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a b s t r a c t

Multi-label learning has received significant attention in the research community over the past few

years: this has resulted in the development of a variety of multi-label learning methods. In this paper,

we present an extensive experimental comparison of 12 multi-label learning methods using 16

evaluation measures over 11 benchmark datasets. We selected the competing methods based on their

previous usage by the community, the representation of different groups of methods and the variety of

basic underlying machine learning methods. Similarly, we selected the evaluation measures to be able

to assess the behavior of the methods from a variety of view-points. In order to make conclusions

independent from the application domain, we use 11 datasets from different domains. Furthermore, we

compare the methods by their efficiency in terms of time needed to learn a classifier and time needed

to produce a prediction for an unseen example. We analyze the results from the experiments using

Friedman and Nemenyi tests for assessing the statistical significance of differences in performance. The

results of the analysis show that for multi-label classification the best performing methods overall are

random forests of predictive clustering trees (RF-PCT) and hierarchy of multi-label classifiers (HOMER),

followed by binary relevance (BR) and classifier chains (CC). Furthermore, RF-PCT exhibited the best

performance according to all measures for multi-label ranking. The recommendation from this study is

that when new methods for multi-label learning are proposed, they should be compared to RF-PCT and

HOMER using multiple evaluation measures.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of single-label classification is concerned with
learning from examples, where each example is associated with a
single label li from a finite set of disjoint labels L¼ fl1,l2, . . . ,
lQ g,Q 41. For Q 42, the learning problem is referred to as multi-class

classification. On the other hand, the task of learning a mapping from
an example xAX (X denotes the domain of examples) to a set of
labels YDL is referred to as a multi-label classification. In contrast to
multi-class classification, alternatives in multi-label classification are
not assumed to be mutually exclusive: multiple labels may be
associated with a single example, i.e., each example can be a member
of more than one class. Labels in the set Y are called relevant, while
the labels in the set L\Y are irrelevant for a given example.

Besides the concept of multi-label classification, multi-label learn-
ing introduces the concept of multi-label ranking [1]. Multi-label
ranking can be considered as a generalization of multi-class

classification, where instead of predicting only a single label (the
top label), it predicts the ranking of all labels. In other words, multi-
label ranking is understood as learning a model that associates a
query example x both with a ranking of the complete label set and a
bipartition of this set into relevant and irrelevant labels.

The issue of learning from multi-label data has recently
attracted significant attention from many researchers, motivated
by an increasing number of new applications. The latter include
semantic annotation of images and video (news clips, movies
clips), functional genomics (gene and protein function), music
categorization into emotions, text classification (news articles,
web pages, patents, e-mails, bookmarks,y), directed marketing
and others. In the last few years, several workshops have been
organized and journal special issues edited covering the topic of
multi-label learning.

In recent years, many different approaches have been devel-
oped to solving multi-label learning problems. Tsoumakas and
Katakis [2] summarize them into two main categories:
(a) algorithm adaptation methods and (b) problem transforma-
tion methods. Algorithm adaptation methods extend specific
learning algorithms to handle multi-label data directly. Exam-
ples include lazy learning [3–5], neural networks [6,7], boosting
[8,9], classification rules [10], decision trees [11,12], etc. Problem
transformation methods, on the other hand, transform the
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multi-label learning problem into one or more single-label
classification problems. The single-label classification problems
are solved with a commonly used single-label classification
approach and the output is transformed back into a multi-label
representation. A common approach to problem transformation
is to use class binarization methods, i.e., decompose the problem
into several binary sub-problems that can then be solved by
using a binary base classifier. The simplest strategies in the
multi-label setting are the one-against-all and one-against-one
strategies, also referred to as the binary relevance method [2] and
pair-wise method [13,14], respectively.

In this study, we extend this categorization of multi-label
methods with a third group of methods, namely, ensemble
methods. This group of methods consists of methods that use
ensembles to make multi-label predictions and their base classi-
fiers belong to either problem transformation or algorithm
adaptation methods. Methods that belong to this group are RAkEL
[15], ensembles of classifier chains (ECC) [16], random forests of
predictive clustering trees [17,18] and random forests of multi-
label C4.5 trees [11].

As new methods for multi-label learning are proposed, they
are experimentally compared to existing methods. The typical
experimental evaluation compares the proposed method to a few
existing ones on a few datasets. The methods are compared on
performance in terms of one or a few error metrics and the
comparison typically shows that the proposed method outper-
forms the other methods on some of the considered datasets and
metrics. It is worth noting that a significant number of metrics
has also been proposed for evaluating the performance of multi-
label methods, which can concern the classification or ranking
variant of the problem.

The number of proposed methods, datasets and metrics for
multi-label learning constantly increases. As the research area of
multi-label learning matures, there is a strong need for a com-
prehensive overview of methods and metrics. The need for a
wider, extensive, and un-biased experimental comparison of
multi-label learning methods is even stronger. It is this need that
we address in the present paper.

In this study, we experimentally evaluate 12 methods for
multi-label learning using 16 evaluation measures over 11 bench-
mark datasets. The multi-label methods comprise three algorithm
adaptation methods, five problem transformation methods and
four ensemble methods. The benchmark datasets are from five
application domains: two from image classification, one from
gene function prediction, six from text classification, one from
music classification and one from video classification. The pre-
dictive performance of the methods is assessed using six exam-
ple-based measures, six label-based measures and four ranking-
based measures. Furthermore, we assess the efficiency of the
methods by measuring their training and testing times. The large
number of methods, datasets and evaluation measures are
enabling us to draw some more general conclusions and to
perform an un-biased assessment of the predictive performance
of the multi-label methods.

The results from our extensive experimental evaluation will
facilitate further research on multi-label learning as follows. First,
this study will provide the research community with a better
insight about the predictive performance of the methods cur-
rently available in the literature. Second, this study will identify a
few methods that should be further used by the research com-
munity as benchmarks to compete against when proposing new
methods. Third, this study uses a diverse collection of publicly
available datasets that can be reused by other researchers as
benchmark datasets for multi-label learning. Finally, this study
will highlight the advantages of certain methods for certain types
of datasets.

The remainder of this paper is organized as follows. Section 2
defines the tasks of multi-label classification and label ranking
and surveys the related work. The state-of-the-art methods for
multi-label learning used in the experimental evaluation are
presented in Section 3. Section 4 describes the multi-label
problems, the evaluation measures and the experimental setup,
while Section 5 presents and discusses the experimental results.
Finally, the conclusions are given in Section 6.

2. Background

In this section, we present the task of multi-label learning and
methods for solving it. We begin by a formal definition of the task
of multi-label learning. We then present an overview of the
methods for multi-label learning.

2.1. The task of multi-label learning

Multi-label learning is concerned with learning from exam-
ples, where each example is associated with multiple labels.
These multiple labels belong to a predefined set of labels.
Depending on the goal, we can distinguish two types of tasks:
multi-label classification and multi-label ranking. In the case of
multi-label classification, the goal is to construct a predictive
model that will provide a list of relevant labels for a given,
previously unseen example. On the other hand, the goal in the
task of multi-label ranking is to construct a predictive model that
will provide, for each unseen example, a list of preferences (i.e., a
ranking) of the labels from the set of possible labels.

We define the task of multi-label learning as follows:
Given:

� an example space X that consists of tuples of values of
primitive data types (boolean, discrete or continuous), i.e.,
8xiAX ,xi ¼ ðxi1 ,xi2 , . . . ,xiD Þ, where D is the size of the tuple (or
number of descriptive attributes);
� a label space L¼ fl1,l2, . . . ,lQ g which is a tuple of Q discrete

variables (with values 0 or 1);
� a set of examples E, where each example is a pair of tuples

from the example and label space, respectively, i.e.,
E¼ fðxi,YiÞ9xiAX ,YiAL,1r irNg and N is the number of
examples of E ðN¼ 9E9Þ; and
� a quality criterion q, which rewards models with high pre-

dictive accuracy and low complexity.

If the task at hand is multi-label classification, then the goal is
to

Find: a function h: X-2L such that h maximizes q.
On the other hand, if the task is multi-label ranking, then the

goal is to
Find: a function f: X � L-R, such that f maximizes q, where R

is the ranking of the labels for a given example.

2.2. An overview of methods for multi-label learning

Tsoumakas and Katakis [2] have presented the first overview
of methods for multi-label learning where the methods for
multi-label learning are divided into two categories: algorithm
adaptation and problem transformation methods. There, three
problem transformation methods were evaluated on a small empiri-
cal study (three datasets). In this study, we perform an extensive
experimental evaluation of 12 methods for multi-label learning over
11 benchmark multi-label datasets using 16 evaluation measures.
Furthermore, besides the two categories of methods for multi-label
learning, we introduce a third category: ensemble methods. In the
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remainder of this section, we present the three categories of
methods for multi-label learning: algorithm adaptation, problem
transformation and ensemble methods.

2.2.1. Algorithm adaptation methods

The multi-label methods that adapt, extend and customize an
existing machine learning algorithm for the task of multi-label
learning are called algorithm adaptation methods. Here, we
present multi-label methods proposed in the literature that are
based on the following machine learning algorithms: boosting,
k-nearest neighbors, decision trees and neural networks. The
extended methods are able to directly handle multi-label data.

Boosting: ADABOOST.MH and ADABOOST.MR [8] are two extensions
of ADABOOST for multi-label data. While AdaBoost.MH is designed
to minimize Hamming loss, ADABOOST.MR is designed to find a
hypothesis which ranks the correct labels at the top. Furthermore,
ADABOOST.MH can also be combined with an algorithm for produ-
cing alternating decision trees [9]. The resulting multi-label
models of this combination can be interpreted by humans.

k-Nearest neighbors: Several variants for multi-label learning
(ML-kNN) of the popular k-Nearest Neighbors (kNN) lazy learning
algorithm have been proposed [3–5]. The retrieval of the k-
nearest neighbors is the same as in the traditional k NN algorithm.
The main difference is the determination of the label set of a test
example. Typically, these algorithms use prior and posterior
probabilities of each label within the k-nearest neighbors. Cheng
et al. [19] have proposed a hybrid method that uses logistic
regression and k-nearest neighbors.

Decision trees: Clare et al. [11] adapted the C4.5 algorithm for
multi-label data (ML-C4.5) by modifying the formula for calculat-
ing entropy. Blockeel et al. [12] proposed the concept of pre-
dictive clustering trees (PCTs). PCTs have been used for predicting
tuples of variables, predicting time series and predicting classes
organized into a hierarchy or a directed acyclic graph. However,
they can also be used in the context of multi-label learning, where
each label is a component of the target tuple.

Neural networks: Neural networks have also been adapted for
multi-label classification [6,7]. BP-MLL [7] is an adaptation of the
popular back-propagation algorithm for multi-label learning. The
main modification to the algorithm is the introduction of a new
error function that takes multiple labels into account.

Support vector machines: Elisseeff and Weston [20] have
proposed a ranking approach for multi-label learning that is
based on SVMs. The cost function they use is the average fraction
of incorrectly ordered pairs of labels.

2.2.2. Problem transformation methods

The problem transformation methods are multi-label learning
methods that transform the multi-label learning problem into one
or more single-label classification or regression problems. For
smaller single-label problems, there exists a plethora of machine
learning algorithms. Problem transformation methods can be
grouped into three categories: binary relevance, label power-set
and pair-wise methods.

Binary relevance methods: The simplest strategy for problem
transformation is to use the one-against-all strategy to convert
the multi-label problem into several binary classification pro-
blems. This approach is known as the binary relevance method
(BR) [2]. A method closely related to the BR method is the
Classifier Chain method (CC) proposed by Read et al. [16]. This
method involves Q binary classifiers linked along a chain. Godbole
et al. [21] present algorithms which extend the SVM binary
classifiers along two dimensions: training set extension and
improvement of margin. With the first approach, the training
set is extended with the predictions of the binary classifiers and

then a new set of binary classifiers is trained on the extended
dataset. For the second extension, Godbole et al. remove very
similar negative training examples and remove the negative
training examples of a complete class that are similar to the
positive class.

Label power-set methods: A second problem transformation
method is the label combination method, or label power-set
method (LP), which has been the focus of several recent studies
[15,22,2]. The basis of these methods is to combine entire label
sets into atomic (single) labels to form a single-label problem (i.e.,
single-class classification problem). For the single-label problem,
the set of possible single labels represents all distinct label
subsets from the original multi-label representation. In this
way, LP based methods directly take into account the label
correlations. However, the space of possible label subsets can be
very large. To resolve this issue, Read [23] has developed a pruned
problem transformation (PPT) method, that selects only the
transformed labels that occur more than a predefined number
of times. Another label power-set method is HOMER [24], which
first constructs a hierarchy of the multiple labels and then
constructs a classifier for the label sets in each node of the
hierarchy.

Pair-wise methods: A third problem transformation approach
to solving the multi-label learning problem is pair-wise or round
robin classification with binary classifiers [13,14]. The basic idea
here is to use Q � ðQ�1Þ=2 classifiers covering all pairs of labels.
Each classifier is trained using the samples of the first label as
positive examples and the samples of the second label as negative
examples. To combine these classifiers, the pairwise classification
method naturally adopts the majority voting algorithm. Given a
test example, each classifier predicts (i.e., votes for) one of the two
labels. After the evaluation of all Q � ðQ�1Þ=2 classifiers, the labels
are ordered according to their sum of votes. A label ranking
algorithm is then used to predict the relevant labels for each
example. Besides majority voting in CLR, Park et al. [25] propose a
more effective voting algorithm. It computes the class with the
highest accumulated voting mass, while avoiding the evaluation
of all possible pairwise classifiers. Mencia et al. [26] adapted the
QWeighted approach to multi-label learning (QWML).

2.2.3. Ensemble methods

The ensemble methods for multi-label learning are developed
on top of the common problem transformation or algorithm
adaptation methods. The most well known problem transforma-
tion ensembles are the RAKEL system by Tsoumakas et al. [15],
ensembles of pruned sets (EPS) [27] and ensembles of classifier
chains (ECC) [16].

RAKEL constructs each base classifier by considering a small
random subset of labels and learning a single-label classifier for
the prediction of each element in the power-set of this subset. EPS
uses pruning to reduce the computational complexity of label
power-set methods, and an example duplication method to
reduce the error rate as compared to label power-set and other
methods. This method proved to be particularly competitive in
terms of efficiency.

ECC are ensemble methods that have classifier chains (CC) as
base classifiers. The final prediction is obtained by summing the
predictions by label and then applying threshold for selecting the
relevant labels. Note that binary methods are occasionally
referred to as ensemble methods because they involve multiple
binary models. However, none of these models is multi-label itself
and therefore we use the term ensemble strictly in the sense of an
ensemble of multi-label methods.

Algorithm adaptation ensemble methods are the ensembles
whose base classifiers are themselves algorithm adaptation methods.
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An example of an algorithm adaptation ensemble method are the
ensembles of predictive clustering trees (PCTs) [18]. These ensembles
use PCTs for predicting tuples of variables as base classifiers. Each
base classifier makes a multi-label prediction and then these predic-
tions are combined by using some voting scheme (e.g., majority or
probability distribution voting).

3. Methods for multi-label learning

In this section, we briefly introduce the state-of-the-art meth-
ods for multi-label learning that are used in this study. Fig. 1
depicts how these methods are divided into groups using the
categorization scheme from the related work section. In this
study, we use one label power-set method, two binary relevance
and two pair-wise transformation methods, two algorithm adap-
tation methods, and four ensemble methods. Moreover, one of the
ensemble methods is label power-set based, while the other
methods are algorithm adaptation based.

We also divide the used multi-label learning approaches based
on the type of basic machine learning algorithm they use. The
methods use three types of base algorithms: SVMs, decision trees
and k-nearest neighbors. We show this categorization in Fig. 2.

3.1. Binary relevance methods

Binary relevance (BR) [2] is the well known one-against-all
strategy. It addresses the multi-label learning problem by learn-
ing one classifier for each label, using all the examples labeled
with that label as positive examples and all remaining examples
as negative. When making a prediction, each binary classifier
predicts whether its label is relevant for the given example or not,
resulting in a set of relevant labels. In the ranking scenario, the
labels are ordered according to the probability associated to each
label by the respective binary classifier.

The classifier chaining (CC) method [16] involves Q binary
classifiers as in BR. Classifiers are linked along a chain where
the i-th classifier deals with the binary relevance problem
associated with label liAL, ð1r irQ Þ. The feature space of each
link in the chain is extended with the 0/1 label associations of all
previous links. The ranking and the prediction of the relevant
labels in the CC method are the same as in the BR method.

3.2. Pair-wise methods

Calibrated label ranking (CLR) [25] is a technique for extending the
common pair-wise approach to multi-label learning. It introduces an
artificial (calibration) label l0, which represents the split-point
between relevant and irrelevant labels. The calibration label l0 is
assumed to be preferred over all irrelevant labels, but all relevant
labels are preferred over it. It is represented by the binary relevance

classifiers that are introduced as pair-wise classifiers in the context of
pair-wise learning. At prediction time (majority voting is usually
used), one will get a ranking over Qþ1 labels (the Q original labels
plus the calibration label l0). CLR is considered a combination of
multi-label classification and ranking.

The Quick Weighted voting method for multi-class classification,
proposed by Park et al. [25], is a variant of the CLR method that
introduces a more effective voting strategy than the majority
voting used by the CLR method. Quick weighted voting exploits
the fact that during voting some classes can be excluded from the
set of possible top rank classes early in the process, when it
becomes clear that even if they reach the maximal voting mass in
the remaining evaluations they can not exceed the current
maximum. Pairwise classifiers are selected depending on a voting
loss value, which is the number of votes that a class has not
received. The voting loss starts with a value of zero and increases
monotonically with the number of performed preference evalua-
tions. The class with the current minimal loss is the best
candidate for the top ranked class. If all preferences involving
this class have been evaluated (and it still has the lowest loss), it
can be concluded that no other class can achieve a better ranking.
Thus, the quick weighted algorithm always focuses on classes
with low voting loss. The adaptation of quick weighted algorithm
for multi-label learning (QWML) [26] is done by repeating the
process while all relevant labels are not determined, i.e., until the
returned label is the artificial label, which means that all remain-
ing labels will be considered irrelevant.

3.3. Label power-set method

Hierarchy Of Multi-label classifiERs (HOMER) [24] is an algorithm
for effective and computationally efficient multi-label learning in
domains with a large number of labels. HOMER constructs a

Multi-label learning

Algorithm adaptation methods Problem transformation methods Ensemble methods

RAkEL
ECC

RF-MLC4.5
RF-PCT

Binary relevance Pair-wise Label power-setML-C4.5
PCT

ML-kNN

BR
CC HOMERCLR

QWML

Fig. 1. The multi-label learning methods used in this study divided into groups as discussed in the related work section above.

Machine learning algorithms
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RAkEL
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ML-C4.5
PCT

RF-MLC4.5
RF-PCT
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Fig. 2. The multi-label learning methods used in this study divided into groups

based on the base machine learning algorithm they use.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 3084–3104 3087

https://www.researchgate.net/publication/267410625_Ensembles_for_Predicting_Structured_Outputs?el=1_x_8&enrichId=rgreq-ba0e00dca8450a6850ef9feae28b0992-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYyODg0MTtBUzoyMjEzNTY1NTQ3NTYwOTdAMTQyOTc4NjkyMzU5NQ==


Author's personal copy

hierarchy of multi-label classifiers, each one dealing with a much
smaller set of labels compared to Q (the total number of labels) and a
more balanced example distribution. This leads to improved pre-
dictive performance and also to linear training and logarithmic testing
complexities with respect to Q. One of the main processes within
HOMER is the even distribution of a set of labels into k disjoint
subsets so that similar labels are placed together and dissimilar apart.
The best predictive performance is reported using a balanced k means
algorithm customized for HOMER [24]. HOMER is a computationally
efficient multi-label classification method, specifically designed for
large multi-label datasets.

3.4. Algorithm adaptation methods

Multi-Label C4.5 (ML-C4.5) [11] is an adaptation of the well
known C4.5 algorithm for multi-label learning by allowing multi-
ple labels in the leaves of the tree. Clare et al. [11] modified the
formula for calculating entropy (see Eq. (1)) for solving multi-
label problems. The modified entropy sums the entropies for each
individual class label. The key property of ML-C4.5 is its compu-
tational efficiency:

entropyðEÞ ¼�
XN

i ¼ 1

ðpðciÞ log pðciÞþqðciÞ log qðciÞÞ ð1Þ

where E is the set of examples, pðciÞ is the relative frequency of
class label ci and qðciÞ ¼ 1�pðciÞ.

Predictive clustering trees (PCTs) [12] are decision trees viewed
as a hierarchy of clusters: the top-node corresponds to one cluster
containing all data, which is recursively partitioned into smaller
clusters while moving down the tree. PCTs are constructed using a
standard top-down induction of decision trees algorithm, where
the variance and the prototype function can be instantiated
according to the task at hand. Namely, PCTs can handle several
types of structured outputs: tuples of continuous or discrete
variables, time series, classes organized into a hierarchy, tuples
of time series and tuples of hierarchies [18]. For the task of
predicting tuples of discrete variables, the variance function is
computed as the sum of the Gini indices [28] of the variables
from the target tuple, i.e., VarðEÞ ¼

PT
i ¼ 1 GiniðE,YiÞ, GiniðE,YiÞ ¼

1�
PCi

j ¼ 1 pcij
, where T is the number of target attributes, cij is the

j-th class of target attribute Yi and Ci is the number of classes of
target attribute Yi. The prototype function returns a vector of
probabilities that an example belongs to a given class for each
variable from the target tuple. In the case of multi-label learning,
it returns a vector of probabilities that an example is labeled with
a given label.

Multi-label k-nearest neighbors (ML-kNN) [3] is an extension of
the popular k-nearest neighbors (kNN) algorithm. First, for each
test example, its k-nearest neighbors in the training set are
identified. Then, according to statistical information gained from
the label sets of these neighboring examples, i.e., the number of
neighboring examples belonging to each possible label, the
maximum a posteriori principle is used to determine the label
set for the test example.

3.5. Ensemble methods

The RAndom k-labELsets (RAkEL) [15] is an ensemble method
for multi-label classification. It draws m random subsets of labels
with size k from all labels L and trains a label power-set classifier
using each set of labels. A simple voting process determines the
final set of labels for a given example. In this way, the proposed
algorithm aims to take into account label correlations using
single-label classifiers that are applied on subtasks with a

manageable number of labels and adequate number of examples
per label.

Ensembles of classifier chains (ECC) [16] are an ensemble multi-
label classification technique that uses classifier chains as a base
classifier. ECC trains m CC classifiers C1,C2, . . . ,Cm. Each Ck is
trained with a random chain ordering (of L) and a random subset
of X . Hence each Ck model is likely to be unique and able to give
different multi-label predictions. These predictions are summed
per label so that each label receives a number of votes. A
threshold is used to select the most popular labels which form
the final predicted multi-label set.

Random forest of predictive clustering trees (RF-PCT) [17,18] and
Random forest of ML-C4.5 (RFML-C4.5)1 are ensembles that use
PCTs and ML-C4.5 trees, respectively, as base classifiers. The
diversity among the base classifiers is obtained by using bagging,
and additionally by changing the feature set during learning [29].
More precisely, at each node in the decision trees, a random
subset of the input attributes is taken, and the best feature is
selected from this subset. The number of attributes that are
retained is given by a function f of the total number of
input attributes x (e.g., f ðxÞ ¼ 1,f ðxÞ ¼

ffiffiffi
x
p

,f ðxÞ ¼ b0:1 � xþ1c,f ðxÞ ¼
blog2ðxÞþ1c . . .Þ. The predictions of the base classifiers are then
combined using some voting scheme (typically, majority or
probability distribution vote).

4. Experimental design

In this section, we present the experimental design used to
compare the methods for multi-label learning. We first shortly
describe the benchmark multi-label datasets. We then give a
short overview of the evaluation measures typically applied to
asses the predictive performance of methods for multi-label
learning. Next, we present the specific setup and the instantiation
of the parameters for the used methods for multi-label learning.
Finally, we present the procedure for statistical evaluation of the
experimental results.

4.1. Datasets

We use 11 different multi-label classification benchmark
problems. Parts of the selected problems were used in various
studies and evaluations of methods for multi-label learning. In the
process of selection of problems, we opted to include benchmark
datasets with different scale and from different application
domains. Table 1 presents the basic statistics of the datasets.
We can note that the datasets vary in size: from 391 up to 60 000
training examples, from 202 up to 27 856 testing examples, from
72 up to 2150 features, from 6 to 983 labels, and from 1.07 to
19.02 average number of labels per example (i.e., label cardinality
[30]). From the literature, these datasets come pre-divided into
training and testing parts: thus, in the experiments, we use them
in their original format. The training part usually comprises
around 2/3 of the complete dataset, while the testing part the
remaining 1/3 of the dataset.

The datasets come from three domains: biology, multimedia
and text categorization. From the biological domain, we have the
yeast dataset [20]. It is a widely used dataset, where genes are
instances in the dataset and each gene can be associated with 14
biological functions (labels).

The datasets that belong to the multimedia domain are:
emotions, scene, corel5k and mediamill. Emotions [31] is a dataset

1 We have implemented the random forest of ML-C4.5 trees within the

MULAN library for multi-label learning.
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where each instance is a piece of music. Each piece of music can
be labeled with six emotions: sad-lonely, angry-aggressive,
amazed-surprised, relaxing-calm, quiet-still, and happy-pleased.
Scene [32] is a widely used scene classification dataset. Each scene
can be annotated in the following six contexts: beach, sunset,
field, fall-foliage, mountain, and urban. The Corel5k [34] data set
contains Corel images that are segmented using normalized cuts.
The segmented regions are then clustered into 499 bins, which
are further used to describe the images. Each image can be then
assigned several of the 374 possible labels. Mediamill [36] origi-
nates from the 2005 NIST TRECVID challenge dataset,2 which
contains data about annotated videos. The label space is repre-
sented by 101 ‘‘annotation concepts’’, such as explosion, aircraft,
face, truck, urban, etc.

The domain of text categorization is represented with six
datasets: medical, enron, tmc2007, bibtex, delicious and book-
marks. Medical [16] is a dataset used in the Medical Natural
Language Processing Challenge3 in 2007. Each instance is a
document that contains brief free-text summary of a patient
symptom history. The goal is to annotate each document with
the probable diseases from the International Classification of
Diseases (ICD-9-CM) [38]. Enron [33] is a dataset that contains
the e-mails from 150 senior Enron officials. The e-mails were
categorized into several categories developed by the UCBerkeley
Enron Email Analysis Project.4 The labels can be further grouped
into four categories: coarse genre, included/forwarded informa-
tion, primary topics, and messages with emotional tone. Tmc2007

[35] contains instances of aviation safety reports that document
problems that occurred during certain flights. The labels repre-
sent the problems being described by these reports. We use a
reduced version of this dataset with the top 500 attributes
selected, same as Tsoumakas et al. [15]. Delicious, bibtex and
bookmarks are used for automatic tag suggestion. Delicious [24]
contains web pages and their tags. The web pages are taken from
the del.ico.us social bookmarking site.5 Note that the label space
is greater than the size of the input space ðQ 4DÞ for this dataset.
Bibtex [37] contains metadata for bibtex items, such as the title of
the paper, the authors, book title, journal volume, publisher, etc.,
while bookmarks [37] contains metadata for bookmark items,
such as the URL of the web page, an URL hash, a description of the
web page, etc.

4.2. Evaluation measures

Performance evaluation for multi-label learning systems dif-
fers from that of classical single-label learning systems. In any
multi-label experiment, it is essential to include multiple and
contrasting measures because of the additional degrees of free-
dom that the multi-label setting introduces. In our experiments,
we used various evaluation measures that have been suggested
by Tsoumakas et al. [30]. Fig. 3 depicts a categorization of
the used evaluation measures. Furthermore, we evaluate the
algorithms by their efficiency. Namely, we measure the time
needed to construct the predictive models (training time) and
the time needed to obtain a prediction for an unseen example
(testing time).

The evaluation measures of predictive performance are
divided into two groups: bipartitions-based and rankings-based.
The bipartitions-based evaluation measures are calculated based
on the comparison of the predicted relevant labels with the
ground truth relevant labels. This group of evaluation measures
is further divided into example-based and label-based. The exam-
ple-based evaluation measures are based on the average differ-
ences of the actual and the predicted sets of labels over all
examples of the evaluation dataset. The label-based evaluation
measures, on the other hand, assess the predictive performance
for each label separately and then average the performance over
all labels. In our experiments, we used six example-based evalua-
tion measures (Hamming loss, accuracy, precision, recall, F1 score

and subset accuracy) and six label-based evaluation measures
(micro-precision, micro-recall, micro-F1, macro-precision, macro-

recall and macro-F1). Note that these evaluation measures require
predictions stating that a given label is present or not (binary 1/0
predictions). However, most predictive models predict a numer-
ical value for each label and the label is predicted as present if
that numerical value exceeds some predefined threshold t. The
performance of the predictive model thus directly depends on the
selection of an appropriate value of t. To this end, we applied a
threshold calibration method by choosing the threshold that
minimizes the difference in label cardinality between the training
data and the predictions for the test data [16].

The ranking-based evaluation measures compare the predicted
ranking of the labels with the ground truth ranking. We used four
ranking-based measures: one-error, coverage, ranking loss and
average precision. A detailed description of the evaluation mea-
sures is given in Appendix A.

Table 1
Description of the benchmark problems in terms of application domain (domain),

number of training (#tr.e.) and test (#t.e.) examples, the number of features (D),

the total number of labels (Q) and label cardinality (lc). The problems are ordered

by their overall complexity roughly calculated as #tr.e.�D�Q.

Dataset Domain #tr.e. #t.e. D Q lc

emotions [31] Multimedia 391 202 72 6 1.87

scene [32] Multimedia 1211 1159 294 6 1.07

yeast [20] Biology 1500 917 103 14 4.24

medical [16] Text 645 333 1449 45 1.25

enron [33] Text 1123 579 1001 53 3.38

corel5k [34] Multimedia 4500 500 499 374 3.52

tmc2007 [35] Text 21 519 7077 500 22 2.16

mediamill [36] Multimedia 30 993 12 914 120 101 4.38

bibtex [37] Text 4880 2515 1836 159 2.40

delicious [24] Text 12 920 3185 500 983 19.02

bookmarks [37] Text 60 000 27 856 2150 208 2.03

Evaluation measures

Bipartitions based Rankings based

One error
Coverage

Ranking loss
Average precision

Example based Label based

Hamming loss
Accuracy
Precision

Recall
F1 score

Subset accuracy

Macro precision
Macro recall

Macro F1
Micro precision

Micro recall
Micro F1

Fig. 3. Categorization of evaluation measures used to assess the predictive

performance of methods for multi-label learning.

2 http://www.science.uva.nl/research/mediamill/challenge/
3 http://www.computationalmedicine.org/challenge/
4 http://bailando.sims.berkeley.edu/enron_email.html
5 http://delicious.com/
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4.3. Experimental setup

The comparison of the multi-label learning methods was
performed using the implementations in the following machine
learning systems: MULAN6 library under the machine learning
framework WEKA [39], MEKA7 extension for the WEKA frame-
work and CLUS8 system for predictive clustering. The MULAN
library was used for BR, CLR, QWML, HOMER, ML-C4.5, RFML-
C4.5, ML-k NN and RAkEL; the MEKA environment was used for
CC and ECC and the CLUS system for PCT and RF-PCT. All
experiments were performed on a server with an Intel Xeon
processor at 2.50 GHz on 64 GB of RAM with the Fedora 14
operating system. In the remainder of this section, we first state
the base classifiers that were used for the multi-label methods
and then the parameter instantiations of the methods.

4.3.1. Base classifiers

The methods used in this study use two types of base classifiers
for solving the partial binary classification problems in all problem
transformation methods and the ensemble methods: SVMs and
decision trees (see Fig. 2). For training the SVMs, we used the
implementation from the LIBSVM library [40]. In particular, we used
SVMs with a radial basis kernel for all problem transformation
methods and RAkEL and ECC. The kernel parameter gamma and the
penalty C, for each combination of dataset and method, were
determined by 10-fold cross validation using only the training sets.
The exception to this is the ensemble method RAkEL where the kernel
parameter gamma and the penalty C were determined by 5-fold cross
validation for the tmc2007 and mediamill datasets because of its
computational complexity. The values 2�15,2�13, . . . ,21,23 were
considered for gamma and 2�5,2�3, . . . ,213,215 for the penalty C.
After determining the best parameters values for each method on
every dataset, the classifiers were trained using all available training
examples and were evaluated by recognizing all test examples from
the corresponding dataset.

We used two implementations of decision trees: ML-C4.5 from
MULAN and PCTs from CLUS. The ML-C4.5 and PCT as predictive
models were pruned using a pruning method. ML-C4.5 uses a
post-pruning strategy based on a confidence factor, while PCTs
use a pre-pruning strategy based on the F-test (whether a given
split significantly reduces the variance). On the other hand, when
they were used as base classifiers in the ensembles (RFML-C4.5
and RF-PCT), the trees were fully grown [41].

4.3.2. Parameter instantiation

The parameters of the methods were instantiated following
the recommendations from the literature. In particular, for the
ensemble methods based on decision trees (RFML-C4.5 and RF-
PCT), the number of models (classifiers) used in the ensemble was
100 as suggested by Bauer and Kohavi [41]. For the size of the
feature subsets needed for construction of the base classifiers for
RFML-C4.5, we selected the f ðxÞ ¼ blog2ðxÞþ1c as recommended
by Breiman [29], while for RF-PCT we selected f ðxÞ ¼ b0:1 � xþ1c
as recommended by Kocev [18]. The number of models in the ECC
method was set to 10 as proposed by Read et al. [16]. Next, the
number of models in RAkEL was set to minð2 � Q ,100Þ (Q is the
number of labels) for all datasets [15], except for the mediamill,
delicious and bookmarks datasets, where this parameter was set to
10 as a result of the memory requirements of this method.
Besides the number of base classifiers, RAkEL requires one
additional parameter: the size of the label-sets k. For each dataset,

this parameter was set to half the number of labels ðQ=2Þ.
Tsoumakas et al. [15] and Read et al. [16] have shown that this
is a reasonable choice, since it provides a balance between
computational complexity and predictive performance.

The ML-C4.5 method uses sub-tree raising as a post-pruning
strategy with a pruning confidence set to 0.25. Furthermore, the
minimal number of examples in the leaves in each model of the
RFML-C4.5 was set to 10. PCTs use a pre-pruning strategy that
employs the F-test to determine whether a given split results in a
significant reduction of variance. The significance level for the
F-test was automatically selected from a predefined list of
significance levels using 3-fold cross validation. The number of
neighbors in the ML-kNN method for each dataset was deter-
mined from the values 6 to 20 with step 2. HOMER also requires
one additional parameter to be configured: the number of
clusters. For this parameter, five different values (2–6) were
considered in the experiments [24] and we report the best results.

4.4. Statistical evaluation

To assess whether the overall differences in performance
across the ten different approaches are statistically significant,
we employed the corrected Friedman test [42] and the post-hoc
Nemenyi test [43] as recommended by Demšar [44]. The Fried-
man test is a non-parametric test for multiple hypotheses testing.
It ranks the algorithms according to their performance for each
dataset separately, thus the best performing algorithm gets the
rank of 1, the second best the rank of 2, etc. In case of ties, it
assigns average ranks. Then, the Friedman test compares the
average ranks of the algorithms and calculates the Friedman
statistic w2

F , distributed according to the w2
F distribution with

k�1 degrees of freedom (k being the number of algorithms).
Iman and Davenport [45] have shown that the Friedman statistic
is undesirably conservative and derive a corrected F-statistic that
is distributed according to the F-distribution with k�1 and ðk�1Þ �
ðN�1Þ degrees of freedom (N being the number of datasets).

If a statistically significant difference in the performance is
detected, then next step is a post-hoc test to detect between which
algorithms those differences appear. The Nemenyi test is used to
compare all the classifiers to each other. In this procedure, the
performance of two classifiers is significantly different if their average
ranks differ by more than some critical distance. The critical distance
depends on the number of algorithms, the number of datasets and
the critical value (for a given significance level – p) that is based on
the Studentized range statistic and can be found in statistical text-
books (e.g., see [46]).

We present the results from the Nemenyi post-hoc test with
average rank diagrams [44]. These are given in Figs. 4–7 and
B1–B4. A critical diagram contains an enumerated axis on which
the average ranks of the algorithms are drawn. The algorithms are
depicted along the axis in such a manner that the best ranking
ones are at the right-most side of the diagram. The lines for the
average ranks of the algorithms that do not differ significantly (at
the significance level of p¼0.05) are connected with a line.

For the larger datasets, several algorithms did not construct a
predictive model within one week under the available resources.9

These occurrences are marked as DNF (Did Not Finish) in the
tables with the results. Considering this, we perform the statis-
tical analysis twice. For the first analysis (Figs. 4–7), we use only
the datasets for which all the methods finished and provided
results (eight datasets). For the second analysis (Figs. B1–B4), we
penalize the algorithms that do not finish by assigning them the

6 http://mulan.sourceforge.net/
7 http://meka.sourceforge.net/
8 http://clus.sourceforge.net

9 The experiments were performed on a server running Linux, with two Intel

Quad-Core Processors running at 2.5 GHz and 64 GB of RAM.
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lowest value (i.e., the lowest rank value for the given algorithm-
dataset pair) for each evaluation measure.

5. Results and discussion

In this section, we present the results from the experimental
evaluation. For each type of evaluation measure, we present and
discuss the critical diagrams from the tests for statistical sig-
nificance using the datasets on which all algorithms provided
predictive models. We give complete results over all evaluation
measures and all critical diagrams (including those for all data-
sets) in Appendix B.

5.1. Results on the example-based measures

The example-based evaluation measures include Hamming

loss, accuracy, precision, recall, F1 score and subset accuracy. The

results of the statistical evaluation are given in Fig. 4, while the
complete results are given in Tables B1–B7, and Fig. B1. Con-
sidering the results that include the datasets for which all
algorithms finished (Fig. 4), we can make several conclusions.
The first conclusion that draws our attention is that HOMER
performs best as evaluated by recall, while RF-PCT performs best
according to precision. This means that the predictions made by
HOMER are more complete: the original relevant labels were
correctly predicted as relevant labels (small number of false
negatives results in high recall). However, the lower precision

means that besides the labels that were originally relevant,
HOMER predicts non-relevant labels as relevant (larger number
of false positives results in low precision). The situation is some-
what reversed when looking at the predictions from RF-PCT. The
predictions of RF-PCT are more exact: the labels predicted as
relevant were truly relevant in the original examples (small
number of false positives results in high precision). However, RF-
PCT is leaving out some of the relevant labels when making
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Fig. 4. The critical diagrams for the example-based evaluation measures: the results from the Nemenyi post-hoc test at 0.05 significance level on the datasets for which all

algorithms provided results. For precision and subset accuracy the differences are not statistically significant according to the Friedman test (see Table B7), thus we show

only the average ranks of the algorithms: (a) Hamming loss; (b) accuracy; (c) precision; (d) recall; (e) subset accuracy; and (f) F1 score.
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predictions (larger number of false negatives results in high
recall).

We further analyze the performance of the methods across all
six evaluation measures: the best performing methods on all
measures are either RF-PCT or HOMER. We can further note that
RF-PCT is the best performing method, closely followed by
HOMER, BR and CC. The RF-PCT method performs best according
to Hamming loss and precision, third best according to accuracy

and F1 score. HOMER is the best performing as evaluated by subset

accuracy, accuracy, recall and F1 score. The HOMER method has
poor performance as evaluated by Hamming loss and precision

(10-th and 9-th position on the critical diagrams, respectively),
while on these two measures RF-PCT performs the best. We
hypothesize that the low performance of HOMER according to
Hamming loss is because the procedure for construction of
HOMER’s hierarchical structure does not optimize Hamming loss.

The differences in predictive performance are rarely significant
at the significance level of 0.05. HOMER and RF-PCT are often
significantly better than single PCT, or single ML-C4.5 trees. From
an ensemble learning point of view, this means that the RF-PCTs
lift the predictive performance of a single PCT even when the

target concept is a set of labels, similarly as for simple regression
and classification. On the other hand, the increase in predictive
performance is not constant for the ECC and RF-MLC4.5 ensem-
bles: according to some evaluation measure, the single models
perform even better on average than the corresponding ensem-
bles. For this we have two hypotheses: first, CC are stable
classifiers and ensemble can’t much improve over their predictive
performance. Second, RF-MLC4.5 did not perform competitively
because it selects feature subsets with a logarithmic size com-
pared to the complete set of features. Considering that the
domains we used in this study (and other multi-label domains)
have a large number of features (typically larger than 500), the
logarithmic function under-samples the feature space and is
missing some useful information that can contribute to better
classification.

We next focus the discussion on the different types of base
machine learning algorithms. First, we can note that the multi-
label variant of k-nearest neighbors (ML-kNN) performs poor by
across all evaluation measures. Next, the SVM-based methods
perform better for the smaller datasets, while tree-based methods
for the larger datasets. This is because the Gaussian kernel can
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Fig. 5. The critical diagrams for the label-based evaluation measures: the results from the Nemenyi post-hoc test at 0.05 significance level on the datasets for which all

algorithms provided results: (a) micro-precision; (b) macro-precision; (c) micro-recall; (d) macro-recall; (e) micro-F1; and (f) macro-F1.
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handle very well the smaller number of examples: when the
number of examples increases, the performance of the kernel
approaches the performance of a linear kernel. Furthermore, the
SVM-based methods are better for the domains with larger
numbers of features. For instance, in text classification an exam-
ple is a document typically represented as a bag-of-words, where
each feature can play a crucial role in making a correct prediction.
The SVMs exploit the information from all the features, while the
decision trees use only a (small) subset of features and may miss
some crucial information.

Finally, we discuss the addition of all datasets in the statistical
analysis (shown in Fig. B1). This analysis shows that RF-PCT and
BR have improved predictive performance at the expense of the
methods that did not finish. RF-PCT is again the best performing
method overall, followed by BR, HOMER and CC. RF-PCT is best
according to Hamming loss, precision and subset accuracy, while
HOMER is best according to accuracy, F1 score and recall. RF-PCT is
second best on accuracy and F1 score and has an improved
performance according to recall.

5.2. Results on the label-based measures

The label-based evaluation measures include micro-precision,
micro-recall, micro-F1, macro-precision, macro-recall and macro-F1.
The results from the statistical evaluation are given in Fig. 5, while
complete results are given in Tables B8–B14, and Fig. B2. First, we
focus on the results and the statistical analysis on the datasets for
which all methods have finished. As for the example-based
measures, the best performing methods are RF-PCT, HOMER, BR
and CC. HOMER performs best according to four evaluation
measures: macro-F1, macro-recall, micro-F1 and micro-recall and
it performs worst of all methods according to micro-precision and
7-th according to macro-precision. RF-PCT is the best performing
using macro-precision and, according to the critical diagrams,
performs statistically significantly better than HOMER for the
micro precision evaluation measure.

We next discuss the performance of the ensembles and the
single models. Again, as for the example-based measures, RF-PCT
is better than single PCT over all evaluation measures. On the

12 11 10 9 8 7 6 5 4 3 2 1

RF-PCT

BR

CC

CLR

RFML-C4.5

ML-kNNML-C4.5

PCT

QWML

HOMER

RAkEL

ECC

Critical Distance = 5.89147

12 11 10 9 8 7 6 5 4 3 2 1

RF-PCT

BR

CLR

CC

QWML

RFML-C4.5HOMER

ML-kNN

RAkEL

ML-C4.5

ECC

PCT

Critical Distance = 5.89147

12 11 10 9 8 7 6 5 4 3 2 1

RF-PCT

CC

BR

RFML-C4.5

CLR

ML-kNNML-C4.5

PCT

QWML

HOMER

ECC

RAkEL

Critical Distance = 5.89147
12 11 10 9 8 7 6 5 4 3 2 1

RF-PCT

BR

CC

CLR

RFML-C4.5

ML-kNN

HOMER

QWML

ML-C4.5

RAkEL

ECC

PCT

Critical Distance = 5.89147

Fig. 6. The critical diagrams for the ranking-based evaluation measures: the results from the Nemenyi post-hoc test at 0.05 significance level on the datasets for which all

algorithms provided results: (a) ranking loss; (b) one-error; (c) coverage; and (d) average precision.
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Fig. 7. The critical diagrams for the efficiency measures: the results from the Nemenyi post-hoc test at 0.05 significance level on the datasets for which all algorithms

provided results: (a) training time and (b) testing time.
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other hand, this is not the case for RF-MLC4.5 and ECC. The
reasons for this are the same as for the example-based measures:
CC is a stable classifier and the logarithmic size of the feature
subset for RF-MLC4.5 is under-sampling the feature space.

The behavior of the base machine learning algorithms remains
the same as for the example-based measures. ML-k NN again has
very poor predictive performance across all evaluation measures.
SVMs are better for the smaller datasets and decision trees for the
larger datasets.

Finally, the addition of the datasets for which some (but not all)
of the methods finished did not change the results much (compare
Fig. 5 with Fig. B2). The updated results improved the average
performance of RF-PCT, BR and CC at the expense of the methods
not able to produce results. However, the relative average perfor-
mance remained the same as for the subset of datasets: HOMER is
best according to macro-F1, macro-recall, micro-F1 and micro-recall,
while RF-PCT is best according to micro-precision and macro-

precision. Moreover, RF-PCT is statistically significantly better than
HOMER according to micro-precision.

5.3. Results on the ranking-based measures

The ranking-based measures include one-error, ranking loss,
coverage and average precision. The results from the statistical
evaluation are given in Fig. 6, while the complete results are given
in Tables B15–B19 and Fig. B3. We first focus on the results for the
datasets for which all methods have finished. The best performing
method is RF-PCT, followed by BR, CC and CLR. RF-PCT is the best
performing method on all four evaluation measures, BR is second
best on three measures (one-error, ranking loss and average precision)
and third on coverage. Considering ensemble learning, the ensem-
bles based on decision trees perform better than the corresponding
single models. However, the ensembles of CC perform worse than a
single CC. The ranking-based measures indicate that the SVM-based
methods perform better for smaller datasets, while tree-based
measures perform better on larger datasets.

Let us further compare RF-PCT with HOMER using the ranking
measures. The statistical evaluation of the performance reveals
that RF-PCT is statistically significantly better than HOMER at the
significance level of 0.05 according to coverage and ranking loss

(see Fig. 6). Furthermore, the statistical evaluation using all
datasets (Fig. B3) shows that RF-PCT is statistically significantly
better than HOMER on all evaluation measures except one–error.
The other results from the statistical analysis using all datasets
are similar to the results on the subset of datasets.

5.4. Results on the efficiency measures

We finally discuss the efficiency of the proposed methods in
terms of training and testing time. The results are given in
Figs. 7 and B4, and Tables B20–B22. They show that the
tree-based methods are more efficient than the SVM-based
methods. Namely, PCT is the most efficient method, followed by
ML-C4.5 and ML-k NN. PCTs are faster to construct than ML-C4.5
because of the pruning strategy they employ: the former used
pre-pruning and the latter post-pruning.

We further discuss the methods that exhibited the best
predictive performance according to the other evaluation mea-
sures: RF-PCT and HOMER. RF-PCT is better than HOMER on the
time needed to produce a prediction for an unseen example
(testing time) and on the time needed for learning a classifier
(training time) for both analyses: the first includes only the
datasets with complete results and the second includes all
datasets. Moreover, HOMER did not produce results for the
bookmarks dataset.

6. Conclusions

In this study, we present an extensive experimental evaluation
of methods for multi-label learning. The topic of multi-label
learning has lately received significant research effort. It has also
attracted much attention from the research community, in the
form of journal special issues and workshops at major confer-
ences. This has resulted in a variety of methods for addressing the
task of multi-label learning. However, a wider experimental
comparison of these methods is still lacking in the literature.

We evaluate the most popular methods for multi-label learn-
ing using a wide range of evaluation measures on a variety of
datasets. Below we explain the dimensions of the extensive
experimental evaluation. First, we selected 12 multi-label meth-
ods that were recently proposed in the literature. The selected
methods are divided into three main groups: algorithm adapta-
tion (three methods), problem transformation (five methods) and
ensembles (four methods). The methods use three types of basic
machine learning algorithms: SVMs (seven methods), decision
trees (four methods) and k-nearest neighbors (one method).
Second, we used 16 different evaluation measures that are
typically used in the context of multi-label learning. The variety
of evaluation measures is necessary to provide a view on algo-
rithm performance from different perspectives. The evaluation
measures are divided in three groups: example-based (six mea-
sures), label-based (six measures) and ranking-based (four mea-
sures). Furthermore, we assess the efficiency of the methods by
measuring the time needed to learn the classifier and the time
needed to produce a prediction for an unseen example. Third, we
evaluate the methods on 11 multi-label benchmark datasets from
five application domains: text classification (six datasets), image
classification (two datasets), gene function prediction (one data-
set), music classification (one dataset) and video classification
(one dataset). We then analyze the results from the experiments
using Friedman and Nemenyi tests for assessing the statistical
significance of the differences in performance. We present the
results from the statistical tests using critical diagrams.

The results of the experimental comparison revealed that the
best performing methods are RF-PCT and HOMER, followed by BR
and CC. For each performance measure, the best algorithm was
either RF-PCT or HOMER. The example-based measures, which are
most widely used for multi-label classification, show that RF-PCT
is best according to precision and has average performance on
recall. On the other hand, HOMER is best according to recall, while
having poor performance on precision. This means that the
predictions from RF-PCT are more exact than the ones from
HOMER, while the predictions from HOMER are more complete
than the ones from RF-PCT. Considering the basic machine
learning algorithms underlying the compared approaches, the
SVM based methods are better on datasets with a large number of
features and a smaller number of examples, since they can exploit
the information from all of the features, while the decision trees
exploit only a subset of the features.

The label-based measures showed behavior similar to that of
the example-based measures. However, the gap between HOMER
and RF-PCT on recall and precision is now much bigger. Namely,
RF-PCT is statistically significantly better than HOMER on the two
precision-based measures.

The ranking-based measures offer a different perspective on
the results. RF-PCT was the best performing method, followed by
CC and BR. On these measures HOMER exhibited poor perfor-
mance. RF-PCT is statistically significantly better than HOMER on
two evaluation measures (coverage and ranking loss) using the
datasets for which there are results from all methods and
statistically significantly better on all four evaluation measures
using all datasets. Furthermore, these measures emphasize the
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advantages of the SVM-based methods on the smaller datasets
and the tree-based methods on the larger datasets.

Considering efficiency, the tree-based methods are generally
faster to train a classifier and produce a prediction for an unseen
example than the SVM-based methods. We further compare the
efficiency of the RF-PCT and HOMER methods. The results show
that RF-PCT is faster than HOMER on testing time (on average
194.6 times) and on training time (on average 8.4 times).

The experimental comparison can be extended by including
more methods for multi-label learning. For example, one can also
include bagging of PCTs: ensemble method that has competitive
performance to random forests of PCTs [18]. The comparison can
be also extended by including other evaluation measures. One
evaluation measure that can be easily adapted for multi-label
setting is the precision-recall curve (and the area under the
precision-recall curve thereof) [47]. This will offer a better insight
to the trade-off between the precision and recall performance of a
given method for multi-label learning.

All in all, the final recommendation considering the perfor-
mance and the efficiency of the evaluated methods is that RF-PCT,
HOMER, BR and CC should be used as benchmark methods for
multi-label learning. Over all evaluation measures these methods
performed best. Furthermore, RF-PCT and HOMER exhibited the
best predictive performance and better efficiency than the rest of
the methods.

Appendix A. Evaluation measures

In this section, we present the measures that are used to
evaluate the predictive performance of the compared methods in
our experiments. In the definitions below, Yi denotes the set of
true labels of example xi and hðxiÞ denotes the set of predicted
labels for the same examples. All definitions refer to the multi-
label setting.

A.1. Example based measures

Hamming loss evaluates how many times an example-label
pair is misclassified, i.e., label not belonging to the example is
predicted or a label belonging to the example is not predicted. The
smaller the value of hamming_lossðhÞ, the better the performance.
The performance is perfect when hamming_lossðhÞ ¼ 0. This metric
is defined as

hamming_lossðhÞ ¼
1

N

XN

i ¼ 1

1

Q
9hðxiÞDYi9 ðA:1Þ

where D stands for the symmetric difference between two sets, N

is the number of examples and Q is the total number of possible
class labels.

Accuracy for a single example xi is defined by the Jaccard
similarity coefficients between the label sets hðxiÞ and Yi. Accu-
racy is micro-averaged across all examples:

accuracyðhÞ ¼
1

N

XN

i ¼ 1

9hðxiÞ \ Yi9
9hðxiÞ

S
Yi9

ðA:2Þ

Precision is defined as

precisionðhÞ ¼
1

N

XN

i ¼ 1

9hðxiÞ \ Yi9
9Yi9

ðA:3Þ

Recall is defined as

recallðhÞ ¼
1

N

XN

i ¼ 1

9hðxiÞ \ Yi9
9hðxiÞ9

ðA:4Þ

F1 score is the harmonic mean between precision and recall
and is defined as

F1 ¼
1

N

XN

i ¼ 1

2� 9hðxiÞ \ Yi9
9hðxiÞ9þ9Yi9

ðA:5Þ

F1 is an example based metric and its value is an average over all
examples in the dataset. F1 reaches its best value at 1 and worst
score at 0.

Subset accuracy or classification accuracy is defined as follows:

subset_accuracyðhÞ ¼
1

N

XN

i ¼ 1

IðhðxiÞ ¼YiÞ ðA:6Þ

where I(true)¼1 and I(false)¼0. This is a very strict evaluation
measure as it requires the predicted set of labels to be an exact
match of the true set of labels.

A.2. Label based measures

Macro-precision (precision averaged across all labels) is defined
as

macro_precision¼
1

Q

XQ

j ¼ 1

tpj

tpjþ fpj

ðA:7Þ

where tpj and fpj are the number of true positives and false
positives for the label lj considered as a binary class.

Macro-recall (recall averaged across all labels) is defined as

macro_recall¼
1

Q

XQ

j ¼ 1

tpj

tpjþ fnj

ðA:8Þ

where tpj and fpj are defined as for the macro-precision and fnj is
the number of false negatives for the label lj considered as a
binary class.

Macro-F1 is the harmonic mean between precision and recall,
where the average is calculated per label and then averaged
across all labels. If pj and rj are the precision and recall for all
ljAhðxiÞ from ljAYi, the macro-F1 is

macro_F1 ¼
1

Q

XQ

j ¼ 1

2� pj � rj

pjþrj
ðA:9Þ

Micro-precision (precision averaged over all the example/label
pairs) is defined as

micro_precision¼

PQ
j ¼ 1 tpjPQ

j ¼ 1 tpjþ
PQ

j ¼ 1 fpj

ðA:10Þ

where tpj, fpj are defined as for macro-precision.
Micro-recall (recall averaged over all the example/label pairs)

is defined as

micro_recall¼

PQ
j ¼ 1 tpjPQ

j ¼ 1 tpjþ
PQ

j ¼ 1 fnj

ðA:11Þ

where tpj and fnj are defined as for macro-recall.
Micro-F1 is the harmonic mean between micro-precision and

micor-recall. Micro-F1 is defined as

micro_F1 ¼
2�micro_precision�micro_recall

micro_precisionþmicro_recall
ðA:12Þ

A.3. Ranking based measures

One error evaluates how many times the top-ranked label is
not in the set of relevant labels of the example. The metric
one_errorðf Þ takes values between 0 and 1. The smaller the value
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of one_errorðf Þ, the better the performance. This evaluation metric
is defined as

one_errorðf Þ ¼
1

N

XN

i ¼ 1
1 arg max

lAY
f ðxi,lÞ

� �
=2YiU ðA:13Þ

where lAL¼ fl1,l2, . . . ,lQ g and 1pU equals 1 if p holds and
0 otherwise for any predicate p. Note that, for single-label
classification problems, the One Error is identical to ordinary
classification error.

Coverage evaluates how far, on average, we need to go down
the list of ranked labels in order to cover all the relevant labels of
the example. The smaller the value of coverage(f), the better the
performance:

coverageðf Þ ¼
1

N

XN

i ¼ 1

max
lAYi

rankf ðxi,lÞ�1 ðA:14Þ

where rankf ðxi,lÞ maps the outputs of f ðxi,lÞ for any lAL to
fl1,l2, . . . ,lQ g so that f ðxi,lmÞ4 f ðxi,lnÞ implies rankf ðxi,lmÞo
rankf ðxi,lnÞ. The smallest possible value for coverage(f) is lc, i.e., the
label cardinality of the given dataset.

Ranking loss evaluates the average fraction of label pairs that
are reversely ordered for the particular example given by

ranking lossðf Þ ¼
1

N

XN

i ¼ 1

9Di9

9Yi9 9Y i9
ðA:15Þ

where Di ¼ fðlm,lnÞ9f ðxi,lmÞr f ðxi,lnÞ,ðlm,lnÞAYi � Y ig, while Y
denotes the complementary set of Y in L. The smaller the value

of ranking_lossðf Þ, the better the performance, so the performance
is perfect when ranking_lossðf Þ ¼ 0.

Average precision is the average fraction of labels ranked above
an actual label lAYi that actually are in Yi. The performance is
perfect when avg_precisionðf Þ ¼ 1; the larger the value of
avg_precisionðf Þ, the better the performance. This metric is
defined as

avg_precisionðf Þ ¼
1

N

XN

i ¼ 1

1

9Yi9

X
lAYi

9Li9
rankf ðxi,lÞ

ðA:16Þ

where Li ¼ fl
09rankf ðxi,l

0
Þrrankf ðxi,lÞ,l

0AYig and rankf ðxi,lÞ is
defined as in coverage above.

Appendix B. Complete results from the experimental
evaluation

In this section, we present the complete results from the
experimental evaluation. We present the results based on the
evaluation measures. We first present the results for the example-
based evaluation measures. We then show the results for label-
based evaluation measures. We next give the results for ranking-
based evaluation measure. Finally, we present the efficiency of
the methods by their training and testing times.

Table B1
The performance of the multi-label learning approaches in terms of the Hamming loss measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.257 0.256 0.257 0.254 0.361 0.247 0.267 0.294 0.282 0.281 0.198 0.189
scene 0.079 0.082 0.080 0.081 0.082 0.141 0.129 0.099 0.077 0.085 0.116 0.094

yeast 0.190 0.193 0.190 0.191 0.207 0.234 0.219 0.198 0.192 0.207 0.205 0.197

medical 0.077 0.077 0.017 0.012 0.012 0.013 0.023 0.017 0.012 0.014 0.022 0.014

enron 0.045 0.064 0.048 0.048 0.051 0.053 0.058 0.051 0.045 0.049 0.047 0.046

corel5k 0.017 0.017 0.012 0.012 0.012 0.010 0.009 0.009 0.009 0.009 0.009 0.009
tmc2007 0.013 0.013 0.014 0.014 0.015 0.093 0.075 0.058 0.021 0.026 0.037 0.011
mediamill 0.032 0.032 0.043 0.043 0.038 0.044 0.034 0.031 0.035 0.035 0.030 0.029
bibtex 0.012 0.012 0.012 0.012 0.014 0.016 0.014 0.014 DNF 0.013 0.014 0.013

delicious 0.018 0.018 DNF DNF 0.022 0.019 0.019 0.018 DNF DNF 0.018 0.018

bookmarks DNF DNF DNF DNF DNF 0.009 0.009 0.009 DNF DNF 0.009 0.009

Table B2
The performance of the multi-label learning approaches in terms of the accuracy measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.361 0.356 0.361 0.373 0.471 0.536 0.448 0.319 0.419 0.432 0.488 0.519

scene 0.689 0.723 0.686 0.683 0.717 0.569 0.538 0.629 0.734 0.735 0.388 0.541

yeast 0.520 0.527 0.524 0.523 0.559 0.480 0.440 0.492 0.531 0.546 0.453 0.478

medical 0.206 0.211 0.656 0.658 0.713 0.730 0.228 0.528 0.673 0.611 0.250 0.591

enron 0.446 0.334 0.459 0.388 0.478 0.418 0.196 0.319 0.428 0.462 0.374 0.416

corel5k 0.030 0.030 0.195 0.195 0.179 0.002 0.000 0.014 0.000 0.001 0.005 0.009

tmc2007 0.891 0.899 0.889 0.889 0.888 0.110 0.436 0.574 0.852 0.808 0.663 0.914
mediamill 0.403 0.390 0.095 0.095 0.413 0.052 0.354 0.421 0.337 0.349 0.423 0.441
bibtex 0.348 0.352 0.334 0.338 0.330 0.108 0.046 0.129 DNF 0.186 0.060 0.166

delicious 0.136 0.137 DNF DNF 0.207 0.001 0.001 0.102 DNF DNF 0.151 0.146

bookmarks DNF DNF DNF DNF DNF 0.237 0.133 0.202 DNF DNF 0.176 0.204
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Table B4
The performance of the multi-label learning approaches in terms of the recall measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.409 0.397 0.410 0.429 0.775 0.703 0.534 0.377 0.491 0.533 0.545 0.582

scene 0.711 0.726 0.712 0.709 0.744 0.582 0.539 0.655 0.740 0.771 0.388 0.541

yeast 0.591 0.600 0.601 0.600 0.714 0.608 0.490 0.549 0.615 0.673 0.491 0.523

medical 0.735 0.754 0.795 0.801 0.760 0.740 0.227 0.547 0.679 0.642 0.251 0.599

enron 0.497 0.507 0.557 0.453 0.610 0.487 0.229 0.358 0.469 0.560 0.398 0.452

corel5k 0.055 0.056 0.264 0.264 0.250 0.002 0.000 0.014 0.000 0.001 0.005 0.009

tmc2007 0.928 0.934 0.929 0.929 0.943 0.111 0.478 0.664 0.880 0.903 0.677 0.920

mediamill 0.450 0.424 0.101 0.101 0.563 0.052 0.379 0.470 0.353 0.372 0.456 0.476

bibtex 0.373 0.378 0.364 0.366 0.389 0.111 0.046 0.132 DNF 0.187 0.060 0.167

delicious 0.155 0.157 DNF DNF 0.303 0.001 0.001 0.112 DNF DNF 0.176 0.160

bookmarks DNF DNF DNF DNF DNF 0.244 0.137 0.207 DNF DNF 0.181 0.208

Table B5
The performance of the multi-label learning approaches in terms of the subset accuracy measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.129 0.124 0.144 0.149 0.163 0.277 0.223 0.084 0.208 0.168 0.272 0.307
scene 0.639 0.685 0.633 0.630 0.661 0.533 0.509 0.573 0.694 0.665 0.372 0.518

yeast 0.190 0.239 0.195 0.192 0.213 0.158 0.152 0.159 0.201 0.215 0.129 0.152

medical 0.000 0.000 0.486 0.480 0.610 0.646 0.177 0.462 0.607 0.526 0.216 0.538

enron 0.149 0.000 0.117 0.097 0.145 0.140 0.002 0.062 0.136 0.131 0.124 0.131

corel5k 0.000 0.000 0.010 0.012 0.002 0.000 0.000 0.000 0.000 0.001 0.008 0.000

tmc2007 0.772 0.787 0.767 0.768 0.765 0.078 0.215 0.305 0.734 0.608 0.421 0.816
mediamill 0.080 0.080 0.044 0.044 0.053 0.049 0.065 0.110 0.060 0.065 0.104 0.122
bibtex 0.194 0.202 0.183 0.186 0.165 0.095 0.004 0.056 DNF 0.109 0.011 0.098

delicious 0.004 0.006 DNF DNF 0.001 0.001 0.001 0.003 DNF DNF 0.018 0.007

bookmarks DNF DNF DNF DNF DNF 0.209 0.129 0.187 DNF DNF 0.167 0.189

Table B6
The performance of the multi-label learning approaches in terms of the F1 score measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.469 0.461 0.465 0.481 0.614 0.651 0.554 0.431 0.525 0.556 0.583 0.611

scene 0.714 0.742 0.713 0.710 0.745 0.587 0.551 0.658 0.754 0.771 0.395 0.553

yeast 0.650 0.657 0.655 0.654 0.687 0.614 0.578 0.628 0.661 0.670 0.589 0.614

medical 0.328 0.337 0.742 0.745 0.761 0.768 0.253 0.560 0.704 0.652 0.267 0.616

enron 0.582 0.484 0.600 0.525 0.613 0.546 0.295 0.445 0.564 0.602 0.505 0.552

corel5k 0.047 0.048 0.293 0.292 0.280 0.003 0.000 0.021 0.000 0.001 0.008 0.014

tmc2007 0.934 0.939 0.933 0.933 0.934 0.126 0.554 0.699 0.904 0.887 0.763 0.948
mediamill 0.557 0.539 0.134 0.135 0.579 0.054 0.490 0.570 0.471 0.483 0.572 0.589
bibtex 0.433 0.434 0.417 0.421 0.426 0.117 0.069 0.174 DNF 0.237 0.087 0.212

delicious 0.230 0.225 DNF DNF 0.343 0.001 0.001 0.017 DNF DNF 0.256 0.244

bookmarks DNF DNF DNF DNF DNF 0.257 0.135 0.213 DNF DNF 0.181 0.213

Table B3
The performance of the multi-label learning approaches in terms of the precision measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.550 0.551 0.538 0.548 0.509 0.606 0.577 0.502 0.564 0.580 0.625 0.644
scene 0.718 0.758 0.714 0.711 0.746 0.592 0.565 0.661 0.768 0.770 0.403 0.565

yeast 0.722 0.727 0.719 0.718 0.663 0.620 0.705 0.732 0.715 0.667 0.738 0.744
medical 0.211 0.217 0.695 0.697 0.762 0.797 0.285 0.575 0.730 0.662 0.284 0.635

enron 0.703 0.464 0.650 0.624 0.616 0.623 0.415 0.587 0.708 0.652 0.690 0.709
corel5k 0.042 0.042 0.329 0.326 0.317 0.005 0.000 0.035 0.000 0.002 0.018 0.030

tmc2007 0.941 0.944 0.937 0.937 0.926 0.146 0.659 0.738 0.928 0.872 0.874 0.977
mediamill 0.731 0.741 0.201 0.203 0.597 0.056 0.694 0.724 0.705 0.690 0.765 0.772
bibtex 0.515 0.508 0.488 0.496 0.472 0.123 0.140 0.254 DNF 0.324 0.159 0.292

delicious 0.443 0.399 DNF DNF 0.369 0.001 0.001 0.424 DNF DNF 0.472 0.512
bookmarks DNF DNF DNF DNF DNF 0.271 0.133 0.218 DNF DNF 0.182 0.218
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Table B7
The p-values of the assessment of performance of the multi-label learning approaches by the Friedman test using the example-based evaluation measures. Subset shows

the calculated p-values for the datasets on which all algorithms finished. All shows the calculated p-values for all datasets including those which did not finished.

Evaluation measure All Subset

Hamming loss 0.0895 0.047
Accuracy 0.077 0.037
Precision 0.117 0.19
Recall 5� 10�4 7:9� 10�5

F1 score 5� 10�3 0.0013

Subset accuracy 0.555 0.343
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Fig. B1. The critical diagrams for the example-based evaluation measures: the results from the Nemenyi post-hoc test at 0.05 significance level on all the datasets. For

Hamming loss, precision, accuracy and subset accuracy the differences are not statistically significant according to the Friedman test (see Table B7), thus we show only the

average ranks of the algorithms: (a) Hamming loss; (b) accuracy; (c) precision; (d) recall; (e) subset accuracy; and (f) F1 score.

Table B8
The performance of the multi-label learning approaches in terms of the micro-precision measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.684 0.698 0.685 0.680 0.471 0.607 0.607 0.584 0.586 0.579 0.783 0.783
scene 0.843 0.814 0.835 0.832 0.804 0.619 0.512 0.691 0.831 0.773 0.960 0.930
yeast 0.733 0.726 0.729 0.727 0.647 0.618 0.698 0.736 0.720 0.662 0.747 0.755
medical 0.225 0.229 0.669 0.667 0.807 0.796 0.826 0.807 0.881 0.834 0.884 0.885
enron 0.721 0.492 0.652 0.687 0.597 0.613 0.601 0.684 0.743 0.642 0.768 0.738
corel5k 0.061 0.061 0.338 0.339 0.308 0.160 0.000 0.730 0.000 0.333 0.750 0.696
tmc2007 0.947 0.948 0.940 0.941 0.922 0.940 0.689 0.757 0.938 0.869 0.963 0.992
mediamill 0.742 0.753 0.582 0.580 0.569 0.597 0.743 0.739 0.725 0.708 0.788 0.798
bibtex 0.753 0.744 0.734 0.736 0.547 0.359 1.000 0.819 DNF 0.948 0.940 0.957
delicious 0.658 0.660 DNF DNF 0.396 0.000 0.000 0.651 DNF DNF 0.589 0.695
bookmarks DNF DNF DNF DNF DNF 0.632 0.947 0.850 DNF DNF 0.878 0.895
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Table B9
The performance of the multi-label learning approaches in terms of the macro-precision measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.721 0.581 0.677 0.660 0.464 0.602 0.628 0.518 0.547 0.531 0.828 0.802

scene 0.844 0.817 0.835 0.832 0.807 0.635 0.682 0.784 0.835 0.785 0.963 0.919

yeast 0.628 0.602 0.614 0.614 0.471 0.377 0.479 0.600 0.480 0.391 0.533 0.674
medical 0.399 0.391 0.288 0.285 0.287 0.263 0.018 0.267 0.269 0.266 0.190 0.269

enron 0.258 0.260 0.205 0.242 0.241 0.142 0.023 0.170 0.222 0.249 0.245 0.233

corel5k 0.052 0.053 0.059 0.059 0.044 0.004 0.000 0.031 0.000 0.001 0.007 0.015

tmc2007 0.972 0.972 0.964 0.965 0.954 0.925 0.386 0.780 0.973 0.938 0.994 0.997
mediamill 0.112 0.144 0.140 0.133 0.107 0.046 0.401 0.308 0.025 0.037 0.397 0.441
bibtex 0.528 0.539 0.503 0.490 0.391 0.128 0.006 0.192 DNF 0.121 0.080 0.127

delicious 0.299 0.303 DNF DNF 0.154 0.000 0.000 0.134 DNF DNF 0.422 0.293

bookmarks DNF DNF DNF DNF DNF 0.292 0.018 0.414 DNF DNF 0.388 0.522

Table B10
The performance of the multi-label learning approaches in terms of the micro-recall measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.406 0.393 0.409 0.431 0.782 0.712 0.539 0.376 0.489 0.531 0.551 0.589

scene 0.694 0.708 0.695 0.692 0.727 0.570 0.521 0.634 0.721 0.751 0.572 0.523

yeast 0.587 0.588 0.595 0.595 0.702 0.603 0.492 0.543 0.602 0.655 0.491 0.521

medical 0.725 0.739 0.782 0.787 0.742 0.720 0.227 0.522 0.600 0.624 0.237 0.569

enron 0.464 0.472 0.532 0.438 0.585 0.440 0.246 0.353 0.435 0.532 0.366 0.422

corel5k 0.057 0.057 0.258 0.258 0.248 0.002 0.000 0.015 0.000 0.001 0.005 0.009

tmc2007 0.917 0.924 0.920 0.920 0.932 0.073 0.454 0.621 0.847 0.869 0.651 0.902

mediamill 0.415 0.385 0.066 0.066 0.537 0.004 0.351 0.432 0.315 0.333 0.418 0.435

bibtex 0.328 0.335 0.322 0.328 0.353 0.053 0.057 0.118 DNF 0.142 0.066 0.131

delicious 0.143 0.144 DNF DNF 0.297 0.000 0.000 0.101 DNF DNF 0.174 0.151

bookmarks DNF DNF DNF DNF DNF 0.170 0.135 0.135 DNF DNF 0.112 0.136

Table B11
The performance of the multi-label learning approaches in terms of the macro-recall measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.378 0.364 0.381 0.398 0.775 0.702 0.533 0.334 0.462 0.508 0.532 0.569

scene 0.703 0.716 0.704 0.701 0.734 0.573 0.529 0.647 0.727 0.757 0.381 0.533

yeast 0.355 0.357 0.361 0.361 0.466 0.375 0.269 0.308 0.352 0.388 0.257 0.286

medical 0.423 0.428 0.307 0.324 0.282 0.249 0.022 0.163 0.183 0.179 0.040 0.176

enron 0.120 0.146 0.139 0.120 0.163 0.107 0.030 0.075 0.097 0.129 0.082 0.100

corel5k 0.023 0.023 0.039 0.039 0.041 0.005 0.000 0.006 0.000 0.001 0.001 0.002

tmc2007 0.915 0.924 0.914 0.914 0.897 0.085 0.235 0.418 0.739 0.772 0.297 0.769

mediamill 0.049 0.044 0.028 0.028 0.074 0.002 0.029 0.088 0.020 0.023 0.065 0.080

bibtex 0.250 0.257 0.236 0.238 0.247 0.034 0.006 0.049 DNF 0.044 0.013 0.043

delicious 0.072 0.075 DNF DNF 0.103 0.000 0.000 0.039 DNF DNF 0.092 0.060

bookmarks DNF DNF DNF DNF DNF 0.098 0.016 0.070 DNF DNF 0.048 0.072

Table B12

The performance of the multi-label learning approaches in terms of the micro-F1 measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.509 0.503 0.512 0.528 0.588 0.655 0.571 0.457 0.533 0.554 0.647 0.672

scene 0.761 0.757 0.758 0.756 0.764 0.593 0.516 0.661 0.772 0.762 0.717 0.669

yeast 0.652 0.650 0.655 0.654 0.673 0.610 0.577 0.625 0.656 0.658 0.593 0.617

medical 0.343 0.350 0.721 0.722 0.773 0.756 0.356 0.634 0.714 0.714 0.374 0.693

enron 0.564 0.482 0.585 0.535 0.591 0.512 0.349 0.466 0.548 0.582 0.496 0.537

corel5k 0.059 0.059 0.293 0.293 0.275 0.004 0.000 0.030 0.000 0.002 0.010 0.018

tmc2007 0.932 0.936 0.930 0.930 0.927 0.135 0.547 0.682 0.890 0.869 0.777 0.945
mediamill 0.533 0.509 0.118 0.119 0.553 0.007 0.477 0.545 0.440 0.453 0.546 0.563
bibtex 0.457 0.462 0.448 0.454 0.429 0.093 0.108 0.206 DNF 0.247 0.123 0.230

delicious 0.234 0.236 DNF DNF 0.339 0.000 0.000 0.175 DNF DNF 0.269 0.248

bookmarks DNF DNF DNF DNF DNF 0.268 0.236 0.232 DNF DNF 0.199 0.236
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Table B13
The performance of the multi-label learning approaches in terms of the macro-F1 measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.440 0.420 0.443 0.458 0.570 0.630 0.568 0.385 0.488 0.500 0.620 0.650
scene 0.765 0.762 0.762 0.759 0.768 0.596 0.593 0.692 0.777 0.770 0.514 0.658

yeast 0.392 0.390 0.392 0.394 0.447 0.370 0.293 0.336 0.359 0.350 0.283 0.322

medical 0.361 0.371 0.281 0.286 0.282 0.250 0.020 0.192 0.210 0.203 0.058 0.207

enron 0.143 0.153 0.149 0.143 0.167 0.115 0.026 0.087 0.115 0.140 0.102 0.122

corel5k 0.021 0.021 0.042 0.042 0.036 0.008 0.000 0.010 0.000 0.001 0.001 0.004

tmc2007 0.942 0.947 0.938 0.938 0.924 0.124 0.263 0.493 0.826 0.834 0.371 0.857

mediamill 0.056 0.052 0.037 0.037 0.073 0.003 0.031 0.113 0.019 0.022 0.088 0.112

bibtex 0.307 0.316 0.291 0.292 0.266 0.045 0.006 0.065 DNF 0.052 0.016 0.055

delicious 0.096 0.100 DNF DNF 0.103 0.000 0.000 0.051 DNF DNF 0.142 0.083

bookmarks DNF DNF DNF DNF DNF 0.119 0.017 0.096 DNF DNF 0.065 0.101

Table B14
The p-values of the assessment of performance of the multi-label learning approaches by the Friedman test using the label-based evaluation measures. Subset shows the

calculated p-values for the datasets on which all algorithms finished. All shows the calculated p-values for all datasets including those which did not finished.

Evaluation measure All Subset

Macro-precision 3:5� 10�7 4:8� 10�7

Macro-recall 2:8� 10�4 1:1� 10�4

Macro-F1 3:1� 10�4 9:8� 10�5

Micro-precision 3:7� 10�9 3:4� 10�8

Micro-recall 3:6� 10�4 7:3� 10�5

Micro-F1 0.011 0.0022

Table B15
The performance of the multi-label learning approaches in terms of the ranking loss measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.246 0.245 0.264 0.331 0.297 0.210 0.270 0.283 0.281 0.310 0.153 0.151
scene 0.060 0.064 0.065 0.103 0.119 0.169 0.174 0.093 0.104 0.103 0.079 0.072

yeast 0.164 0.170 0.163 0.296 0.205 0.225 0.199 0.172 0.259 0.224 0.173 0.167

medical 0.021 0.019 0.028 0.027 0.090 0.048 0.104 0.045 0.159 0.152 0.028 0.024

enron 0.084 0.083 0.078 0.177 0.183 0.120 0.114 0.093 0.283 0.238 0.083 0.079

corel5k 0.117 0.118 0.100 0.245 0.352 0.479 0.140 0.130 0.673 0.749 0.122 0.117

tmc2007 0.003 0.003 0.005 0.039 0.028 0.043 0.100 0.031 0.031 0.032 0.007 0.006

mediamill 0.061 0.062 0.092 0.101 0.177 0.073 0.063 0.055 0.236 0.258 0.047 0.047
bibtex 0.068 0.067 0.065 0.207 0.255 0.260 0.255 0.217 DNF 0.394 0.126 0.093

delicious 0.114 0.117 DNF DNF 0.379 0.174 0.172 0.129 DNF DNF 0.140 0.106
bookmarks DNF DNF DNF DNF DNF 0.194 0.258 0.181 DNF DNF 0.129 0.104

Table B16
The performance of the multi-label learning approaches in terms of the one-error measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.386 0.376 0.391 0.391 0.411 0.347 0.386 0.406 0.396 0.426 0.277 0.262
scene 0.180 0.204 0.190 0.193 0.216 0.394 0.389 0.242 0.197 0.213 0.232 0.210

yeast 0.236 0.268 0.229 0.233 0.248 0.312 0.264 0.234 0.254 0.249 0.250 0.248

medical 0.135 0.123 0.168 0.165 0.216 0.198 0.612 0.279 0.312 0.315 0.243 0.174

enron 0.237 0.238 0.231 0.269 0.314 0.309 0.392 0.280 0.290 0.247 0.219 0.221

corel5k 0.660 0.674 0.588 0.592 0.652 0.762 0.776 0.706 0.758 0.992 0.644 0.608

tmc2007 0.029 0.026 0.033 0.033 0.050 0.145 0.306 0.190 0.047 0.052 0.071 0.006
mediamill 0.188 0.193 0.586 0.560 0.219 0.194 0.220 0.182 0.234 0.242 0.171 0.159
bibtex 0.346 0.342 0.388 0.380 0.466 0.529 0.783 0.576 DNF 0.666 0.544 0.433

delicious 0.354 0.367 DNF DNF 0.509 0.411 0.592 0.416 DNF DNF 0.368 0.332
bookmarks DNF DNF DNF DNF DNF 0.643 0.817 0.639 DNF DNF 0.607 0.541
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Fig. B2. The critical diagrams for the label-based evaluation measures: the results from the Nemenyi post-hoc test at 0.05 significance level on all the datasets: (a) micro-

precision; (b) macro-precision; (c) micro-recall; (d) macro-recall; (e) micro-F1; and (f) macro-F1.

Table B17
The performance of the multi-label learning approaches in terms of the coverage measure. DNF (Did Not Finish) stands for the algorithms that did not construct a predictive

model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 2.307 2.317 2.386 2.807 2.634 2.069 2.356 2.490 2.465 2.619 1.801 1.827

scene 0.399 0.417 0.423 0.631 0.739 0.945 0.964 0.569 0.635 0.625 0.495 0.461

yeast 6.330 6.439 6.286 8.659 7.285 7.105 6.705 6.414 7.983 7.153 6.276 6.179
medical 1.610 1.471 2.036 1.832 5.324 3.033 5.813 2.844 8.520 7.994 1.889 1.619

enron 12.530 12.437 11.763 22.746 24.190 17.010 14.920 13.181 30.509 27.760 12.485 12.074

corel5k 104.800 105.428 91.506 206.880 250.800 279.900 115.676 113.046 340.398 348.160 110.356 107.412

tmc2007 1.311 1.302 1.363 2.796 2.369 2.671 4.572 2.155 2.498 2.494 1.416 1.219
mediamill 20.481 20.333 24.247 28.982 47.046 22.096 20.456 18.719 56.617 58.865 16.868 16.926

bibtex 20.926 21.078 18.540 57.343 65.626 58.016 58.599 56.266 DNF 87.841 32.580 25.854

delicious 530.126 537.388 DNF DNF 933.956 620.155 691.622 589.898 DNF DNF 624.572 504.999
bookmarks DNF DNF DNF DNF DNF 58.353 73.780 54.528 DNF DNF 40.903 34.185
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Table B19
The p-values of the assessment of performance of the multi-label learning approaches by the Friedman test using the ranking-based evaluation measures. Subset shows the

calculated p-values for the datasets on which all algorithms finished. All shows the calculated p-values for all datasets including those which did not finished.

Evaluation measure All Subset

One error 2:2� 10�7 5:3� 10�6

Coverage 1� 10�18 2:3� 10�16

Ranking loss 1� 10�18 1:2� 10�16

Average precision 6:5� 10�14 2� 10�11

Table B18
The performance of the multi-label learning approaches in terms of the average precision measure. DNF (Did Not Finish) stands for the algorithms that did not construct a

predictive model within one week under the available resources.

Dataset BR CC CLR QWML HOMER ML-C4.5 PCT ML-kNN RAkEL ECC RFML-C4.5 RF-PCT

emotions 0.721 0.724 0.718 0.679 0.698 0.759 0.713 0.694 0.713 0.687 0.812 0.812
scene 0.893 0.881 0.886 0.864 0.848 0.751 0.745 0.851 0.862 0.856 0.862 0.874

yeast 0.768 0.755 0.768 0.698 0.740 0.706 0.724 0.758 0.715 0.734 0.749 0.757

medical 0.896 0.901 0.864 0.862 0.786 0.823 0.522 0.784 0.676 0.684 0.817 0.868

enron 0.693 0.695 0.699 0.604 0.604 0.629 0.546 0.635 0.522 0.576 0.680 0.698

corel5k 0.303 0.293 0.352 0.311 0.222 0.196 0.208 0.266 0.088 0.014 0.314 0.334

tmc2007 0.978 0.981 0.972 0.938 0.945 0.842 0.700 0.844 0.939 0.935 0.945 0.996
mediamill 0.686 0.672 0.450 0.492 0.583 0.669 0.654 0.703 0.492 0.453 0.728 0.737
bibtex 0.597 0.599 0.579 0.498 0.407 0.392 0.212 0.349 DNF 0.228 0.418 0.525

delicious 0.351 0.343 DNF DNF 0.231 0.321 0.206 0.326 DNF DNF 0.359 0.395
bookmarks DNF DNF DNF DNF DNF 0.378 0.213 0.381 DNF DNF 0.423 0.480
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Fig. B3. The critical diagrams for the ranking-based evaluation measures: the results from the Nemenyi post-hoc test at 0.05 significance level on all the datasets:

(a) ranking loss; (b) one-error; (c) coverage; and (d) average precision.
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