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a b s t r a c t

Discovering hot regions in protein–protein interaction is important for drug and protein design, while
experimental identification of hot regions is a time-consuming and labor-intensive effort; thus, the
development of predictive models can be very helpful. In hot region prediction research, some models
are based on structure information, and others are based on a protein interaction network. However, the
prediction accuracy of these methods can still be improved. In this paper, a new method is proposed for
hot region prediction, which combines density-based incremental clustering with feature-based
classification. The method uses density-based incremental clustering to obtain rough hot regions, and
uses feature-based classification to remove the non-hot spot residues from the rough hot regions.
Experimental results show that the proposed method significantly improves the prediction performance
of hot regions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Protein functions can be expressed by protein–protein interactions
which are very useful to understand the origination of diseases, but
the principles that govern the interaction of two proteins and the
general properties of their interaction interfaces remain unknown,
resulting in difficulties when predicting interface regions. Hot spots
[1–6] of protein–protein interactions play important roles in the
functions and stability of protein complexes. Instead of being dis-
tributed along the protein interfaces homogeneously, hot spot residues
are clustered within tightly packed regions [3,5,7,8], which are called
hot regions. These are more important than hot spots in maintaining
the stability of protein complexes and exerting the molecular mechan-
ism of biological functions.

In the past, many attempts have been made to predict hot regions.
The research group [3,6,8–14] in Koc University, Turkey, made con-
tributions to the prediction of hot regions. Keskin developed an
algorithm [3] to cluster hot spots into hot regions after studying the
organization and contribution of structurally conserved hot spot
residues. Tuncbag proposed a method [13] which combined the

conservation of residues, accessible surface area and pair potential
for prediction of hot regions. In [12,14] they predicted hot regions by
the rule in [3] and the method of predicting hot spots in [8], then built
a database called Hot Region [11]. But this method requires the
structure of the protein, and is therefore limited by the available
protein structures. In 2007, Hsu [15] presented a pattern-mining
approach for the identification of hot regions in protein–protein
interactions. The proposed method aimed to demonstrate that the
important residues associated with the interface of protein–protein
interactions may be discovered by sequential pattern-mining auto-
matically. In [16], Pons studied a network-based method and used
small-world residue networks to predict protein-binding areas.
Although the proposed method has potential applications for protein
docking as a complement to energy-based approaches, it shows limi-
tations in many cases with certain topological features, like sph-
erical or very large proteins. In [17], Nan proposed a method to predict
hot regions based on complex network and community detection. By
revising false positive and false negative during the detection process,
the proposed method can improve the reliability in the recognition of
hot regions. However, the prediction accuracy needs further imp-
rovement.

In this paper, we propose a method called Density-based Incre-
mental Clustering with Feature-based Classification (DICFC), which
can predict hot regions in protein–protein interactions by combining
density-based incremental clustering with feature-based classification.
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DICFC first forms the primary clusters by applying the density-based
incremental clustering method to remove outliers, and then forms
final hot regions, where a feature-based classification method is
presented to remove the non-hot spot residues in the clustering
results. In order to get the best features for classification, a feature
selection method is studied. Experimental results show that the
proposed method significantly improves the prediction performance
for hot regions.

2. Method

In the proposed method, firstly, standard hot regions can be
constructed for comparison using hot spots with the experimental
data from the alanine mutation energy database [27]; then we will
make some hot region predictions of both the hot spots and non-hot
spots using the proposed method which combines density-based
incremental clustering and feature-based classification; finally the
prediction accuracy will be compared to the standard hot regions
constructed above, from which the superiority of the proposed
method can be drawn.

2.1. Definition of standard hot regions

In this paper, we adopted the standard definition of hot regions
from Ozlem Keskin [3]. A hot region is defined as follows: every hot
region contains at least three hot spots, and each hot spot is assumed
to be within a hot region if it has at least two hot spot neighbors, and
each hot spot residue is assumed to be a perfect sphere with a specific
volume. The Cα-atoms of the hot spot residues are the centers of these
spheres. The radii of the spheres are extracted from their sphere
volumes. If the distance between the centers of two spheres (two Cα-
atoms of two hot spots) is less than the sum of the radii of the two
spheres plus a tolerance distance (2 Å), the two hot spot residues are
flagged to be clustered and to form a network in the hot region.

The coordinates of a Cα atom are obtained from the Protein
Data Bank (PDB) [18], and the volume of a hot spot is as described
in Appendix 1.

Based on the above definitions, the 65 hot spots in the data set (see
Table 6 of Section 3.1) are organized into 10 hot regions, which contain
the 49 hot spots shown in Table 1. Eight complexes out of 16 (see
Table 7) have formed hot regions while the other eight complexes are
excluded. The hot spots outside the hot regions are unable to form
standard hot regions since they are not physically close enough to
other hot spots. Table 2 lists all the hot spots of the eight complexes in
standard hot regions and the hot spots outside standard hot regions
are signified in bold.

2.2. Density-based incremental clustering

Similar to density-based clusters, hot spot residues are packed
tightly within local regions rather than distributed along the protein
interfaces homogeneously. Thus the hot spot residues can be clustered
using some clustering methods. Clustering is a process to group data
into multiple sub-groups or clusters so that objects within a cluster
may have strong similarities [19]. The density of a residue O in the
space can be measured by the number of residues close to it. Thus
clustering is used to find the core residues, which are defined as the
residues that have dense neighborhoods [19]. The proposed algorithm
connects core residues and their neighborhoods to form dense regions
as clusters. In order to use the clustering method to cluster the hot
spot residues, we need to adopt several concepts from [19] (all
distances in this paper are Euclidean distance):

� Neighborhood: a user-specified parameter ε40 is used to
specify the radius of a neighborhood for every residue. The ε-
neighborhood of a residue O is the space within radius ε
centered at O.

� Density of neighborhood: due to the neighborhood size deter-
mined by ε-neighborhood, the density of any neighborhood
can be measured simply by the number of residues in the
corresponding neighborhood.

� Dense region: to determine whether a neighborhood is dense or
not, another user-specified parameter “Min” is used to specify
the density threshold of dense regions. “Min” is a variable that
can be specified by the user.

� Core residue: a residue is a core residue if the ε-neighborhood
of that residue contains at least “Min” residues.

For a dataset D composed of residues, we will identify all core
residues in it with respect to the given parameters “ε” and “Min” by
checking the number of residues in the neighborhood of a residue.
Thus, the clustering task is reduced to using core residues and their
neighborhoods to form dense regions, which are the clusters we need.

The process of density-based incremental clustering is described as
follows: Initially, all residues in D are marked as “unvisited”. Then an

Table 1
Standard hot region.

Complex Hot
region

Residues in the hot region

1A22 1 (A 172a) (A 175) (B 304) (A 178) (B 369) (B 243) (B 365)
1BRS 2 (A 73) (A 87) (A 102) (D 29) (D 35) (A 59) (D 39)
1BXI 3 (A 41) (A 50) (A 51) (A 55)
1DVF 4 (A 32) (B 101) (B 98) (B 100) (B 52) (B 54)
1F47 5 (A 8) (A 11) (A 12)
1FCC 6 (C 27) (C 31) (C 35) (C 43)
1JRH 7 (L 92) (I 49) (I 52) (I 53) (I 47) (I 82) (H 52) (H 53)
3HFM 8 (H 32) (H 33) (H 53) (H 50)

9 (Y 20) (Y 96) (Y 97)
10 (L 31) (L 32) (L 50)

a (A 172), ‘A’ is chain ID and ‘172’ is residue ID.

Table 2
Hot spots of the 8 complexes in standard hot regions.

Complex Hot Spot residues

1A22 (A 172a) (A 175) (B 304) (A 178) (B 369) (B 243) (B 365)
1BRS (A 27) (A 73) (A 87) (A 102) (D 29) (D 35) (A 59) (D 39)
1BXI (A 33) (A 34) (A 41) (A 50) (A 51) (A 55)
1DVF (A 32) (B 101) (B 98) (B 100) (B 52) (B 54)
1F47 (A 8) (A 11) (A 12)
1FCC (C 27) (C 31) (C 35) (C 43)
1JRH (L 92) (I 49) (I 52) (I 53) (I 47) (I 82) (H 52) (H 53)
3HFM (H 32) (H 33) (H 53) (H 50) (Y 20) (Y 96) (Y 97) (L 31) (L 32) (L 50) (L 96)

The residues in bold are the hot spots outside standard hot regions.
a (A 172), ‘A’ is chain ID and ‘172’ is residue ID.
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unvisited residue p is selected randomly andmarked as “visited”. After
that, the ε-neighborhood of p is checked to see whether it contains at
least “Min” residues. If not, p is marked as a noise point.

Otherwise, a new cluster C is created for p, and all the residues in
the ε-neighborhood of p are added to a candidate set, N. The
algorithm iteratively adds to C those residues in N that do not belong
to any cluster. In this process, for a residue p in set N that is labeled
“unvisited”, we mark it as “visited” and check its ε-neighborhood. If
the ε-neighborhood of p' has at least “Min” residues, those residues in
the ε-neighborhood of p' are added to N. Clustering continues adding
residues to C until C can no longer be expanded, that is, until N is
empty. At this time, cluster C is completed, and then we randomly
select an unvisited residue from the remaining ones. The clustering
process continues until all residues in the set D are visited.

2.3. Feature-based classification

After clustering, several clusters are generated, which contain both
hot spots and non-hot spots. However, the hot region is just composed
of hot spots [3], thus the non-hot spots should be removed from the
obtained clusters. In this paper, a feature-based classification method
[20] is introduced to identify the non-hot spots, which can then be
removed from the density-based incremental clusters

SVM has been widely applied in the field of bioinformatics. Based
on the research of Xia et al. [20], SVM, Bayes NET, Naive Bayes, RBF
Network, decision tree and decision table are all involved in hot-spots
classification but SVM outperforms the others, as can also be validated
by the results from many other studies [20,21]. In this paper, an
extended version of SVM called LIBSVM [22] is adopted. So the
clustered residues are applied for classification using LIBSVM, inwhich
Leave-one-out cross-validation is followed. First we divide all the

clustered residues into 10 subsets, and then we randomly select a
subset as the test set, and the other 9 subsets as the training set. After
repeating the process ten times, the parameters c and g can be
optimized.

For classification, feature selection is essential. There are many
physical and chemical features for protein complexes and we cannot
use all of them because some redundant and irrelevant features need
to be removed to improve the classification performance. In our work,
in order to explore the optimal features, first all the features by SVM-
RFE with NMIFS filter (SRN) [23] are sorted and then the F-score is
introduced to find the optimal combination of those features.

When sorting the features, the SRN [23] feature selection is a
combination of SVM-RFE [24] and NMIFS [25]. Features are selected by
embedding a SVM classifier, where normalized mutual information is
used to balance the relevance between a feature and class label and
the redundancy among different features.

In a linear SVM, the final classification function for a pattern
xARD is f xð Þ ¼ PD

i ¼ 1 wixiþb, and the component wi in the weight
vector wARD is used to measure the effectiveness of the i-th
feature on the final classifier.

Table 3
Structure feature abbreviation of protein.

No Symbol Feature description

1 RctASA Relative change in total ASA upon complexation
2 RcsASA Relative change in side-chain ASA upon complexation
3 BsASA Bound side-chain ASA
4 UsASA Unbound side-chain ASA
5 RctmPI Relative change in total mean PI upon complexation
6 UtmPI Unbound total mean PI
7 BtASA Bound total ASA
8 UtASA Unbound total ASA
9 BtmPI Bound total mean PI

10 RcsmPI Relative change in side-chain mean PI
11 UsmPI Unbound side-chain mean PI
12 BsmPI Bound side-chain mean PI
13 RcpASA Relative change in polar ASA upon complexation
14 UpASA Unbound polar ASA
15 BpASA Bound polar ASA
16 SRASA Side-chain relative ASA
17 TRASA Total relative ASA
18 Na Number of atoms
19 B-factor Temperature potential

ASA: Accessible Surface Area.
RASA: Relative Accessible Surface Area.
PI: Protrusion Index.

RctASA ¼ ð½unbound total ASA��½bound total ASA�Þ=ð½unbound total ASA�Þ ð3Þ

RcsASA ¼ ð½unbound side� chain ASA��½bound side
� chain ASA�Þ=½unbound side� chain ASA� ð4Þ

RctmPI ¼ ð½unbound total mean PI��½bound total mean PI�Þ=½unbound total mean PI�
ð5Þ

RcsmPI ¼ ð½unbound side� chain mean PI��½bound side
� chain mean PI�Þ=½unbound side� chain mean PI� ð6Þ

RcpASA ¼ ð½unbound polar ASA��½bound polar ASA�Þ=ð½unbound polar ASA� ð7Þ

Table 5
F-score for different combinations.

Combination of features F-score

1 0.756
1–2 0.769
1–3 0.781
1–4 0.811
1–5 0.814
1–6 0.813
1–7 0.811
1–8 0.807
1–9 0.807
1–10 0.806
1–11 0.803
1–12 0.801
1–13 0.801
1–14 0.801
1–15 0.781
1–16 0.769
1–17 0.769
1–18 0.756
1–19 0.75

The highest F-score value is shown in bold.

Table 4
Sorting result of 19 features.

Sorting Feature

1 RctASA
2 RcsASA
3 BsASA
4 UsASA
5 RctmPI
6 UtmPI
7 BtASA
8 UtASA
9 BtmPI

10 RcsmPI
11 UsmPI
12 BsmPI
13 RcpASA
14 UpASA
15 BpASA
16 SRASA
17 TRASA
18 Na
19 B-factor
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In the SRN method, the rank of the i-th feature is calculated as
follows [23]:

ri ¼ β wij jþ 1�β
� �

Rs;f i �Qs;f i

� �

¼ β wij jþ 1�β
� �½I c; f i

� �� 1
sj j
X

f A s

NIðf i; f sÞ� ð1Þ

where the parameter βA 0;1j j is a user-tuned parameter, Iðc; f iÞ is
the relevance of feature f i and the class label cAC ¼ þ1; �1f g,
NI f i;f s

� �
is the normalized mutual information between features f i

and f j, where Sj j is the number of features in the currently selected
feature set S. Eq. (1) is used to rank features by combining the
weight in the SVM classifier, relevance and redundancy.

The SRN works in an iterative way. The method uses a back-
ward feature elimination strategy to obtain the important features
and remove insignificant features (i.e., the feature having the
smallest impact on the object function is excluded) at each step.

It starts with all the features selected, then at each step the
features are ranked with the above rank function, and those with
the smallest rank value will be deleted. Finally, the rest will be
features that are expected.

We apply the SRN [23] to select 19 physical and chemistry features
[20,21,26], which are displayed in Table 3.

Then, features can be selected using the F-score [20], which
assesses the discriminatory power of each individual feature. The
larger the F-score is, the more discriminative ability it has for the
feature. The F-score was calculated as

F � score¼ xni�xhi
σniþσhi

ð2Þ

where xni and xhi denote the averages of both non-hot spots and
hot spots, and σni and σhi are the corresponding standard devia-
tions. The F-score can measure the separation of the means for the
two populations (hot spots and non-hot spots) in terms of their
variances, which is closely related to the F-statistics and com-
monly used to evaluate the separation of the means for two
random variables.

To discover the highest F-score combination, we list the 19
features in descending order in Table 4. First we combine the
feature ranked the top with its next one to obtain the F-score; the
same process is continued by grouping the last combined features
with its next one until all the features are combined. Finally, the
corresponding F-scores can be calculated, as shown in Table 5. It is
obvious that the F-score of “combination 1–5” is the highest, and
these five features are RctASA, RcsASA, BsASA, UsASA and RctmPI.

Table 7
The 16 protein complexes in the dataset.

PDB ID of complex First molecule Second molecule

1A4Y Angiogenin Ribonuclease inhibitor
1A22 Human growth hormone Human growth hormone binding protein
1AHW Immunoglobulin Fab 5G9 Tissue factor
1BRS Barnase Barstar
1BXI Colicin E9 Immunity Im9 Colicin E9 DNase
1CBW BPTI Trypsin inhibitor Chymotrypsin
1DAN Blood coagulation factor VIIA Tissue factor
1DVF Idiotopic antibody FV D1.3 Anti-idiotopic antibody FV E5.2
1F47 Cell division protein ZIPA Cell division protein FTSZ
1FC2 Fc fragment Fragment B of protein A
1FCC Fc (IGG1) Protein G
1GC1 Envelope protein GP120 CD4
1JRH Antibody A6 Interferon-gamma receptor
1VFB Mouse monoclonal antibody D1.3 Hen egg Iysozyme
2PTC BPTI Trypsin
3HFM Hen egg lysozyme Ig FAB fragment HyHEL-10

Table 6
Number of interface residues, hot spots, non-hot spots, and other unlabeled
residues.

Complex Interface
residues

Labeled residues Unlabeled
residues

Hot
spots

Non-hot
spots

1A4Y 23 3 11 9
1A22 51 7 28 16
1AHW 7 1 3 3
1BRS 11 8 1 2
1BXI 17 6 3 8
1CBW 6 1 4 1
1DAN 13 2 8 3
1DVF 18 6 1 11
1F47 8 3 1 4
1FC2 3 1 0 2
1FCC 7 4 2 1
1GC1 17 0 11 6
1JRH 27 8 5 14
1VFB 23 3 6 14
2PTC 1 1 0 0
3HFM 23 11 6 6
TOTAL 255 65 90 100

Interface residues include labeled residues and unlabeled residues.
Labeled residues include hot spots and non-hot spots.
Hot spots are the interface residues with binding free energy higher than or equal
to 2.0 kcal/mol.
Non-hot spots are the interface residues with binding free energy less than or
equal to 0.4 kcal/mol.
Unlabeled residues are the interface residues with binding free energy between
0.4 kcal/mol and 2.0 kcal/mol.
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Fig. 1. Relationship between neighborhood radius ε and the number of clusters.
The horizontal axis represents neighborhood radius and the vertical axis represents
number of clusters. The dots show the value of the number of clusters, and the
diamond shows the maximum value of the number of clusters.
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2.4. The DICFC algorithm

The proposed algorithm is a hybrid algorithm which combines
density-based incremental clustering with feature-based classifi-
cation (DICFC) for hot region prediction. First, the algorithm visits
all the residues in the data set D to find the core residues set C, and
then LIBSVM is used to remove the non-hot residues from set C to
obtain predicted hot regions. The algorithm can be described as
follows:

Input:

● D: a data set containing 155 residues and their three-
dimensional coordinates,

● ε: the radius parameter,
● Min: the neighborhood density threshold.

Output: predicted hot regions from DICFC.
Method:

(1) mark all residues as unvisited;
(2) do
(3) randomly select an unvisited object p;
(4) mark p as visited;
(5) if the ε-neighborhood of p has at least “Min” residues
(6) create a new cluster C, and add p to C;
(7) let N be the set of residues in the ε-neighborhood of
p;

(8) for each point p' in N
(9) if p' is unvisited
(10) mark p' as visited;
(11) if the ε-neighborhood of p' has at least “Min”
residues, add those residues to N;

(12) if p' is not yet a member of any cluster, add p' to
C;

(13) end for
(14) output clusters C;
(15) else mark p as outlier;
(16) until no residue is unvisited;
(17) run PSAIA with all residues in clusters C;
(18) calculate RctASA, RcsASA, BsASA, UsASA and RctmPI of
residues in clusters C;

(19) run LIBSVM with the above five structure feature values;
(20) mark h as hot spot residue, n as non-hot residue;
(21) remove residues of marked n in clusters C,
(22) mark formed new cluster as hot region R;
(23) output hot region R.

Phase I: Clustering
(1)–(6): Create the core residues set C.
(7)–(13): Visit residues in the ε-neighborhood of set C, and add

all residues that match the condition into set C.
(14)–(16): The clustering process continues until all residues in

set D are visited, then output set C and mark all residues outside
set C as outliers.

Phase II: Classification
(17)–(18): Calculate the five structure feature values of the

residues in C using PSAIA.
(19)–(21): Classify all residues in set C using LIBSVM to remove

non-hot spot residues.
(22)–(23): Mark newly formed clusters from (21) and output as

hot regions.

3. Experiment results and evaluation

3.1. Datasets

In the experiments, we used the 16 protein complexes listed in
Table 7. These complexes are from the database called ASEdb [27]. In
the experiments, each complex is composed of a bunch of interface
residues. These interface residues [3] are the residues that the
decrement of the accessible surface area are more than 1 Å during
the process of forming the complex. The energy values binding for
each residue were obtained by alanine mutation experiments.

We removed the protein chains which are repetitive using the
CATH [28] query systemwith the sequence identity less than 35% and
the SSAP [29] score less than or equal to 80. Moreover, we also
removed the protein chains that do not interact with each other from
the original data set. After that, we had 255 interface residues. An
interface residue [3,20] will be defined as a hot spot if its correspond-
ing binding free energy is higher than or equal to 2.0 kcal/mol, while
an interface residue with binding free energy less than or equal to
0.4 kcal/mol is considered as a non-hot spot, according to which there
are 65 hot spots and 90 non-hot spots in the dataset. The other 100
unlabeled residues with binding free energy between 0.4 kcal/mol and
2.0 kcal/mol are excluded from the training set because their hot spot
or non-hot spot features are not very clear [20]. Table 6 summarizes
the interface residue labeling for each complex, and illustrates the
number of interface residues, hot spots, non-hot spots, and other
unlabeled residues separately. In the experiments, we got 155 inter-
face residues as the training data set, whose structure features are
obtained by PSAIA [30].

Table 8
Feature-based incremental cluster result in each protein complex when ε¼9, Min¼3.

Complex Cluster Residues in cluster

1A22 1 (A 18a) (A 21) (A 22) (A 174) (B 417) (B 418) (A 25) (A 167) (A 168) (B 419) (A 172) (A 175) (A 178) (B 371) (A 164) (B 304) (B 369) (B 367) (B 365) (A 51)
(A 62) (A 63) (B 302) (B 324) (B 243) (B 366) (A 65) (B 298)

2 (A 42) (A 46) (B 320) (B 321) (B 275) (B 273) (B 274)
1BRS 3 (A 102) (A 87) (D 29) (D 35) (D 39) (A 59) (A 60)
1BXI 4 (A 48) (A 41) (A 50) (A 51) (A 55)
1CBW 5 (I 11) (I 15) (I 34) (I 39)
1DAN 6 (T 17) (T 18) (T 20) (T 21) (T 58)
1DVF 7 (B 98) (B 52) (B 100) (B 101) (A 32) (A 92)
1F47 8 (A 11) (A 8) (A 12) ( A 15)
1GC1 9 (C 23) (C 25) (C 42) (C 63) (C 27) (C 40) (C 35) (C 45) (C 32) (C 33)
1JRH 10 (L 92) (L 94) (I 49) (I 53) (I 54) (I 55) (I 52) (I 47) (I 82) (H 52) (I 84) (I 98)
3HFM 11 (H 31) (H 32) (H 33) (H 53) (Y 73) (H 50) (Y 63)

12 (Y 96) (Y 97) (Y 100)
13 (Y 15) (Y 89) (L 31) (L 32) (L 50) (Y 20)

a (A 18), ‘A’ is chain ID and ‘18’ is residue ID.
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3.2. Experimental results

We first conducted the clustering experiments, where 3-D coordi-
nates of the residues were used for clustering. In the experiments, we
used the coordinates of the Cαatom of a protein residue to represent
the residue's coordinates. All the values of coordinates of the residues
were from the protein data bank (PDB) [18]. In the clustering
experiments, the density threshold “Min” was set to three when
performing the density-based incremental clustering because every

hot region contains at least three hot spots [3]. In order to determine
the value of the neighborhood radius ε, we studied the relationship
between neighborhood radius ε and the number of clusters. The
relationship is shown in Fig. 1, fromwhich we can find that different ε
values will result in different cluster numbers. When ε¼9, the cluster
number reaches the maximum value, which is 13. When εZ61, the
number of clusters is 1. And the experiment result indicates that when
εo9 or ε49, the hot spot residues are not enough to form any hot
region. Thus we set ε¼9.

Fig. 2. Visualization of clustering results in each complex when ε¼9 and Min¼3. The spheres labeled with their residue IDs represent the residues with IDs listed in Table 8.
Spheres and their located chain are the same color, while different colors represent different chains. The numbers in brackets correspond to the clusters in Table 8. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Visualization of prediction results of DICFC. The spheres labeled with their residue IDs represent the residues with IDs listed in Table 9. Spheres and their located
chain are the same color, while different colors represent different chains. The numbers in brackets correspond to the clusters in Table 9. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 9
Prediction result of DICFC in this paper.

Complex Hot region Corresponding clustera Residues in cluster

1A22 1 1 (A 21b) (B 418) (A 168) (A 175) (A 164) (B 304) (B 369) (B 243)
1BRS 2 3 (A 102) (A 87) (D 29) (D 35) (D 39) (A 59)
1DAN 3 6 (T 18) (T 20) (T 21) (T 58)
1DVF 4 7 (B 98) (B 52) (B 101) (A 32)
1GC1 5 9 (C 42) (C 40) (C 35)
1JRH 6 10 (L 92) (L 94) (I 49) (I 53) (I 52) (I 47) (H 52)
3HFM 7 11 (H 31) (H 33) (H 53) (H 50)

8 12 (Y 96) (Y 97) (Y 100)
9 13 (L 31) (L 32) (L 50) (Y 20)

After using feature-based classification to remove the non-hot spot residues from the clusters obtained in Table 8, the numbers of hot spots in cluster 2, cluster 4, cluster
5 and cluster 8 are less than 3 to form a hot region, so these clusters are removed.

a Corresponding clusters are the clusters in Table 8.
b (A 21), ‘A’ is chain ID and 21 is residue ID.
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Table 8 provides the clustering results in each complex when ε¼9
and Min¼3. Fig. 2 shows the residues highlighted on the structure
and their IDs are stated in Table 8. After clustering, there are 104
residues left when 51 outliers from the dense region are eliminated.
There are 13 clusters in 10 proteins of the 16 complexes, of which
there are 3 clusters in 3HFM, 2 clusters in 1A22, and 1 cluster each in
1BRS, 1BXI, 1CBW,1DAN,1DVF, 1F47, 1GC1 and 1JRH, but no clusters in
1A4Y, 1AHW, 1FC2, 1FCC, 1VFB and 2PTC. Table 9 shows the final
results after using feature-based classification to remove non-hot spot
residues from the clusters obtained in Table 8. Fig. 3 shows the
residues highlighted on the structure and their IDs are stated in
Table 9. There are 9 hot regions compounded from 43 residues. The
numbers of the hot regions in each protein complex are given
in Table 10.

3.3. Evaluation

In order to evaluate the performance of the proposed method,
three criteria are used for predicting both hot spots and hot
regions [17,20]:

Recall¼ TP
TPþFN

ð8Þ

Precision¼ TP
TPþFP

ð9Þ

F �measure¼ 2nRecallnPrecision
RecallþPrecision

ð10Þ

When predicting hot spots, the following notations are used:
True Positive (TP): the number of hot spots in predicted hot

regions and also in standard hot regions.
False Negative (FN): the number of hot spots that are not in

predicted hot regions but in standard hot regions.
False Positive (FP): the number of hot spots in predicted hot

regions but not in standard hot regions.
Precision represents the accuracy of the hot spot prediction,

and Recall represents the coverage of predicted hot spots in
standard hot regions. With a good balance between Precision
and Recall, the F-measure offers a better overall accuracy of hot
spot prediction.

However, for prediction of hot regions, the above notations
assume different meanings, as follows:

True Positive (TP): the number of hot regions in predicted hot
regions and also in standard hot regions.

False Negative (FN): The number of hot regions that are not in
predicted hot regions but in standard hot regions.

False Positive (FP): The number of hot regions in predicted hot
regions but not in standard hot regions.

Similarly, Precision represents the accuracy of the hot region
prediction, and Recall represents the coverage of predicted hot
regions in standard hot regions. With a good balance between
Precision and Recall, the F-measure offers a better overall accuracy
in predicting hot regions than solely using either Precision or
Recall.

3.4. Performance comparison with the previous methods

3.4.1. Comparison of prediction performance using evaluation
criteria

In this study, we compared the proposed method with the pre-
vious methods including those of Tuncbag [14] and Nan [17].

Table 11 summarizes the performance of the different methods
on the same data set. Among these approaches, Tuncbag's [13,14]
method is physicochemical and structure feature-based, while
Nan's method [17] is based on complex network and community
detection. Regarding the number of hot regions, DICFC is able to

correctly predict 7 (recall¼0.700) hot regions from 10 standard
hot regions while Nan and Tuncbag only predict 4 (recall¼0.400)
and 2 (recall¼0.200). On the hot spot coverage of predicted hot
regions in standard ones, the hot spot recall for DICFC, Nan's
method, and Tuncbag's method are 0.571, 0.285 and 0.122,
respectively. Therefore, the proposed method predicts the largest
proportion of hot regions, which reaches 57.1%, while the other
two methods achieve no more than 30%. DICFC is able to predict
hot regions correctly from the data set with 0.651 and 0.571. This
means that DICFC is able to correctly predict 57.1% of the true hot
regions in this data set, and 65.1% of the predicted hot regions are
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Fig. 4. Number of standard hot regions correctly predicted by different methods.
Red bars represent standard hot regions, and yellow/blue/green bars represent the
predicted results of DICFC, Nan and Tuncbag respectively. The number above each
bar is the number of residues correctly predicted by the different methods. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 11
Comparison results with different methods to predict hot regions.

Method Hot spot Hot region

Recall Precision F-measure Recall Precision F-measure

Tuncbag 0.122 1 0.217 0.200 1 0.333
Nan 0.285 0.424 0.341 0.400 0.667 0.500
DICFC (this work) 0.571 0.651 0.608 0.700 0.778 0.737

The highest value in each column is shown in bold.

Table 10
Number of hot regions in DICFC of each protein
complex.

Complex Hot region

1A4Y 0
1A22 1
1AHW 0
1BRS 1
1BXI 0
1CBW 0
1DAN 1
1DVF 1
1F47 0
1FC2 0
1FCC 0
1GC1 1
1JRH 1
1VFB 0
2PTC 0
3HFM 3
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identified as true hot regions. By contrast, Tuncbag's method has
high accuracy, but the coverage of predicted hot regions in
standard hot regions is very low, which means that Tuncbag's
method is able to predict only 12.2% of hot regions; although the
predicted hot regions are correct, the accuracy is too low. The
prediction performance of Nan's method is located between that
of our method and that of Tuncbag's. In addition, the comprehen-
sive score F-Measure of DICFC is 0.608, which is higher than Nan's
and Tuncbag's. From the above comparison, we can conclude that
DICFC provides a remarkably better prediction performance than
the previous prediction methods.

Fig. 4 describes the coverage status of predicted hot regions in
standard ones. Our method is able to predict 7 hot regions from 10

standard hot regions, while Nan is able to predict 4 (Appendix 2) and
Tuncbag is able to predict 2 (Appendix 3).

For a more comprehensive study, the results of applying hot spot
prediction before the density clustering were also conducted as a
comparison with the current one. The prediction results using the
same data set are shown in Appendix 4, where the recall, precision
and F-measure of hot spots are 0.408, 0.645 and 0.5, while the recall,
precision and F-measure of hot regions are 0.6, 0.857 and 0.706.
According to these results, applying density clustering before hot spot
prediction (DICFC in this paper) gives better prediction performance
than applying hot spot prediction before density clustering. Consider-
ing that these two methods are of the same type, we select the one
with the better performance as the proposed method.

Method 

Complex
DICFC 

(This paper) naNgabcnuT

1A22 

1BRS 

1BXI 

1DVF 

1F47 

1FCC 

1JRH 

3HFM 
(1) 

3HFM 
(2) 

3HFM 
(3) 

Fig. 5. Visualization of prediction results for 8 protein complexes in standard hot regions using different methods. The related residues are shown as small spheres: red ones
are the real hot regions and are correctly predicted; yellow ones are the real hot regions but missed out by the prediction; and blue ones are the fake hot regions predicted as
hot regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

J. Hu et al. / Computers in Biology and Medicine 61 (2015) 127–137 135

 

 

 



3.4.2. Comparison of prediction results visualization
In order to show the effectiveness of the proposed method, we

provided a visualization of the prediction results obtained by the
different methods. The visualization tool we adopted is the molecular
visualization software Pymol [31]. Fig. 5 shows the visualization res-
ults for 8 complexes.

To further illustrate the effectiveness of the proposed approach
(DICFC) for predicting hot regions, we randomly selected two exam-
ples for detailed analysis. The two complexes are 1BRS and 1JRH.

The first example is the interaction between chain A and chain D of
complex 1BRS, which is shown in Fig. 6. In this complex, there are
seven hot spot residues in the standard hot regions and they are (A
GLU 73), (A ARG 87), (A HIS 102), (D TYR 29), (D ASP 35), (A ARG 59)
and (D ASP 39). DICFC is able to correctly predict six of these seven hot
spots, which are (A HIS 102), (A ARG 87), (D TYR 29), (D ASP 35), (D
ASP 39) and (A ARG 59). Tuncbag's method is only able to predict
three of the seven hot spots correctly, i.e. (A HIS 102), (D ASP 35) and
(D ASP 39). Nan's method failed to predict any residues in this hot
region. However, hot spots (A GLU 73) and (D TYR 29) cannot be
predicted correctly by any of these three methods, which suggests that
the mutations of these two residues might contribute to protein
destabilization.

The second example is the interaction between chain H, chain I
and chain D of complex 1JRH, which is shown in Fig. 6. There are eight
hot spot residues in the standard hot regions, which are (L TRP 92), (I
TYR 49), (I LYS 52), (I ASN 53), (I LYS 47), (I TRP 82), (H TRP 52) and (H
TRP 53). DICFC is able to correctly predict six of these eight hot spots,
which are (L TRP 92), (I TYR 49), (I ASN 53), (I LYS 52), (I LYS 47) and (H
TRP 52). The unpredicted residues are (I TRP 82) and (H TRP 53), and

the incorrectly predicted hot spot is (I LYS 98). The five residues (L TRP
92), (I LYS 47), (I ASN 53), (I TYR 49) and (I LYS 52) are correctly
predicted by both DICFC and Nan’ methods, which means that the
region formed by these five residues plays an important role in the
function and the stability of protein complexes. Tuncbag was unable to
predict any of the residues in this hot region. Residue (H TRP 53) is not
predicted by any of the three methods, suggesting that the mutations
of this residue might contribute to protein destabilization.

These prediction results demonstrated that DICFC is able to predict
more hot regions than the others in all the hot regions formed by the
16 protein complexes. Moreover, DICFC predicts more hot spots in a
single hot region of a single protein complex.

4. Discussion

A deeper understanding of the functions of proteins and the
interactions between proteins is the key to designing drugs and
proteins. And discovering hot regions in protein–protein interaction
is important for understanding the interactions between proteins.
Because of the complexity of experimental methods, the computa-
tional prediction method is greatly improving the efficiency and
accuracy of experimental identification of hot regions. The major
contribution of this study is to propose a new model combining
clustering with classification that has several advantages as it sig-
nificantly improves the hot region prediction performance; firstly it
imports density-based incremental clustering into hot region predic-
tion; it simplifies the hot region prediction requirements from specific
shape and detailed structure information to the residue coordinates

Fig. 6. Visual prediction results of 1BRS and 1JRH from different methods. In complex 1BRS, the green belt represents chain A, and the blue belt represents chain D. In
complex 1JRH, the green belt represents chain H, the blue belt represents chain I, and the magenta belt represents chain L. The related residues are shown as small spheres:
red ones are the real hot regions and are correctly predicted; yellow ones are the real hot regions but missed out by the prediction; and blue ones are the fake hot regions but
predicted as hot regions. The number on each sphere is its residue ID. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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only; the SRN feature selection combined with SVM-RFE and NMIFS is
applied to efficiently find the best features for classification.

Meanwhile, the limitation of DICFC is that the clustering results
probably depend on the choice of the values of the neighborhood
density threshold and neighborhood radius. In the future, we will
conduct research on better principles or criteria for choosing these
two parameters, and we will also continue to collect more experi-
mental and published data for wider tests in order to optimize our
prediction model in the future.

Although the proposed model in this paper is density-based
incremental clustering combined with feature-based SVM, a better
cluster method and novel feature selection methods can easily be
incorporated to improve the hot regions prediction performance.

5. Conclusions

In this paper, we propose a method called DICFC, which predicts
hot regions by combining density-based incremental clustering with
feature-based classification. The first step uses the density-based incr-
emental clustering method to obtain rough hot regions and the
second step uses feature-based classification to remove the non-hot
spot residues from the clusters obtained by the first step. By removing
outliers when clustering, the experimental results show that the
proposed method significantly improves the performance of hot
regions prediction.

Feature-based classification, as an important and efficient way to
predict hot spots, may not be the most efficient method to use for hot
region prediction. Our research shows that we have already completed
most of the predictions by discovering a large part of the hot region
clusters using the density-based incremental cluster before feature
classification. Althoughwe go on to use feature classification to further
improve the prediction accuracy, compared with feature classification,
the density-based incremental clustering plays a more important role
in hot region prediction. Importing density-based incremental cluster-
ing will greatly improve the prediction accuracy of hot regions.
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