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Abstract— Any diagnosis procedure should be rapid and
efficiency. In the presence of the noise and unknown inputs, the
diagnosis procedure could generate false alarms. This paper
focuses in the fault detection, isolation and identification when
a fault affected the sensors of a DC motor worked in
disturbance environment. The chosen technique should take
account the two issues: the noise and the unknown inputs. As a
solution the Artificial Neural Network is adopted in order to
generate a robust residuals and therefore to minimize the false
alarms. A new ANN architecture is proposed to achieve this
purpose. The simulation results proved the rapidity and the
efficiency of the proposed procedure.

1. INTRODUCTION

It is necessary that electrical equipment achieve the
desired operating mode. For this reason, it should be
controlled at each time. Unfortunately, the equipments
performance degrades after a failure occurrence. In that case,
the early diagnosis allows one to plan the required
maintenance actions and decreases the number of emergency
shutdowns of any operating process.

The Fault Detection, Isolation and Identification (FDII)
could be achieved using varied approaches and techniques.
Each one of them has advantages and disadvantage [2].
Analytical approaches such as parity space approach are
based on analytical model [3].This approach is based on
residuals evaluations which are generated from the parity
equation [4]-[5]. The residuals are theoretically nulls, if the
system is in normal operation, but are large, if the system is
affected by faults. The developed models are based on
physics theories which are not usually available and are
made under assumptions. Therefore, there are lacks of
precisions because the noise and the unknown inputs.

In order to fulfill fault detection, isolation and
identification under the disturbance and the unknown inputs,
several methods could be used. These methods should
satisfy the fault rapidity and accuracy. In this paper, an
intelligent technique is adopted. The Artificial Neural
Network ANN is chosen as a solution to the problem of
diagnosis. Many researched work are interesting to the ANN
as an excellent technique for the FDII. Two ANN models:
dynamic neural model (DNM) and the time delay neural
network (TDNN) are used in [6]. They are investigated in
order to design and develop an FDI scheme for aircraft gas
turbine engines. A nuclear process is a complex system
which is equipped with many sensors. In this context, any
incorrect measurement could cause damage in the process.
Therefore, a sensor fault should be detected and isolated. A
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new method based on the capabilities of the ANNSs is
developed in [7]. In [8], an unsupervised ANN based on
Adaptive Resonance Theory (ART) is tested for FDI on an
automated O-ring assembly machine testbed. The
performance and practicality of the proposed technique are
compared to those of the conventional rule-based method.
The obtained results show that the fault detection was
achieved using ART ANN using minimal modeling
requirements. A multilayered approach of the high-order
neural network is proposed in [9]. It used to develop a robust
fault detection scheme. Comparing to multi-layer perceptron
neural network, these networks can approximate any
function with less parameters. Such propriety makes the
proposed network useful to generate a residual for FDI of
dynamic system. The inter-turn short circuit in stator
windings of a Permanent magnet synchronous motor
(PMSM) fault is studied in [10]. A multilayer artificial
neural network (MANN) has been proposed in order to
diagnosis and to classify the different levels of short circuit.
A novel fault diagnostic technique based on ANN is applied
to photovoltaic systems [11]. The work has been validated
with experimental setup.

Electric motors are so much a part of everyday life. They
are used in many vital applications such as transportation,
vehicle, computer, industry...[1]. There are many electrical
motors types: the DC current motor, induction motor... As
any system, they should be controlled but when a fault
affected the sensors, the orders of the controlled operation
become incorrect. So, the DC motor is likely to faulty
operation or breakdown. And in many cases, they could
cause a dreadful damage. In order to avoid these drawbacks
and to guarantee the continuity of the operating mode, the
Fault Detection Isolation and Identification (FDII) becomes
necessary.

In the rest of this article, the second section is dedicated to
DC motor modeling. The third section describes the FDII
procedure. The obtained results are illustrated and discussed
in the fourth section. Finally the section five concludes the
work.

II. SYSTEM MODELING

DC motor can be described by the ordinary

differential equations.
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Where i,(?) is the armature current, @(¢) is the shaft

speed, u,(?) is the input voltage, R and L are the armature
resistance and inductance respectively, K is the speed and
torque proportionality constants, J is the moment of the
inertia and f is the viscous damping constant. All the
parameters are given in the table.

Table.1 Parameters values

Parameter value
R 8Q
L 0.129mH
f 0.0218 N.s/m
Jj 0.02 kgm®
K 0.7745

The discrete state space equation derived from (1) and
(2)is
{x(k +1) = Ax(k) + Bu(k) 3)
y(k) = Cx(k)
Where, x(k) are the system states, u(k) is system input and
(k) are the system outputs.

* A represents the internal interconnection among state
variables,

* B represents the input-to-state direct connection,

* C represents the state-to-output direct connection.

Where x(k)y=[i,(k) @] )
u(k) =u, (k) (6)
0.9380 —0.0060
A= 7
0.0387 0.9989
. {0.0078} "
0
10
And c:{o J 9)

The state space description should take into account the
disturbance and the unknown inputs so it could be equal to:

{x(k +1) = Ax(k) + Bu(k) + Gd, (k)

(k) = Cx(k)+ FEf (k) + Dd, (k) 4)

Where

* G represents the unknown and the noise inputs among
the input-to-state direct connection u(k),

* F represents the matrix sensors faults,

* D represents the unknown and the noise
output direct connection or input/output coupling,

input-to-
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* d,(k) are the noise and unknown inputs associated to the
inputs,

* dy(k) are the noise and unknown inputs associated to the
outputs,

* f(k) are the sensors faults associated to the outputs.

Sensors bias is the main types of faults. The white
Gaussian noise is added to the voltage input u(k). A fault type
bias equal to 3 and 20 are added respectively to current and

5
speed sensors. Therefore, f{k) is equal to {20}

o

There are different possibilities of the . It could be equal
to:

-[0 1] when the fault occurred in speed sensor,
-[1 0] when the fault occurred in current sensor,

-[1 1]when the fault occurred in speed and current
Sensors.

There are different scenarios should take be account:
-Only speed sensor fault,

-Only current sensor fault,

-Speed and current sensor faults.

In this paper the objective is firstly to detect and to
estimate the amplitude of the fault, and secondly is to isolate
the fault

III. FAULT DETECTION, ISOLATION AND ESTIMATION BASED
ON ARTIFICIAL NEURAL NETWORK

A. FDII procedure

The proposed procedure is based on artificial neural
network in order to take account the error modeling, the
noise and the unknown inputs. As illustrated in Fig.1. the
procedure is divided into two steps; the first is the detection
and identification fault, the second is the isolation step.

B. Detection and fault amplitude estimation step

This step aims firstly to detect the occurrence of the
fault and secondly to determine the fault amplitude.

The detection step composed of a two artificial neural
networks. The first has two inputs which are the
measurements of the current and the voltage control, and
one output r;(k) which is the first residual. The second has
also two inputs: the measurements of the speed and the
voltage control. As the first one the second neural network
has one output r,(k). Hence, each neural network is sensible
to one sensor, but the two neural networks are sensible to
the actuator. As shown in Fig.2. both the two neural
networks are composed of three layers: two hidden layers
and one output layer.
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Figure 2. The two artificial neural networks used for detection and
amplitude fault estimation step.

The learning procedure is done with a rich database
chosen in order to take account the maximum of operating
point. The Fig.3. shows the database of the voltage control
u(k). The Fig.d. and Fig.5. illustrate respectively the
corresponding current and speed sensors measurements.
The considered sensor fault is a bias fault equal to 5 for the
current sensor and equal to 20 for the speed sensor. The
two residuals should be constructed to be null in case of
healthy operation. In case of the current sensor fault the
first residual r;(k) is equal to 5 and the second residual r,(k)
is equal to 0. In case of speed sensor fault, the two residuals
are equal respectively to 0 and 20. The Fig.6. and Fig.7.
show the databases used in ANN learning procedure
dedicated to the two residuals 7;(k) and r,(k).
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Figure 3. The voltage control database.
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Figure 4. Sensor current database.
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Figure 6. Residuals database.
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Figure 7. Residuals database.

The simulation results are obtained using Neural Network
Toolbox in Simulink Matlab ©. The two ANNs are
composed of 4 layers: input, output layer and two hidden
layers. The first hidden layer composed of 4 neurons for the
second hidden layer there are two neurons. Except the output
neuron, all the neurons are activated using tansig function.
The Levenberg Marquardt algorithm is chosen for the
learning procedure. The Fig.8. illustrates the graphical
interface of the artificial neural network. The Fig.9. shows
the learning error. It attends 1.5936.10™*at epoch 22.

C.Isolation fault step

This step aims to isolates the sensors faults location. The
objective consists in determining which sensor is in
dysfunction operation mode. The two residuals r; and r; are
compared to a threshold. The test results are a decision signal
F,; and F,. For a robust isolation step, the structural indicators
are chosen. Therefore, Fiand F, equal to 0 if the two residuals
remain in the threshold band. Otherwise, they deviate to 1. If
the indicator is null, the operating mode is healthy. And if it
equal to 1, the operating mode is dysfunction. The Fig.10.
illustrates the residuals evaluation tests. The Table.2.
illustrates the signature table used for the isolation step.
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Figure 8. Learning graphical interface.
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TABLE 1. SIGNATURE TABLE FOR ISOLATION STEP.
Healthy Only Only Speed
operation speed current and

sensor sensor | current
Indicato sensors
F, 0 1 1
F, 0 0 1
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IV. RESULTS AND DISCUSSION

To evaluate the proposed procedure, the healthy operating
mode and the faulty one are tested.

A. Healthy operation

In the case of healthy operation, the two residuals
(Fig.10., Fig.11.) are approximately nulls. They don’t exceed
respectively 10.10° for 7, and 20.107 for r,. Therefore, they
remain in the threshold range equal to [-0.1, 0.1]. As a
consequence, the two indicators F; and F, are nulls. The
vector [F; F,] become equal to [0 0]. Comparing to the
signature table, the mode operating is healthy.
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Figure 11. First residual r; evolution in case of healthy operation.
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Figure 12. Second residual evolution in case of healthy operation.
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Figure 13. First indicator F1 evolution in case of healthy operation.
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Figure 14. Second indicator F2 evolution in case of healthy operation.

B. Speed and current sensors faults

To evaluate the faulty case, whether it is current sensor
fault or speed sensor fault, an intermittent faults are injected
in different instants. As shown in Fug.15. and Fig.16. the
faults appears at ty; and tg, in case of current sensor and at
tas, tas and tgs in case of speed sensor. Until ty;, the mode
operating is healthy. At ty;, the residual r; is equal to 0, but
the residual 7, is set to 20, as it illustrates in Fig.17. and
Fig.18. Hence, [r; 7;] is equal to [0 20]. As sequence, the
vector [F; F,] begins equal to [0 1]. According to the
signature table, it consists in speed sensor fault. At ty;, a fault
type bias occurred on current sensor, so the residuals r;
becomes equal to 5 and as a sequence the fault indicator F;
sets to 1. The vector [F; F;] deviates to [1 1]. It becomes a
current and speed faults.
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Figure 15. Current sensor measurements.
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Figure 16. Speed sensor measurements.
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Figure 17. First residual evolution.
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Figure 18. First indicator evolution.
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Figure 19. Second residual evolution.
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Figure 20. Second indicator evolution.

V. CONCLUSION
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presented. The proposed algorithm proves a rapidity and
robustness against the disturbance, the noise and the
unknown inputs. The ANN proves immunity to the false
alarms. It allows the fault detection, isolation and
identification. After this step, a fault tolerant control is
suggested in order to prevent the system breakdown and
guarantee the continuity of the mode operation.
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