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Dimensionality reduction is often recommended to handle high dimensional data before performing the
tasks of visualization and classification. So far, large families of dimensionality reduction methods
besides the supervised or the unsupervised, the linear or the nonlinear, the global or the local have been
developed. In this paper, a maximum nonparametric margin projection (MNMP) method is put forward
to extract features from original high dimensional data. In the proposed method, we offer some non-
parametric or local definitions to the traditional between-class scatter and within-class scatter, which
contributes to remove the disadvantage that linear discriminant analysis (LDA) can not be well-
performed in the cases of non-Gaussian distribution data. Based on the predefined between-class scat-
ter and the within-class scatter, a nonparametric margin can be reasoned to avoid the small sample size
(SSS) problem. Moreover, the proposed nonparametric margin will be maximized to explore a dis-
criminant subspace. At last, we have conducted experiments on some benchmark data sets such as
Palmprint database, AR face database and Yale face database. In addition, performance comparisons have
also been made to some related feature extraction methods including LDA, nonparametric discriminant
analysis (NDA) and local graph embedding based on maximum margin criterion (LGE/MMC). Experi-
mental results on these data sets have validated that the proposed algorithm is effective and feasible.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

When dealing with pattern classification problems, original
data always contain a great deal of information [1]. Among them,
some are useful, while some are superfluous and some are even
noisy. In addition, the patterns hidden in these data are always
represented to high dimensional vectors. For example, a 32-by-32
appearance-based image can be viewed as a 1024-dimensional
point in image space [2]. So how to extract discriminant infor-
mation from original complicated data and how to represent ori-
ginal data with low dimensional vectors are playing more and
more important role in data classification. The resulted reasons
can be concluded as follows. One is that the recognition accuracy
will be greatly degradated because of disturbance of noise; the
other lies in that the computational cost will be very expensive if
original data are directly involved in classification. It is a typical
way to solve the problem using dimensionality reduction techni-
ques. Usually, dimensionality reduction serves as automatic
learning to extract features with high efficiency. Due to the
property, besides pattern recognition, the topics of dimensionality
ture extraction using maxim
1.105i
reduction also appears in many other fields including data mining,
computer vision, information retrieval, machine learning and
bioinformatics [3,4].

Currently, researchers have developed many classical dimen-
sionality reduction approaches, which can be categorized into two
kinds based on whether the class information is considered, i.e.,
the supervised or the unsupervised. They are also broadly parti-
tioned into linear methods [5–9] and nonlinear models besides
artificial neural networks (ANN) [10–13]. Linear dimensionality
reduction techniques try to seek a meaningful low dimensional
subspace with a linear transformation, where a compact repre-
sentation of input data can be provided. Among all the linear
dimensionality reduction methods, principal component analysis
(PCA) [5–7] and linear discriminant analysis (LDA) [6,8,9] are most
well-known.

Generally speaking, PCA projects original data into a low
dimensional space spanned by the eigenvectors associated to the
largest eigenvalues of covariance matrix of all samples, where PCA
is the optimal representation of input data in the sense of mini-
mizing mean squared error (MSE) [14,15]. However, PCA is com-
pletely unsupervised with regard to data class information, which
may result in much discriminant information missing and
um nonparametric margin projection, Neurocomputing (2015),
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recognition ability weakening, especially encountering a large
number of sample points [6].

Unlike PCA, LDA takes full consideration of patterns’ class
information. It is believed that feature extraction methods under
supervised learning will be more discriminative. Thus LDA can
enhance data separability more than PCA. LDA maps original data
into an optimal subspace by a linear transformation. The linear
transformation matrix consists of the corresponding eigenvectors
which can maximize the trace ratio of the between-class scatter to
the within-class scatter.

To improve the performance of the original LDA, many mod-
ified versions based on LDA have been reported, which are vali-
dated to be efficient [15–31]. Moreover, when constructing the
between-class scatter and the within-class scatter, most of LDA-
based methods inherit the parametric formulations in traditional
LDA, which heavily depend on the fact that samples in each class
should distribute as Gaussian function. However, it is not always
true for all the data. In case of non-Gaussian distribution data,
these LDA-based methods will lead to performance degradation. In
order to overcome the problem, a nonparametric definition on the
between-class scatter is presented, where boundary samples are
explicitly exploited [8]. Instead of class centers, the new defined
between-class scatter is formulated on the whole training set,
where their contributions to discrimination are justified by the
weights between inter-class sample pairs. Thus the feature
extraction algorithm adapts more to those samples without taking
into account data distribution model. However, the above non-
parametric definition is restricted to data classification for two-
class cases rather than multi-class. So Li et al. propose a non-
parametric discriminant analysis (NDA) algorithm to deal with
multi-class problem [32], where a new between-class scatter is
advanced by extending the definition of the original nonpara-
metric between-class scatter matrix. But the proposed NDA just
pays attention to local structure information of boundary points,
which can not explore all the local structure hidden in the intra-
class data.

During last decade, many manifold learning approaches have
been developed for nonlinear dimensionality reduction. Besides
isometric mapping (ISOMAP) [33], locally linear embedding (LLE)
[34], Laplacian eigenmaps (LE) [35], local tangent space alignment
(LTSA) [36], maximum variance unfolding (MVU) [37] and Rie-
mannian manifold learning (RML) [38] are their representatives. It
has been shown by many examples that these methods have
yielded impressive results on artificial and real world data sets.
Compared to other dimensionality reduction methods, on the one
hand, manifold learning can probe the essential dimensions of
manifold embedded in high dimensional space, on the other hand,
manifold learning expects to embed original data into a lower
dimensional space by locality preserving, where the locality can be
approached using k nearest neighbors (KNN) criterion. It is the
characteristics of exploring manifold structure locally that mani-
fold learning can be employed to handle data either in the non-
Gaussian cases or in the Gaussian cases. Enlightened by the idea of
local learning in manifold learning, both the between-class scatter
and the within-class scatter can be locally modeled, based on
which the proposed feature extraction method will be robustness
to data with all kinds of distributions, especially non-Gaussian
distribution.

In addition, the above nonparametric versions of LDA still suffer
small sample size (SSS) problem, which often occurs to LDA due to
case of the limited training set with high dimensionality. Under
such circumstance, the within-class scatter is not positive-definite,
which leads to serious instability and over-fitting. Until to now,
many attempts have been tried, among which maximum margin
criterion (MMC) shows its superiority [39]. On the basis of MMC,
Qiu et al. present a nonparametric maximum margin criterion
Please cite this article as: B. Li, et al., Feature extraction using maxim
http://dx.doi.org/10.1016/j.neucom.2014.11.105i
(NMMC) for face features extraction [40], where the between-class
scatter is defined using the nearest inter-class neighbor pair. But
for the within-class scatter, it is not locally constructed because
the furthest intra-class points are involved. Meanwhile, the
within-class scatter is formulated by the difference between the
furthest intra-class data pair, which fails to explore the local
structure in the intra-class data. Recently, many manifold learning
based maximum margin criterion algorithms have been presented
to extract discriminant features from original data, where the local
scatter and the non-local scatter instead of the between-class
scatter and the within-class scatter are discriminatively advanced
[41–45].

In this paper, we propose a maximum nonparametric margin
projection (MNMP) method for feature extraction, which tries to
overcome the problems in the traditional LDA. In the proposed
MNMP, different to the existing nonparametric between-class
scatter and within-class scatter, we offer a novel nonparametric
or local definition on them, where all the training samples rather
than only the boundary points are contained, as a result, data
distribution model will not be considered. At the same time, the
newly defined nonparametric between-class scatter and within-
class scatter are also introduced to reason a margin criterion,
which will be maximized to explore a discriminant subspace.

The rest of the paper is organized as follows: Section 2 simply
reviews LDA and MMC. In Section 3, the between-class scatter and
the within-class scatter is parametric or locally defined, based on
which a new margin criterion can be nonparametric deduced, and
then the proposed MNMP is addressed in details. Compared to
some related feature extraction methods such as LDA, nonpara-
metric discriminant analysis (NDA) and local graph embedding
based on maximum margin criterion (LGE/MMC), experimental
results on Palmprint data, AR face data and Yale face data are
offered in Section 4. At last, the paper is finished with some con-
clusions in Section 5.

 

 

2. Related work

2.1. Notations

The main notations used in the whole paper are summarized as
follows:

� The high-dimensional input sample points will be denoted as
X1;X2;…;Xn. Sometimes it will be convenient to work with
these sample points as a single matrix X ¼ ½X1;X2;…;Xn�AℜD�n.

� The low-dimensional representations of X1;X2;…;Xn are repre-
sented as Y1;Y2;…;Yn. And the matrix form of these points is
Y ¼ ½Y1;Y2;…;Yn�Aℜd�n (dooD).

� n is the number of all the sample points.
� D is the dimension of input sample points.
� d is the dimension of output samples.
� k is the number of the nearest neighbors used by a particular

algorithm such as k nearest neighbors.
� mi is the i-th class mean.
� m is the mean of all the sample points.
� c is the number of the class labels.
� ni denotes the sample number of the i-th class.
� SB is the between-class scatter.
� SW denotes the within-class scatter.

2.2. LDA

LDA aims to look for a linear subspace W , within which the
projections of the samples from different classes are more apart, as 
um nonparametric margin projection, Neurocomputing (2015),
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defined by maximizing the following ratio criterion:

JðWÞ ¼ max
tr WTSBW
n o

tr WTSWW
n o ð1Þ

where the between-class scatter SB and the within-class scatter SW
are defined as follows, respectively.

SB ¼
Xc
i ¼ 1

niðmi�mÞðmi�mÞT ð2Þ

SW ¼
Xc
i ¼ 1

Xni

j ¼ 1

ðXj
i�miÞðXj

i�miÞT
0
@

1
A ð3Þ

Along with the orthogonal constraint of W , Eq. (1) can be
solved as a generalized eigenvector and eigenvalue problem,
which is stated below:

SBWi ¼ λiSWWi ð4Þ
where Wi and λi are the i-th generalized eigenvector and eigen-
value of SB with regard to SW . The LDA solution, i.e. W , contains all
the c�1 eigenvectors with non-zero eigenvalues because SB has a
maximal rank of c�1.

2.3. MMC

From the classical LDA, we know that when the trace ratio of
the between-class scatter to the within-class is maximized, the
samples labeled different classes will be well separated. However,
LDA easily incurs SSS problem because SW is not inversed in most
cases. Thus MMC based discriminant rule is defined to be differ-
ence of the between-class scatter to the within-class scatter. The
objective function of MMC can be simply described as follows:

JðWÞ ¼ max tr WT ðSB�αSW ÞW
n o

ð5Þ

where α is a non-negative constant which benefits to balance the
relative merits of maximizing the between-class scatter and
minimizing the within-class scatter.

From Eq. (5), it can be deduced that the optimal orthogonal
projection is spanned by the eigenvectors corresponding to the top
d eigenvalues of the following eigen-decomposition.

ðSB�αSW ÞWi ¼ λiWi ð6Þ
3. Maximum nonparametric margin projection

3.1. The motivation of the proposed method

As a supervised linear dimensionality reduction method, LDA is
popular in feature extraction from original data due to its simply
application. LDA is also called parametric discriminant analysis
(PDA) since it uses the parametric form of the scatter matrix based
on the assumption of Gaussian distribution [8]. However, on
account of the parametric definitions on the between-class scatter
and the within-class scatter and the form of trace ratio, there are
three disadvantages in LDA. Firstly, LDA algorithm is based on the
assumption that all classes share the Gaussian distribution with the
same covariance matrix. When encountering those data with non-
Gaussian distribution, LDA will not be efficient for data classifica-
tion. Secondly, the number of the final LDA features must be less
than c�1 because the rank of the between-class matrix is at most
c�1. However, it is not enough to separate different class data with
only c�1 features, especially in high-dimensional spaces. Thirdly,
only the centers of classes are taken into account to compute both
the between-class scatter and the within-class scatter and LDA is
Please cite this article as: B. Li, et al., Feature extraction using maxim
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unsuccessful to capture the local structure information of all classes,
which has been validated to be essential in pattern recognition
[33,34]. Thus in the proposed MNMP, at first we locally define the
between-class scatter and the within-class scatter, which con-
tributes to avoid the restriction on data Gaussian distribution in
traditional LDA and to make full use of local information for all
samples besides both the between-class and the within-class data.
Moreover, on the basis of the newly defined between-class scatter
and within-class scatter, a nonparametric margin criterion can be
deduced without paying attention to SSS problem. At last, the
nonparametric margin criterion is justified to approach a dis-
criminant subspace where data can be well classified.

3.2. The nonparametric between-class scatter and the nonpara-
metric within-class scatter

In LDA, the traditional definitions on the between-class scatter
and the within-class scatter just concentrate on the mean of all the
samples and the mean of all the classes, where the local structure
information of all the samples is missing. Thus for the between-
class scatter, both data labels and local information are all taken
into account. For any point X1, we should select those labeled
different class labels and ranked the first k bottom Euclidean dis-
tances to it as its k between-class nearest neighbors. Based on the
k between-class nearest neighbors, its local between-class scatter
can be modeled as follows:

SiB ¼ Xi�BLocalðXiÞð Þ Xi�BLocalðXiÞð ÞT ð7Þ
where BLocalðXiÞ denotes the local between-class mean, i.e.

BLocalðXiÞ ¼
1
k

Xk
i ¼ 1

Xj; cðiÞacðjÞ ð8Þ

where Xj is the k between-class nearest neighbors of Xi, cðiÞ and
cðjÞ mean the labels of point Xi and point Xj, respectively.

For each point, we also seek its k between-class nearest
neighbors and obtain the corresponding local between-class
scatter, thus the global nonparametric between-class scatter can
be rewritten to:

SðnÞB ¼
X
i

Xi�BLocalðXiÞð Þ Xi�BLocalðXiÞð ÞT ð9Þ

Similarly, because the within-class scatter reflects the cluster-
ing of the same class data, for any point X1, those intra-class points
with k shortest Euclidean distances to it can be taken as its k
within-class nearest neighbors, then its local within-class scatter
can be represented to:

SiW ¼ Xi�WLocalðXiÞð Þ Xi�WLocalðXiÞð ÞT ð10Þ
where WLocalðXiÞ denotes the local within-class mean, i.e.

WLocalðXiÞ ¼
1
k

Xk
i ¼ 1

Xj; cðiÞ ¼ cðjÞ ð11Þ

where Xj is the k within-class nearest neighbors of Xi.
For each point, repeat Eqs. (10) and (11), and obtain the cor-

responding local within-class scatter, at last the global nonpara-
metric within-class scatter is stated below:

SðnÞW ¼
X
i

Xi�WLocalðXiÞð Þ Xi�WLocalðXiÞð ÞT ð12Þ

3.3. Nonparametric margin

It is well-known that the between-class scatter characterizes
the saparabity of different labeled data and the within-class
scatter signifies the compactness of the same class samples. Thus
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based on the predefined between-class scatter and the within-
class scatter, a nonparametric margin can be reasoned with the
following form:

M¼ tr SðnÞB �SðnÞW

n o
ð13Þ

where M denotes the defined nonparametric margin.

3.4. Justification

In the low dimensional space, the corresponding nonpara-
metric between-class scatter SðnÞBL and within-class scatter SðnÞWL are
expressed to:

SðnÞBL ¼
X
i

Yi�BLocalðYiÞð Þ Yi�BLocalðYiÞð ÞT ð14Þ

SðnÞWL ¼
X
i

Yi�WLocalðYiÞð Þ Yi�WLocalðYiÞð ÞT ð15Þ

According to these scatters, the nonparametric margin in the
low dimensional space is formulated as follows:

ML ¼ tr SðnÞBL �SðnÞWL

n o
ð16Þ

Provided that the linear features Y can be obtained by a linear
transformation, i.e. Yi ¼ ATXi, therefore, the nonparametric margin
ML in the low dimensional space can be represented to:

ML ¼ tr
X
i

Y i�BLocalðYiÞð Þ Yi�BLocalðYiÞð ÞT
(

�
X
i

Y i�WLocalðYiÞð Þ Yi�WLocalðYiÞð ÞT
)

¼ tr
X
i

AXi�A � BLocalðXiÞð Þ AXi�A � BLocalðXiÞð ÞT
(

�
X
i

AXi�A �WLocalðXiÞð Þ AXi�A �WLocalðXiÞð ÞT
)

Table 1
Outline of the proposed MNMP.

Algorithm:
Step 1 Identifying k between-class neighbors and k within-class neighbors

1.1 Determine k between-class nearest neighbors and k within-class nearest
neighbors;
1.2 For any point, compute the local means for the k between-class nearest
neighbors and k within-class nearest neighbors, respectively;
1.3 Calculate the local between-class scatter and the local within-class
scatter;

Step 2 Eigen decomposition
2.1 Obtain the nonparametric between-class scatter and the nonparametric
with-class scatter;
2.2 Construct the nonparametric margin;
2.3 Achieve the linear transformation matrix A by solving the generalized

eigen-decomposition ðSðnÞB �SðnÞW ÞAi ¼ λiAi;
Step 3 Low dimensional embeddings

3.1 Output the corresponding low dimensional embeddings for any new

coming point Xt , i.e. Yt ¼ ATXt .

Fig. 1. The cropped sample im

Please cite this article as: B. Li, et al., Feature extraction using maxim
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¼ tr A
X
i

Xi�BLocalðXiÞð Þ Xi�BLocalðXiÞð ÞTAT

(

�A
X
i

Xi�WLocalðXiÞð Þ Xi�WLocalðXiÞð ÞTAT

)

¼ tr ASðnÞB AT �ASðnÞW AT
n o

¼ tr AðSðnÞB �SðnÞW ÞAT
n o

ð17Þ

At last, the proposed MNMP aims to approach an optimal
subspace with better classification performance, where data with
different labels will be more apart and samples with same class
will be more clustered. In other words, the nonparametric margin
should be maximized in the low dimensional space. So the
objective function of the proposed MNMP can be modeled as:

JðAÞ ¼ max tr AðSðnÞB �SðnÞW ÞAT
n o

ð18Þ

Moreover, we expect to find an orthogonal subspace, i.e.
ATA¼ I.

So this optimization problem will be figured out to the fol-
lowing constrained objective function:

JðAÞ ¼ max tr AðSðnÞB �SðnÞW ÞAT
n o

s:t: ATA¼ I ð19Þ
In order to find solutions of Eq. (19), we construct the following

Lagrange multiplier:

LðA; λÞ ¼ tr AðSðnÞB �SðnÞW ÞAT
n o

�λðATA� IÞ ð20Þ

Then, the optimal orthogonal subspace A can be obtained by
solving the equation below:

∂LðAÞ
∂A

¼ 0 ð21Þ

At last, we have:

ðSðnÞB �SðnÞW ÞAi ¼ λiAi ð22Þ
From Eq. (22), it can find that A is spanned by the eigenvectors

associated to top d eigenvalues of the above generalized eigen-
decomposition.

As a result, the outline for the proposed method can be sum-
marized as Table 1.

 

 

4. Experiments

As described previously, an image can be represented to a point
in high dimensional space. How to extract the most discriminant
features and remove unwanted information is the work to be done
in the following experiments. In this Section, the proposed MNMP
will be applied to some benchmark databases such as Palmprint
data, AR face data and Yale face data. When applying MNMP to
those data sets, what should be conducted first is to construct the
neighborhood graph with k nearest neighbor criterion. In the
experiments, we set k to l�1, where l denotes the number of the
ages from PolyU Palmprint.

um nonparametric margin projection, Neurocomputing (2015),
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training samples for each class. In order to validate the efficiency
of the proposed MNMP, the performances are compared to some
related algorithms such as LDA, NDA and LGE/MMC. At last, the
nearest neighbor classifier is adopted to classify the features
extracted by LDA, NDA, LGE/MMC and the proposed MNMP,
respectively.

4.1. Experiments on Palmprint data

The PolyU Palmprint database is constructed by Biometrics
Research Centre, the Polytechnic University, Hongkong [46]. In this
data set, there are 100 persons and each with 6 Palmprint images,
so the total number of samples is 600. Moreover, 6 images for each
were collected in two sessions. The first 3 images were captured in
the first session, so did for the last 3 images in the second session
Table 2
Mean and the corresponding variance on Palmprint database by performing LDA,
NDA, LGE/MMC and MNMP.

Methods Mean and variance (%) Dimensions

LDA 90.3370.79 52
NDA 91.6771.21 54
LGE/MMC 93.2571.76 70
MNMP 95.5471.48 92

Fig. 2. The recognition accuracy curves with the varied dimensions by performing
LDA, NDA, LGE/MMC and MNMP on Palmprint database.

Fig. 3. The cropped images for

Please cite this article as: B. Li, et al., Feature extraction using maxim
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two months later. Fig. 1 displays some cropped samples, which are
of size 128 by 128. From the two session images, we randomly
select 3 images as trainings and the rest as test. When constructing
the neighborhood graph, k set to 2. Then we use LDA, NDA, LGE/
MMC and MNMP to extract features, respectively. Moreover, in
order to obtain the statistical results, we repeat the experiment
ten times by randomly selecting three training samples per-
person.

Shown in Table 2 are the mean accuracy and its variance by
repeating the experiments ten times, where the training samples
are randomly selected. From Table 2, it can find that the perfor-
mance of the proposed method outperforms those of the other
methods.

Fig. 2 displays the curves of the recognition accuracy at differ-
ent dimensions, where the proposed MNMP gains the best
recognition accuracy compared to LDA, NDA and LGE/MMC.

4.2. Experiments on AR face data

AR face [47] contains over 4000 color face images of 126 people
(70 men and 56 women), including frontal views of faces with
different facial expressions, lighting conditions and occlusions. The
pictures of 120 individuals (65 men and 55 women) were taken in
two sessions (separated by two weeks) and each section contains
13 color images. In this experiment, 14 grayscale face images (each
session containing 7) of these 120 individuals are selected. The
face portion of each image is manually cropped and then nor-
malized to be size of 40� 50, which is displayed in Fig. 3.

In this experiment, we select seven images as trainings and the
rest seven images as test. When constructing KNN graph, para-
meter k set to 6. Moreover, each experiment is repeated ten times
by randomly selecting 7 images as trainings.

The statistical results on AR face data are illustrated in Table 3.
Experimental results stated in Table 3 validate that the proposed
MNMP is superior to the other methods besides LDA, NDA and
LGE/MMC.

In order to test the dimensions' impact on the final perfor-
mance, we also figure the recognition accuracy curves at different

 

 

one person in AR database.

Table 3
Mean and the corresponding variance on AR database by performing LDA, NDA,
LGE/MMC and MNMP.

Methods Mean and variance (%) Dimensions

LDA 91.5671.15 118
NDA 93.2571.57 112
LGE/MMC 95.3271.34 118
MNMP 96.6770.95 106

um nonparametric margin projection, Neurocomputing (2015),
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dimensions using LDA, NDA, LGE/MMC and MNMP on AR face
database, where performances are changed accompanying by
different dimensions. Fig. 4 also indicates that the maximum
accuracy of the proposed MNMP is larger than those of LDA, NDA
and LGE/MMC.
Table 4
Mean and the corresponding variance on Yale face database by performing LDA,
NDA, LGE/MMC and MNMP.

Methods Mean and variance (%) Dimensions

LDA 88.3270.96 12
NDA 93.2371.78 10
LGE/MMC 94.8971.48 12
MNMP 96.5571.04 12
4.3. Experiments on Yale face data

The Yale face database [48] was constructed at the Yale Center
for Computation Vision and Control. There are 165 images about
15 individuals in YALE face data sets, where each person has 11
images. The images demonstrate variations in lighting condition
(left-right, center-light, right-light), facial expression (normal,
happy, sad, sleepy, surprised and wink), and with or without
glasses. Shown in Fig. 5 is one cropped object with size of 64 by 64
from Yale database.

Firstly, we randomly select six images from Yale database as
training sets and the rest five images as test sets for each class.
Shown in Table 4 are the mean recognition accuracy and the
corresponding variance by repeating the experiment 10 times,
where the six training images are randomly selected and k set to
5 to identify the local between-class and the local within-class
nearest neighbors. It is found that the proposed method is better
than the other techniques.

Fig. 6 characterizes the recognition rate accuracy with varied
dimensions on Yale face data. It can be found that the recognition
rates for all the four methods increases greatly at low dimensions,
and then, after the recognition rates climb their peak, they show
the trend with great decreasing except LDA. However, the max-
imum accuracy of MNMP is also at the top compared to those of
LDA, NDA and LGE/MMC.
Fig. 4. The recognition accuracy curves with varied dimensions by performing LDA,
NDA, LGE/MMC and MNMP on AR face database.

Fig. 5. Sample images of one
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5. Conclusions

In this study, we propose a maximum nonparametric margin
projection (MNMP) method to extract discriminatory features
from patterns. The proposed algorithm integrates both class
information and local geometry, where the nonparametric
between-class scatter and the nonparametric within-class
scatter are locally defined. Compared to some other widely
used LDA-based dimensionality reduction algorithms, the pro-
posed method can efficiently classify those data with either
Gaussian or non-Gaussian distribution. Due to the difference
form of the predefined nonparametric margin, MNMP naturally
avoids SSS problem, which always occurs to most of dimen-
sionality reduction methods. Moreover, in contrast to the rela-
ted method nonparametric maximum margin criterion (NMMC)
[40], a significant difference between them is that the within-
class scatter and the between-class scatter is locally constructed
by the k nearest within-class and between-class neighbors in
MNMP while NMMC just use the nearest between-class point
pair and the furthest within-class point pair to formulate the
within-class scatter and the between-class scatter respectively,
which can not make full use of local structure information of
samples. Moreover, for each point, only the nearest inter-class

 

 

person in Yale database.

Fig. 6. The recognition rate accuracy with varied dimensions on Yale face database
by using LDA, NDA, LGE/MMC and MNMP.
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point and the furthest intra-class point are contained when
constructing the nonparametric between-class scatter and the
nonparametric within-class scatter respectively, which is not
enough to measure the apartness among inter-class data and
the compactness among intra-class data, especially outlier or
noise involved. Finally, some experimental results based on
benchmark databases such as AR face database, Yale face data-
base and Palmprint database show that our proposed method is
indeed effective and efficient.
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