gain of u, given by (16) is a
feed-back adjustable function equal to p||u,|| + W. The control
laws known from the literature (see e.g. Bartolini, Ferrara,
Punta, 2000, Bartolini, Ferrara, Usai et al., 2000, Bartolini et al.,
2003, Ferrara & Capisani, 2011, Siciliano et al., 2009 and Spong &
Vidyasagar, 1989) require boundedness of ¢ which implies large
controller gains to cope with the uncertainty over the whole
operation region.

s1odedoo
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e Remark 2. It is also worth to notice that our feed-back adjustable
amplitude term ﬁ (pllun ||+ W) makes it possible to cope with
globally unbounded uncertainties. In general, in that case, only
local uncertainty suppression is available in the literature for
multi-input systems. In such a context, a class of gain-function
robust controllers with single input and adjustable amplitude
was recently proposed in works Levant (2011) and Levant
and Livne (2012) to overcome globally unbounded uncertainty
problem.

A very computationally efficient approach based on the uniform
robust exact differentiation has been recently proposed in works
Levant (2003) and Levant and Livne (2012) to numerically find
derivatives of absolutely continuous functions. Assuming that po-
sition ¢ = q(t) is known (measurable), one can exactly reconstruct
both velocity g(t) and acceleration g(t) (by neglecting the mea-
surement noise of a device) after a finite-time transient process,
say T’ > 0. The second-order uniform robust exact differentiator
takes in our case the following form:

Jo = y1 — AL()lyo — q1**sign(yo — q),

g1 =y2 — mLOPlyo — q"sign(yo — q), (25)
92 = —AoL(t)sign(yo — q),

where ):0, ih )ALZ are positive constants equal to )ALO = 1.1, i1 =
15and 4, = 2 (as suggested by Levant & Livne, 2012), re-
spectively; yo(t), y1(t), y2(t) € R";yq,y, denote the outputs of
differentiator (25) reconstructing exactly both velocity (t) and ac-
celeration (t), i.e., g(t) = y(t), d(t) = y,(t) fort > T’; L(t)
stands for a positive continuous function which takes the form
L(t) = L'(t) + L"(t), L' = Amax(M™") [Amax (M) ([lun || (1 + )+
W) + IFIL L = Amax(M ™D {csly1 [ Amax M DI[0]| 4 crlly1 > +
¢ + (O] + &llyr” + ¢ lyall + e (). The quantity L(t) repre-
sents physically an upper estimation of the norm of % (manipula-

tor jerk). Let us define concatenating control v, = (v 1, ..., vc,n)T
as follows

_JY'®, tefo, T,
Y=\ givenby(17), §(©) =y1. t > T, (26)

where v/(t) is arbitrary absolutely continues mapping of time t
(e.g. v'(t) = 0). Note that for t > 0, g(t) G(t) are replaced by their
estimates y(t), y>(t) in W, F, ag(t), aq(t),u,and fort < T' v is
replaced by (constant) v in L(t) which implies its continuity. Based
on (25) and (26), we are now in position to give the following the-
orem.

Theorem 2. If qis only available from measurements and Ag, A1, A2,
A > 0,k > 1 then control scheme (26) guarantees stable conver-
gence in a finite time of the tracking errors (e, é, €) to the origin
(e, e, &) = (0, 0, 0).

Proof. Inserting v’ into dynamic equations (1) results in measured
joint positions g = q(t) which serve as inputs to differentiator (25).
Fort > T’, one obtains ¢(t) = y;(t) and §(t) = y,(t), respectively.
Hence, control v(t) defined by (14)-(17) can be applied with initial
conditions v(T") = v/ (T") and ¢(T") = y1(T"), G(T") = y,(T') to
track q4. From Theorem 1, it follows that s = 0 is attainable in a

1-8
V(T 2

finite time less or equal to 77 - Finally, from Lemma 1,

mini{A;}(1-8)2 2
it follows that the origin (e, é, €) = (0, 0, 0) is attained in a finite
time. O

e Remark 3. In a general case, if measured position g = q(t) is
additionally contaminated by a measurement noise 7(t), i.e.,
at) = qo(t) + n(t), where [ = (n,....n)"II < el

(t); € denotes a normalised noise magnitude (practically € €
[1073, 1074]); qo(t) stands for an unknown true (noise-free)
joint position; then also differentiator (25) should be applied
to estimate quantities e, & and €. Notice from the differentiator
equations (25) that [|qo(t) — yo(O)l| =< L(t)O(e), lIqo(t) —
Ol < LOO0E?), [1Go(t) — y2(O)]| < L(t)O(e'?), Levant
(2003) and Levant and Livne (2012). Finally, for estimations
= (,....8)" =yo—0qs, &=y —qu,& = ys — Ga, we
obtain [[&]| < L(t)O(e), [le]l < L(t)0(e*?), [|e]| < L(t)O(e'/?).
e Remark 4. The methodology proposed in our manuscript may
also be applicable to globally unbounded, continuous and
everywhere non-differentiable disturbances D'(t, q, q) (e.g.to
a Brownian motion). For this purpose, a non-singular sliding
manifold s € R" can be defined as follows s = ¢é +
jg (A1()*2 + 1pe*1) dt, where «; is defined similarly as 8 and

]Zf(;l . Then, based on the simplified versions of Lemma 1

and Theorem 1, we can derive the following control law: v =
U + vr, where v, = Gqg — Age®! — A1(8)®2 — A(s)? and v, =

Kk s ,
- —(llvnll + W)
0

oy =

fors' # 0

=7 151 W= Amax(MDF) +

otherwise;

€'); F denotes known estimate of the term H + G of dynamic
equations (1); & = llql* + e + a(@®); D' < «(b) is
known upper estimation of ||D’||. However, the price of the
assumption of the everywhere non-differentiable disturbance
is discontinuity of control v which may lead to a chattering
effect. To eliminate the effect of chattering, a boundary layer
control law may be used in place of the discontinuous control
v thus obtaining only the ultimate boundedness of the tracking
error e.

4. Numerical examples

In this section, we illustrate the performance of the proposed
controller (25)-(26) using the data of the Experimental Direct
Drive Arm (EDDA manipulator) (n = 2) from the Institute of
Robotics and Informatics of the Braunschweig University, Ger-
many. In the simulations, SI units are used. The components
of dynamic equations of this manipulator are as follows M =

61+ 0.604 cos(qz) 63 +0.304cos(qa) | . _ |1 . . _
[93 +0.36, cos(q2) 03 ] 1B = [ 0 ] 0.304sin(q2); C =

1 1 . ) 0
[ Lo ] 0.304sin(q2); G = g ( 2 Cos(g;)c‘;(q“lcfég; +‘“)) : g stands

for the gravitational acceleration; parameters ;, i = 1 : 4 take the
following nominal values: 8; = 3.1,0, = 9.5,6; = 0.24,04 =

. S 2 E—
0.77. Our estimates are chosenas M = T A=) I; F =

0; Amin(M™") = 0.27; Amax(M™1) = 6. The initial config-
uration and velocity of the manipulator are equal to q(0) =
(—m/4, /T, 3q0) = (0, 0)7, respectively. In order to speed
up the convergence process of differentiator (25), we have chosen
good initial guesses y1(0), ¥, (0) in the numerical examples (which
imply relation T ~ 0) based on the nominal values of our per-
turbed dynamic model. Consequently, differentiator (25) was run
with the following initial values: y;(0) = ¢(0), y,(0) = ¢(0) =
(=22.1, 5.7)T,v(0) = (0, 0)T. In the first experiment, the (un-
bounded) disturbance term D takes the formD = —2(q—q(0))—24
with D = —2g — 2. Consequently, o, o7 may be estimated as
a0 = 2[lg — qO)|| + 2|ly1ll.r = 2|ly1ll + 2|y |l. In order to
simplify numerical computations, rough conservative estimations
of ¢;,i = 1 : 5 have been assumed. Hence, positive constant co-
efficients ¢;,i = 1 : 5 were chosen as follows ¢c; = 10,¢c; =
150,c3 = 25,¢4 = 5 and cs = 10, respectively. The task is
to make the manipulator follow the desired trajectory q4(t) =
(cos(t), sin(t))T. The controller gains Ag, A1, A2, A, k, B equal
A= 1,k =21,4 = 16,4 = 13,k = 6, B = 2, respectively.

s1odedoo
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Fig. 1. Position errors e for controller (25)-(26).

Vel U2 [Nm)

40 ]

20 q

Fig. 2. Control vector v, for controller (25)-(26).

The results of computer simulations are presented in Figs. 1-2. As
is seen from Fig. 1, controller (25)-(26) stabilises the equilibrium
e = 0 in finite time. Continuous and chattering-free controls v,
are shown in Fig. 2. In the second experiment, the Coulomb fric-
tion term 5 sign(g) (the same term was analysed in Jin et al., 2009)
has been added to disturbed manipulator dynamic equations con-
sidered in the previous experiment. The same controller (25)-(26)
as that from the first experiment with the same controller gains
has been applied in the second experiment. For better visualisation
of the accuracy of the tracking errors, the transient phase of ap-
proaching the manipulator to desired trajectory qq is omitted. The
results of computer simulations are given in Figs. 3-4. As is seen
from Figs. 3-4, the control performance does not degrade even
at the time instances corresponding to discontinuity of the term
5 sign(q). The reason is that control law (25)-(26) becomes the con-
tinuous (but not smooth) filter with respect to v (continuous ac-
celeration y, approximates possibly best in Chebyshev’s sense the
discontinuous disturbance). Note that §(t) = y;(t), G(t) = y.(t)
for t > T, y,(t) depends on v in (25) and hence the right
hand side of differential equation (17) is dependent on v, too.
Although normal distribution N(0, 1) does not provide locally
bounded Lebesgue measurable noise, we have tested our con-
troller under conditions of the first experiment and for »;(t) =
1078X(t); X(t) ~ N(0, 1),i = 1, 2. Measurement noise 1 was
added to joint position obtained from integration of state equations
(7),(14). The result of simulation is given in Fig. 5 which indicates a
good performance of controller (25)-(26) subject to measurement
noise.
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Fig. 3. Position errors e for controller (25)-(26) with the additional Coulomb
friction term.

120

Ve, Ve2 [Nm]

Fig. 4. Control vector v, for controller (25)-(26) with the additional Coulomb
friction term.

4 4.5 5 5.5 6 6.5 7

Fig. 5. Estimated position errors & for controller (25)-(26) with measurement
noise.

5. Conclusions

A new class of absolutely continuous TSM controllers with
the finite-time convergence property of the trajectory tracking
by n-DoF rigid robotic manipulator has been proposed in this
paper. Moreover, a novel TSM manifold, making it possible to
simultaneously apply both the first- and second-order sliding
mode control techniques with their advantages, was incorporated
into the control scheme. Although our dynamically computed
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torque technique needs knowledge about the system equations
of the robot, the approach is able to handle uncertainty (in
dynamics and disturbance) occurring in the system. It is worth to
emphasise the fact that the controllers proposed herein are able to
cope with globally unbounded disturbances acting on the robotic
manipulators. One of the challenging works for further research
is to design a class of robust controllers with the finite-time
convergence property which track the manipulator trajectories
given in a task (and not joint) space. If this is the case, the control
matrix may not be positive definite.

References

Barambones, O. & Etxebarria, V. (2002). Energy-based approach to sliding
composite adaptive control for rigid robots with finite error convergence time.
International Journal of Control, 75(5), 352-359.

Bartolini, G., Ferrara, A., & Punta, E. (2000). Multi-input second-order sliding-
mode hybrid control of constrained manipulators. Dynamics and Control, 10(3),
277-296.

Bartolini, G., Ferrara, A., Usai, E., & Utkin, V. I. (2000). On multi-input chattering-
free second-order sliding mode control. IEEE Transactions on Automatic Control,
45(9),1711-1717.

Bartolini, G., Pisano, A., Punta, E., & Usai, E. (2003). A survey of applications of
second-order sliding mode control to mechanical systems. International Journal
of Control, 76(9-10), 875-892.

Bartolini, G., & Pydynowski, P. (1996). An improved, chattering free, VSC scheme
for uncertain dynamical systems. I[EEE Transactions on Automatic Control, 41(8),
1220-1226.

Bhat, S. P., & Bernstein, D. S. (2000). Finite-time stability of continuous autonomous
systems. SIAM Journal on Control and Optimization, 38(3), 751-766.

Corless, M. (1993). Control of uncertain nonlinear systems. Transactions of the ASME.
Journal of Dynamic Systems, Measurement and Control, 115, 362-372.

De Luca, A, Schroder, D., & Thummel, M. (2007). An acceleration-based state
observer for robot manipulators with elastic joints. In Proceedings, IEEE
international conference on robotics and automation, ICRA’07, FrB10.3, 1-10 (pp.
3817-3823).

Edwards, C., & Spurgeon, S. K. (1998). Sliding mode control: theory and application.
London: Taylor and Francis.

Feng, Y., Yu, X,, & Man, Z. (2002). Non-singular terminal sliding mode control of
rigid manipulators. Automatica, 38(12), 2159-2167.

Ferrara, A., & Capisani, L. M. (2011). Second order sliding modes to control
and supervise industrial robot manipulators. In L. Fridman, et al. (Eds.),
LNCIS, Lecture notes in control and information sciences: Vol. 412. Sliding modes
(pp. 541-567).

Filippov, A. F. (1988). Differential equations with discontinuous right-hand side.
Dordrecht, Netherlands: Kluwer.

Fridman, L. (2002). Singularly perturbed analysis of chattering in relay control
systems. IEEE Transactions on Automatic Control, 47(12), 2079-2084.

Galicki, M. (2008). An adaptative regulator of robotic manipulators in the task space.
IEEE Transactions on Automatic Control, 53(4), 1058-1062.

Galicki, M. (2012). Control of mobile manipulators in a task space. IEEE Transactions
on Automatic Control, 57(2), 2962-2967.

Godler, L., Akahane, A., Maruyama, T., & Yamashita, T. (1995). Angular acceleration
sensor composed of two discs and optical pick-up. Transactions of the Society of
Instrument and Control Engineers, 31(8), 982-990.

Hong, Y. G. (2002). Finite-time stabilization and stabilizability of a class of
controllable systems. Systems & Control Letters, 46(4), 231-236.

Hong, Y., Xu, Y., & Huang, ]J. (2002). Finite-time control for robot manipulators.
Systems & Control Letters, 46, 243-253.

Hsu, S.-H., & Fu, L.-C. (2006). A fully adaptive decentralized control of robot
manipulators. Automatica, 42(10), 1761-1767.

Jin, M., Lee, ]., Chang, P. H., & Choi, C. (2009). Practical nonsingular terminal sliding-
mode control of robot manipulators for high-accuracy tracking control. IEEE
Transactions on Industrial Electronics, 56(9), 3593-3601.

Levant, A. (1998). Robust exact differentiation via sliding mode technique.
Automatica, 34(3), 379-384.

Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback
control. International Journal of Control, 76(9-10), 924-941.

Levant, A. (2005). Homogeneity approach to high-order sliding mode design.
Automatica, 41(5), 823-830.

Levant, A. (2011). Finite-time stability and high relative degrees in sliding-mode
control. In L. Fridman, et al. (Eds.), LNCIS, Lecture notes in control and information
sciences: Vol. 412. Sliding modes (pp. 59-92).

Levant, A., & Livne, M. (2012). Exact differentiation of signals with unbounded
higher derivatives. IEEE Transactions on Automatic Control, 57(4), 1076-1080.

Levant, A., & Michael, A. (2009). Adjustment of high-order sliding-mode controllers.
International Journal of Robust and Nonlinear Control, 19(15), 1657-1672.

Man, Z., Paplinski, A. P., & Wu, H. R. (1994). A robust MIMO terminal sliding mode
control scheme for rigid robotic manipulators. IEEE Transactions on Automatic
Control, 39(12), 2464-2469.

Mondal, S., & Mahanta, C. (2014). Adaptive second order terminal sliding mode
controller for robotic manipulators. Journal of the Franklin Institute, 351,
2356-2377.

Parra-Vega, V., Rodrigues-Angeles, A., & Hirzinger, G. (2001). Perfect position/force
tracking of robots with dynamical terminal sliding mode control. Journal of
Robotic Systems, 18(9), 517-532.

Shtessel, Y. B., Shkolnikov, 1. A., & Brown, M. D. J. (2003). An asymptotic second-
order smooth sliding mode control. Asian Journal of Control, 5(4), 498-504.
Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics: modelling, planning

and control. Springer Verlag.

Sira-Ramirez, H. (1992). On the sliding mode control of nonlinear systems. Systems
& Control Letters, 19(4), 303-312.

Slotine, J.]., & Li, W.(1991). Applied nonlinear control. Englewood Cliffs, NJ: Prentice-

Hall.

Spong, M. W., & Vidyasagar, M. (1989). Robot dynamics and control. New York:
Wiley.

Su, Y. (2009). Global continuous finite-time tracking of robot manipulators.
International Journal of Robust and Nonlinear Control, 19(17), 1871-1885.

Su, Y., & Zheng, C. (2011). Global finite-time inverse tracking control of
robot manipulators. Robotics and Computer-Integrated Manufacturing, 27(3),

550-557.
Tang, Y. (1998). Terminal sliding mode control for rigid robots. Automatica, 34(1),

51-56.

Utkin, V. 1. (1978). Sliding modes and their application in variable structure systems.
Mir Publishers.

Utkin, V. 1. (1992). Sliding modes in optimization and control problems. New York:
Springer.

Yu, S., Yu, X,, Shirinzadeh, B., & Man, Z. (2005). Continuous finite-time control for
robotic manipulators with terminal sliding mode. Automatica, 41, 1957-1964.

Zhang, F., Dawson, D. M., de Queiroz, M. S., & Dixon, W. E. (2000). Global adaptive
output feedback tracking control of robot manipulators. IEEE Transactions on
Automatic Control, 45(6), 1203-1208.

Zhao, D,, Li, S., & Gao, F. (2009). A new terminal sliding mode control for robotic
manipulators. International Journal of Control, 82(10), 1804-1813.

Mirostaw Galicki received the M.Sc. degree from the
Technical University of Wroclaw, Poland, in 1980 and the
Ph.D. degree in electrical and computer sciences from the
Technical University of Wroclaw. He was with the Institute
of Technical Cybernetics of Wroclaw from September 1981
% to 1984. Since 1985 he has been at the University of
Zielona Gora, Poland, and from 1992 to 2013 he was
e also with the Institute of Medical Statistics, Computer
Sciences and Documentation of the Friedrich Schiller
‘ \7 University Jena, Germany. His research interests include
control of dynamic systems with both holonomic and non-
holonomic constraints, structural optimisation and optimal control problems. Areas
of particular interest include the problems of motion control of both redundant
stationary and mobile manipulators.

= NN

ra

1adedoourg

S


http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref1
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref2
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref3
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref4
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref5
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref6
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref7
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref9
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref10
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref11
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref12
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref13
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref14
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref15
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref16
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref17
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref18
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref19
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref20
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref21
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref22
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref23
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref24
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref25
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref26
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref27
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref28
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref29
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref30
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref31
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref32
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref33
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref34
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref35
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref36
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref37
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref38
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref39
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref40
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref41
http://refhub.elsevier.com/S0005-1098(14)00470-1/sbref42

	Finite-time control of robotic manipulators
	Introduction
	Problem formulation
	Control of the robotic manipulator
	Numerical examples
	Conclusions
	References


