

Accepted Manuscript

A matheuristic based on large neighborhood search for the vehicle
routing problem with cross-docking

Philippe Grangier, Michel Gendreau, Fabien Lehuédé,
Louis-Martin Rousseau

PII: S0305-0548(17)30063-1
DOI: 10.1016/j.cor.2017.03.004
Reference: CAOR 4209

To appear in: Computers and Operations Research

Received date: 22 February 2016
Revised date: 25 February 2017
Accepted date: 9 March 2017

Please cite this article as: Philippe Grangier, Michel Gendreau, Fabien Lehuédé,
Louis-Martin Rousseau, A matheuristic based on large neighborhood search for the vehi-
cle routing problem with cross-docking, Computers and Operations Research (2017), doi:
10.1016/j.cor.2017.03.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cor.2017.03.004
http://dx.doi.org/10.1016/j.cor.2017.03.004

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Corrected a typo in 5.2 regarding the upper bound of the removal interval (which should be a min, not

max)

• Completely rewrote section 5.5.3 Comparison with existing methods, pages 17-23 and tables 8-14.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A matheuristic based on large neighborhood search for the vehicle routing
problem with cross-docking

Philippe Grangiera,b,∗, Michel Gendreaub, Fabien Lehuédéa, Louis-Martin Rousseaub

aL’UNAM, Ecole des Mines de Nantes, IRCCyN UMR CNRS 6597, 4 Rue Alfred Kastler, 44307 Nantes Cedex 3, France
bDepartment of Mathematics and Industrial Engineering and CIRRELT, Ecole Polytechnique de Montréal and CIRRELT,

C.P 6079, Succursale Centre-ville, Montreal, QC, Canada H3C 3A7

Abstract

The vehicle routing problem with cross-docking (VRPCD) consists in defining a set of routes that satisfy

transportation requests between a set of pickup points and a set of delivery points. The vehicles bring goods

from pickup locations to a cross-docking platform, where the items may be consolidated for efficient delivery.

In this paper we propose a new solution methodology for this problem. It is based on large neighborhood

search and periodically solving a set partitioning and matching problem with third-party solvers. Our method

improves the best known solution in 19 of 35 instances from the literature.

Keywords: Routing, Cross-docking, Transfers, Synchronization, Matheuristic.

1. Introduction

Cross-docking is a distribution strategy in which goods are brought from suppliers to an intermediate

transshipment point, the so-called cross-dock, where they may be transferred to another vehicle for delivery.

The transfers are based on consolidation opportunities. There is little or no storage capacity at the cross-

dock, so the inventory holding costs are low, and the consolidation process reduces the distribution costs.

Cross-docking has been successfully applied to several sectors. The classic example is Walmart: cross-docking

is said to have been the key to the growth of the retailer in the 1980s [38].

Problems related to cross-docking include location, assignment of trucks to doors, inner flow optimization,

and routing. In particular, the vehicle routing problem with cross-docking (VRPCD) [45] consists in designing

routes to pick up and deliver a set of goods at minimal cost using a single cross-dock. The trucks bring the

goods from the pickup locations to the cross-dock where they can offload some items and load others, and

they then make the delivery trips. The exchange of goods at the cross-dock is a consolidation process that

aims to minimize the total delivery cost. The VRPCD can be seen as a pickup and delivery problem with

transfers with a single compulsory transfer point.

In this paper, we propose a matheuristic that relies on large neighborhood search (LNS) to create a pool

of routes. These routes are then used in a set partitioning and matching (SPM) problem. This problem is

∗Corresponding author.
Email addresses: philippe.grangier@cirrelt.ca (Philippe Grangier), michel.gendreau@cirrelt.ca (Michel Gendreau),

fabien.lehuede@mines-nantes.fr (Fabien Lehuédé), louis-martin.rousseau@polymtl.ca (Louis-Martin Rousseau)

Preprint submitted to Computers and Operations Research March 14, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

solved using branch-and-check [41], a hybrid method that relies on both a mixed integer programming (MIP)

solver and a constraint programming (CP) solver. We present numerical results showing that our method

improves many best known solutions while competing with existing method within similar runtime.

The remainder of this paper is organized as follows. A literature review is presented in Section 2, and

the problem is defined in Section 3. Section 4 discusses the solution methodology, and Section 5 presents the

computational results.

2. Literature review

Our literature review will focus on routing. We refer the reader to [1, 5, 42] for a general overview of

cross-docks and the related problems. The cross-docking literature is fairly recent, and only a few papers

focus on the routing aspect. Lee et al. [18] solved a VRPCD variant in which all the vehicles have to arrive

at the cross-dock simultaneously. They proposed an exact formulation and developed a tabu-search heuristic

to solve instances with 10, 30, and 50 nodes. This heuristic was improved by Liao et al. [19]. Wen et al. [45]

extended the problem by adding time windows on the nodes and removing the requirement for simultaneous

arrival at the cross-dock, instead imposing precedence constraints based on the consolidation decisions. They

presented a MIP formulation and proposed a tabu search embedded in an adaptive memory procedure. They

solved real-world instances with up to 200 requests, and they compared their results to a lower bound obtained

by solving two VRPTW problems. These results were improved by Tarantilis [40] using a multi-restart tabu

search. Morais et al. [23] developed a method based on an iterative local search and a set partitioning

problem (SPP); they introduced new instances with up to 500 customers. Very recently, Nikolopoulou et al.

[24] presented a tabu search for the VRPCD that improved several of the best known results. Petersen and

Ropke [27] worked with a Danish flower-distribution company on a variant of the VRPCD with time windows,

optional cross-dock return, and multiple trips per day; they call this the vehicle routing problem with cross-

docking opportunity. They created a parallel adaptive LNS (ALNS) to solve instances with between 585 and

982 requests. Santos et al. [33, 35] proposed two branch-and-price approaches for a VRPCD variant in which

there is a cost to transfer items at the cross-dock but there are no temporal constraints. They extended their

approach [34] to a problem where returns to the cross-dock for consolidation are optional. They refer to this

problem as the pickup and delivery problem with cross-docking and show that it can reduce the routing cost

by between 3.1% and 7.7% on their instances, which are restrictions of those of [45]. Dondo and Cerdá [10]

considered a variant of the VRPCD in which they modeled each door at the cross-dock individually (e.g.,

handling speeds and travel times to other doors), and the number of trucks was greater than the number of

doors. They proposed an algorithm based on an MILP formulation and a sweep heuristic, and they solved

instances with up to 70 requests. Enderer [12] studied the dock-door assignment and vehicle routing problem;

it involves only the assignment of trucks to doors and the routing of the deliveries. He proposed and compared

several exact and heuristic methods. In a recent survey of synchronization in cross-docking networks, Buijs

et al. [6] classified the VRPCD as a network scheduling problem with synchronization.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A related problem is the pickup and delivery problem with transfers (PDPT). Heuristics for this problem

include ALNS [20] and GRASP+ALNS [30]; an exact branch-and-cut method [7] has also been proposed.

Another related problem is the two-echelon vehicle routing problem introduced by [26], for which collab-

oration between the two echelons is at the heart of the delivery process, is also related to the VRPCD.

In particular, the two-echelon multiple-trip vehicle routing problem with satellite synchronization [13] deals

with the temporal aspects. For a recent surveys on two-echelon routing problems we refer the reader to [8].

Lastly, cross-docking operations correspond to both operation synchronization and resource synchronization

as described in [11].

Matheuristic approaches often use one or several (meta)heuristics to generate a pool of routes and then

solve an SPP (either during the search or in postprocessing). Examples of the metaheuristics used include

local search for the VRP [31], tabu search for the split delivery VRP [3], ALNS for the technician routing

problem [28], GRASP and local search procedures for the truck and trailer routing routing problem [44]

and the VRP with stochastic demands [22], and iterated local search for seven VRP variants [39]. This last

method was applied to the VRPCD in [23]. For more details see the surveys by Doerner and Schmid [9] and

Archetti and Speranza [2]; the metaheuristic+SPP technique is classified as a set-covering/SPP approach

in the former survey and as a restricted master heuristic in the latter. The LNS+SPM proposed in this

paper can also be classified into these categories because of the SPM component. However, the SPM also

involves matching and scheduling decisions. It is solved using a branch-and-check approach [41], which is a

hybrid technique integrating MIP and CP; see Section 4.2. So far, branch-and-check has been used mainly

for solving planning and scheduling or resource allocation problems. To the best of our knowledge, this is the

second time branch-and-check is used for solving a vehicle routing problem, with Lam and Van Hentenryck

[16] proposing a branch-and-price-and-check for a VRP with resource constraints. To our knowledge, this is

the first time a metatheuristic has been hybridized with a branch-and-check component to solve a VRP.

3. Problem formulation

In this section we present the VRPCD, focusing on the scheduling constraints at the cross-dock.

3.1. Problem statement

In the VRPCD, we consider a cross-dock c, a set of items R, and a homogeneous fleet of vehicles V , each

of capacity Q and based at o. Each item r ∈ R must be collected at its pickup location pr within the time

window [epr
, lpr

] and delivered to its delivery location dr within the time window [edr
, ldr

]. In the case of

early arrival, a vehicle is allowed to wait, but late arrivals are forbidden. We denote by P the set of pickup

locations and by D the set of delivery locations.

Each vehicle starts at o, goes to several pickup locations, and then arrives at the cross-dock where it

unloads/reloads some items. It then visits several delivery locations and eventually returns to o. Note that

a vehicle must visit the cross-dock even if it does not unload or reload there. The sequence of operations

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

at the cross-dock is described in Section 3.2. The pickup leg is the sequence of operations performed by a

vehicle between its departure from o to perform pickups and its arrival at the cross-dock. The delivery leg

is the sequence of operations performed by a vehicle between its departure from the cross-dock to perform

deliveries and its return to o at the end of the day.

The VRPCD is defined on a directed graph G = (V,A), with G = {o} ∪ P ∪ {c} ∪D and A = {(o, p)|p ∈
P}∪P ×P ∪{(p, c)|p ∈ P}∪{(c, d)|d ∈ D}∪D×D∪{(d, o)|d ∈ D}∪{(o, c), (c, o)}. With each arc (i, j) ∈ A
is associated a travel time ti,j and a travel cost ci,j . Solving the VRPCD involves finding |V | routes, and a

schedule for each route, such that the capacity and time-related constraints are satisfied at a minimal routing

cost. An arc-based mathematical formulation can be found in [45].

3.2. Cross-dock operations

Following [45], if a vehicle k has to unload a set of items R−k and reload a set R+
k at the cross-dock, the

time spent at the cross-dock can be divided into four periods, as shown in Figure 1:

• Preparation for unloading. The duration δu of this period is fixed.

• Unloading. The duration of this period depends on the quantity of items to unload. For vehicle k the

duration is (
∑

i∈R−k
qi)/su, where su is the unloading speed in quantity per time unit. All unloaded

items become available for reloading at the end of this period.

• Preparation for reloading. The duration δr of this period is fixed.

• Reloading. The duration of this period depends on the quantity of items to reload. For vehicle k the

duration is (
∑

i∈R+
k
qi)/sr, where sr is the reloading speed in quantity per time unit. All the items for

loading must have been unloaded before the beginning of the reloading operation (preemption is not

allowed).

Prep. U. Unloading Prep. R. Reloading

δu δr

t

Figure 1: Time chart for vehicle unloading and reloading at the cross-dock. The vehicle must wait to be reloaded because some

items are not available when it is ready for reloading.

Items that are not transferred at the cross-dock remain in the vehicle. Thus, if a vehicle does not unload

or reload it need not spend any time at the cross-dock and can leave immediately. We do not limit the

number of available docks.

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4. Algorithm

In this section we describe our algorithm for the VRPCD. The main component is LNS, which is enhanced

by the occasional solution of an SPM. When the LNS finds a new solution, the legs in this solution are added

to a pool of legs that acts as a memory. The SPM is based on an SPP where the set to partition is P ∪D,

and the candidate partitions are the legs in the pool. Thus, the SPM assists the LNS by selecting good legs

that have been previously discovered. We call this LNS+SPM; algorithm 1 presents an outline. Lines 2–15

describe the LNS; see Section 4.1. The SPM is used during the search (line 18); see Section 4.2. The set of

legs used in each SPM is managed during the search (line 20).

Result: The best found solution s?

1 Pool of legs L := ∅
2 Generate an initial solution s

3 s? := s

4 while stop criterion not met do

5 s′ := s

6 Destroy quantity: select a number Φ of requests to remove from s′

7 Operator selection: select a destruction method M− and a repair method M+

8 Destruction: Apply M− to remove Φ requests from s′ and place them in the request bank of s′

9 Repair: Apply M+ to reinsert the requests into the request bank in s′

10 if acceptance criterion is met then

11 s := s′

12 end

13 if cost of s′ is better than cost of s? then

14 s? := s′

15 end

16 Add legs of s′ to L
17 if set partitioning and matching condition is met then

18 Perform set partitioning and matching with the legs in L
19 Update s? and s if a new best solution has been found

20 Perform pool management

21 end

22 end

23 return s?

Algorithm 1: LNS+SPM

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.1. Large Neighborhood Search

LNS has been widely used since it was introduced by Shaw [37]. It iteratively destroys (removes requests

from) and repairs (reinserts requests into) the current solution using heuristics. Its extension, ALNS [29, 32],

selects the destruction and repair methods based on their past success. We select these methods randomly

(our method is thus LNS-based) because preliminary experiments suggested that the adaptive layer has an

extremely limited impact on the quality of the solutions. Parragh and Schmid [25] likewise choose to use

LNS and the SPP for their dial-a-ride problem. We also do not consider noise in the cost function. We now

present our destruction and repair methods as well as strategies to reduce the computational time.

4.1.1. Destruction methods

When partially destroying a solution, we select a destruction method M− and a number Φ of requests

to remove. Unless stated otherwise, this method is reused until Φ is reached. We introduce the transfer

removals, and the other removal techniques below are inspired by [29].

Random removal:. We randomly remove a request.

Worst removal:. We remove a request with a high removal gain. This is defined as the difference in the cost

of the solution with and without the request. We then sort the requests in nonincreasing order of removal

gain and place them in a list N . We select the request to remove in a randomized fashion as in [32]: given a

parameter p, we draw a random number y between 0 and 1. We then remove the request in position yp×|N |.

Historical node-pair removal:. Each arc (u, v) ∈ G is associated with the cost of the cheapest solution in

which it appears (initially this cost is set to infinity). We then remove the request that is served using the

arcs with the highest associated costs. A randomized selection, similar to that for the worst removal, is

performed.

Related removals:. These aim to remove related requests. Let the relatedness of requests i and j be R(i, j).

We use two relatedness measures: distance and time. The distance measure between two requests is the sum of

the distance between their pickup points and the distance between their delivery points. The time measure is

the sum of the absolute difference between their start times at their pickup points and the absolute difference

between their start times at their delivery points. In both cases a small R(i, j) indicates a high relatedness. A

randomized selection, similar to that for the worst removal (but with a nondecreasing ordering), is performed.

Transfer removal:. For each pair of routes (vi, vj), vi 6= vj , we compute the number of requests transferred

from vi to vj . We then iteratively apply a roulette-wheel selection on the pairs of routes (the score of a

pair being the number of requests transferred), and we remove the requests that are transferred between the

routes in the selected pair. If there are fewer transferred requests than the target number Φ to remove, we

remove them all and switch to random removal for the rest.

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.1.2. Repair methods

In LNS, the unplanned requests are stored in a request bank. We now explain how we insert these requests

into a partial solution.

Best insertion:. From the requests r in the request bank, we choose the one with the cheapest insertion cost

considering all possible insertions of pr into pickup legs and dr into delivery legs.

Regret insertion:. For each request r in the request bank and for each pair of vehicles (pickup vehicle, delivery

vehicle), we compute the cost of the cheapest feasible insertion (if any). Note that the pickup and delivery

vehicles may be the same (in the case of insertion without transfer). Then, with these insertion options, we

compute the k-regret value of r, ckr =
∑k

i=1 fi − f1, where f1 is the cost of the cheapest insertion, f2 is the

cost of the second-cheapest insertion, and so on, and k is a parameter. We insert the request with the highest

regret value.

In algorithm 1 we use 2-regret to generate the inital solution. We use best-insertion, 2-regret, 3-regret,

and 4-regret as the repair methods.

4.1.3. Reducing the computational time

In LNS, the repair methods take most of the computational time: more than 96% in [13]. We use two

strategies to reduce this time: reducing the size of the neighborhoods and efficient time checking.

Size of the neighborhood:. Because each request can be transferred, the number of candidate insertions for

a request is Θ(|V |2), which is much larger than for the traditional VRP, where it is only Θ(|V |). For

large instances, it takes considerable time to explore the entire reinsertion neighborhood. This does not

necessarily lead to a better solution, because not all the transfer opportunities are worthwhile. Thus, for

each request we evaluate all the insertions without transfers, and we consider transfer opportunities for

only a subset of g vehicles. For each request r in the request bank we sort the vehicles for pickup (resp.

delivery) in nondecreasing order of the cheapest insertion of r in the pickup (resp. delivery) leg. We consider

insertion with transfers between the first g vehicles according to this order. A discussion of the choice of g is

presented in Section 5.2.2. We use this restricted-neighborhood exploration in both repair methods defined

in Section 4.1.2.

Efficient time checking:. If an insertion appears promising (i.e., worth considering with respect to its cost), we

need to check that it is feasible. Checking the capacity constraints can easily be done in constant time, but the

time constraints are more complex: a straightforward implementation has a linear complexity. Savelsbergh

[36] introduced forward time slacks that allow us to check in constant time if an insertion is feasible in the

VRP with time windows. Masson et al. [21] extended this check to the PDPT. This method has been used

several times [13, 14, 20] and has proven successful in significantly reducing the computational time, for

example in [13]; see [21] for a detailed description of its implementation. Since the VRPCD can be seen as a

PDPT, we reuse it here.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2. Set partitioning and matching procedure

In LNS, a solution is rejected solely based on its cost with respect to the best solution so far. A solution

that is rejected because it contains bad legs may also contain good legs, which will also be removed. It may

also happen that the matching of legs to form routes could be improved (e.g., giving more time flexibility

and thus making further improvements easier). We can address these issues by storing the legs found by LNS

and using them in an SPP.

The SPM is defined as follows. Given a set of legs L, select a subset of legs L̃ such that (1) each request

is picked up (resp. delivered) by exactly one leg in L̃, and (2) the legs in L̃ can be matched to form routes

that respect the time constraints. Each leg l ∈ L has an associated routing cost cl, and the objective is

to minimize the sum of the costs of the selected legs. We now present the branch-and-check method that

we use to solve the SPM. We discuss the master problem (set partitioning), the subproblem (matching and

scheduling), and the management of the pool of legs.

Our approach is similar to that of Morais et al. [23], who used the SPP as the intensification phase of

their SP-ILS. However, there are two main differences: (1) their pool of legs is much smaller (consisting of

the legs that appear in their ten best solutions), and (2) when they can not find a feasible matching (they

do not discuss their matching procedure), they perform a repair phase by moving requests from one route to

another.

4.2.1. Branch-and-check

We present branch-and-check [41] using the following optimization problem:

M1 : min cᵀx (1)

Ax ≤ b (2)

H(x, y) (3)

x ∈ {0, 1}n (4)

y ∈ Rm (5)

Assume that H(x, y) represents a set of constraints that have a limited impact on the LP relaxation and/or

are difficult to efficiently model in a MIP, but that can be handled relatively easily by a CP solver. (1), (2),

and (4) form a relaxation (M2) of (M1) that can be solved using branch-and-bound. The general principle

of branch-and-check is the following. To solve (M1), we carry out a branch-and-bound on (M2). Whenever

an integral solution of (M2) is found, we call a CP solver to check constraints (3). If they are satisfied, we

update the best solution so far for (M1). Otherwise, we reject this solution. In both cases the branch and

bound process continues.

In the SPM, we solve a classical SPP where the set to partition is P ∪D, and the candidate partitions are

the legs in the pool L. A solution to the SPP is a solution to the VRPCD iff we can match the legs to form

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a set of routes that respect the time constraints. We determine whether or not this is possible by solving a

dedicated matching and scheduling subproblem. Our SPP is the relaxation (M2), and the subproblem checks

the constraints H(x, y).

4.2.2. Set partitioning

Consider a set of legs L = Lp ∪ Ld, where Lp is a set of pickup legs and Ld is a set of delivery legs. For

each request r ∈ R, we define a binary constant λr,l that indicates whether or not this request is served by

this leg. For each leg l ∈ L we use a binary variable xl to determine whether or not it is selected. The SPP

is then

min
∑

l∈L
clxl (6)

∑

l∈Lp

λr,lxl = 1 ∀r ∈ R (7)

∑

l∈Ld

λr,lxl = 1 ∀r ∈ R (8)

xl ∈ {0, 1} ∀l ∈ L (9)

The objective (6) is to minimize the cost of the selected legs, and constraints (7) (resp. (8)) ensure that

each pickup point (resp. delivery point) is covered by exactly one leg.

Most MIP solvers use an incumbent callback to call an auxiliary subproblem after an integral solution has

been found. To save time, we warm-start the MIP solver with the best solution so far (s? in algorithm 1).

If the matching and scheduling subproblem is not feasible, one could add some lazy constraints (this is

common in branch-and-check). For example, if, for a given pickup leg l and a given delivery leg l′ with some

requests in common, there is not enough time to perform the associated operations at the cross-dock whether

or not they are packed together, we could add xl + x′l ≤ 1 as a lazy constraint in the SPP. We experimented

with this technique, but it performed poorly. We identify two reasons for this: (1) the vast majority of the

incumbent callbacks are successful, and (2) in CPLEX 12.6.1 (which we use) adding lazy-constraint callbacks

disables dynamic search, which seems to reduce CPLEX’s computational time on the SPP.

4.2.3. Matching and scheduling subproblem

A solution of the SPP, with a set of pickup legs denoted L̃p and a set of delivery legs denoted L̃d, is a

solution to the VRPCD iff there exists a matching of the pickup legs and delivery legs into routes that respect

the time constraints. We can compute the earliest feasible arrival time, al, of each pickup leg l ∈ Lp at the

cross-dock, and we can compute the latest feasible departure time, bl′ , of each delivery leg l′ ∈ Ld from the

cross-dock. Moreover, for each pickup leg l ∈ L̃p we can determine the set of selected delivery legs Tl that

deliver at least one item picked up by l. If we match a pickup leg l and a delivery leg l′ to create a route,

we can define an associated unloading task o−ll′ , with a set of items R−ll′ to unload, and a reloading task o+ll′ ,

with a set of items R+
ll′ to reload. These tasks must be performed iff l and l′ are in the same route.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The problem is modeled as a constraint satisfaction problem and represented using notation from OPL

(Optimization Programming Language [43]). In particular, the model is based on the notion of interval

variables [15]. An interval variable represents an unknown interval of time during which a task occurs. The

interval has a start value, an end value, and a size, and the associated variable may be optional. We model

alternative activities [4] using alternative constraints:

“An alternative constraint between an interval variable a and a set of interval variables b1, . . . , bn

models an exclusive alternative between b1, . . . , bn. If interval a is present, then exactly one of

intervals b1, . . . , bn is present and a starts and ends together with this specific interval. Interval

a is absent if and only if all intervals in b1, . . . , bn are absent” [15].

We thus consider the following problem:

Alternative(tl, {o−ll′ ;∀l′ ∈ L̃d}) ∀l ∈ L̃p (10)

Alternative(tl′ , {o+ll′ ;∀l ∈ L̃p}) ∀l′ ∈ L̃d (11)

o−ll′ .IsOptional← True ∀l ∈ L̃p,∀l′ ∈ L̃d (12)

o+ll′ .IsOptional← True ∀l ∈ L̃p,∀l′ ∈ L̃d (13)

o−ll′ .IsPresent ⇐⇒ o+ll′ .IsPresent ∀l ∈ L̃p,∀l′ ∈ L̃d (14)

tl′ .Start ≥ tl.End ∀l ∈ L̃p, l
′ ∈ Tl (15)

o+ll′ .Start ≥ o−ll′ .End+ δr ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R
+
ll′ 6= ∅ (16)

o+ll′ .Start ≥ o−ll′ .End ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R
+
ll′ = ∅ (17)

o−ll′ .Start ≥ al + δu ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R
−
ll′ 6= ∅ (18)

o−ll′ .Start ≥ al ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R
−
ll′ = ∅ (19)

o+ll′ .End ≤ b′l ∀l ∈ L̃p,∀l′ ∈ L̃d (20)

For each pickup leg l we create an interval variable tl that represents the associated unloading task that

takes place at the cross-dock. The alternative constraints (10) and (12) ensure that for each pickup leg l

exactly one unloading task oll′ is scheduled and that it is equal to tl. The same holds for the delivery legs

and the reloading operations through variables tl′ and constraints (11) and (13). Constraints (14) ensure

that the unloading operation associated with the matching of pickup leg l and delivery leg l′ in the same

vehicle is present iff the corresponding reloading operation is present as well. Constraints (15) ensure that

all the reloading operations that depend on a pickup leg l start no earlier than the end of the unloading

task associated with l. Constraints (16) and (17) ensure that when two legs are packed together, the delay

between the two tasks respects the model presented in Section 3.2. Constraints (18) and (19) ensure that

the unloading of each pickup leg does not start before the earliest feasible arrival time at the cross-dock.

Constraints (20) ensure that the reloading of each delivery leg is completed by its latest feasible departure

time.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2.4. Set partitioning and matching criterion and management of pool of legs

When solving the SPP, we consider only the legs in the pool of legs L (from algorithm 1) that are

nondominated. A pickup (resp. delivery) leg li is said to be dominated by a leg lj iff li and lj serve the

same set of requests, cj < ci, and aj ≤ ai (resp. bj ≥ bi). It is clear that for every solution of the SPP that

contains a dominated leg, there exists a solution with a lower cost that does not contain it.

Regarding the management of the pool of legs, we make two observations. First, as the algorithm

progresses, it is able to provide the MIP solver with better starting solutions, thus improving its cutoff

ability. Therefore, the SPPs tend to be easier to solve at the end of the algorithm than at the beginning.

Second, if the MIP has too many legs the solver may fail to improve the initial solution within the time

limit. Therefore, every time the SPM is solved, if the solver is able to find an optimal solution and prove its

optimality within the time limit, we retain the pool; otherwise we clear it. In practice, this policy tends to

empty the pool more frequently at the beginning of the search.

The SPM procedure is called every kSPM iterations; we discuss this value in Section 5.2.3.

5. Computational experiments

The algorithm is coded in C++. We use CPLEX and CP Optimizer from IBM ILOG Cplex Optimization

Studio 12.6.1 as the MIP solver and CP solver respectively. The experiments were performed using Linux on

an Intel Xeon X5675 @ 3.07 GHz. Just one core is used by our code and the third-party solvers.

5.1. Instances

There are two benchmarks for the VRPCD. The first, which we call the Wen set, was introduced by Wen

et al. [45] and contains instances with 50 to 200 requests. It is based on data from a Danish logistics company.

The second, which we call the Morais set, was introduced by Morais et al. [23] and contains instances with

200 to 500 requests. It is derived from Gehring and Homberger’s instances for the VRPTW. Neither set

limits the number of vehicles.

5.2. Parameters

The stopping criterion is set to 20 000 iterations, which is a good compromise between solution quality

and computational time. Based on Masson et al. [20] and our preliminary experiments, we choose the number

Φ of requests to remove in the repair phase of the LNS randomly from the interval [min(30, 10% of |R|),
min(60, 20% of |R|)].

In the following subsections, we describe the tuning experiments we conducted to set the acceptance

criterion, the reduction of the transfer neighborhood, and the SPM period. For the training set, we selected

the following instances: 50b, 100b, 150b, and 200b from the Wen set and R1-4-1, R1-6-1, R1-8-1, and R1-10-1

from the Morais set.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.2.1. Acceptance criterion

We tested three acceptance criteria: descent (a solution is accepted iff it is better than the current best

solution), α threshold (a solution is accepted if it is less than α% more expensive than the current best

solution), and simulated annealing (as implemented by Ropke and Pisinger [32]). Table 1 compares the

performance of the following criteria: descent, 1% threshold, 3% threshold, 10% threshold, and simulated

annealing, with descent as the reference. The table shows that all the criteria except the 10% threshold have

similar performance at the end of the algorithm. We select descent because it has no parameters.

Accept. Crit. Descent 1% thresh. 3% thresh. 10% thresh. Sim. Ann.

Gap (%) 0.00 -0.01 0.04 1.55 0.00

Table 1: Average performance for five acceptance criteria; 10 runs were performed for each instance in the training set, and

descent is taken as the reference.

5.2.2. Reduction of the transfer neighborhood

As mentioned in Section 4.1.3, for each request in the request bank we evaluate insertions with transfers

between only the g most promising vehicles. We ran tests with a large value of g and we observed that in the

best solutions found during the search no vehicle transferred items to more than 10 vehicles. Table 2 gives

the average results over five runs on the Morais training instances for different values of g. The percentage

gap is similar in each case; this confirms our intuition that only a subset of transfers are worth considering.

Figure 2 shows the computational time for different values of g: for R1-10-1 (500 requests) there is a reduction

of more than 50% as g decreases. Therefore, we set g to 5.

g 5 10 20 ∞
Gap (%) -0.01 0.00 0.03 0.00

Table 2: Impact of g on solution quality for five runs for each instance in the Morais training set. Infinity is taken as the

reference.

5.2.3. Set partitioning

Table 3 shows the influence of setting the SPM frequency kSPM to 500, 1000, 2500, and 5000 iterations.

We compare all settings, taking kSPM = 500 as a reference. To maintain a fair balance in the time budget

given to the SPM, and thus to see the influence of kSPM on the solution quality and computational time of

LNS+SPM, we set the time limits for each call to the SPM to 45, 90, 225, and 450 seconds respectively. We see

that frequent calls help to find better solutions, but calling the SPM too often can increase the computational

time. We thus set kSPM = 1000 with a time limit of 90 seconds. It can be noted that calling SPM more

often implies having smaller memory pools on average due to the pool management process presented in

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: Impact of g on the average computational time (in seconds) for the Morais training set; five runs were performed in

each case.

Section 4.2.4. This explains why lower frequencies of SPM can lead to higher solving times. Indeed, the

solver hits the time limit more often for large sets of legs.

kSPM 500 1000 2500 5000

Average gap (%) 0 -0.05 0.18 0.70

Average computational time (%) 0 -1.7 10.3 14.3

Table 3: Impact of SPM frequency on solution quality and computational time for five runs for each instance in the training

set. The reference is kSPM = 500.

5.3. Efficiency of set partitioning and matching

The SPM component is the major contribution of this paper. To assess its efficiency, we compare

LNS+SPM and LNS without SPM (we remove lines 16–23 and 23–24 of algorithm 1). Figure 3 shows

the convergence curves of LNS and LNS+SPM. On the training set, for 20 000 iterations, LNS finds solutions

that are 7.4% more expensive than those of LNS+SPM (4.2% on the Wen training set and 10.6% on the

Morais training set). This difference is observed early in the search process. SPM accounts for an increase in

the computational time of 20% on average. Thus, SPM is a key component that significantly improves the

performance of LNS for the VRPCD. Figure 3 also shows that after a few thousand iterations, LNS alone is

not able to improve the best solution (there are plateaus between calls to SPM). Thus, the LNS contribution

is to find good legs that will then be matched by SPM.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Evolution of the average solution quality for LNS and LNS+SPM; 10 runs were performed for each instance in the

training set. The results are normalized, with 100 representing the cost at the end for LNS+SPM.

5.4. Set partitioning versus set covering formulation

In Section 4.2.2, one could formulate the MIP problem as a set covering instead of a set partitioning.

The consequence being that a solution of this formulation could pickup and/or deliver some items multiple

times. We modify our algorithm by solving a covering problem and removing the extra pickups and deliveries

with a worst removal criterion as in Section 4.1.1. Overall, the average solution quality with the covering

formulation is the same. There was no significant difference in quality during the optimization process either,

only in the very first calls to the MIP is the solution not a partition. However, the runtimes are on average

12.9% longer with the covering formulation. Hence we have decided to keep the simpler set partitioning

formulation.

5.5. Results

In this section we recall the experiments conducted by other authors and report our results.

5.5.1. Existing methods in the literature

In the litterature, there are four methods for the VRPCD: Wen et al. [45], Tarantilis [40], Morais et

al. [23] and Nikolopoulou et al. [24]. We evaluated all the methods on the Wen set and only the methods of

[23] and [24] on the Morais set. Wen et al. [45] performed 25 runs for each instance; they report the average

and best solutions found within 5 minutes and the best solution found without a time limit. Tarantilis [40]

performed 3 runs for each instance with a time limit of 3000 seconds; he reports the best solution found for

each instance. Morais et al. [23] performed 40 runs for each instance with a time limit of 3000 seconds for the

Wen set. They report the best and average solutions for each instance for four variants of their algorithm.

We report the results of their SP-ILS variant because it has the best performance. Nikolopoulou et al. [24]

performed 10 runs for each instance; they report the average and best solutions found as well as the average

runtime.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In what follows, we first compare results found with our methods with all other existing methods. Since

we improve many best known solutions, we then make comparisons to match the results of existing methods

taking into account the difference in performance in the computers used.

5.5.2. Best and average results

For each instance LNS+SPM was run ten times. Tables 4 and 5 give our average and best results for the

Wen set and compare them to those of the existing methods. The lower bounds are those reported in [45].

We also give the percentage gap between the solution and the lower bound.

Instance LB
Wen et al. Morais et al. Nikolopoulou et al. LNS+SPM

Value Gap (%) Value Gap (%) Value Gap (%) Value Gap (%) Time (s)

50a 6340.90 6534.2 3.05 6477.72 2.16 6470.54 2.04 6463.60 1.94 209

50b 7201.89 7504.9 4.21 7443.92 3.36 7456.67 3.54 7427.45 3.13 545

50c 7241.05 7440.0 2.75 7441.64 2.77 7390.40 2.06 7320.45 1.10 261

50d 6887.93 7107.6 3.19 7063.17 2.54 7057.98 2.47 7040.59 2.22 705

50e 7347.54 7629.4 3.84 7514.02 2.27 7567.17 2.99 7479.04 1.79 272

100b 14200.48 14770.9 4.02 14498.69 2.10 14593.98 2.77 14376.71 1.24 778

100c 13631.24 14145.0 3.77 13993.00 2.65 14016.02 2.82 13828.04 1.44 1009

100d 13395.33 13949.6 4.14 13776.76 2.85 13778.57 2.86 13600.80 1.53 738

100e 13745.60 14396.1 4.73 14159.96 3.01 14210.54 3.38 13958.75 1.55 712

150a 19012.02 19871.3 4.52 19726.52 3.76 19705.74 3.65 19401.77 2.05 1911

150b 20371.08 21284.0 4.48 20986.64 3.02 20962.36 2.9 20672.16 1.48 1959

150c 19419.55 20320.5 4.64 20150.90 3.77 20042.94 3.21 19771.90 1.81 1862

150d 20013.37 20891.3 4.39 20656.44 3.21 20626.76 3.06 20356.65 1.72 1760

150e 19141.66 20034.6 4.66 19882.60 3.87 19800.79 3.44 19493.53 1.84 1525

200a 26538.53 27683.9 4.32 27391.74 3.22 27449.99 3.43 26863.54 1.23 2993

200b 26722.88 27989.1 4.74 27694.50 3.64 27663.96 3.52 27295.45 2.14 2986

200c 25607.31 26654.1 4.09 26490.33 3.45 26464.01 3.35 26087.30 1.87 2835

200d 26969.42 28088.2 4.15 27825.63 3.17 27767.50 2.96 27394.04 1.57 2774

200e 25776.01 26868.6 4.24 26753.12 3.79 26618.72 3.27 26108.69 1.29 2691

Table 4: Average values for the Wen set; LNS+SPM was run ten times for each instance with 20 000 iterations as the stopping

criterion.

Instance LB
Wen et al. Tarantilis Morais et al. Nikolopoulou et al. LNS+SPM

Value Gap (%) Value Gap (%) Value Gap (%) Value Gap (%) Value Gap (%) Time (s)

50a 6340.90 6471.9 2.07 6450.28 1.73 6453.08 1.77 6450.28 1.72 6455.77 1.81 149

50b 7201.89 7410.6 2.9 7428.54 3.15 7434.90 3.24 7428.54 3.15 7320.77 1.65 240

50c 7241.05 7330.6 1.24 7311.77 0.98 7317.35 1.05 7311.77 0.98 7311.77 0.98 120

50d 6887.97 7050.3 2.36 7021.39 1.94 7035.50 2.14 7028.22 2.04 7028.69 2.04 681

50e 7347.54 7516.8 2.30 7451.42 1.41 7482.01 1.83 7451.42 1.41 7452.83 1.43 168

100b 14200.48 14526.1 2.29 14405.52 1.44 14441.01 1.69 14398.17 1.39 14349.60 1.05 828

100c 13631.24 13967.8 2.47 13889.22 1.89 13932.78 2.21 13869.80 1.75 13784.70 1.13 688

100d 13395.33 13763.3 2.75 13564.23 1.26 13708.81 2.34 13603.03 1.55 13577.20 1.36 614

100e 13745.60 14212.7 3.4 14059.62 2.28 14122.32 2.74 14063.29 2.31 13943.10 1.44 601

150a 19012.02 19537.3 2.76 19638.04 3.29 19532.28 2.74 19391.16 1.99 19358.90 1.82 1886

150b 20371.08 20974.8 2.96 20922.27 2.71 20823.40 2.22 20764.50 1.93 20581.50 1.03 2093

150c 19419.55 20126.5 3.64 20019.50 3.09 19964.59 2.81 19864.86 2.29 19726.80 1.58 2187

150d 20013.37 20549.4 2.68 20600.33 2.93 20509.97 2.48 20355.27 1.71 20318.80 1.53 1660

150e 19141.66 19848.5 3.69 19782.00 3.35 19716.87 3.01 19634.47 2.57 19449.50 1.61 1546

200a 26538.53 27324.4 2.96 27397.31 3.24 27112.48 2.16 27073.57 2.02 26816.50 1.05 2988

200b 26722.88 27637.7 3.42 27582.87 3.22 27509.08 2.94 27337.49 2.3 27215.10 1.84 2804

200c 25607.31 26358.6 2.93 26425.29 3.19 26320.39 2.78 26181.73 2.24 25926.00 1.24 2376

200d 26969.42 27749.7 2.89 27818.77 3.15 27686.75 2.66 27439.50 1.74 27328.70 1.33 2457

200e 25776.01 26620.6 3.28 26704.81 3.60 26443.29 2.59 26305.30 2.05 26063.50 1.12 2240

Table 5: Best solutions found for the Wen set; LNS+SPM was run ten times for each instance with 20 000 iterations as the

stopping criterion.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Instance
Morais et al. Nikolopoulou et al. LNS+SPM

Value Value Value Time (min)

R1-4-1 15530.10 15282.80 15211.2 59.6

R1-4-2 14996.86 14730.59 14666.2 67.1

R1-4-3 14414.90 14194.88 14192.0 63.6

R1-4-4 15622.74 15371.78 15336.4 56.8

R1-6-1 33776.88 32864.91 32748.1 153.4

R1-6-2 33744.43 32893.13 32726.5 124.3

R1-6-3 33478.77 32841.05 32658.6 145.9

R1-6-4 33606.97 32946.17 32850.6 129.7

R1-8-1 60611.89 59178.75 59046.5 181.3

R1-8-2 58420.03 57131.87 57137.6 215.0

R1-8-3 58859.03 57442.73 57653.7 248.2

R1-8-4 60834.83 59494.36 59427.9 218.6

R1-10-1 94687.60 92246.05 92289.7 302.5

R1-10-2 93718.82 91465.13 91360.2 294.4

R1-10-3 94200.82 91536.84 91504.6 217.1

R1-10-4 94795.34 92318.91 92804.0 225.8

Table 6: Average values for the Morais set; LNS+SPM was run ten times for each instance with 20 000 iterations as the

stopping criterion.

Instance
Morais et al. Nikolopoulou et al. LNS+SPM

Value Value Value Time (min)

R1-4-1 15445.28 15208.84 15170.0 56.8

R1-4-2 14850.75 14614.02 14626.9 57.2

R1-4-3 14332.27 14101.73 14146.6 54.6

R1-4-4 15521.49 15282.02 15293.3 56.3

R1-6-1 33511.04 32696.90 32598.1 154.0

R1-6-2 33540.56 32623.17 32628.7 123.4

R1-6-3 33282.54 32624.50 32571.5 129.7

R1-6-4 33468.72 32748.70 32746.3 139.9

R1-8-1 60300.22 58961.82 58831.1 186.1

R1-8-2 58113.83 56894.76 56956.4 179.2

R1-8-3 58558.94 57124.27 57421.7 224.5

R1-8-4 60502.26 59169.87 59295.3 233.7

R1-10-1 94080.68 91657.18 91949.2 280.2

R1-10-2 92792.34 91001.23 91005.8 297.7

R1-10-3 93222.85 91016.40 91317.0 221.7

R1-10-4 94372.82 92112.35 92341.1 227.3

Table 7: Best solutions found for the Morais set; LNS+SPM was run ten times for each instance with 20 000 iterations as the

stopping criterion.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Our method finds better solution than the existing methods: it has better average results for all but

four of the instances, and it improves the best known solutions for 19 of the 35 instances, with an average

improvement of 0.57%.

5.5.3. Comparison with existing methods

We observe that our method has often higher runtimes than those of competing methods, but as Figure 3

shows, its convergence seems reasonably fast. Since we are able to improve many best known solutions, in

Tables 8 to 14 we report the time taken by LNS+SPM to find solutions at least as good as those reported

by other authors. For a fair comparison, we take into account the difference in the speed of the processors

used. Following [17], we use CINT2000 and CINT20061 to normalize the performance of the processors: [45]

used a processor about 4.7 times slower than ours, [40] used a processor about 2.4 times slower than ours,

[23] used a processor about 2.0 times slower than ours, while Nikolopoulou et al. used a processor about 1.3

faster than ours. Note that these figures are only estimates, and should be interpreted with caution.

Instance Value to match Number of matching runs Original time Converted time Runtime for LNS+SPM

50a 6534.2 10/10 17 3,6 47.0

50b 7504.9 10/10 19 4 59.0

50c 7440.0 10/10 20 4,3 23.0

50d 7107.6 10/10 20 4,3 72.0

50e 7629.4 10/10 16 3,4 41.0

100b 14770.9 10/10 56 11,9 64.0

100c 14145.0 10/10 57 12,1 69.0

100d 13949.6 10/10 57 12,1 108.0

100e 14396.1 10/10 63 13,4 79.0

150a 19871.3 10/10 139 29,6 139.0

150b 21284.0 10/10 125 26,6 104.0

150c 20320.5 10/10 139 29,6 160.0

150d 20891.3 10/10 123 26,2 177.0

150e 20034.6 10/10 140 29,8 142.0

200a 27683.9 10/10 273 58,1 217.0

200b 27989.1 10/10 278 59,1 174.0

200c 26654.1 10/10 282 60 304.0

200d 28088.2 10/10 296 63 229.0

200e 26868.6 10/10 275 58,5 298.0

Table 8: Number of runs and time taken by LNS+SPM to find solutions at least as good as the average results reported by

Wen et al. [45]. Column Converted time corresponds to the estimated runtime of the Wen et al.’s algorithm on our computer.

Column Runtime for LNS+SPM is averaged over all matching runs

Among all the methods, that of Wen et al. is the only one designed with short runtimes in mind (at most

five minutes). Indeed, it can quickly find good solutions (see Table 8), but this focus probably limited its

capacity to find very good solutions (see Table 9). Table 10 shows that, except for small instances and with

its proposed settings, the method of Tarantilis et al. is outperformed by LNS+SPM, as the later is able to

find solution of similar quality significantly faster. Morais et al. [23] only reports their time limits, and not

their runtimes, hence making the comparison less direct. It is interesting to point out that they use a time

limit of 3000 seconds for the Wen et al.’s instances and only 1200 seconds for the Morais et al.’s instances

that are yet larger. This probably explains the difference, shown in Tables 11 and 12, between the Wen et

1See the Standard Performance Evaluation Corporation website: http://www.spec.org

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Instance Value to match Matching runs Original time (s) Converted time (s) Runtime for LNS+SPM (s)

50a 6497.3 9/10 3865 822,3 19.0

50b 7466.3 1/10 3185 677,7 147.0

50c 7350.5 10/10 3269 695,5 11.0

50d 7074.0 9/10 3658 778,3 99.0

50e 7571.5 10/10 3159 672,1 11.0

100b 14646.8 10/10 9967 2120,6 52.0

100c 14056.4 10/10 10677 2271,7 84.0

100d 13844.4 10/10 11177 2378,1 65.0

100e 14300.4 10/10 10643 2264,5 101.0

150a 19784.0 10/10 24326 5175,7 199.0

150b 21098.1 10/10 24461 5204,5 107.0

150c 20166.2 10/10 23754 5054 205.0

150d 20747.2 10/10 24468 5206 239.0

150e 19888.5 10/10 23400 4978,7 154.0

200a 27537.4 10/10 46586 9911,9 270.0

200b 27851.7 10/10 43653 9287,9 283.0

200c 26472.5 10/10 46389 9870 418.0

200d 27935.3 10/10 46615 9918,1 278.0

200e 26703.4 10/10 45649 9712,6 279.0

Table 9: Number of runs and time taken by LNS+SPM to find solutions as least as good as the best solutions reported by Wen

et al. [45]. Column Converted time corresponds to the estimated runtime of the Wen et al.’s algorithm on our computer.

Column Runtime for LNS+SPM is the minimum runtime of LNS+SPM to find such solution

Instance Value to match Matching runs Original time (s) Converted time (s) Runtime for LNS+SPM (s)

50a 6450.28 0/10 28 11,7 -

50b 7428.54 1/10 15 6,3 147.0

50c 7311.77 2/10 13 5,4 21.0

50d 7021.39 0/10 117 48,8 -

50e 7451.42 0/10 20 8,3 -

100b 14405.52 9/10 987 411,3 170.0

100c 13889.22 10/10 904 376,7 122.0

100d 13564.23 0/10 866 360,8 -

100e 14059.62 10/10 922 384,2 139.0

150a 19638.04 10/10 1302 542,5 106.0

150b 20922.27 10/10 1172 488,3 202.0

150c 20019.50 10/10 1004 418,3 259.0

150d 20600.33 10/10 673 280,4 207.0

150e 19782.00 10/10 877 365,4 154.0

200a 27397.31 10/10 1891 787,9 270.0

200b 27582.87 10/10 1665 693,8 287.0

200c 26425.29 10/10 1904 793,3 284.0

200d 27818.77 10/10 1789 745,4 278.0

200e 26704.81 10/10 1102 459,2 279.0

Table 10: Number of runs and time taken by LNS+SPM to find solutions as least as good as the best solutions reported by

Tarantilis [40]

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Instance Value to match Matching runs Original time (s) Converted time (s) Runtime for LNS+SPM (s)

50a 6477.72 9/10 3000 1500 64.0

50b 7443.92 10/10 3000 1500 183.0

50c 7441.64 10/10 3000 1500 23.0

50d 7063.17 10/10 3000 1500 118.0

50e 7514.02 10/10 3000 1500 141.0

100b 14498.69 10/10 3000 1500 108.0

100c 13993.00 10/10 3000 1500 123.0

100d 13776.73 10/10 3000 1500 209.0

100e 14159.96 10/10 3000 1500 167.0

150a 19726.52 10/10 3000 1500 213.0

150b 20986.64 10/10 3000 1500 197.0

150c 20150.90 10/10 3000 1500 233.0

150d 20656.44 10/10 3000 1500 274.0

150e 19882.60 10/10 3000 1500 208.0

200a 27391.74 10/10 3000 1500 304.0

200b 27694.50 10/10 3000 1500 309.0

200c 26490.33 10/10 3000 1500 365.0

200d 27825.63 10/10 3000 1500 322.0

200e 26753.12 10/10 3000 1500 342.0

R1-4-1 15530.10 10/10 1200 600 792.0

R1-4-2 14996.86 10/10 1200 600 918.0

R1-4-3 14414.90 10/10 1200 600 1084.0

R1-4-4 15622.74 10/10 1200 600 796.0

R1-6-1 33776.88 10/10 1200 600 2155.0

R1-6-2 33744.43 10/10 1200 600 1701.0

R1-6-3 33478.77 10/10 1200 600 2031.0

R1-6-4 33606.97 10/10 1200 600 2084.0

R1-8-1 60611.89 10/10 1200 600 3247.0

R1-8-2 58420.03 10/10 1200 600 4225.0

R1-8-3 58859.03 10/10 1200 600 5157.0

R1-8-4 60834.83 10/10 1200 600 4090.0

R1-10-1 94687.60 10/10 1200 600 5918.0

R1-10-2 93718.82 10/10 1200 600 5553.0

R1-10-3 94200.82 10/10 1200 600 3962.0

R1-10-4 94795.34 10/10 1200 600 5099.0

Table 11: Number of runs and time taken by LNS+SPM to find solutions at least as good as the average results reported by

Morais et al. [23]

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Instance Value to match Matching runs Original time (s) Converted time (s) Runtime for LNS+SPM (s)

50a 6453.08 0/10 3000 1500 -

50b 7434.90 3/10 3000 1500 109.0

50c 7317.35 2/10 3000 1500 16.0

50d 7035.50 2/10 3000 1500 262.0

50e 7482.01 8/10 3000 1500 31.0

100b 14441.01 10/10 3000 1500 98.0

100c 13932.78 10/10 3000 1500 100.0

100d 13708.81 10/10 3000 1500 65.0

100e 14122.32 10/10 3000 1500 124.0

150a 19532.28 10/10 3000 1500 307.0

150b 20823.40 10/10 3000 1500 298.0

150c 19964.59 10/10 3000 1500 314.0

150d 20509.97 10/10 3000 1500 310.0

150e 19716.87 10/10 3000 1500 208.0

200a 27112.48 10/10 3000 1500 295.0

200b 27509.98 10/10 3000 1500 292.0

200c 26320.39 10/10 3000 1500 423.0

200d 27686.75 10/10 3000 1500 392.0

200e 26443.29 10/10 3000 1500 417.0

R1-4-1 15445.28 10/10 1200 600 734.0

R1-4-2 14850.75 10/10 1200 600 1104.0

R1-4-3 14332.27 10/10 1200 600 959.0

R1-4-4 15521.49 10/10 1200 600 759.0

R1-6-1 33511.04 10/10 1200 600 1840.0

R1-6-2 33540.56 10/10 1200 600 1086.0

R1-6-3 33282.54 10/10 1200 600 1514.0

R1-6-4 33468.72 10/10 1200 600 1592.0

R1-8-1 60300.22 10/10 1200 600 2890.0

R1-8-2 58113.85 10/10 1200 600 3634.0

R1-8-3 58558.94 10/10 1200 600 4219.0

R1-8-4 60502.26 10/10 1200 600 3482.0

R1-10-1 94080.68 10/10 1200 600 5475.0

R1-10-2 92792.34 10/10 1200 600 4814.0

R1-10-3 93222.85 10/10 1200 600 4219.0

R1-10-4 94372.82 10/10 1200 600 3265.0

Table 12: Number of runs and time taken by LNS+SPM to find solutions as least as good as the best solutions reported by

Morais et al. [23]

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Instance Value to match Matching runs Original time (s) Converted time (s) Runtime for LNS+SPM (s)

50a 6470.54 9/10 68 88,4 76.0

50b 7456.67 10/10 8 10,4 111.0

50c 7390.4 10/10 39 50,7 28.0

50d 7057.98 10/10 22 28,6 133.0

50e 7567.17 10/10 32 41,6 57.0

100b 14593.98 10/10 444 577,2 83.0

100c 14016.02 10/10 227 295,1 114.0

100d 13778.57 10/10 169 219,7 209.0

100e 14210.54 10/10 417 542,1 144.0

150a 19705.74 10/10 350 455 213.0

150b 20962.36 10/10 203 263,9 218.0

150c 20042.94 10/10 326 423,8 301.0

150d 20626.76 10/10 366 475,8 291.0

150e 19800.79 10/10 269 349,7 256.0

200a 27449.99 10/10 751 976,3 304.0

200b 27663.96 10/10 602 782,6 322.0

200c 26464.01 10/10 1024 1331,2 394.0

200d 27767.5 10/10 1631 2120,3 403.0

200e 26618.72 10/10 2033 2642,9 388.0

R1-4-1 15282.80 10/10 1574 2046,2 1807.0

R1-4-2 14730.59 10/10 1144 1487,2 2624.0

R1-4-3 14194.88 5/10 973 1264,9 2741.0

R1-4-4 15371.78 9/10 1009 1311,7 2155.0

R1-6-1 32864.91 10/10 4492 5839,6 6295.0

R1-6-2 32893.13 10/10 3502 4552,6 4358.0

R1-6-3 32841.05 10/10 2944 3827,2 4606.0

R1-6-4 32946.17 8/10 2800 3640 5228.0

R1-8-1 59178.75 9/10 3489 4535,7 8946.0

R1-8-2 57131.87 4/10 6259 8136,7 11418.0

R1-8-3 57442.73 1/10 5164 6713,2 13514.0

R1-8-4 59494.36 8/10 4175 5427,5 10915.0

R1-10-1 92246.05 5/10 5211 6774,3 16867.0

R1-10-2 91465.13 7/10 6670 8671 15581.0

R1-10-3 91536.84 7/10 6166 8015,8 12489.0

R1-10-4 92318.91 0/10 5662 7360,6 -

Table 13: Number of runs and time taken by LNS+SPM to find solutions at least as good as the average results reported by

Nikolopoulou et al. [24]

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Instance Value to match Matching runs Original time (s) Converted time (s) Runtime for LNS+SPM (s)

50a 6450.28 0/10 68 88,4 -

50b 7428.54 1/10 8 10,4 147.0

50c 7311.77 2/10 39 50,7 21.0

50d 7028.22 0/10 22 28,6 -

50e 7451.42 0/10 32 41,6 -

100b 14398.17 9/10 444 577,2 170.0

100c 13869.80 9/10 227 295,1 122.0

100d 13603.03 8/10 169 219,7 359.0

100e 14063.29 10/10 417 542,1 139.0

150a 19391.16 4/10 350 455 714.0

150b 20764.50 9/10 203 263,9 298.0

150c 19864.86 10/10 326 423,8 403.0

150d 20355.27 6/10 366 475,8 673.0

150e 19634.47 10/10 269 349,7 322.0

200a 27073.57 10/10 751 976,3 295.0

200b 27337.49 7/10 602 782,6 702.0

200c 26181.73 10/10 1024 1331,2 699.0

200d 27439.50 9/10 1631 2120,3 871.0

200e 26305.30 10/10 2033 2642,9 548.0

R1-4-1 15208.84 4/10 1574 2046,2 2466.0

R1-4-2 14614.02 0/10 1144 1487,2 -

R1-4-3 14101.73 0/10 973 1264,9 -

R1-4-4 15282.02 0/10 1009 1311,7 -

R1-6-1 32696.90 3/10 4492 5839,6 7139.0

R1-6-2 32623.17 0/10 3502 4552,6 -

R1-6-3 32624.50 3/10 2944 3827,2 5499.0

R1-6-4 32748.70 2/10 2800 3640 7670.0

R1-8-1 58961.82 2/10 3489 4535,7 7910.0

R1-8-2 56894.76 0/10 6259 8136,7 -

R1-8-3 57124.27 0/10 5164 6713,2 -

R1-8-4 59169.87 0/10 4175 5427,5 -

R1-10-1 91657.18 0/10 5211 6774,3 -

R1-10-2 91001.23 0/10 6670 8671 -

R1-10-3 91016.40 0/10 6166 8015,8 -

R1-10-4 92112.35 0/10 5662 7360,6 -

Table 14: Number of runs and time taken by LNS+SPM to find solutions as least as good as the best solutions reported by

Nikolopoulou et al. [24]

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

al.’s instances where LNS+SPM seems faster, and the Morais et al.’s instances where we can not find as good

solution as quickly but where we can significantly improves their results. Finally, compared to Nikolopoulou

et al.’s method (see Tables 13 and 14), LNS+SPM seems to have the advantage for Wen et al.’s instances,

while being generally slower for the Morais et al.’s instances, especially for the larger R-8 and R-10 series.

Many design decisions (stopping criteria, inherent tendency towards intensification or diversification of each

method...) can account for such differences. Generally speaking, in line with the results of Section 5.5.2,

LNS+SPM is very good for a wide range of medium size instances (Wen-100 to Wen-200, Morais R-4 and

R-6), while being outperformed on small (Wen-50) and large instances (Morais-R8 and R-10). A reasonable

explanation seems to be the memory and set partitioning component. In small size instances, the time spent

managing these components would probably be better invested in simply exploring the solution space. On

the other hand, for large size instances, even the last calls to the SPM reach the time limit defined in CPLEX

(which is not the case for medium size instances). This suggest that a memory management procedure would

be useful for large size instances.

6. Concluding remarks

This paper presents a new method for the VRPCD based on LNS and regular calls to an SPP. The

SPP component is solved using both a MIP solver and a CP solver. This component helps to find solutions

that are significantly better than those obtained by LNS alone. The proposed method has been tested on

two benchmarks. It improves many of the previously best known results and average results. Compared to

existing methods, it compares favorably for a wide range of medium size instances.

Solving a CP subproblem provides a simple and efficient way to integrate precedence constraints into the

SPP. It would be interesting to investigate whether this method could be adapted to solve other VRPs with

synchronization-related constraints, and VRPs with multiple trips. In particular, the case where requests

are not constrained to go through the cross-dock between their pickup and delivery locations is also an

interesting perspective. This problem has been addressed in previous studies under the name Pickup and

Delivery Problem with Cross-Docking Opportunity [27], or Pickup and Delivery Problem with Cross-Docking

[34].

Acknowledgements

This work was partially supported by the Canadian Natural Science and Engineering Research Council

(RGPIN-2015-04696) and by the Fonds de recherche du Québec - Nature et technologies through its Team

research Program.

[1] D. Agustina, C. K. M. Lee, R. Piplani, A review: Mathematical models for cross docking planning,

International Journal of Engineering Business Management 2 (2) (2010) 47–54.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[2] C. Archetti, M. G. Speranza, A survey on matheuristics for routing problem, EURO Journal on Com-

putational Optimization 2 (2014) 223–246.

[3] C. Archetti, M. G. Speranza, M. W. P. Savelsbergh, An optimization-based heuristic for the split delivery

vehicle routing problem, Transportation Science 42 (1) (2008) 22–31.

[4] J. C. Beck, M. S. Fox, Scheduling alternative activities, Proceedings of the Sixteenth National Conference

on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence

(1999) 680–687.

[5] N. Boysen, M. Fliedner, Cross dock scheduling: Classification, literature review and research agenda,

Omega 38 (6) (2010) 413–422.

[6] P. Buijs, I. F. Vis, H. J. Carlo, Synchronization in cross-docking networks: A research classification and

framework, European Journal of Operational Research 239 (3) (2014) 593–608.

[7] C. E. Cortés, M. Matamala, C. Contardo, The pickup and delivery problem with transfers: Formulation

and a branch-and-cut solution method, European Journal of Operational Research 200 (3) (2010) 711–

724.

[8] R. Cuda, G. Guastaroba, M. G. Speranza, A survey on two-echelon routing problems, Computers &

Operations Research 55 (2015) 185–199.

[9] K. F. Doerner, V. Schmid, Survey: Matheuristics for rich vehicle routing problems, in: Hybrid Meta-

heuristics, vol. 6373 of LNCS, Springer, 2010, pp. 206–221.

[10] R. Dondo, J. Cerdá, A monolithic approach to vehicle routing and operations scheduling of a cross-dock

system with multiple dock doors, Computers & Chemical Engineering 63 (2014) 184–205.

[11] M. Drexl, Synchronization in vehicle routing–A survey of VRPs with multiple synchronization con-

straints, Transportation Science 46 (3) (2012) 297–316.

[12] F. Enderer, Integrating dock-door assignment and vehicle routing in cross-docking, Ph.D. thesis, Con-

cordia University (2014).

[13] P. Grangier, M. Gendreau, F. Lehuédé, L.-M. Rousseau, An adaptive large neighborhood search for the

two-echelon multiple-trip vehicle routing problem with satellite synchronization, Tech. rep., CIRRELT

2014-33 (2014).

[14] A. Grimault, N. Bostel, F. Lehuédé, An adaptive large neighborhood search for the full truckload pickup

and delivery problem with resource synchronization, Tech. rep., Ecole des Mines de Nantes 15/4/AUTO

(2015).

[15] IBM Corporation, IBM ILOG CPLEX Optimization Studio V12.6.1 documentation (2014).

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[16] E. Lam, P. V. Hentenryck, A branch-and-price-and-check model for the vehicle routing problem with

location congestion, Constraints (2016) 1–19.

[17] G. Laporte, S. Ropke, T. Vidal, Heuristics for the vehicle routing problem, in: P. Toth, D. Vigo (eds.),

Vehicle Routing Problems: Problems, Methods, and Applications, 2nd ed., chap. 4, MOS-SIAM, 2014,

pp. 87–116.

[18] Y. H. Lee, J. W. Jung, K. M. Lee, Vehicle routing scheduling for cross-docking in the supply chain,

Computers & Industrial Engineering 51 (2) (2006) 247–256.

[19] C.-J. Liao, Y. Lin, S. C. Shih, Vehicle routing with cross-docking in the supply chain, Expert Systems

with Applications 37 (10) (2010) 6868–6873.

[20] R. Masson, F. Lehuédé, O. Péton, An adaptive large neighborhood search for the pickup and delivery

problem with transfers, Transportation Science 47 (3) (2013) 344–355.

[21] R. Masson, F. Lehuédé, O. Péton, Efficient feasibility testing for request insertion in the pickup and

delivery problem with transfers, Operations Research Letters 41 (3) (2013) 211–215.

[22] J. Mendoza, L.-M. Rousseau, J. G. Villegas, A hybrid metaheuristic for the vehicle routing problem with

stochastic demand and duration constraint, Journal of Heuristics.

[23] V. W. Morais, G. R. Mateus, T. F. Noronha, Iterated local search heuristics for the vehicle routing

problem with cross-docking, Expert Systems with Applications 41 (16) (2014) 7495–7506.

[24] A. I. Nikolopoulou, P. P. Repoussis, C. D. Tarantilis, E. E. Zachariadis, Moving products between

location pairs: Cross-Docking versus Direct-Shipping, European Journal of Operational Research.

[25] S. N. Parragh, V. Schmid, Hybrid column generation and large neighborhood search for the dial-a-ride

problem, Computers and Operations Research 40 (1) (2013) 490–497.

[26] G. Perboli, R. Tadei, D. Vigo, The two-echelon capacitated vehicle routing problem: models and math-

based heuristics, Transportation Science 45 (3) (2011) 364–380.

[27] H. L. Petersen, S. Ropke, The pickup and delivery problem with cross-docking opportunity, in: Compu-

tational Logistics, Springer, 2011, pp. 101–113.

[28] V. Pillac, C. Guéret, A. Medaglia, A parallel matheuristic for the technician routing and scheduling

problem, Optimization Letters 7 (7) (2013) 1525–1535.

[29] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems, Computers & Operations Re-

search 34 (8) (2007) 2403–2435.

[30] Y. Qu, J. F. Bard, A GRASP with adaptive large neighborhood search for pickup and delivery problems

with transshipment, Computers & Operations Research 39 (10) (2012) 2439–2456.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[31] Y. Rochat, É. D. Taillard, Probability diversification and intensification in local search for vehicle routing,

Journal of Heuristics 1 (1995) 147–167.

[32] S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and delivery

problem with time windows, Transportation Science 40 (4) (2006) 455–472.

[33] F. A. Santos, G. R. Mateus, A. S. da Cunha, A novel column generation algorithm for the vehicle

routing problem with cross-docking, in: Network Optimization - INOC 2011, vol. 6701 of LNCS, 2011,

pp. 412–425.

[34] F. A. Santos, G. R. Mateus, A. S. da Cunha, The pickup and delivery problem with cross-docking,

Computers & Operations Research 40 (4) (2013) 1085–1093.

[35] F. A. Santos, G. R. Mateus, A. Salles da Cunha, A branch-and-price algorithm for a vehicle routing

problem with cross-docking, Electronic Notes in Discrete Mathematics 37 (2011) 249–254.

[36] M. W. P. Savelsbergh, Local search in routing problems with time windows, Annals of Operations

Research 4 (1) (1985) 285–305.

[37] P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, in:

Principles and Practice of Constraint Programming CP98, vol. 1520 of LNCS, 1998, pp. 417–431.

[38] G. Stalk, P. Evans, L. E. Schulman, Competing on capabilities: The new rules of corporate strategy,

Harvard Business Review 70 (2) (1992) 57–69.

[39] A. Subramanian, E. Uchoa, L. S. Ochi, A hybrid algorithm for a class of vehicle routing problems,

Computers and Operations Research 40 (10) (2013) 2519–2531.

[40] C. D. Tarantilis, Adaptive multi-restart tabu search algorithm for the vehicle routing problem with

cross-docking, Optimization Letters 7 (7) (2012) 1583–1596.

[41] E. S. Thorsteinsson, Branch-and-check: A hybrid framework integrating mixed integer programming and

constraint logic programming, in: T. Walsh (ed.), Principles and Practice of Constraint Programming

CP 2001, vol. 2239 of LNCS, 2001, pp. 16–30.

[42] J. Van Belle, P. Valckenaers, D. Cattrysse, Cross-docking: state of the art, Omega 40 (6) (2012) 827–846.

[43] P. Van Hentenryck, The OPL Optimization Programming Language, MIT Press, 1999.

[44] J. G. Villegas, C. Prins, C. Prodhon, A. Medaglia, N. Velasco, A matheuristic for the truck and trailer

routing problem, European Journal of Operational Research 230 (2) (2013) 231–244.

[45] M. Wen, J. Larsen, J. Clausen, J.-F. Cordeau, G. Laporte, Vehicle routing with cross-docking, Journal

of the Operational Research Society 60 (12) (2008) 1708–1718.

27

