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In this paper, heat transfer and entropy generation on laminar natural convection of non-Newtonian nanofluids
in a porous square cavity have been analyzed by Finite Difference Lattice Boltzmann Method (FDLBM). The po-
rous cavity is filled with water and nanoparticles of copper (Cu) while the mixture shows shear-thinning behav-
ior. This study has been conducted for the certain pertinent parameters of Rayleigh number (Ra = 104–105),
Darcy number (Da = 0.001, 0.01, and 0.1), and power-law index (n = 0.6–1), and the volume fraction has
been studied fromφ=0 to 0.04. Results indicate that heat transfer and different irreversibilities enhance as Ray-
leigh number increases. The enhancement of the volume fraction augments heat transfer and the entropy gener-
ations due to heat transfer and fluid friction. The drop of the Darcy number causes the heat transfer and different
entropy generations to decline considerably. Interestingly, the behavior of heat transfer and the studied entropy
generations against the alteration of the power-law index is different in various Darcy numbers. In addition, the
Bejan number demonstrates that the proportion of the irreversibilities due to heat transfer and fluid friction
changes with the variation of the scrutinized parameters.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background

The fluids that are traditionally used for heat transfer applications
such as water, mineral oils and ethylene glycol have a rather low ther-
mal conductivity and they cannot play as an efficient heat transfer
agent. Nanoparticles are known as an efficient way for improvement
of thermal conductivity of base fluids. Fluids with nanoparticles
suspended in them are called nanofluids. Nanofluids have anomalous
high thermal conductivity at very low nanoparticles concentration and
considerable enhancement of forced convective heat transfer. As a re-
sult, nanofluid has received high attention in heat transfer area. Flow
in an enclosure driven by buoyancy force is a fundamental problem in
fluid mechanics and heat transfer. This type of flow can be utilized as
a validation in academic researches and various applications of engi-
neering. Hence, several studies into natural convection of nanofluid
have been conducted analytically, numerically and experimentally by
different researchers [1–18]. On the other hand, the utilized cavity
could be replaced simply with a porous cavity in some industries such
as geothermal reservoirs, catalytic reactors, spreading of pollutants,
solar collectors and interestingly, nanofluid is playing a crucial role in
rkefayati@yahoo.com,
cooling and heating systems in the cited industries. As a result, several
investigations have been conducted into the natural convection of
nanofluid in porous enclosures recently. Sheremet and Pop [19] scruti-
nized steady-state natural convection heat transfer in a square porous
enclosure having solid walls of finite thickness and conductivity filled
by a nanofluid using the mathematical nanofluid model proposed by
Buongiorno. Bourantas et al. [20] studied natural convection of a
nanofluid in a square cavity filled with a porous matrix numerically
using a meshless technique. The effect of the porous medium in the
cooling efficiency of the nanofluidic system was discussed. Sheremet
et al. [21] simulated transient natural convection in a porous wavy-
walled cavityfilledwith a nanofluid. Themain objective is to investigate
the effects of the dimensionless time, thermal dispersion parameter and
solid volume fraction parameters of nanoparticles on the fluid flow and
heat transfer characteristics.

For the all of the mentioned numerical investigations, the base fluid
was assumed to be Newtonian, but it is demonstrated that many
nanofluids exhibit non-Newtonian, mainly shear-thinning behavior
[22–29]. Therefore, it is necessary to be considered the effect of shear-
thinning behavior of nanofluids. Moreover, the optimal design of heat
transfer process in different industries is obtained with precision calcu-
lation of entropy generation since it clarifies energy losses in a system
evidently. Hence, entropy generation is investigated into natural con-
vection of pure fluids [30,31] and nanofluids in multifarious shapes ex-
tensively. Shahi et al. [32] studied the entropy generation induced by
natural convection heat transfer in a square cavity containing Cu–
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Fig. 1. Geometry of the present study.
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water nanofluid and a protruding heat source. It was found that the
Nusselt number increased and the entropy generation reduced as the
nanoparticle volume fraction was augmented. In addition, it was
shown that the heat transfer performance could be maximized and
the entropy generation minimized by positioning the heat source on
the lower cavity wall. Esmaeilpour and Abdollahzadeh [33] examined
the natural convection heat transfer behavior and entropy generation
rate in a Cu–water nanofluid-filled cavity comprising two vertical
wavy surfaces with different temperatures and two horizontal flat sur-
faceswith thermal insulation. The results showed that themeanNusselt
number and entropy generation rate both decreased as the volume frac-
tions of nanoparticles increased. It was also shown that the mean
Nusselt number and rate of entropy generation increased with the rise
of Grashof number, but decreased with the enhancement of the surface
amplitude. Cho et al. [34] investigated the natural convection heat
transfer performance and entropy generation rate in a water based
nanofluid-filled cavity bounded by a left wavy-wall with a constant
heat flux, a right wavy-wall with a constant low temperature, and flat
upper and lower walls with adiabatic conditions. The results showed
that the mean Nusselt number increased and the entropy generation
rate decreased as the volume fraction of nanoparticles increased. Cho
[35] performed a numerical simulation into heat transfer and entropy
generation of natural convection in a partially-heatedwavy-wall square
cavity filled with Al2O3–water nanofluid. In the study, it wasmentioned
that the mean Nusselt number increases and the total entropy genera-
tion decreases as the volume fraction of Al2O3 nanoparticles increases.
Sheikholeslami et al. [36] investigated nanofluid flow and heat transfer
in a square enclosure containing a rectangular heated body computa-
tionally. The results indicated that both the Nusselt number and dimen-
sionless entropy generation enhances when the Rayleigh number and
nanoparticle volume fraction rise. Kefayati [37] analyzed heat transfer
and entropy generation due to laminar natural convection in a square
cavity filled with non-Newtonian nanofluid. It was found that entropy
generation due to fluid friction and heat transfer rise as the Rayleigh
number enhances. In addition, augmentation of volume fraction en-
hances entropy generations due to heat transfer and fluid friction in dif-
ferent power-law indexes.

Lattice Boltzmann method has been a powerful mesoscopic method
in different subjects and shapes such as nanofluid, ferrofluid,MHD flow,
porous medium, turbulent flow, melting and so on [38–50]. However, it
does not have the considerable success in non-Newtonian fluid espe-
cially for non-isothermal problems. Hence, the simulation of the prob-
lem requires a special innovative numerical method which has the
capacity to solve the problem accurately and efficiently while protects
themerit of LBM. Therefore, Finite Difference Lattice BoltzmannMethod
(FDLBM) has been applied to solve the problem as it has the ability to
derive the shear stresses equations in the form of the classical equations
in contrast with Lattice BoltzmannMethod (LBM). Independency of the
method to the relaxation time in contrast with the common LBM causes
the method to solve different non-Newtonian fluid energy equations
successfully as the method protects the positive points of LBM simulta-
neously. In addition, the validation of themethod and itsmesh indepen-
dency demonstrates that is more capable than conventional LBM. The
method has been proposed by Fu et al. [51]. Moreover, Kefayati
[52–70] developed and applied the FDLBM to simulate various compli-
cated problems recently.

The main aim of this study is to simulate laminar natural convection of
non-Newtoniannanofluid in a porous square cavity by FDLBM. It is endeav-
ored to express the effect of different parameters on the flow and thermal
fields. In addition, the energy management of the problem is analyzed by
studying the entropy generations due to heat transfer and fluid friction as
the proportions of the irreversibilities are investigated by the average
Bejan number. The results of FDLBM are validatedwith previous numerical
investigations and the effects of the main parameters (power-law index,
volume fraction, Darcy number and Rayleigh number) on the flow and en-
ergy fields as well as the entropy generation are researched.
2. Problem statement

The geometry of the present problem is shown in Fig. 1. It consists of
a two-dimensional cavity with the height of L. The temperature of the
left wall has been considered to be maintained at high temperature of
TH as the right sidewall is kept at low temperature of TC. The horizontal
walls are adiabatic and impermeable. The porous cavity is filled with a
non-Newtonian shear-thinning nanofluid of water/Cu where the perti-
nent thermophysical properties are given in Table 1. The general form of
the momentum equation of incompressible fluid in saturated variable
porosity can be derived by averaging the Navier–Stokes equations
over the representative elementary volume (REV). The Brinkman-
extended Darcy model without the inertia term is applied for the simu-
lation of the porous media as it has been used in a large number of in-
vestigations for natural convection in rectangular porous enclosures
[69–73]. Uniform porosity and permeability has been applied in this
study. The ratios of the thermophysical properties of the porous medi-

um and of the fluid, for the specific heat σ ¼ ðρcpÞm
ðρcpÞ f , for the thermal con-

ductivity Rk ¼ km
k f
, and for viscosity Λ ¼ μm

μ f
are equal to one. The flow is

incompressible, steady, and laminar. It is assumed that nanoparticles
are suspended in the nanofluid using either surfactant or surface charge
technology. Further, it is assumed that the liquid and solid are in ther-
mal equilibrium and they flow at the same velocity. The density varia-
tion is approximated by the standard Boussinesq model. In addition,
the viscous dissipation in the energy equation has been neglected.

 

 

3. Theoretical formulation

3.1. Dimensional equations

Considering the above assumptions, the following governing equa-
tions are used to represent the flow phenomena [37,69].

∂u
∂x þ

∂v
∂y ¼ 0 ð1Þ

ρnf
∂u
∂t þ u

∂u
∂x þ v

∂u
∂y

� �
¼ −∂P

∂x þ ∂τxx
∂x þ ∂τxy

∂y

� �
−

μnf

K
u ð2Þ



Table 1
Thermophysical properties of water and copper.

Property Fluid (water) Solid (Cu)

cp (j/kg k) 4179 383
ρ (kg/m3) 997.1 8954
β (k−1) 2.1 × 10−4 1.67 × 10−5

k (w/m k) 0.613 400
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ρnf
∂v
∂t þ u

∂v
∂x þ v

∂v
∂y

� �
¼ −∂P

∂y þ ∂τxy
∂x þ ∂τyy

∂y

� �

þ g ρβð Þnf T−TCð Þ− μnf

K
v ð3Þ

∂T
∂t þ u

∂T
∂x þ v

∂T
∂y ¼ αnf

∂2T
∂x2

þ ∂2T
∂y2

 !
ð4Þ

αnf is the thermal diffusivity of the nanofluid and it is given by [37].

αnf ¼ Knf
�

ρCPð Þnf ð5Þ

The density, ρnf, the heat capacity, (ρcp)nf, and the thermal expansion
coefficient, (ρβ)nf, of the nanofluid are obtained from the following re-
spective equations [37]:

ρnf ¼ 1−φð Þρ f þ φρs ð6Þ

ρcp
� �

nf ¼ 1−φð Þ ρcp
� �

f þ φ ρcp
� �

s ð7Þ

ρβð Þnf ¼ 1−φð Þ ρβð Þ f þ φ ρβð Þs ð8Þ

With φ being the volume fraction of the solid particles and sub-
scripts f, nf and s stand for base fluid, nanofluid and solid, respectively.
The effective thermal conductivity of the spherical nanofluid can be ap-
proximated by the Maxwell–Garnetts (MG) model as [1–18]:

knf
k f

¼ ks þ 2kf−2φ kf−ks
� �

ks þ 2kf þ φ kf−ks
� � ð9Þ

For a purely-viscous non-Newtonian nanofluid which follows the
Ostwald–DeWaele (i.e. power-law) model the shear stress tensor is

τxx ¼ 2μnf
∂u
∂x ð10aÞ

τyy ¼ 2μnf
∂v
∂y ð10bÞ

τxy ¼ τyx ¼ μnf
∂u
∂y þ ∂v

∂x

� �
ð10cÞ

μnf is the effective dynamic viscosity of the nanofluid which is given
as [1–18]:

μnf ¼
μ f

1−φð Þ2:5
ð11Þ

where

μ f ¼ N 2
∂u
∂x

� �2

þ ∂v
∂y

� �2
" #

þ ∂v
∂xþ

∂u
∂y

� �2
( ) n−1ð Þ

2

ð12Þ

In the above equations (u,v), T and P are the dimensional velocities,
temperature and pressure respectively, ρ is density, N is the consistency
coefficient and n is the power-law index. Therefore, the deviation of n
from unity indicates the degree of deviation from Newtonian behavior.
With n ≠ 1, the constitute Eq. (12) represents pseudoplastic fluid
(n b 1) and for (n N 1) it represents a dilatant fluid, respectively.
Pseudoplastic fluids are characterized by an apparent viscosity which
decreases with increasing shear rate, however in dilatant fluids the ap-
parent viscosity increases with increasing shear rate.

The boundary conditions of the problem are as follows:

Upper wall y ¼ L; 0≤x≤L; u ¼ v ¼ 0;
∂T
∂y ¼ 0 ð13aÞ

Lower wall y ¼ 0; 0≤x≤L; u ¼ v ¼ 0;
∂T
∂y ¼ 0 ð13bÞ

Left wall x ¼ 0; 0≤y≤L; u ¼ v ¼ 0; T ¼ TH ð13cÞ

Right wall x ¼ L; 0≤y≤L; u ¼ v ¼ 0; T ¼ TC ð13dÞ

3.1.1. Entropy generation
In the studied problem, the irreversibility is generated through heat

transfer and fluid flow. As a result, the total entropy is the sum of irre-
versibilities due to thermal gradients, viscous dissipation as follows
[37]:

SS ¼ SF þ ST ð14Þ

where the entropy generations due to fluid flow (SF), and heat trans-
fer (ST) are calculated as follows [37,69]:

SF ¼ μnf

T0K
u2 þ v2
h i

þ μnf

T0
2

∂u
∂x

� �2

þ 2
∂v
∂y

� �2

þ ∂u
∂y þ ∂v

∂x

� �2
" #

ð15Þ

ST ¼ knf
T2
0

∂T
∂x

 !2

þ ∂T
∂y

 !2
2
4

3
5 ð16Þ

An important measure of the entropy field is Bejan number (Be)
which is defined as the ratio between entropy generations due to heat
transfer irreversibilities to the total entropy generation as follows [37,
69]:

Be ¼ ST
SS

ð17Þ

3.2. Non-dimensional equations

In order to proceed to the numerical solution of systems (1)–(4)
with the boundary conditions (13a), (13b), (13c) and (13d) the follow-
ing non-dimensional variables are introduced.

x ¼ x
L
; y ¼ y

L
; u ¼ u

α f

L

� �
Ra0:5

; v ¼ v
α f

L

� �
Ra0:5

;

P ¼ P

ρnf
α f

L

� �2
Ra

; t ¼ t

L2

α f

 !
Ra−0:5

; T ¼ T−TC

TH−TC
;

ð18Þ

By substitution of Eq. (8) to Eqs. (1)–(4), the following system of
equation is derived

∂u
∂x þ

∂v
∂y ¼ 0 ð19Þ
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∂u
∂t þ u

∂u
∂x þ v

∂u
∂y

� �
¼ −∂P

∂x þ Prffiffiffiffiffiffi
Ra

p ρ f

ρnf

1

1−φð Þ2:5
½2 ∂

∂x
μ f

N
∂u
∂x

� �
þ ∂
∂y

μ f

N
∂u
∂y þ ∂v

∂x

� �� 

−

ρ f

ρnf

1

1−φð Þ2:5
Pr

Da
ffiffiffiffiffiffi
Ra

p μ f

N
u

ð20Þ

∂v
∂t þ u

∂v
∂xþ v

∂v
∂y

� �
¼ −∂P

∂y þ Prffiffiffiffiffiffi
Ra

p ρ f

ρnf

1

1−φð Þ2:5
½2 ∂

∂y
μ f

N
∂v
∂y

� �
þ ∂
∂x

μ f

N
∂u
∂y þ ∂v

∂x

� �� �� þ Pr
ρβð Þnf
ρnfβ f

T−
ρ f

ρnf

1

1−φð Þ2:5
Pr

Da
ffiffiffiffiffiffi
Ra

p μ f

N
v

ð21Þ

∂T
∂t þ u

∂T
∂x þ v

∂T
∂y ¼ 1ffiffiffiffiffiffi

Ra
p αnf

α f

∂2T
∂x2 þ ∂2T

∂y2

 !
ð22Þ

μ f ¼ N 2
∂u
∂x

� �2

þ ∂v
∂y

� �2
" #

þ ∂v
∂xþ

∂u
∂y

� �2
( ) n−1ð Þ

2

ð23Þ

The boundary conditions of the problem are

Upper wall y ¼ 1; 0≤x≤1; u ¼ v ¼ 0;
∂T
∂y ¼ 0 ð24aÞ

Lower wall y ¼ 0; 0≤x≤1; u ¼ v ¼ 0;
∂T
∂y ¼ 0 ð24bÞ

Left wall x ¼ 0; 0≤y≤1; u ¼ v ¼ 0; T ¼ 1 ð24cÞ

Right wall x ¼ 1; 0≤y≤1; u ¼ v ¼ 0; T ¼ 0 ð24dÞ

The non-dimensional parameters entering now into the problem
under consideration are

Ra ¼ ρ fβ f gyL
3 TH−TCð Þ

μ f α f
Rayleigh numberð Þ ð25Þ

Pr ¼ μ f

ρ f α f
Prandtl numberð Þ ð26Þ

Da ¼ K

L2
Darcy numberð Þ ð27Þ

3.2.1. Entropy generation
The dimensionless entropy generation with consideration to non-

dimensional variables can be acquired as follows [37]:

SS ¼ SF þ ST ð28Þ

SS ¼ SS � T0
2L2

knfΔT
2 ð29Þ

SF ¼ ΦI u2 þ v2 þ Da 2
∂u
∂x

� �2

þ 2
∂v
∂y

� �2

þ ∂u
∂y þ ∂v

∂x

� �2
" #" #

ð30Þ

ST ¼ knf ∂T� �2

þ ∂T� �2
" #

ð31Þ

kf ∂x ∂y

ΦI ¼
μnf T0

kf

α f

LΔT

� �2

Ra

¼
2 ∂u

∂x

� �2
þ ∂v

∂y

� �2� 

þ ∂v

∂x þ ∂u
∂y

� �2� 
 n−1ð Þ
2

T0

1−φð Þ2:5 � kf

α f

LΔT

� �2

Ra ð32aÞ

ΦI ¼
Ra 2 ∂u

∂x

� �2
þ ∂v

∂y

� �2� 

þ ∂v

∂x þ ∂u
∂y

� �2� 
 n−1ð Þ
2

1−φð Þ2:5
λ ð32bÞ
λ ¼ T0

k
α f

LΔT

� �2

ð33Þ
 

f

The non-dimensional Bejan number is calculated as follows:

Be ¼ ST
SS

ð34Þ

It should bementioned that the variable of λ is taken constant and it
is 0.01.

The total dimensionless entropy generations and average Bejan
number are obtained by numerical integration of the local dimension-
less entropy generation over the entire cavity volume. It is given by:

SF ¼
Z1
0

Z1
0

SFdxdy ; ST ¼
Z1
0

Z1
0

STdxdy; SS ¼
Z1
0

Z1
0

SSdxdy ð35aÞ

Beavg ¼
Z1
0

Z1
0

Be dxdy ð35bÞ

4. Finite Difference Lattice Boltzmann Method (FDLBM)

The normalized discrete Boltzmann equation can be written as fol-
lows:

∂ f α
∂t þ ξα :∇ f α ¼ − 1

εϕ
f α− f eqα
� � ð36Þ

whereϕ, ξα, fα and fα
eq are the relaxation time, the discrete particle veloc-

ity, the discrete particle distribution function, and the discrete particle
equilibrium distribution function, respectively. Moreover, ε is a small
parameter, which is taken as a time step ε = Δt. The idea of changing
the equilibrium distribution function (fαeq) instead of changing the relax-
ation time (ϕ) has been employed in this method. In fact, since the re-
laxation time (ϕ) is arbitrary in the present method and it always
appears together with ε, using an appropriate normalization ϕ can al-
ways be treated as unity.

If a splittingmethod has been applied on the Eq. (36) and setting the
relaxation time equals one (ϕ = 1), the streaming stage can be men-
tioned as

∂ f α
∂t þ ξα :∇x f α ¼ 0 ð37Þ

Eq. (37) has been solved by a Lax–Wendroff (LW) scheme [74]. The
collision step that has been created by the splitting method is as

∂ f α
∂t ¼ − 1

εϕ
f α x; tð Þ− f eqα x; tð Þ� � ð38Þ

The solution of the streaming step will serve as initial conditions for
the solution of the collision step. Eq. (38) can be simplified by using the
Euler method and the choice of ε=Δt and ϕ = 1,

f α x; t þ Δtð Þ− f α x; tð Þ
Δt

¼ − 1
εϕ

f α x; tð Þ− f eqα x; tð Þ� � ð39Þ

then,

f α x; t þ Δtð Þ ¼ f eqα x; tð Þ ð40Þ

The equilibrium distribution function (fαeq) is different from conven-
tional ones adopted by previous researchers, who normally expand the 
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Maxwellian distribution function up to the second or third order in
terms of the products of u and ξα.The present approach proposes a poly-
nomial in terms of ξα as follows [51]:

f eqα ¼ Aα þ ξαð ÞxAxα þ ξαð ÞyAyα þ ξαð Þ2xBxxα þ ξαð Þ2yByyα
þ ξαð Þx ξαð ÞyBxyα : ð41Þ

where ξα for a D2Q9 can be stated as (Fig. 2)

ξa ¼
0 α ¼ 0
c cos i−1ð Þπ=2

� �
; sin i−1ð Þπ=2

� �� �
α ¼ 1;3;5;7

c
ffiffiffi
2

p
cos i−5ð Þπ=2 þ π=4
� �

; sin i−5ð Þπ=2 þ π=4
� �� �

α ¼ 2;4;6;8

8<
:

ð42Þ

c is a special parameter which should be specified with consider-
ation to other parameters. Since the value of c affects numerical stability,
it is modified in each step. The modified equation is as follows [51]:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2−2p

ρ

����
����

s
ð43Þ

Other parameters in the equilibrium distribution function (fαeq) with
consideration are defined as

A0 ¼ ρ−2p
c2

−ρ uj j2
c2

þ τxx þ τyy
c2

;A1¼ A2 ¼ 0 ð44aÞ

Ax1 ¼ ρu
2c2

; Ax2 ¼ 0 ð44bÞ

Ay1 ¼ ρv
2c2

; Ay2 ¼ 0 ð44cÞ

Bxx1 ¼ 1
2c4

pþ ρu2−τxx
� �

; Bxx2 ¼ 0 ð44dÞ

Byy1 ¼ 1
2c4

pþ ρv2−τyy
� �

; Byy2 ¼ 0 ð44eÞ
Fig. 2. Discrete velocity distribution in D2Q9.
Bxy2 ¼ 1
4c4

ρvu−τxy
� �

; Bxy1 ¼ 0; i; j ¼ x; y ð44fÞ

Assuming parameters with the same magnitude of ξα to be equal,
the coefficients in Eq. (41), Aα, Axα, Ayα, etc., can be simplified to give
the following:

A1¼ A3¼ A5¼ A7; A2¼ A4¼ A6¼ A8
Ax1 ¼ Ax3 ¼ Ax5 ¼ Ax7; Ax2 ¼ Ax4 ¼ Ax6 ¼ Ax8
Ay1 ¼ Ay3 ¼ Ay5 ¼ Ay7; Ay2 ¼ Ay4 ¼ Ay6 ¼ Ay8
Bxx1 ¼ Bxx3 ¼ Bxx5 ¼ Bxx7; Bxx2 ¼ Bxx4 ¼ Bxx6 ¼ Bxx8
Byy1 ¼ Byy3 ¼ Byy5 ¼ Byy7; Byy2 ¼ Byy4 ¼ Byy6 ¼ Byy8
Bxy1 ¼ Bxy3 ¼ Bxy5 ¼ Bxy7; Bxy2 ¼ Bxy4 ¼ Bxy6 ¼ Bxy8

ð45Þ

τxx ¼ 2Pr
N
ffiffiffiffiffiffi
Ra

p 1
ρnf

μ f

1−φð Þ2:5
∂u
∂x

� �
ð46aÞ

τyy ¼ 2Pr
N
ffiffiffiffiffiffi
Ra

p 1
ρnf

μ f

1−φð Þ2:5
∂v
∂y

� �
ð46bÞ

τyx ¼ τxy ¼ Pr
N
ffiffiffiffiffiffi
Ra

p 1
ρnf

μ f

1−φð Þ2:5
∂u
∂y þ ∂v

∂x

� �
ð46cÞ

For the force terms in the momentum equation, the followed
Eqs. (47)–(48) should be added to the streaming stage.

Fα ¼ Aα þ ξαð ÞxAxα þ ξαð ÞyAyα ð47Þ
A0 ¼ A1 ¼ A2 ¼ 0

Ax1 ¼
−

ρ f

ρnf

1

1−φð Þ2:5
Pr

Da
ffiffiffiffiffiffi
Ra

p μ f

N
u

2c2
;Ax2 ¼ 0

Ay1 ¼
Pr

ρβð Þnf
ρnfβ f

T−
ρ f

ρnf

1

1−φð Þ2:5
Pr

Da
ffiffiffiffiffiffi
Ra

p μ f

N
v

2c2
;Ay2 ¼ 0

ð48Þ

The distribution function for energy (gαeq) can be obtained like the
flow field and just the corresponding polynomials of the equilibrium
distribution functions are different and they can be proposed as follows:

Energy:

geqα ¼ Aα þ ξαð ÞxAxα þ ξαð ÞyAyα ð49Þ

A0 ¼ T A1¼ A2 ¼ 0

Ax1 ¼
uT−αnf

α f

1ffiffiffiffiffiffi
Ra

p ∂T
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� �
2c2

; Ax2 ¼ 0

Ay1 ¼
vT−αnf

α f

1ffiffiffiffiffiffi
Ra

p ∂T
∂y

� �
2c2

; Ay2 ¼ 0

ð50Þ

The local and the average Nusselt numbers at the hot wall with the
utilization of the dimensionless parameters are calculated as

NUh ¼ −∂T
∂x

� �
x¼0

ð51Þ

NUavg ¼
Z1
0

NUhdy ð52Þ

Because of considering nanoparticles effects on different parameters
exactly, normalized average Nusselt number on the hot wall is defined.

 

 

 



Fig. 3. Comparison between pres

Table 2
Grid independence study at Ra= 105,φ=0, Da=
0.001 and n = 0.6.

Mesh size NUavg

100×100 2.257
110×110 2.126
120×120 2.054
130×130 1.983
140×140 1.941
150×150 1.934
160×160 1.934
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The normalized average Nusselt number express Nusselt number at any
volume fractions to the pure fluid which is written as follows:

NU�
avg nð Þ ¼ NUavg φð Þ

NUavg φ ¼ 0ð Þ ð53Þ

5. Code validation and grid independence

Finite Difference Lattice Boltzmann Method (FDLBM) scheme is uti-
lized to obtain the numerical simulations of laminar natural convection
in a porous cavity that is filled with non-Newtonian nanofluid while
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entropy generation has been studied in details as well. This problem
was investigated at different Rayleigh numbers of (Ra = 104, and
105), Darcy numbers of Da= 0.001, 0.01, and 0.1, power-law index be-
tween 0.6 and 1, and volume fraction between φ=0 to 0.04. An exten-
sive mesh testing procedure was conducted to guarantee a grid
independent solution. Seven different mesh combinations were ex-
plored for the case of Ra= 105, n= 1, Da= 0.001 andφ=0. The pres-
ent code was tested for grid independency by calculating the u and v
velocities in the middle of the cavity as the average Nusselt on the hot
wall has been studied. It was confirmed that the grid size (150_150) en-
sures a grid independent solution as portrayedby Table 2.Moreover, the
FDLBM is applied for non- Newtonian natural and mixed convection of
pure fluid and nanofluid in the presence and absence ofmass transfer by
the author recently [55–70]which demonstrates the accuracy of the uti-
lized code properly. To check the precision of the present consequences
for calculation of entropy, the obtained results were validated with the
study of Ilis et al. [30] in Fig. 3.
Fig. 4. Comparison of the isotherms between the base fluid (—) (φ = 0) and nanofluids
6. Results and discussion

6.1. Effects of power-law index, Darcy number, and volume fraction on heat
transfer and fluid flow

Fig. 4 provides comparisons of the isotherms between the base fluid
(φ= 0) and the nanofluid (φ= 0.04) for different power-law indexes,
and Darcy numbers at Ra = 105.

At Da= 10−3, it is observed that the rise of power-law index causes
the density of the base fluid isotherms on the hot wall to augment. In
fact, it exhibits that the growth of power-law index enhances the con-
vection process generally. The effect is more considerable at the iso-
therm of close to the bottom left side of the cavity where the increase
in the power-law index provokes the movement of the isotherm be-
tween the cold and hot walls to augment. The comparison between
the base fluid and nanofluid in the isotherms clarify that the nanofluid
isotherms incline to the hot wall more than the base fluid and therefore
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it proves that heat transfer increases in the presence of the
nanoparticles.

At Da= 10−2, the increase in the Darcy number causes the convec-
tion process to ameliorate significantly as the gradient of the isotherms
on the hot wall and the movement of the isotherms between the cold
and hot walls enhances. The effects of nanoparticles on the isotherms
are similar to the Darcy number of Da = 0.001 as the isotherms of
nanofluids become closer to the hot wall and enhance the convection
process. In addition, the effects of nanopaticles on isotherms change as
a reslut of the augmentation of Darcy number clearly. It is evident that
the influences of nanoparticles drop as the Darcy number increases
from Da = 0.001 to 0.01, although the drop is marginal. In contrast
with the Darcy number of Da = 0.001, the increase in the power-law
index declines the gradient temperature on the hot wall and therefore
heat transfer.
Fig. 5. Comparison of the streamlines between the base fluid (—) (φ = 0) and nanofluid
At Da = 10−1, the rise of the Darcy number from Da = 0.01 to 0.1
enhances the convection process as the gradient of the isotherms on
the hot wall keeps increasing and the flow of the isotherms between
the cold and hot walls grows. The trend of the nanoparticle influence
on the isotherms is similar to the smaller Darcy numbers where the iso-
therms of nanofluids augment the convection process. Further, the ef-
fects of nanopaticles on isotherms alter due to the augmentation of
Darcy number clearly since it indicates that the influences of nanoparti-
cles drop as the Darcy number rises from Da = 0.01 to 0.1, but the de-
crease is minimal. It also demonstrates that the increase in the power-
law index declines the gradient temperature on the hot wall and there-
fore heat transfer at Da = 0.01 more than Da = 0.1.

Fig. 5 draws comparisons of the streamlines between the base fluid
(φ= 0) and the nanofluid (φ= 0.04) for different power-law indexes,
and Darcy numbers at Ra = 105. Generally, the streamlines display the
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effects of nanofluid evidently as they become bigger compared to the
streamlines of the base fluid. In other words, the augmentation of con-
vection process because of the addition of nanoparticles provokes the
streamlines tomove in a bigger ellipticway in the cavity formultifarious
studied power-law indexes and Darcy numbers. Moreover, the increase
in the Darcy number improves the convection process as the stream-
lines move a bigger circle and pathway in the cavity evidently. In addi-
tion, the effect of the power-law index is evident in different Darcy
numbers with a certain streamline in the core of the cavity. At Da =
0.001, the enhancement of power-law index causes the certain stream-
line of ψ = −0.009 to become bigger and demonstrates the
Fig. 6. Comparisons of local Nusselt number on the hot wall, and the temperature in the middle
n = 0.6.
improvement of the convection process as a result of the increase in
the power-law index. On the other hand, a different pattern is observed
against the rise of the power-law index on the streamlines at Da= 0.01
where the specific streamline of ψ=−0.028 diminishes with the aug-
mentation of the power-law index. The trend is also apparent at Da =
0.1 where the streamline of ψ=−0.034 becomes smaller with the en-
hancement of power-law index. The pattern demonstrates that the con-
vection process is weakened by the enhancement of the power-law
index at Da = 0.01 and 0.1.

Fig. 6 displays the distribution of local Nusselt number on the hot
wall and the local temperature in the middle of the cavity at y = 0.5
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for different volume fractions and Darcy numbers at Ra= 105 and n =
0.6. It is clear that the local Nusselt number increases gradually as vol-
ume fraction augments. In addition, it shows that the local temperature
in the middle of the cavity rises with the increase in volume fraction.
The phenomenon demonstrates the convection process becomes stron-
ger with the addition of the nanoparticles. Further, the local Nusselt
number decreases as Darcy number drops gradually. Moreover, it illus-
trates that the rise of Darcy number causes the difference between the
local Nusselt numbers of various volume fractions on the first part of
the hot wall to drop. Also, the smooth line in the middle of the cavity
Fig. 7. Comparisons of local Nusselt number on the hot wall, and temperature in the middle of
φ = 0.
at Da = 0.1 changes to a linear pattern steadily at Da = 0.001 with
the decrease in Darcy number.

Fig. 7 shows the distribution of local Nusselt number on the hot wall
and the temperature in the middle of the cavity at y = 0.5 for different
power-law indexes and Darcy numbers at Ra= 105andφ=0. General-
ly, the values of the local Nusselt number without consideration to the
values of the power-law index and the volume fraction decreases as
the Darcy number falls. The phenomenon is confirmed by the trend of
the temperature in the middle of the cavity where the curved and
smooth line at Da = 0.1 alters to a linear one at Da = 0.001 and
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demonstrates the weakness of convection and heat transfer. At Da =
0.001, it exhibits that the augmentation of power-law index causes
the local Nusselt number to rise at Y b 0.8 while it drops slightly at
Y N 0.8. However, it illustrates that the augmentation is not uniform
where the greatest rise is observed from n=0.6 to 0.8 and then the en-
hancement becomes smaller as the power-law index increases from
n = 0.8 to 1. On the other hand, the local Nusselt number drops as the
power-law index enhances in the first half of the hot wall at Da =
0.01 and 0.1. Moreover, it should be noted that the drop is more consid-
erable at Da=0.1. It is noticeable that the effect of the power-law index
on the local Nusselt number is insignificant at Y N 0.6 for Da= 0.01 and
0.1. The temperature in the middle of the cavity at Da = 0.001 changes
from a curved shape at n = 1 to a linear one at n = 0.6. It clearly indi-
cates that the convection process weakens as the power-law index de-
creases at Da = 0.001. But, it is observable that the temperature in the
middle of the cavity increases marginally with the decrease in the
power-law index.

Fig. 8 indicates the average Nusselt number and the dimensionless
average Nusselt number for different Rayleigh numbers, Darcy num-
bers, power-law indexes, and volume fractions. It is evident that the av-
erage Nusselt number enhances as the Rayleigh number rises for
different power-law indexes and volume fractions. In addition, the
enhancement of volume fraction in various power-law indexes and
Rayleigh numbers provokes the average Nusselt number to augment.
Fig. 8. Comparison between the average Nusselt and dimensionless average Nusselt numbers
However, the effect of power-law index in multifarious Darcy num-
bers is different. Moreover, the effect of the nanoparticle on the in-
crease in heat transfer is different for various power-law indexes,
Darcy and Rayleigh numbers. The dimensionless average Nusselt
number can clarify the influence of the nanoparticle at different
studied parameters evidently. As a result, the parameters have
been studied for each Darcy number. At Da = 0.001, the increase in
the power-law index enhances the average Nusselt numbers in dif-
ferent Rayleigh numbers and volume fractions. The enhancement is
more significant at Ra = 105 compared to Ra = 104. In addition,
the non-dimensional average Nusselt number discloses that the ef-
fect of the nanoparticle enhances with the rise of the power-law
index at Ra = 104, but, by contrast, the influence drops as the
power-law index increases at Ra = 105 obviously. At Da = 0.01,
the rise of the power-law index enhances the average Nusselt num-
bers in different volume fractions at Ra = 104; conversely, the in-
crease in the power-law index causes the average Nusselt number
to drop at Ra = 105. However, the non-dimensional average Nusselt
number exhibits that the effect of the nanoparticle enhances with
the drop of the power-law index in various Rayleigh numbers. At
Da = 0.1, the decline of the power-law index augments the average
Nusselt numbers in different Rayleigh numbers and volume frac-
tions. The augmentation is more noteworthy at Ra = 105 compared
to 104. Furthermore, the non-dimensional average Nusselt number
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reveals that the effect of nanoparticle declines with the rise of the
power-law index for both studied Rayleigh numbers

6.2. Effects of power-law index, Darcy number, Rayleigh number and vol-
ume fraction on entropy generation due to heat transfer

Fig. 9 illustrates the local entropy generation due to heat transfer for
pure fluid (φ=0) and nanofluid (φ=0.04) in different power-law in-
dexes and Darcy numbers at Ra = 105 as maximum values of the local
entropy generation is mentioned to provide a clear comparison be-
tween them. It illustrates that the enhancement of Darcy number aug-
ments the entropy generation generally in multifarious power-law
indexes, Rayleigh numbers and volume fractions. It is evident that the
maximum value of the irreversibility due to heat transfer occurs close
to the sidewalls where the gradient of temperature is higher in these
sections. It shows that the enhancement of power-law index results in
the increase in the entropy generation. The maximum value of the
local entropy generation and the contour of the local entropy generation
demonstrate that the addition of nanoparticles enhances entropy gen-
eration due to heat transfer for various power-law indexes and Darcy
numbers. Nevertheless, the contours and the maximum values indicate
that the growth is not the same for the different studied parameters.

Fig. 10 shows the total entropy generation due to heat transfer (ST)
in different power-law indexes, volume fractions, Rayleigh numbers
and Darcy numbers. It is clear that the ST increases generally as the
Fig. 8 (cont
Rayleigh number and the volume fraction enhance in different power-
law indexes and Darcy numbers. However, it demonstrates that the ST
has different behavior in different Darcy numbers against various stud-
ied power-law indexes. At Da = 0.001, the ST enhances as the power-
law index increases in various Rayleigh numbers. Moreover, it indicates
that the effect of power-law index on the ST is more significant at Ra =
105 compared to 104. At Da=0.01, the ST declineswhen the power-law
index falls in various volume fractions at Ra= 104 and the drop is more
sever from n = 0.8 and to 0.6. But, the ST augments as the power-law
index decreases at Ra = 105. In addition, it shows that the effect of
power-law index on the ST is more significant at Ra = 104 compared
to 105. At Da=0.1, the ST declineswhen the power-law index increases
in various volume fractions and Rayleigh numbers and the drop is more
considerable at Ra = 105.

6.3. Effects of power-law index, Darcy number, Rayleigh number and vol-
ume fraction on entropy generation due to fluid friction

Fig. 11 displays the local entropy generation due to fluid friction for
pure fluid (φ=0) and nanofluid (φ=0.04) in different power-law in-
dexes and Darcy numbers at Ra = 105 as maximum values of the local
entropy generation is mentioned to provide a clear comparison be-
tween them. In mathematical view, it is clear from Eq. (30) that the in-
crease in Darcy number enhances the entropy generation due to the
fluid friction. Physically, as Darcy number increases, the hydraulic
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resistance of porous medium is reduced and the stronger fluid circula-
tion is observed. Consequently, the irreversibility due to fluid friction
is also found to increase. In addition, the distribution of the entropy
shows that the entropy generation in the middle of the cavity becomes
strong gradually with the enhancement of the Darcy number and the
gradient of the entropy generation on the side wall augments hugely.
The contours also show that distribution of the entropy is different com-
pared to heat transfer generally where the considerable values of entro-
py could be observed on both horizontal walls in contrast with the heat
transfer one. In fact, the presences of maximum values of horizontal ve-
locity close to the horizontal walls causes the entropy to be observed in
this section while the manner happens for sidewalls because of the
maximum values of the vertical velocities near the sidewalls. It is obvi-
ous that the rise of power-law index not only alters the local entropy
forms but also provokes the entropy amount to decrease noticeably.
The comparison betweenfluid andnanofluid shows that the local entro-
py generation distribution in the cavity changes as the nanoparticles are
added to the base fluid. In addition, the maximum values prove that the
entropy due to fluid friction increases widely as a result of the added
nanoparticles. At Da=0.001, it is observable that the local entropy gen-
eration especially close to the left sidewall strengthenswith the increase
in the power-law index. For Da= 0.01, the augmentation of the power-
law index provokes the entropy in different sections of the cavity to de-
crease and the drop is steady. On the other hand, the entropy generation
due to fluid friction at Da=0.1 plummets from n=0.6 to 1 as themax-
imum entropy generation at n = 1 decreases by 46%.
Fig. 8 (cont
Fig. 12 illustrates the total entropy generation due to fluid friction
(SF), for pure fluid (φ = 0) and nanofluid (φ = 0.04) in different
power-law indexes, volume fractions, Rayleigh numbers and Darcy
numbers. It demonstrates that the SF enhances considerably as the Ray-
leigh number increases. In addition, the rise of the volume fraction aug-
ments the SF steadily in various power-law indexes and volume
fractions. At Da = 0.001, the SF enhances as the power-law index in-
creases in various Rayleigh numbers and volume fractions. Moreover,
it indicates that the effect of power-law index on the SF is more signifi-
cant at Ra = 104 compared to Ra = 105. At Da = 0.01, the SF declines
when the power-law index falls in various volume fractions at Ra =
104; although, the drop is marginal from n = 1 to 0.8. But, the SF aug-
ments as the power-law index decreases at Ra = 105. In addition, it
shows that the influence of power-law index on the SF is more notice-
able at Ra = 104 compared with 105. At Da = 0.1, the SF declines
when the power-law index increases in various volume fractions and
Rayleigh numbers and the drop is more considerable at Ra = 105.

6.4. Effects of power-law index, Darcy number, Rayleigh number and vol-
ume fraction on the summation of entropy generations

Fig. 13 indicates the total local entropy generation due to fluid fric-
tion and heat transfer for pure fluid (φ = 0) and nanofluid (φ = 0.04)
in different power-law indexes and Darcy numbers at Ra= 105 asmax-
imumvalues of the local entropy generation arementioned to provide a
clear comparison between them. It is observed that the entropy
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generation is strengthened by the increase in the Darcy number. In ad-
dition, thenanoparticle has a crucial role for enhancing the entropy gen-
eration in different power-law indexes and Darcy numbers. However,
the effect of power-law index and the behavior of the total entropy gen-
eration are different in various Darcy numbers. At Da=0.001, the trend
Fig. 9. Comparison of the local entropy generation due to heat transfer (ST) between the base fl
law indexes at Ra = 105.
of the total local entropy generation (SS) is similar to the local entropy
generation due to heat transfer (ST) and it confirms that the ST has a
higher proportion in the SS compared to SF. Actually, it was predictable
since the weakness of the fluid friction in low Darcy number (based on
Eq. (30)) causes the ST to be formed in the shape of Ss. In addition, it is
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clear that the increase in the power-law index augments the irreversibil-
ities considerably as it was found the enhancement of the power-law
index rises the ST and SF separately. At Da=0.01, the shape and distribu-
tion of the entropy generation are revolutionizedwhere the high values of
the irreversibility are generated close to the horizontal walls and demon-
strate the influence of the fluid friction in the SS. In fact, increase in the
Darcy number provokes that role of the SF to enhance in the SS compared
to Da = 0.001. In contrast with Da = 0.001, the enhancement of power-
law index at Da = 0.01 has declined the total irreversibility and it is
Fig. 10. Comparison between the total entropy generation due to heat transfer (ST) for v
obvious in the displayed distribution and also the maximum values of
the total entropy generation in the both pure fluid and the nanofluid. At
Da = 0.1, the total entropy generation is completely similar to the SF
and the influence of the ST on the SS has been dropped considerably.
Moreover, the rise of the power-law index has a diverse effect on the en-
tropy generation as the SS diminishes substantially with the increase of
the power-law index from n= 0.6 to 1.

Fig. 14 exhibits the summation of the total entropy generation (SS)
in various power-law indexes, volume fractions, Rayleigh numbers
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and Darcy numbers. It shows the increase in the volume fraction en-
hances the SS gradually in different Rayleigh numbers, power-law in-
dexes and Darcy numbers. In addition, the increase in Rayleigh
Fig. 11. Comparison of the local entropy generation due to fluid friction (SF) between the base fl
law indexes at Ra = 105.
number augments the SS for different Darcy numbers and power-law
indexes. At Da = 0.001, the SS enhances as the power-law index in-
creases in various Rayleigh numbers and volume fractions. Moreover,
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it indicates that the effect of power-law index on the SF is more signifi-
cant from n = 0.8 to 1 at Ra = 104, but it occurs from n = 0.6 to 0.8 at
Ra= 105. At Da= 0.01, the SS declines when the power-law index falls
in various volume fractions at Ra = 104; although, the drop is marginal
from n = 1 to 0.8. However, the SS augments as the power-law index
decreases at Ra = 105. In addition, it shows that the effect of power-
law index on the SS is more significant at Ra = 104 compared to 105.
At Da=0.1, the SS declineswhen the power-law index increases in var-
ious volume fractions and Rayleigh numbers and the drop is more con-
siderable at Ra = 105.
Fig. 12. Comparison of the total entropy generation due to fluid friction (SF) for vario
6.5. Effects of power-law index, Darcy number, Rayleigh number and vol-
ume fraction on Bejan number

Fig. 15 shows local Bejan number for different power-law indexes,
Darcy numbers, and volume fractions at Ra= 105. In fact, this figure re-
veals that the irreversibility because of heat transfer is dominant in
which part of the cavity while the effects of the change into power-
law index, Darcy number and volume fraction on the parameter have
been illustrated. Generally, it indicates that the increase in the Darcy
number causes the local Bejan number to weaken considerably in
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different Rayleigh numbers and power-law indexes. In fact, the en-
hancement of the Darcy number augments the fluid friction and results
in the drop of the effect of the entropy generation due to heat transfer.
Hence, the Bejan number with consideration to Eq. (34) declines con-
siderably as the Darcy number increase. Moreover, the enhancement
Fig. 13. Comparison of the total local entropy generation (SS) between the base fluid (—) (φ=
Ra = 105.
of the volume fraction causes the local Bejan number to decrease and
the maximum value section diminishes significantly in different
power-law indexes and Darcy numbers. Nevertheless, the effect of
power-law index on the local Bejan number is different in multifarious
studied Darcy numbers. At Da= 0.001, the augmentation of the power-
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law index in this Darcy number has provoked the local Bejan number to
weaken and interestingly, the drop is more noticeable in the pure fluid
(φ = 0) where the maximum section in the middle of the cavity has
been diminished considerably. At Da = 0.01 and 1, it is evident that
the rise of the power-law index in the Darcy numbers have caused the
local Bejan number to enhance.

Fig. 16 exhibits the average Bejan number in various power-law in-
dexes, volume fractions, Rayleigh numbers and Darcy numbers. It illus-
trates that the average Bejan number decreases steadily as the volume
Fig. 14. Comparison of the summation of the total entropy generation (SS) for variou
fraction increases in various power-law indexes, Darcy numbers and
Rayleigh numbers. In addition, the average Bejan number declines
when the Darcy number augments in multifarious studied parameters.
Moreover, the rise of the Rayleigh number causes the average Bejan
number to decline considerably. However, the alteration of the power-
law index has different effects on the average Bejan number in various
Darcy and Rayleigh numbers. At Da= 0.001, the average Bejan number
decreases with the enhancement of the power-law index for different
Rayleigh numbers. However, the drop is minor from n = 0.8 to 1 at
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Fig. 15. Comparison of the local Bejan number (Be) between the base fluid and nanofluids
for different Darcy numbers and power-law indexes at Ra = 105.
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Ra = 105 and for nanofluids with the volume fraction of φ = 0.04, the
values of n = 0.8 are more than n = 1. At Da = 0.01, the average
Bejan number falls with the increase in the power-law index at Ra =
104; although, the amount of the average Bejan number is nearly the
same for n=0.8 and 1. In addition, the average Bejan number increases
when the power-law index enhances at Ra= 105. At Da= 0.1, the aug-
mentation of the power-law index augments the average Bejan number
significantly in different Rayleigh numbers and volume fractions.

7. Conclusions

Heat transfer of natural convection in a porous cavity filled with
non-Newtonian nanofluid has been studied and the entropy genera-
tions due to fluid friction and heat transfer are analyzed. Finite Differ-
ence Lattice Boltzmann Method (FDLBM) is utilized to simulate the
problem. This study has been performed for the pertinent parameters
in the following ranges: the Rayleigh number, Ra = 104 and 105, the
power-law index, n = 0.6 to 1, Darcy number, Da = 10−3–10−1 and
the volume fractions, φ = 0 to 0.04. This investigation is analyzed for
the various mentioned parameters and some conclusions are summa-
rized as follows:

• The increase in Rayleigh number causes the average Nusselt number
to enhance in various Darcy numbers, volume fractions and power-
law indexes.

• The average Nusselt number increases when the Darcy number en-
hances for various power-law indexes, Rayleigh numbers, and volume
fractions.

• The addition of the nanoparticle enhances the average Nusselt num-
ber. However, the effects of nanoparticles on the average Nusselt
number are different in various Darcy numbers.

• At Da = 0.001, the average Nusselt number increases as the power-
law index enhances in different Rayleigh numbers. In addition, the ef-
fects of nanoparticles enhance with the rise of the Rayleigh number
for various power-law indexes in this Darcy number.

• At Da=0.01, the average Nusselt number increases as the power-law
index enhances at Ra = 104 while the average Nusselt number drops
with the increase in the power-law index at Ra = 105. The enhance-
ment of the power-law index declines the effects of nanoparticles.

• At Da= 0.1, the average Nusselt number augments when the power-
law index decreases in different Rayleigh numbers. The enhancement
of the power-law index declines the effects of nanoparticles.

• The enhancement of Rayleigh number augments different irreversibil-
ities and causes the average Bejan number to drop considerably.

• The addition of nanoparticle enhances different entropy generations
and declines the average Bejan number for different Rayleigh num-
bers, power-law indexes, and Darcy numbers.

• The increase in the Darcy number causes various entropy generations
to rise for different power-law indexes and Rayleigh numbers. In addi-
tion, the enhancement of the Darcy number declines the average
Bejan number

• At Da = 0.001, the increase in the power-law index enhances the en-
tropy generations due to heat transfer and fluid friction in various
Rayleigh numbers. Conversely, the average Bejan number drops
with the enhancement of the power-law index.

• At Da = 0.1, the drop of the power-law index enhances the entropy
generations due to heat transfer and fluid friction in different Rayleigh
numbers. On the other hand, the average Bejan number augments as
the power-law index increases.

Nomenclature
Be Bejan number
c Lattice speed
cp Specific heat at constant pressure
Da Darcy number
F External forces
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f Density distribution functions
feq Equilibrium density distribution functions
g Internal energy distribution functions
geq Equilibrium internal energy distribution functions
gy Gravity
Gr Grashof number
K Permeability
L The length of the cavity
Fig. 16. Comparison of the average Bejan number (Beavg) for different Raylei
n Power-law index
N The consistency coefficient
Nu Nusselt number
P Pressure
Pr Prandtl number
R Gas constant
Ra Rayleigh number
T Temperature

 

 

gh numbers, Darcy numbers, volume fractions and power-law indexes.  
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T0 Bulk temperature (T0 ¼ THþTC
2 )

t Time
x,y Cartesian coordinates
u Velocity in x direction
v Velocity in y direction

Greek letters
φ Solid volume fraction
β Coefficient of volume expansion
ϕ Relaxation time
τ Shear stress
ζ Discrete particle speeds
Δx Lattice spacing
Δt Time increment
α Thermal diffusivity
ρ Density
μ Dynamic viscosity

Subscripts
avg Average
C Cold
H Hot
x,y Cartesian coordinates
α The number of the node
T Thermal
nf Nanofluid
F, f Fluid
s Solid
S Summation
tot Total
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