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Abstract This paper addresses performance issues
of resource allocation in cloud computing. We
review requirements of different cloud applications
and identify the need of considering communica-
tion processes explicitly and equally to the comput-
ing tasks. Following this observation, we propose a
new communication-aware model of cloud comput-
ing applications, called CA-DAG. This model is based
on Directed Acyclic Graphs that in addition to com-
puting vertices include separate vertices to represent
communications. Such a representation allows mak-
ing separate resource allocation decisions: assigning
processors to handle computing jobs, and network
resources for information transmissions. The proposed
CA-DAG model creates space for optimization of a
number of existing solutions to resource allocation and
for developing novel scheduling schemes of improved
efficiency.
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1 Introduction

In recent years, parallel computers and clusters
have been deployed to support computation-intensive
and communication-intensive applications, and have
become part of cloud computing. Such clouds are
emerging as a new paradigm for providing services
and solving large-scale problems in science, engineer-
ing, and commerce. Clouds comprise heterogeneous
nodes (typically, clusters and parallel supercomputers)
with a variety of computational resources. Clouds are
becoming almost commonplace, with many projects
using them for production services. The initial chal-
lenges of Cloud computing – how to provide a service,
how to manage multiple virtual machines on differ-
ent systems – have been resolved to the first degree.
Therefore, researchers can now address the issues that
will allow more efficient use of the resources. The
use of cloud resource management is far from ubiq-
uitous. This is due to the fact that scheduling and
mapping decisions have to take into account the myr-
iad standards, procedures, and devices in a highly
dynamic environment. Consequently, resource man-
agement procedures must be able to adapt to changes
in state and data communication requirements to meet
their desired QoS constraints as traditional approaches
to resource optimization become insufficient.
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New job representations are also being devel-
oped for modeling problems in e-Commerce and
e-Science as workflows. A workflow is the automa-
tion of a processes, which involves the orchestra-
tion of a set of services, agents, and actors that
must be combined together to solve a problem or
to define a new service. Workflows can be modeled
as DAGs or other precedence constraint structures.
Many precedence constraint problems have been stud-
ied in classical scheduling theory, and proved to
be NP-hard. Approximation algorithms, linear pro-
gramming, combinatorial, and stochastic solutions
have been addressed for problem solution. Solutions
for precedence constraint problems from classical
scheduling theory are not suitable for cloud prob-
lems. This is due to the fact that they do not take
into account the: (a) dynamic behavior of the execu-
tion context, (b) job mix workloads, or (c) uncertainty
of the workflow properties. Of particular interest is
to study: how resource unavailability and commu-
nication bandwidth dynamics trigger load balancing,
and how they impact the workflow allocation plans
under deterministic and nondeterministic scheduling
paradigms.

The scheduling of jobs on multiprocessors is gen-
erally well understood and has been studied for
decades. Many research results exist for different
variations of the scheduling problem; some of them
provide theoretical insights while others give hints
for the implementation of real systems. However,
the communication-aware scheduling problems that
require the availability of communication resources
have rarely been addressed. The communication prop-
erties are either completely ignored or highly general-
ized and weakly captured by current task models and
scheduling approaches. Unfortunately, it may result
in inefficient cloud infrastructure and communication
media utilization.

In this paper, we define a model for cloud com-
puting applications taking into account a variety of
communication resources of various types used in real
systems. This communication-aware model of cloud
applications, called CA-DAG, allows making sepa-
rate resource allocation decisions, assigning proces-
sors to handle computing jobs and network resources
for information transmissions, such as application
database requests. It is based on DAGs that in addition
to computing vertices include separate vertices to
represent communications.

The contribution synopsis of the paper is as follows.

1. Review of communication requirements of differ-
ent cloud applications.

2. Motivation of communication awareness in
resource allocation.

3. Definition of new communication-aware model of
cloud applications.

4. Definition of properties of communication tasks.
5. Comparison of the proposed CA-DAG

(communication-aware) model onto existing
resource allocation solutions based on CU-DAG
(communication-aware) and EB-DAG (Edge
based) models.

6. Demonstration that separate resource allocation
decisions to handle computing and communica-
tion jobs provide scheduling flexibility and, under
certain conditions, reduce the requirement for net-
work links and computational resources.

The rest of the paper is structured as follows: We
introduce background on task scheduling in Section 2
and discuss main properties and requirements of cloud
computing applications in Section 3. In Section 4,
we introduce communication-aware DAG model and
compare it with other DAG models. In Section 5,
we present the properties of communication vertices
of our model. Next, we discuss different aspects
of communication-aware scheduling in Section 6. In
Section 7, we present performance evaluation results
to confirm the benefits of the proposed CA-DAG
model. Finally, we conclude with a summary and an
outlook in Section 8.

2 Background on Task Scheduling

A workflow is a composition of tasks with precedence
constraints. Workflows are modeled by a directed
acyclic graph Gj=

(
Vj,Ej

)
, where Vj is the set of

tasks, and Ej=
{
(Tu,Tv) | Tu,Tv∈Vj, u �= v

}
, with

no cycles is the set of arcs between
tasks in Vj. Each arc (Tu,Tv)∈Ej represents the prece-
dence constraint between tasks Tu and Tv, such that
Tu must be completed prior to the initiation of the
execution of Tv.

Arcs can be related to communication requirements
of the underlying algorithm. The weights associated
with the nodes and edges represent their computation
costs and communication costs.
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Tasks are released over time according to the prece-
dence constraints. A task can start its execution only
after all of the corresponding dependencies have been
satisfied. At the release date, a task must be mapped to
a resource. However, we do not demand that the spe-
cific resource is immediately assigned to a task at its
release time. That is to state that the processor allo-
cation of a task can be delayed. Scheduling problems
involving precedence constraints are among the most
studied problems in the domain.

In the homogeneous scheduling delay model, each
arc represents the potential data transfer between tasks
[1]. Communication system is considered here to
be homogeneous and complete network. The LogP
model presents a more detailed characterization of
the communication delay. It is assumed that the com-
munication delay consists of three parameters: (a)
the latency, which is an upper limit on the time of
transferring the message data in the communication
medium, (b) the overhead of processing the message
at the sender and the receiver communication, and (c)
the interval in which the sender cannot send and the
receiver cannot accept any new messages [2]. In the
hierarchical communication model, the communica-
tion delays are not homogeneous. This is due to the
fact that the processors are connected to clusters, and
the communications inside a same cluster are faster
than those between processors belonging to different
ones.

In the classical scheduling, communication delays
disappear if a predecessor task and a successor task
are executed on the same processor [3]. This assump-
tion is known as the locality assumption. The essential
property of such models is that the task duplication
avoids communication delays.

In the processor network communication model,
the structure of the underlying network and the con-
tention in accessing the shared medium are taken
into account [4, 5]. However, it is assumed that com-
munication channel is a resource equivalent to a
processor.

Different variations of the scheduling problem with
communication delays and classification of existing
results are discussed in [6]. There are only few results
available on scheduling that take into account the pres-
ence of large communication delays [7–9, 48, 49].
The most widely used approach is task clustering to
balance communication delays and processing times.
Mainly two classes of task clustering algorithms are

studied based on the (a) critical path analysis [10]
and (b) decomposition of the precedence task graph
[8, 9, 11].

3 Cloud Applications

To understand how well the available scheduling
solutions are applicable in the cloud computing
environment, the main properties and requirements
of cloud computing applications must be reviewed.
Table 1 presents the classification of cloud com-
puting applications according to the key factors
determining their performance, namely: (a) com-
puting load, (b) communication bandwidth require-
ment, (c) tolerance to high communication delays,
(d) degree of interactivity, and (e) storage usage.
More details on the cloud application requirements
can be obtained from [12]. The applications are sorted
top-to-bottom according to their average demand for
resources.

Cloud gaming is probably the most cloud resource
demanding application. Game execution, processing,
and rendering are done on the cloud provider servers.
The thin client at the user side simply receives and dis-
plays multimedia intensive content, which consumes a
considerable amount of network bandwidth. The com-
munication delay should be imperceptible to allow the
fast reaction to the highly frequent user actions. The
only noncritical demand by the cloud gaming resource
is the storage that is required for the game play
objects.

Videoconferencing and video streaming consume
high bandwidth, but they differ in other require-
ments, such as videoconferencing requires a high
computing power for signal processing and multiplex-
ing, and low communication delays for impercepti-
ble interaction. However, all of the above mentioned
requirements are eased in video streaming making it
similar to cloud storage and cloud backup services.
Moreover, video conferencing does not impose stor-
age requirements as it discards real-time video data
after displaying. On the contrary, the availability of
a very large storage space is a key requirement for
video streaming, cloud storage, and cloud backup
services.

Online office (e.g., Google Docs, Microsoft Office
365) and Customer Relation Management (CRM)
services are mostly utilized by small and medium
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businesses as solutions. Both services are highly inter-
active, have moderate bandwidth requirements, mod-
erate storage requirements, and cannot tolerate high
communication delays. Collaborative editing is simi-
lar to online office applications. However, it imposes
a tight communication delay constraints to allow
document synchronization between collaborators in
real-time.

Remote desktop services consume cloud comput-
ing and bandwidth resources moderately, but are
highly interactive and require low communication
delay to provide close to the typical desktop experi-
ence. They require storage resources intensively as all
the data are streamed in real-time.

Cloud synchronization service stores data, such as
music files, and keeps it synchronized among mul-
tiple devices, such as desktop computers, laptops,
smart phones, or tablets. Even though, the user activ-
ity and variation of the content may be high, the
cloud synchronization service operates periodically by
aggregating the data modification requests. It oper-
ates well in networks with average delays, demands
moderate amount of the computing, and requires
medium bandwidth. However, it is sensitive to the
availability of storage. Other storage-hungry services
are video streaming, cloud storage, and cloud backup.
The aforementioned services require high throughput,
but produce almost no computational requirements
and are tolerant to large communication delays. In
contrast, voice conferencing, such as Skype, does not
require computing, bandwidth resources, and storage.
However, any increase in the communication delay
degrades the quality of user experience greatly.

Social networking is a Web based service that
facilitates people to post their profiles and establish
social relations. Typically implemented using HTTP,
it utilizes low bandwidth, and requires moderate com-
puting power and storage requirements. It is also
tolerant to moderate network delays with almost no
requirements for live voice or video interactions.

The High Performance Computing (HPC)
paradigm utilizes applications that are mostly of
the scientific nature and are composed of highly
computational intensive tasks. HPC applications are
significantly different from other cloud computing
services. Computing is the only resource critical for
execution capability, while bandwidth, delay, and
storage are insignificant, with the exception of a few
data intensive applications, such as climate modeling.

To run HPC applications effectively, the computing
clouds have to be specifically designed or adapted to
HPC as a service model [13, 14], as supercomput-
ers and computer clusters still remain dominant for
HPC.

4 Communication-Aware DAG Model

In this section, we motivate and define our CA-
DAG model for communication intensive cloud
applications and compare it with known CU-DAG
(Communication-unaware) and EB-DAG (Edges-
based) models.

4.1 Need for Communication-Awareness

Most of the cloud computing applications require the
availability of communication resources for their oper-
ations. In Table 1, the surveyed cloud applications
impose communication requirements in terms of the
network bandwidth, delay, or both. The only excep-
tion is HPC, which is predominantly dependent on the
computing power. Applications, such as video stream-
ing, cloud storage, and cloud backup require high
bandwidth to transfer large amounts of data to or from
the end users, while performing almost no computa-
tions. Other applications, such as voice conferencing,
produce very light traffic load on the network, but
require tight delay constraints, as imposed by the
audio codec, and limits of human delay perception
[15]. The cloud applications located in the top half of
the Table 1, with cloud gaming and video conferenc-
ing being the leaders, impose tight constraints on both
the network bandwidth and the delay.

The availability of communications resources
becomes crucial and determines how cloud applica-
tions interact with the end users. Indeed, most of the
cloud applications process requests from and deliver
results to many parts of the Internet. In addition
to these external communications, cloud applications
interact among themselves producing internal to the
datacenter traffic which may account for as much as
75 % of the total traffic [16, 17].

Current models of cloud applications rely mostly
on the HPC concepts [13, 14]. These models are based
on DAGs that are formed of the collection of ver-
tices, each representing a computing task, and directed
edges, which show the relations between the tasks.
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Table 1 Classification of cloud applications

Cloud application Resource requirement

Computing Bandwidth Low communication delay Degree of interactivity Storage

Cloud gaming H H H H L

Video conferencing H H H H L

Online office H M M H M

Collaborative editing M M H H M

CRM M M M H M

Remote desktop M M H H L

Cloud Synchronization M M M M H

Video streaming L H L L H

Cloud storage L H L L H

Cloud backup L H L L H

Voice conferencing L L H H L

Social networking M L M M M

HPC H L L L L

H: High, M: Medium and L: Low

Such models perfectly fit to the computationally inten-
sive HPC applications, but fail for most part of cloud
applications, where communications must be taken
into account as well. Several researchers have realized
this shortcoming and proposed adapting the standard
DAG model by either allowing vertices to represent
both computing and communication requirements of
a task (communication-unaware model - CU-DAG)
or associating edges with the communications per-
formed tasks (edges-based model - EB-DAG). Both
approaches have significant drawbacks that we detail
below.

CU-DAG - Communication-Unaware Model Joining
computing and communication demands of a task
together, and representing them as a single vertex [18,
19], as represented in Fig. 1a, makes it almost impos-
sible to schedule the task execution properly. Let us
consider a computing task that requires information
from a database as an input. The delay of sending
and handling a database query as well as receiving
a reply can be significantly beyond several millisec-
onds [20, 21], which is comparable with the time the
search engines return results [22, 23]. During this time
the computing work, being scheduled for execution,
stays on hold waiting for input data. For the DAG
example presented in Fig. 1a, we could ask how many

processors or cores should be used to schedule tasks 2
and 3 in parallel? It may be enough to allocate a single
core and share it in time, i.e. perform computing for
the task 2, while task 3 waits for the input, and process
task 3, while task 2 is sending its output. However,
to answer this question properly, a precise knowledge
of the communication patterns of both tasks should
be available. There is another shortcoming of the
reviewed model. Suppose task 2 computes data, and
(a) sends them to the network for the database update
(represented by a grey segment of the vertex), and (b)
feeds them as an input to the task 4. With such a DAG
representation, task 4 will need to wait for the suc-
cessful completion of the task 2 including database
update. On the other hand, the task 4 could be started
in parallel to the database update.

Summarizing, having a single vertex for represent-
ing both computing and communication of a task
makes it difficult to properly schedule them: comput-
ing work at the servers and communication work in
the network. It would be logical to separate these two
fundamentally different activities and schedule them
separately for an efficient execution.

EB-DAG - Edges-Based Model Associating DAG
edges with task communications [4, 24, 25] is an
attempt to treat communication and computing works
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Fig. 1 Modeling
communications DAGs: a
CU-DAG (communication-
unaware) and b EB-DAG
(edges-based)

1

2 3

4Computing work of a task

Communication work of a task

Ordinary edge

Edge with task communications(a) (b)

1

2

4

3

differently. In this model, the DAG is defined as a
directed acyclic graph G = (V, E, w, c), where ver-
tices V represent computing tasks, and a set of edges
E describes communications between tasks. w(n) is a
computation cost of a node n ∈ V, and c(eij) denotes
the communication cost of the link eij∈ E. Task
scheduling implies mapping tasks V on a set of pro-
cessors specifying starting time, and duration for each
task.

The aforementioned representation of communica-
tion processes with DAG edges has one significant
drawback. It prevents two different computing tasks
from using the same data transfer to receive an input.
Consider tasks 2 and 3, in Fig. 1b. Suppose the tasks
require the same data object from the database to start
their execution. In practice, it can be done with a sin-
gle database query, which implies a single edge of the
graph. However, a single edge cannot lead to two dif-
ferent vertices. As a result, either two different edges
trigger two different queries, or an empty vertex needs
to be added as a mean to branch a DAG edge.

Another shortcoming of this model is in the pro-
cessing of edge scheduling. To schedule communica-
tions, the DAG edges E are mapped to the network
links represented by the topology graph of the network
[4]. The topology graph is assumed to contain accurate
information on network nodes, connections between
them, and data transfer rates of all of the links. Even
if the connectivity information may be available for
the network, accurate knowledge of the available net-
work capacity remains mainly inaccessible [26]. This
is due to the diverse nature of the network traffic
that is produced at different layers of the protocol
stack and mixed in the communication links and net-
work routers. Part of the network traffic is broadcasted
and not accounted for by the edge scheduling. For

example, it is common in Address Resolution Protocol
(ARP) [27], which is used to find the correspon-
dence between IP and MAC address every time a node
communicates with a new destination, or in Inter-
net Control Message Protocol (ICMP) messages [28],
which are often generated by the routers in repose
to routing failures or congestion problems [29]. As
a consequence, knowing capacities of the links helps
to estimate the upper bound of the achievable trans-
mission rate, but what remains available to the edge
scheduler is commonly referred as available band-
width [30]. Estimating the available bandwidth has
been a hot research topic for a number of years with
many solutions proposed [26]. However, it is widely
accepted to be difficult or even impossible to accu-
rately estimate it, partially due to the requirement to
use active probing of network links [31] and a delay
between the moment a probe senses network traf-
fic and the time the measurement becomes available
when the probe is returned.

4.2 Communications-aware DAG Model

In this section, we propose new Communication-
Aware DAG (CA-DAG) model to overcome limita-
tions of the classical DAG representations, discussed
in the previous sections, for cloud computing applica-
tions.

Definition of CA-DAG Model The program is repre-
sented by a directed acyclic graph G = (V , E, ω, ϕ).
The set of vertices V = {Vc, Vcomm is composed
of two non-overlapping subsets Vc and Vcomm. The
set ⊆ VcV represents computing tasks, and the set
⊂ VcommV represents communication tasks of the
program.
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A computing task vc
i ∈ Vc is described by a pair

(I, Dc) with the number of instructions I (amount of
work) that has to be executed within a specific dead-
line Dc. A communication task vcomm

i ∈ Vcomm is
described by parameters (S, Dcomm), and defined as
the amount of information S in bits that has to be
successfully transmitted within a predefined deadline
Dcomm. Positive weights ω

(
vc
i

)
and ϕ(vcomm

i ) repre-
sent the cost of computing at the node vc

i ∈ Vc, and
cost of communication at the node vcomm

i ∈ Vcomm,
respectively.

The set of edges E consists of directed edges eij rep-
resenting dependence between node vi∈ V, and node
vj∈ V, meaning that a task vj relies on the input from
the task vi, and vj cannot be started until this input
is received. A particular case is when the size of this
input is zero. It helps to define the execution order of
tasks, which exchange no data.

The main difference between communication ver-
tices Vcomm and edges E is that Vcomm represents
communication tasks occurred in the network, making
them a subject to communication contention, signif-
icant delay, and link errors. Edges E represent the
results of exchange between tasks considered to be
executed on the same physical server. Such communi-
cations often involve processor caches. They are fast
and the associated delay is multiple orders of mag-
nitude lower than the delay in a network and can be
neglected. Consequently, the edge set E corresponds
to the dependences between computing and commu-
nication tasks defining the order of their execution.

Representative Example Consider a typical cloud
computing application of webmail. On a highly
abstract level its operation can be represented with the
following four steps:

Step 1: Receive user request and process it.
Step 2: Generate personalized advertisement.
Step 3: Request list of email messages from the

database.
Step 4: Generate HTML page and send it to the user.

Each of the aforementioned steps involves a com-
munication process, and can be represented by the
communication-aware DAG.

In Fig. 2, the DAG vertices related to the computing
tasks Vc are represented by circles, while the com-
munication related vertices Vcomm are shown using
square shapes. Task 0 is associated with the arrival of

Computing task

Communcation task

T0

T1

T2 T4

T3 T5 T6

T7

T8

processing requests

identifying a user,

preparing database query

analysing

user profile

database query for

email messages

prepare a list

of emails

group messages

into conversations

retrieve personalized

advertisement from

databases combine outputs of T3, T5, and T6,

generate a complete HTML page

send output to user

Fig. 2 CA- DAG model of cloud mail appliocation

user request and its delivery to computing resources
over the data center network. Task 1 processes the
request, identifies a user, and prepares a database
query. Task 2 analyses user profile to determine traits
for targeted advertisement. During the execution of
Task 3 the requested personalized advertisement is
obtained from the database.

In Task 4, the database is queried for the list of user
email messages. When the reply is received, it is fed
into Task 5 and Task 6 running parallel. Task 5 pre-
pares a list of email messages, while Task 6 determines
which messages can be grouped into conversations.

Finally, Task 7 combines the outputs of Task 3, Task
5, and Task 6, and generates a complete HTML page,
which is sent to the user in Task 8.

Comparison of Models Let us consider a scheduling
of tasks with communications on a set of identi-
cal computers to optimize the total execution time
(makespan). Computing resources are represented by
two processors of a data center p1 and p2 (see Fig. 3).
The communication resources are represented with
network links l1 and l2 interconnecting computing
resources and database DB. Now let us see how the
described webmail application can be represented by
three types of DAGs: CU-DAG (Fig. 1a), EB-DAG
(Fig. 1b), and CA- DAG (Fig. 2).

Figure 4a shows a possible schedule for the CA-
DAG. Computing Tasks 1, 2, 5, 6, and 7 are scheduled
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Fig. 3 Example of infrastructure for scheduling

on the processor p1, while communication-related
Tasks 0, 3, 4, and 8 are scheduled at the network link
l1. Representing communication tasks with their own

distinct vertices allows us to control an allocation and
execution time at the network resources in addition to
the processor unit. The processor time is not wasted by
waiting for communications to complete. For exam-
ple, a data base query (Task 4) is executed simultane-
ously with the analysis of a user profile (Task 2), while
at the next step, the list of email messages (Task 5)
can be generated, while database is being queried for a
personalized advertisement (Task 3). Such a schedul-
ing flexibility is not available when communication
work is seen as a part of a task description.

For the purpose of comparison, Fig. 4b presents
a schedule for CU-DAG, depicted in Fig. 1a. The
inability to control allocation of network resources and

Fig. 4 Schedules for: a
CA-DAG model, b CU-
DAG model and one
processor, c CU- DAG
model and two processor, d
EB-DAG model and one
network link, and e
EB-DAG model and one
network link

l1

P1

T0 T4 T3 T8

T1 T2 T5 T6 T7

T4

(d) EB-DAG 8 time

l1

P1

T0 T4 T3 T8

T1 T2 T5 T6 T7

T4l2

(e) EB-DAG 7 time

7

l1

P1

T0 T4 T3 T8

P2

T1 T2

T5

T6 T7T0 T3

T4

T8

(c) CU-DAG time

l1

P1

T0 T4T3 T8

T1 T2 T5 T6 T7T0 T3 T4 T8

(b) CU-DAG 9 tim

l1

P1

T0 T4 T3 T8

T1 T2 T5 T6 T7

(a) CA-DAG 7 time
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distinguish the size of task communications, results in
a larger makespan. The processor is often forced to
wait for finishing communications before it can start
the computational portion of the task. To match the
makespan of the CA-DAG, an additional processing
unit would be required (see Fig. 4c).

The DAGs that use edges to model communica-
tion processes (Fig. 1b) cannot model certain required
communication types. In our example, for instance,
consider using an edge for the representation of the
database request (Task 4). It will make it not possible
to make a single edge lead to two different computing
tasks, Task 5 and Task 6, while having an additional
edge will unnecessarily duplicate the communication
effort. Fig. 4d shows an example of edges-based com-
munication scheduling. It requires scheduling Task
4 for two edges leading from Task 1 to Tasks 5
and 6. Matching the schedule of the CA-DAG model
becomes possible only when additional network link
is available, such that both edges can be scheduled in
parallel.

5 Properties of Communication Vertices

In this section, we discuss and explain the aforemen-
tioned properties in more details.

5.1 Task Parallelization

While it is often assumed that a single vertice vc rep-
resents a piece of computing code, which cannot be
further parallelized, the communication vertice vcomm

does not imply such an assumption.
Communication-related tasks significantly differ

from the computing tasks. Their most distinct property
is the task parallelization: each communication task
vcomm

i ∈Vcomm can be divided into n different inde-
pendent communication tasks vcomm

ij , j = 1, . . . , n,
with a size of communication task in bits equals to
ϕ(vcomm

i )/n.
All of the bits that are to be transferred are inde-

pendent. They can be transmitted on different paths of
the network and reassembled in the original sequence
at the destination node. As a result, each communica-
tion vertice vcomm

i can be split into a number of data
flows scheduled in parallel or sequentially. Network
paths used for their transmission can be either com-
pletely different, i.e. include only the sender and the

receiver as common nodes, or partially overlapped.
The number of parallel flows depends on the number
of network paths available, the size of data, available
effective bandwidth, an overhead of the protocol used
for communication, etc.

5.2 Multipath Routing

In a fully deterministic system, a schedule can be
computed by finding an association between the DAG
representing cloud applications, and topology graph
representing a data center network, which includes
network nodes, switches, and communication links
with their transmission rates. This approach has a
number of limitations. It assumes circuit switching
and static routing. This guarantees a dedication of
certain bandwidth resources along a predefined net-
work path for the whole duration of communication.
However, in real systems, these assumptions do not
hold. Nowadays, most of the communication networks
are packet-switched, and packet routing decisions are
taken at every hop independently. Furthermore, most
of the data center network topologies, including the
most commonly used fat tree topology, introduce mul-
tipath connections as a mean to provide resilience and
load balancing. The availability of multiple paths is
essential to benefit from the parallelization of commu-
nication tasks discussed earlier in this section.

5.3 5.3 Task Completion Time

In computing, the task completion time corresponds to
the time a processing resource is released from execut-
ing computing instructions, after which a computing
result is available. In packet-switched networks, multi-
ple links are involved into communication task execu-
tion. They operate at different data rates, and process
a packet transmission sequentially.

Figure 5 attributes communication delays with dif-
ferent network components. The information process-
ing and packetization delay dproc as well as queuing
delay dqueue are occurred at the network node. The
transmission delay dtx defines a time interval of net-
work link occupancy. For a data segment of the length
S and link data rate r, the transmission delay is defined
as a ratio S/r. The propagation delay dprop corresponds
to the time the signal travels from a sender to receiver.
It is defined as a ratio between the link length llink and
propagation speed of the link medium c. Combining
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Fig. 5 Communication
delays n1 n2dproc

dtx dqueue dprop

the aforementioned delays together, we can compute
task completion delay for the network path of N hops
as follows:

dcomm =
N∑

i=1

(
di
proc + di

queue + di
tx + di

prop

)
. (1)

The minimum communication delay will correspond
to the system with very fast processing (dproc→ 0) and
empty buffers (dqueue= 0), and will be expressed by∑

(dtx+dprop).

5.4 Available Bandwidth

Typically, communication resources are associated
with the residual capacity – the amount of the path
capacity left unoccupied by the traffic flowing along
the path. However, in practice, residual capacity
reflects only the minimum amount of bandwidth that
a newly introduced flow can obtain. The communica-
tion flows sharing the same path or a segment of a path
in the network compete for bandwidth resources. As a
result, a newly introduced data flow along with rely-
ing on the residual capacity may grab a share of the
bandwidth currently used by the other flows.

The communication protocol and its performance
are two of the most important factors. Overwhelm-
ing majority of data transmissions is performed using
Transmission Control Protocol (TCP). It is the only
protocol in the standard TCP/IP protocol stack able to
guarantee both reliability and flow control. It uses a
positive feedback loop with the receiver. Based on the
feedback information, TCP triggers retransmissions
for the packets, which are lost due to congestion or
link errors, and adjusts sending rate. The sending rate
is additively increased for every feedback message
received unless a packet loss is detected. In the latter
case, the TCP reduces its sending rate multiplicatively,
typically by a factor of 2.

Due to the uncertainty on the end-to-end network
path, and operational TCP dynamics, accurate cal-
culation of a node sending rate becomes unrealistic
making it difficult to predict completion time of com-
munication tasks [26, 47]. However, for the purpose of

scheduling, it is important to estimate the boundaries
for this value.

A good estimate of the steady-state TCP perfor-
mance can be obtained as the following [32]:

B(p) = MSS

RT T · √
p

, (2)

where MSS is a maximum segment size typically
selected to fit maximum packet size, which will not
trigger fragmentation at the network interface card,
RTT is the round-trip time between the sender and
the receiver, and p is an error probability, which
includes both congestion- and link-related packet
losses. According to (2), for the RTT of 200 ms, which
is common in Internet, typical for Ethernet MSS of
1500 bytes, and typical for wired links error rates
in the order of 10−7, the maximum achievable TCP
sending rate is less than 200 Mb/s. To estimate the
protocol-related overhead, we may consider an upper
bound of the link capacity and use a more precise
model from [33]. For a typical per-server available
bandwidth of 300 Mb/s and round-trip delay of 100
ms, the transmission of 500 MB data fragment using
TCP protocol will take almost 15 seconds versus the-
oretical 13 seconds in case of raw data transmission
with no protocol used. In this example, the overhead
of TCP protocol is round 13 %.

5.5 Uncertainty in Data Size

Communication actions performed by a task executed
in data center can be classified into unidirectional
and bidirectional. Unidirectional communications are
typically related to the task outputs to the user or
another service in data center. They have a well-
defined size of the information that needs to be trans-
ferred. Bidirectional communications are related to
the request-response actions performed by the task,
such as database queries. In this regard, while the
size of outgoing request is well-known, the amount
of information that will be received back is often
unknown. For example, in Fig. 2, in Task 4 the list of
email messages is received from the database. The list
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can be completely empty or has a large size depending
on the number of emails stored in the user mailbox.

In order to cope with the uncertainty in data size
of communications adaptive scheduling approaches
should be used. However, to make resource alloca-
tion efficient, it is important to estimate task com-
pletion delays and usage of network resources for
such bidirectional communications. One of the most
promising approaches is to use statistical data mining
approaches. Each node can include a software module
which, based on the precedent experience, will esti-
mate a query processing delay, the round-trip time to
a database server, as well as the size of the data output
reducing uncertainly and assisting resource allocation.

Scheduling with uncertainly have been also exten-
sively studed in grid networks with the relation to
application demands and resource availability [44],
and uncertainty of communication demands [45, 46].

6 Communication-aware Scheduling

In this section, we discuss the impact of the intro-
duction of the communication-aware DAG model
on existing scheduling solutions. The problem of
DAG scheduling is known to be NP-complete even
for DAGs with no communication-related vertices or
edges [34]. Therefore, classical exact and enumera-
tive methods are only useful to solve the reduced size
problems. Approximation algorithms, linear program-
ming, combinatorial, and stochastic solutions have to
be adopted for the problem solution. Communica-
tion is not only a problem on the algorithmic level,
but also for the scheduling model as well. Most of
the scheduling algorithms employ a strongly idealized
model of the targeted system. It is assumed that all
of the processors are fully connected. The informa-
tion governing scheduling decisions is assumed to be
known in advance. However, it is not always the case
when the communication-aware model is considered.
The most widely used heuristics are usually classified
into three categories: duplication-based scheduling,
cluster-based scheduling, and priority-based schedul-
ing.

Task duplication is a special scheduling method
that replicates selected tasks to reduce inter-processor
communications [35, 36]. One of the main problems in
obtaining high performance of data intensive applica-
tions is the inevitable communication overhead when

tasks executed on different processors exchange data.
Duplication-based scheduling can reduce this over-
head by allocating the tasks redundantly on more than
one processor. Task duplication can decrease in the
cost of communications at the expense of bringing
additional computational load into computing system.
Nevertheless, task replication seems to be an imprac-
tical option in the context of cloud computing since
it tends to redundantly use and waste resources for
replicas.

Task clustering exploits the idea of grouping the
heavily communicating tasks and executing them on
the same computing resource [37, 38]. A problem
arises when the number of clusters is larger than the
number of the available processors [9]. This would
require scheduling of several clusters onto the same
processor inevitably increasing the overall length of
the schedule. The mapping or post-clustering phases
can refine the obtained clusters and acquire the final
task-to-resource map. The problem becomes more dif-
ficult under the condition of resources with different
and varying capabilities. Known static load balanc-
ing mechanisms become impractical. Even effectively
modified, clustering algorithms cannot be directly
applied under these conditions.

In priority-based scheduling, tasks are scheduled
onto resources according to their priorities [5]. The
heuristics use different strategies to decide on the task
priorities and allocated resources for each task. This
type of scheduling techniques is usually relatively
easy to implement, but, typically they do not consider
inter-processor communication delay when assigning
scheduling priorities.

Uncertainties inside applications (amount of com-
puting and communication works) and of the exe-
cution environment (number of available machines,
their location, their capabilities, the network topology,
effective communication bandwidth, etc.) add new
dimension to the scheduling problem.

Solutions for precedence-constrained problems
from classical theory are not suitable for the cloud sce-
narios. Scheduling in cloud computing environments
poses challenges not found in other distributed ser-
vice and computing environments mainly due to the
dynamicity of computing resources and communica-
tions, mix in job workloads, and different properties of
the workflows. Traditional scheduling algorithms for
high-performance computing are often afforded many
assumptions that do not hold in cloud computing, such
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as relatively negligible communication costs, precise
knowledge of the application structure, and the com-
munication patterns. Most of the existing scheduling
algorithms employ a strongly idealized model of the
target system making difficult to apply them in the
cloud.

Another important feature of existing scheduling
strategies is a consideration of a single objective cri-
terion. Most of the scheduling strategies for DAGs
adopt the best-effort approach, which minimizes only
performance objective. However, scheduling in the
cloud is inherently multi-objective. For instance, sys-
tem performance related objectives, cost based, energy
consumption based, and QoS based objectives must be
considered.

In cloud computing environments, resource
scheduling should be able to meet QoS requirements
for individual DAG instances at the same time max-
imizing performance for multiple DAGs running
concurrently. Workflow or DAG scheduling has diver-
sified into many research directions: minimization of
critical path execution time, selection of admissible
resources, allocation of suitable resources for data
intensive workflows, QoS constraint scheduling, as
well as fine-tuning of the workflow execution and
performance analysis. Most of them have consid-
ered single DAG scheduling problems. As already
mentioned cloud applications are typically small, but
arrive to the data center in millions. Therefore, the
scheduler should be designed to take into account
not only dependencies within a single job, but also
multiple DAGs.

Several research works address the scientific
workflow-scheduling problem on clouds. The work-
flows are represented by DAGs. Unlike tightly cou-
pled applications in which tasks communicate in
the network directly, workflow tasks typically com-
municate using file system. Most the scheduling
approaches are based on list scheduling, clustering,
and meta-heuristic search [39–41].

The communication-aware scheduling problem
considered in this work is hybridization between net-
work scheduling and classical machine scheduling.
The scheduling algorithm should be aware of the
computing and communication tasks to be scheduled.
We reduce an online DAG scheduling problem with
communications to the problem without communica-
tions since communications are included into the new
DAG model as tasks to be performed. Computing

tasks have to be mapped to computing resources and
communication tasks to the communicating media
resources.

To treat uncertainly and dynamism of the problem,
stochastic models, non-clairvoyant and knowledge-
free scheduling strategies can be applied. The lat-
ter corresponds to the strategies where scheduling
decisions are free from information of resources
and characteristic of running applications. Online
list scheduling algorithms are an example of
non-clairvoyant knowledge-free scheduling strate-
gies since list scheduling requires no knowledge of
unscheduled tasks as well as of all tasks currently
being processed. It is very powerful in dynamic envi-
ronments and especially in online non-clairvoyant
scheduling [42]. One standard alternative is to
consider randomized algorithms that make random
choices as they construct a schedule. More sophisti-
cated greedy strategies that can be adopted with some
knowledge of the scheduled application are Prioritiz-
ing Round Robin, First In First Out, Earliest Deadline
First, Least Laxity First, Multilevel Feedback meth-
ods. To deal with multipath routing, the list scheduling
algorithm can be coupled with a routing algorithm to
select the links involved into data forwarding.

Algorithms based on dynamic priority scheduling
can also be adapted to the dynamic context. The basic
idea is to continue focus on policies that assign prior-
ities based on temporal parameters and maximize of
resource utilization. In such algorithms, the priorities
of the ready tasks are calculated during the execu-
tion of the system. The aim is to adapt to dynamically
changing progress and form an optimal configura-
tion in self-sustained manner. Some dynamic prior-
ity scheduling algorithms are Earliest deadline first
scheduling and Least slack time scheduling.

In general, selecting appropriate heuristic requires
understanding the application, the system and the
objectives. However, general frameworks as list
scheduling can be adapted to the communication-
aware scheduling model.

7 Experimental Results

This section presents performance evaluation results
that confirm the benefits of the proposed CA-DAG
model for scheduling cloud computing applications.
The CA-DAG model is compared against CU-DAG
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and EB-DAG models reviewed in Section 2. We first
generated the application workloads according to the
CA-DAG model. Thereafter, the obtained workloads
were converted according to the communication-
unaware and edge-based models and scheduled with
the list scheduling algorithm.

7.1 System Architecture and Workload Generation

The target system architecture is composed of a set
of identical computing resources. The communication
resources are represented with a shared network link
(bus network), interconnecting computing resources,
and a database. The network topology allows only one
node to communicate at a time, while other nodes
must detain their transmissions until the link becomes
free.

The Winkler graph generator [18] was used to pro-
duce the workloads. The generator is based on random
orders methods making the generated graphs to be
representative of multidimensional orders. The two-
dimensional orders graphs were generated. To achieve
the aforementioned, n points were selected randomly
in the [0;1] × [0;1] square. Each point becomes a node
and there is an edge between two points a and b. If
b is greater than a, then in both directions. To gener-
ate large sets of graphs, the following two parameters
were varied: the number of nodes n and the num-
ber of communications. The graphs had a size of 20,
30, 40, and 50 nodes. Moreover, the obtained DAGs
fell into two categories according to their communica-
tion intensity: DAGs with occasional communications
and DAGs with frequent communications. To model
these categories, two probabilities representing the
amount of communication were used: 0.3 to repre-
sent occasional communications and 0.7 for frequent
communications. Moreover, to rank communications
the Communication-to-Computation Ratio (CCR) was
used. The CCR measure indicates whether a DAG
is communication intensive, computation intensive or
balanced. For a given DAG, the CCR ratio is computed
by the average communication cost divided by the
average computation cost on a target system. A high
value of CCR indicates that the DAG is communica-
tion intensive. We used the following three values of
CCR: 0.1 for computationally intensive DAGs, where
communication is of low significance compared to
the cost of computations, 1 for the balanced DAGs,
and 2 for communication intensive DAGs where the

significance of communication processes is high.
There are 30 graphs generated for each combination
input parameters, while the total number of generated
DAGs for each application model is 720.

7.2 Scheduling Algorithm

All of the evaluated DAG models were compared
using an offline (deterministic) scheduling algorithm
with an assumption of zero release times of DAGs
and clairvoyant execution and communication time.
Many offline scheduling algorithms exhibit good per-
formance also in the online scenario. From theory, it
is known that the performance bounds of the offline
scheduling strategies can be approximated for the
online case [19]. As the aim of this section is to com-
pare the application models and not the scheduling
algorithms, the same heuristic is employed for each
of the described model. For the different models, list
scheduling is employed. A list scheduling algorithm
is a two-phases scheduling algorithm that maintains a
list of all of the ready tasks of a given graph. A task
is considered ready to be scheduled when all of its
predecessors have been already scheduled. In the com-
mon variant of list scheduling, the nodes are ordered
according to a priority in the first part of the algo-
rithm. The task with the highest priority is selected.
Thereafter, in the second phase, a suitable processor
that minimizes a predefined cost function (in this case
the processor that allows the earliest finish time of a
task) is selected. A common priority is the task’s bot-
tom level (blevel), which is the length of the longest
path leaving the task. The blevel of a task is bounded
from above by the length of a critical path. The blevel
of a current task is computed by adding the computa-
tion cost along the longest path of the task from the
exit task (a task without successors) in the task graph
including the computation cost of the current task and
excluding the communication costs.

The blevel of any task ti is recursively calculated
as follows:

blevel (ti) = pi + maxtj ∈succ(ti )

{
blevel

(
tj

)}
, (3)

where pi denotes the execution time of task ti and
succ (ti) is the set of immediate successors of task ti.

We adapted the list of scheduling algorithm to
consider three different communication models. The
algorithm schedules computational tasks in comput-
ing resources and communications in the network
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link. The list scheduling is applied under the
communication-aware, communication-unaware and
edge-based models, denoted by “CA-DAG”, “CU-
DAG”, and “EB-DAG” respectively. Using the same
algorithm for each of the model allows analyzing the
impact of the model on the quality of the produced
schedules under no influence of different scheduling
techniques.

7.3 Scheduling Criteria

The following criteria are used to evaluate the sched-
ule produced by the algorithm: approximation factor
and schedule efficiency. Let Cmax be the maximum
completion time or makespan of the schedule pro-
duced by the scheduling algorithm under a given DAG
application model. The approximation factor [19] is
defined as ρ =Cmax/C∗

max, where C∗
max is the optimal

makespan. As it is generally not possible to deter-
mine the optimal makespan experimentally, we use
the lower bound C̃∗

max of the optimal makespan C∗
max

instead

C∗
max ≥ C̃∗

max

= max

{
max (blevel (ti)) ,

∑
i=1..,n (pi)

m

}
, (4)

where max (blevel(ti)) represents the critical path
of the DAG without considering communication
costs and m denotes the number of computing
resources. The efficiency of the schedule S defined

as eff (S)=
∑

i=1..,n(pi)

Cmax×m is the ratio of the sequential
execution time of the graph to the makespan of the
schedule by the number of computing resources. It
measures how well-utilized the computing resources
are in scheduling of a given application, compared to
how much effort is wasted during communication.

7.4 Results

To summarize, a large set of randomly generated
DAGs is scheduled by a list scheduling algorithm
under the CA-DAG, communication-unaware, and
edge-based models onto two configurations of a target
system with four and eight computing nodes arranged
into bus network topology.

Approximation Factor Figures 6 and 7 show the
obtained results for the approximation factor for
DAGs with occasional and frequent communications
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Fig. 6 Approximation factor for DAGs with occasional
communications

respectively. The benefits of the CA-DAG model can
be observed in both figures. For computation intensive
DAGs (CCR=0.1) the values of approximation factor
are close for all the models. With small CCR values
the communication is less important than computa-
tion, and the communication awareness of CA-DAG
does not lead to significant benefits over Comm-
unaware DAG and Edge-based DAG models. A small
approximation factor indicates that the results of a
schedule for a given communication DAG model are
close to the lower bound. It can be observed that the
approximation factor degrades when the amount of
communications increases. However, for the CA-DAG
model the degradation of the approximation factor
is smaller than in related models. The improvement
of CA-DAG model becomes significant for balanced
(CCR=1) and communication intensive (CCR=2)
DAGs where communication awareness can benefit
from the increase amount of transmissions.
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Fig. 7 Approximation factor for DAGs with frequent
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Fig. 8 Schedule efficiency for DAGs with occasional
communications

Efficiency Figures 8 and 9 show the efficiency of
the schedule produced by different communication
models. They confirm the results obtained with
approximation factor. Indeed, the communication-
aware schedulers under the CA-DAG model achieve
better efficiency for all CCRs. This is especially
evident for balanced and communication intensive
DAGs. Figure 9 confirms that not only the cost of the
communications is important, but also their amount.

In summary, CA-DAG significantly improves the
approximation factor and efficiency of the produced
schedules. However, we have only conducted exper-
iments considering a single shared network link.
Therefore, the communications are serialized. It
would be interesting to consider more than one link to
parallelize communications. We have also considered
only one scheduling algorithm. The high importance
of communication under the CA-DAG model seems to
demand the development of more sophisticated algo-
rithms in order to exploit full potential of this new
model.
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Fig. 9 Schedule efficiency for DAGs with frequent
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8 Conclusions

The main reason that traditional cluster and grid
resource allocation approaches fail to provide effi-
cient performance in clouds is that most of cloud
applications require availability of communication
resources for information exchange between tasks,
with databases or the end users. Moreover, exe-
cution environment of cloud applications is not
known at development time—the number of avail-
able machines, their location, their capabilities, the
network topology, and effective communication band-
width cannot be predicted ahead. In general, it will
be different for each program/service invocation. To
deal with the dynamics of the execution environment,
either the programmer must explicitly write adap-
tive programs or cloud software environment, such
as a runtime scheduling system, must deal with the
dynamics.

For an effective utilization of the Cloud, the pro-
grams must be decoupled from the execution environ-
ment. Programs should be developed for a uniform
and predictable virtual services, thus, simplifying their
development; the runtime system should deal with
the dynamics. Cloud application model has to allow
high level representation of computing and commu-
nication based on the nature of the problem, and
independent of the executing environment. Mapping
computation on machines, balancing the loads among
different machines, removing unavailable machines
from a computation, mapping communication tasks
and balancing the communication loads among dif-
ferent links have transparently be provided by the
runtime system.

In this paper, we discuss new CA-DAG model
for cloud computing applications, which overcomes
shortcomings of existing approaches using communi-
cation awareness. It is based on a DAG, which along
with computing vertices has separate vertices to rep-
resent communications. Such a representation allows
making separate resource allocation decisions, assign-
ing processors to handle computing jobs and network
resources for information transmissions. The proposed
communication-aware model creates space for opti-
mization of many existing solutions to resource allo-
cation and, together with performance and energy effi-
ciency metrics of communication systems [50], will
become an essential tool in the design of completely
new scheduling schemes of improved efficiency.
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In the future work, we will focus on develop-
ing novel communication-aware resource allocation
solutions based on the proposed model. We will gen-
eralize CA-DAG model to capture dynamics of cloud
environment. One of the important issues is the com-
prehensive simulations using GreenCloud simulator
[43], and practical validation of proposed solutions.
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ple workflow scheduling strategies with user run time
estimates on a grid. J. Grid Comput. 10(2), 325–346
(2012). doi:10.1007/s10723-012-9215-6. Springer-Verlag
New York, Inc. Secaucus, NJ, USA,

43. Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud:
A packet-level simulator of energy-aware cloud com-
puting data centers. J. Supercomput. 62(3), 1263–1283
(2012)

44. Batista, D.M., da Fonseca, N.L.S.: Robust scheduler for
grid networks under uncertainties of both application
demands and resource availability. Comput. Netw. 55, 3–19
(2011)

45. Batista, D.M., da Fonseca, N.L.S.: Scheduling Grid Tasks
in Face of Uncertain Communication Demands. IEEE
Trans. Netw. Serv. Manag. 8, 93–102 (2011)

46. Batista, D.M., da Fonseca, N.L.S., Miyazawa, F.K.,
Granelli, F.: Self-Adjustment of Resource Allocation for
Grid Applications. Comput. Netw. 52, 1762–1781 (2008)

47. Batista, D.M., Chaves, L.J., da Fonseca, N.L.S., Ziviane,
A.: Performance analysis of available bandwidth estima-
tion tools for grid networks. J. Supercomput. 53, 103–121
(2010)

48. Kliazovich, D., Arzo, S.T., Granelli, F., Bouvry, P., Khan,
S.U.: e-STAB: Energy-Efficient Scheduling for Cloud
Computing Applications with Traffic Load Balancing. In:
IEEE International Conference on Green Computing and
Communications (GreenCom), Beijing, China, pp. 7–13
(2013)

49. Guzek, M., Kliazovich, D., Bouvry, P.: A Holistic Model
for Resource Representation in Virtualized Cloud Comput-
ing Data Centers. In: IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
Bristol, UK (2013)

50. Fiandrino, C., Kliazovich, D., Bouvry, P., Zomaya, A.Y.:
Performance and energy efficiency metrics for commu-
nication systems of cloud computing data centers. IEEE
Transactions on Cloud Computing (2015)

Downloaded from http://iranpaper.ir
http://tarjomano.com

http://dx.doi.org/10.1007/s10723-012-9215-6

	CA-DAG: Modeling Communication-Aware Applications for Scheduling
	Abstract
	Introduction
	Background on Task Scheduling
	Cloud Applications
	Communication-Aware DAG Model
	Need for Communication-Awareness
	CU-DAG - Communication-Unaware Model
	EB-DAG - Edges-Based Model


	Communications-aware DAG Model
	Definition of CA-DAG Model
	Representative Example
	Comparison of Models



	Properties of Communication Vertices
	Task Parallelization
	Multipath Routing
	5.3 Task Completion Time
	Available Bandwidth
	Uncertainty in Data Size

	Communication-aware Scheduling
	Experimental Results
	System Architecture and Workload Generation
	Scheduling Algorithm
	Scheduling Criteria
	Results
	Approximation Factor
	Efficiency



	Conclusions
	Acknowledgment
	References


