
Analytical Biochemistry 473 (2015) 14–27  
Contents lists available at ScienceDirect

Analytical Biochemistry

journal homepage: www.elsevier .com/locate /yabio

 

mPLR-Loc: An adaptive decision multi-label classifier based on penalized
logistic regression for protein subcellular localization prediction
http://dx.doi.org/10.1016/j.ab.2014.10.014
0003-2697/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: enmwmak@polyu.edu.hk (M.-W. Mak).

1 Abbreviations used: GO, Gene Ontology; ECC, ensemble of classifier chain;
powerset; BR, binary relevance; SVM, support vector machine; KNN, K
neighbor; AC, accession number; GOA, Gene Ontology Annotation; LR
regression; LOOCV, leave-one-out cross-validation; OET, optimized e
theoretic.

 

Shibiao Wan a, Man-Wai Mak a,⇑, Sun-Yuan Kung b

a Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
b Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

a r t i c l e i n f o
Article history:
Received 6 March 2014
Received in revised form 29 September
2014
Accepted 21 October 2014
Available online 31 October 2014

Keywords:
Protein subcellular localization
Multi-location proteins
Adaptive decision
Logistic regression
Multi-label classification
a b s t r a c t

Proteins located in appropriate cellular compartments are of paramount importance to exert their biolog-
ical functions. Prediction of protein subcellular localization by computational methods is required in the
post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but
also multi-location proteins. However, most of the existing predictors are far from effective for tackling
the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely
mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single-
and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from
the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained
via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then clas-
sified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental
results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remark-
ably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and
accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide
probabilistic confidence scores for the prediction decisions. For readers’ convenience, the mPLR-Loc ser-
ver is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer).

� 2014 Elsevier Inc. All rights reserved.
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Introduction

Proteins need to be at the right spatiotemporal context within a
cell to properly exert their biological functions. The information of
protein subcellular localization is vitally important for understand-
ing the functions of proteins and for identifying drug targets [1,2].
Aberrant protein subcellular localization is closely correlated to a
broad range of human diseases such as Alzheimer’s disease [3],
kidney stone [4], primary human liver tumors [5], breast cancer
[6], minor salivary gland tumors [7], pre-eclampsia [8], and Bartter
syndrome [9]. To tackle the avalanche of newly discovered protein
sequences in the post-genomic era, computational methods are
required to assist or replace time-consuming and laborious wet-
lab experiments such as fluorescent microscopy imaging, cell frac-
tionation, and electron microscopy for predicting the subcellular
locations of proteins.

Conventional methods for protein subcellular localization
prediction can be roughly divided into sequence-based and
knowledge-based. Sequence-based methods include (i) sorting-
signals-based methods [10–12], (ii) homology-based methods
[13–16], and (iii) composition-based methods [17,18]. Knowl-
edge-based methods use information from knowledge databases
such as using Gene Ontology (GO)1 terms [19–29], Swiss–Prot key-
words [30,13], and PubMed abstracts [31,32]. Although it is possible
that the GO information may become less reliable when the proteins
are with high sequence similarity but have diverse functions, it has
been demonstrated that methods based on GO information are supe-
rior to methods based on other features [22].

Because there exist multi-location proteins that can simulta-
neously reside at, or move between, two or more subcellular loca-
tions, recent studies have focused on predicting both single-
location and multi-location proteins. It is generally accepted that
it is inappropriate to exclude the multi-label proteins or assume
that multi-location proteins do not exist. Actually, multi-location
proteins play important roles in some metabolic processes that
-nearest
, logistic
vidence-
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take place in more than one cellular compartment (e.g., b-oxida-
tion in the peroxisome and mitochondria; antioxidant defense in
the cytosol, mitochondria, and peroxisome) [33]. Multi-label mod-
els have also been applied to identifying membrane proteins with
both single and multiple functional types [34].

Existing multi-label classification models can be grouped into
two main categories: (i) algorithm adaptation and (ii) problem
transformation. Algorithm adaptation methods extend specific sin-
gle-label algorithms to solve multi-label classification problems.
Typical methods include multi-label C4.5 [35], AdaBoost.MH [36],
and hierarchical multi-label decision trees [37]. Problem transfor-
mation methods transform a multi-label learning problem into
one or more single-label classification problems [38] so that tradi-
tional single-label classifiers can be applied without modification.
Typical methods include ensembles of classifier chains (ECCs)
[39], label powerset (LP) [40], compressive sensing [41], and binary
relevance (BR) [42]. Among them, BR is one of the most popular
methods. For example, the binary relevance support vector
machine (SVM)-based model transforms a multi-label problem
into a number of binary classification problems, one for each label.
Each binary classification problem is then handled by one binary
SVM. Given a query instance, the predicted label is the union of
the positive-class labels outputted by these binary SVMs.

Recently, several state-of-the-art multi-label predictors have
been proposed to deal with the prediction of multi-label proteins,
including Virus-mPLoc [43], Plant-mPLoc [44], iLoc-Virus [45],
iLoc-Plant [46], K-nearest neighbor (KNN)-SVM ensemble classifier
[47], mGOASVM [48], and other predictors [49–51]. They all use
the GO (http://www.geneontology.org) information as the features
and apply different multi-label classifiers to tackle the multi-label
classification problem. However, these predictors provide only the
final prediction results, and readers cannot obtain information (i.e.,
probabilistic confidence scores for each subcellular location) about
how they make the prediction decisions.

This article proposes an efficient multi-label predictor, namely
mPLR-Loc, for predicting subcellular localization of both single-
label and multi-label proteins. Here, the prefix ‘‘m’’ stands for mul-
tiple, meaning that the predictor can deal with both single-label
and multi-label proteins. Given a protein, a set of GO terms is
retrieved by searching against the GO database using the accession
numbers of homologous protein obtained via BLAST search as the
keys. The frequencies of GO occurrences are used to formulate fre-
quency vectors, which are then classified by a multi-label penal-
ized logistic regression classifier equipped with an adaptive
decision strategy. mPLR-Loc is different from existing state-of-
the-art predictors in that (i) it uses a multi-label penalized logistic
regression classifier equipped with an adaptive decision strategy
that can tackle multi-label problems effectively, (ii) it not only rap-
idly and accurately provides the prediction results of subcellular
localization for query proteins but also gives the probabilistic
scores or confidence estimates for each of the subcellular locations,
and (iii) it adopts a new strategy to incorporate richer and more
useful homologous information from more distant homologs.
Results on two recent benchmark datasets and a new independent
test set demonstrate that these properties enable mPLR-Loc to sub-
stantially outperform other existing state-of-the-art predictors.

mPLR-Loc is designed for predicting viral and plant proteins.
Actually, studying the subcellular localization of viral proteins
can help biologists to obtain the information about their destruc-
tive tendencies and consequences [52]. The information of subcel-
lular localization of Viridiplantae proteins is also crucial to
elucidate their functions. As for predicting proteins of other
species, because mPLR-Loc uses the information of GO terms that
possess the cross-species properties [53], it is easy for mPLR-Loc
to extend from predicting viral and plant proteins to predicting
proteins of other species.
Legitimacy of using GO information

First, some people may be skeptical about using GO information
for protein subcellular localization because the cellular component
GO terms have already been annotated with cellular component
categories. The GO comprises three orthogonal categories whose
terms describe the cellular components, biological processes, and
molecular functions of gene products. They argue that the only
thing that needs to be done is to create a lookup table using the cel-
lular component GO terms as the keys and the component catego-
ries as the hashed values. Such a naive solution, however, is
undesirable and will lead to poor performance, as shown and
explained in our previous studies [48,54].

Second, some people disprove the effectiveness of GO-based
methods by claiming that only cellular component GO terms are
useful and GO terms in the other two categories play no role in
determining the subcellular localization. This concern has been
explicitly and directly addressed by Lu and Hunter [55], who dem-
onstrated that GO molecular function terms are also predictive of
subcellular localization, particularly for nucleus, extracellular
space, membrane, mitochondrion, endoplasmic reticulum, and
Golgi apparatus. The in-depth analyses of the correlation between
the molecular function GO terms and localization in Ref. [55] also
provide an explanation of why GO-based methods outperform
sequence-based methods.

Third, even though GO-based methods can predict novel pro-
teins based on the GO information obtained from their homologous
proteins [48,54], some people still argue that the prediction is
equivalent to simply using the annotated localization of the homo-
logs (i.e., using BLAST [56] with homologous transfer). This claim
was clearly proved to be untenable in our previous study [54],
which demonstrated that GO-based methods remarkably outper-
form methods that use only BLAST and homologous transfer
(Table 4 in Ref. [54]). Besides, Briesemeister and coworkers [57]
also suggested that using BLAST alone is not sufficient for reliable
prediction.

Moreover, as suggested by Chou [58], as long as the input of
query proteins for predictors is the sequence information without
any GO annotation information and the output is the subcellular
localization information, there is no difference between non-GO-
based methods and GO-based methods, which should be regarded
as equally legitimate for subcellular localization.

Some other articles [59,60] also provide strong arguments sup-
porting the legitimacy of using GO information for subcellular
localization. In particular, as suggested in Ref. [60], the good per-
formance of GO-based methods is due to the fact that the feature
vectors in the GO space can better reflect their subcellular loca-
tions than those in the Euclidean space or any other simple geo-
metric space.

 

Feature extraction

The subcellular localization predictors use GO information as
the features, which have been demonstrated to be superior to other
features [22,54,61]. The feature extraction part consists of two
steps: (i) retrieval of GO terms and (ii) construction of GO vectors.
Retrieval of GO terms

For a query protein, mPLR-Loc can deal with two possible cases:
(i) the accession number (AC) is known and (ii) only the amino acid
sequence is known. For proteins with known ACs, their respective
GO terms are retrieved from the Gene Ontology Annotation (GOA)
database (http://www.ebi.ac.uk/GOA) using the ACs as the search-
ing keys. For a protein without an AC, its amino acid sequence is

 

http://www.geneontology.org
http://www.ebi.ac.uk/GOA


16 mPLR-Loc protein subcellular localization / S. Wan et al. / Anal. Biochem. 473 (2015) 14–27  
presented to BLAST [56] to find its homologs, whose ACs are then
used as keys to search against the GOA database.

Although the GOA database allows us to associate the AC of a
protein with a set of GO terms, for some novel proteins neither
their ACs nor the ACs of their top homologs have any entries in
the GOA database; in other words, no GO terms can be retrieved
by their ACs or the ACs of their top homologs. In such cases, the
ACs of the homologous proteins, as returned from BLAST search,
will be successively used to search against the GOA database until
a match is found. In cases where no GO terms can be retrieved by
the ACs or even by the ACs of all the homologs, backup methods
that rely on other features, such as pseudo-amino-acid composi-
tion [18] and sorting signals [62], should be used. Fortunately, with
the rapid progress of the GOA database [63], it is reasonable to
assume that the homologs of the query proteins can retrieve at
least one GO term [24]. Thus, it is rarely necessary to use backup
methods to handle the situation where no GO terms can be found.
The procedures are outlined in Fig. 1.

Construction of GO vectors

Given a dataset, the GO terms of all of its proteins are retrieved
by using the procedures described in the previous subsection.
Then, the number of distinct GO terms corresponding to the data-
set is determined. Suppose that T distinct GO terms are found;
these GO terms form a GO Euclidean space with T dimensions.
For each sequence in the dataset, a GO vector is constructed by
matching its GO terms to all of the T GO terms. Unlike the conven-
tional 1–0 value [43,44], in this work term frequency [54,64] is
used to construct the GO vectors. Similar to the 1–0 value
approach, a protein is represented by a point in a Euclidean space.
However, unlike the 1–0 approach, the term frequency approach
uses the number of occurrences of individual GO terms as the coor-
dinates. Specifically, the GO vector qi of the i-th protein Qi is
defined as

qi ¼ ½bi;1; � � � ; bi;j; � � � ; bi;T �T; bi;j ¼
f i;j ;GO hit
0 ;otherwise

�
ð1Þ

where fi,j is the number of occurrences of the j-th GO term (term
frequency) in the i-th protein sequence. The rationale is that the
Fig.1. Procedures of retrieving GO terms. Qi: the i-th query protein; kmax: the
maximum number of homologs retrieved by BLAST with the default parameter
setting; Qi;ki: the set of GO terms retrieved by BLAST using the ki-th homolog for the
i-th query protein Qi; ki: the ki-th homolog used to retrieve the GO terms; qi: the
output GO vector.
term frequencies may also contain important information for clas-
sification and, therefore, should not be quantized to either 0 or 1.
Note that bi,j values are analogous to the term frequencies com-
monly used in document retrieval.

Multi-label penalized logistic regression classifier

Logistic regression (LR) is a powerful discriminative classifier
that has a direct and explicit probabilistic interpretation built
into its model [65]. Traditional logistic regression classifiers,
including penalized logistic regression classifiers [66–68], are
applicable only to multi-class classification. This section elabo-
rates an efficient penalized multi-label logistic regression classi-
fier, namely mPLR-Loc, equipped with an adaptive decision
scheme.

Single-label penalized logistic regression

Suppose that for a two-class single-label problem, we are given
a set of training data fxi; yig

N
i¼1, where xi 2 RTþ1 and yi 2 f0;1g. In

our case, xi ¼
1
qi

� �
, where qi is defined in Eq. (1). Denote Pr(Y = yi|-

X = xi) as the posterior probability of the event that X belongs to
class yi given X = xi. In logistic regression, the posterior probability
is defined as

PrðY ¼ yijX ¼ xiÞ ¼ pðxi; bÞ ¼
ebTxi

1þ ebTxi
; ð2Þ

where b is a (T + 1)-dim parameter vector. When the number of
training instances (N) is not significantly larger than the feature
dimension (T + 1), using logistic regression without any regulariza-
tion often leads to over-fitting. To avoid over-fitting, an L2 regular-
ization penalty term is added to the penalized cross-entropy error
function as follows:

EðbÞ ¼ �
XN

i¼1

½yi logðpðxi; bÞÞ þ ð1� yiÞ logð1� pðxi; bÞÞ� þ
1
2
qkbk2

2

¼ �
XN

i¼1

yib
Txi � logð1þ ebTxi Þ

h i
þ 1

2
qbTb ð3Þ

where q is a user-defined penalty parameter to control the degree
of regularization.

To minimize E(b), we may use the Newton–Raphson algorithm

bnew ¼ bold � @2EðboldÞ
@bold@ðboldÞT

 !�1

� @EðboldÞ
@bold

; ð4Þ

where

@EðbÞ
@b

¼ �XTðy � pÞ þ qb ð5Þ

and

@2EðbÞ
@b@bT

¼ XTWXþ qI ð6Þ

See Appendix A for the derivations of Eqs. (5) and (6). In Eqs. (5)
and (6), y and p are N-dim vectors whose elements are fyig

N
i¼1 and

fpðxi; bÞgN
i¼1, respectively, X = [x1, x2, . . ., xN]T, and W is a diagonal

matrix whose i-th diagonal element is p(xi;b)[1 � p(xi;b)], i = 1, 2,
. . ., N.

Substituting Eqs. (5) and (6) into Eq. (4) gives the following iter-
ative formula for estimating b:

bnew ¼ bold þ ðXTWXþ qIÞ�1ðXTðy � pÞ � qboldÞ: ð7Þ 
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Multi-label penalized logistic regression

In an M-class multi-label problem, the training data set is writ-
ten as fxi;YigN

i¼1, where xi 2 RTþ1 and Yi � f1;2; . . . ;Mg is a set that
may contain one or more labels. M independent binary one-
versus-rest LRs are trained, one for each class. The labels fYigN

i¼1

are converted to transformed labels [48] yi,m 2 {0, 1}, where i = 1,
. . ., N and m = 1, . . ., M. The two-class update formula in Eq. (7) is
then extended to

bnew
m ¼ bold

m þ ðX
TWmXþ qIÞ�1ðXTðym � pmÞ � qbold

m Þ; ð8Þ

where m = 1, . . ., M, ym and pm are vectors whose elements are
fyi;mg

N
i¼1 and fpðxi; bmÞg

N
i¼1, respectively, and Wm is a diagonal matrix

whose i-th diagonal element is p(xi;bm)[1�p(xi;bm)], i = 1, 2, . . ., N.
Given the i-th GO vector qi of the query protein Qi, the score of

the m-th LR is given by

smðQiÞ ¼
ebT

mxi

1þ ebT
mxi
;where xi ¼

1
qi

� �
: ð9Þ

The probabilistic nature of logistic regression enables us to
assign confidence scores for the prediction decisions. Specifically,
for the m-th location, its corresponding confidence score is
sm(Qi). See Appendix B for the confidence scores produced by the
mPLR-Loc server.

Adaptive Decision for LR (mPLR-Loc)

Because the LR scores of a binary LR classifier are posterior
probabilities, the m-th class label will be assigned to Qi only if
sm(Qi) > 0.5. To facilitate multi-label classification, the following
decision scheme is adopted:

MðQiÞ ¼
[M

m¼1

ffm : smðQiÞ > 0:5g [ fm : smðQiÞ

P f ðsmaxðQiÞÞgg; ð10Þ

where f[smax(Qi)] is a function of smax(Qi) and smax(Qi) = max
M

m¼1
sm(Qi).

In this work, we used a linear function as follows:

f ðsmaxðQiÞÞ ¼ hsmaxðQiÞ; ð11Þ

where h 2 (0.0, 1.0) is a parameter that can be optimized by using
cross-validation experiments. Note that h cannot be 0.0, or
Secreted
20(8%)

Viral capsid
8(3%)

20(8%)

Host cell membrane
33(13%)

              Host 
endoplasmic reticulum

Fig.2. Breakdown of the virus dataset. The number of proteins shown in each subcellu
proteins have 252 locative proteins.
otherwise all of the M labels will be assigned to Qi. This is because
sm(Qi) is a posterior probability, which is always equal to or greater
than zero. Clearly, Eq. (10) suggests that the predicted labels depend
on smax(Qi), a function of the test instance (or protein). This means
that the decision and its corresponding threshold are adaptive to
the test protein. For ease of reference, we refer to this predictor as
mPLR-Loc.

Experiments

Datasets

In this article, a virus dataset [43,45] and a plant dataset [46]
were used to evaluate the performance of the proposed predictors.
The virus and plant datasets were created from Swiss–Prot 57.9
and 55.3, respectively. The virus dataset contains 207 viral proteins
distributed in six locations. Of the 207 viral proteins, 165 belong to
one subcellular location, 39 belong to two locations, 3 belong to
three locations, and none belongs to four or more locations. This
means that approximately 20% of the proteins in the dataset are
located in more than one subcellular location. The plant dataset
contains 978 plant proteins distributed in 12 locations. Of the
978 plant proteins, 904 belong to one subcellular location, 71
belong to two locations, 3 belong to three locations, and none
belongs to four or more locations. The sequence identity of both
datasets was cut off at 25%. The breakdowns of these two datasets
are listed in Figs. 2 and 3. As can be seen, both datasets are multi-
class distributed and imbalanced. More detailed statistical proper-
ties of these two datasets are listed in Table 1.

In Table 1, M and N denote the number of actual (or distinct)
subcellular locations and the number of actual (or distinct) pro-
teins. Besides the commonly used properties for single-label classi-
fication, the following measurements [40] are used as well to
explicitly quantify the multi-label properties of the datasets:

1. Label cardinality (LC): LC is the average number of labels per
data instance, which is defined as LC ¼ 1

N

PN
i¼1jLðQiÞj, where

LðQiÞ is the label set of the protein Qi and |�| denotes the
cardinality of a set.

2. Label density (LD): LD is LC normalized by the number of classes,
which is defined as LD ¼ LC

M .
3. Distinct label set (DLS): DLS is the number of label combinations

in the dataset.
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lar location represents the number of ‘‘locative proteins’’ [45,48]. Here, 207 actual 



Golgi apparatus
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Mitochondrion
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Extracellular
22(2%)

Endoplasmic reticulum
42(4%)

Nucleus
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Peroxisome
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Vacuole
52(5%)Cell membrane

56(5%)
Cell wall
32(3%)

Chloroplast
286(27%)

Fig.3. Breakdown of the plant dataset. The number of proteins shown in each subcellular location represents the number of ‘‘locative proteins’’ [45,48]. Here, 978 actual
proteins have 1055 locative proteins.

Table 1
Statistical properties of the two datasets used in our experiments.

Dataset M N LC LD DLS PDLS TLN

Virus 6 207 1.2174 0.2029 17 0.0821 252
Plant 12 978 1.0787 0.0899 32 0.0327 1055

Note. M, number of subcellular locations; N, number of actual proteins; LC, label
cardinality; LD, label density; DLS, distinct label set; PDLS, proportion of distinct
label set; TLN, total locative number.

18 mPLR-Loc protein subcellular localization / S. Wan et al. / Anal. Biochem. 473 (2015) 14–27  

 

4. Proportion of distinct label set (PDLS): PDLS is DLS normalized by
the number of actual data instances, which is defined as
PDLS ¼ DLS

N .
5. Total locative number (TLN): TLN is the total number of locative

proteins. This concept is derived from locative proteins in Ref.
[45], which is further elaborated in the next subsection.

Among these measurements, LC is used to measure the degree
of multi-labels in a dataset. For a single-label dataset, LC = 1; for
a multi-label dataset, LC > 1. And the larger the LC, the higher the
degree of multi-labels. LD takes into consideration the number of
classes in the classification problem. For two datasets with the
same LC, the lower the LD, the more difficult the classification.
DLS represents the number of possible label combinations in the
dataset. The higher the DLS, the more complicated the composition.
PDLS represents the degree of distinct labels in a dataset. The larger
the PDLS, the more probable the individual label sets are different
from each other. From Table 1, we notice that although the number
of proteins in the virus dataset (N = 207, TLN = 252) is smaller than
that of the plant dataset (N = 978, TLN = 1055), the former
(LC = 1.2174, LD = 0.2029) is a denser multi-label dataset than the
latter (LC = 1.0787, LD = 0.0899).
Performance metrics

Compared with traditional single-label classification, multi-
label classification requires more complicated performance met-
rics to better reflect the multi-label capabilities of classifiers. These
measures include Accuracy, Precision, Recall, F1 Score (F1), and Ham-
ming Loss (HL). Specifically, denote LðQiÞ and MðQiÞ as the true
label set and the predicted label set for the i-th protein Qi (i = 1,
. . ., N), respectively.2 Then the five measurements are defined as
follows:
2 Here, N = 207 for the virus dataset and N = 978 for the plant dataset.
Accuracy ¼ 1
N

XN

i¼1

jMðQiÞ \ LðQiÞj
jMðQiÞ [ LðQiÞj

� �
ð12Þ

Precision ¼ 1
N

XN

i¼1

jMðQiÞ \ LðQiÞj
jMðQiÞj

� �
ð13Þ

Recall ¼ 1
N

XN

i¼1

jMðQiÞ \ LðQiÞj
jLðQiÞj

� �
ð14Þ

F1 ¼ 1
N

XN

i¼1

2jMðQiÞ \ LðQiÞj
jMðQiÞj þ jLðQiÞj

� �
ð15Þ

HL ¼ 1
N

XN

i¼1

jMðQiÞ [ LðQiÞj � jMðQiÞ \ LðQiÞj
M

� �
ð16Þ

where |�| means counting the number of elements in the set therein
and \ represents the intersection of sets.

Accuracy, Precision, Recall, and F1 indicate the classification per-
formance. The higher the measures, the better the prediction per-
formance. Among them, Accuracy is the most commonly used
criterion. F1 is the harmonic mean of Precision and Recall, allowing
us to compare the performance of classification systems by taking
the trade-off between Precision and Recall into account. The HL
[69,70] is different from other metrics. As can be seen from Eq.
(16), when all of the proteins are correctly predicted, that is,
jMðQiÞ [ LðQiÞj ¼ jMðQiÞ \ LðQiÞj (i = 1, . . ., N), then HL = 0,
whereas other metrics will be equal to 1. On the other hand, when
the predictions of all proteins are completely wrong, that is,
jMðQiÞ [ LðQiÞj ¼ M and jMðQiÞ \ LðQiÞj ¼ 0, then HL = 1, whereas
other metrics will be equal to 0. Therefore, the lower the HL, the
better the prediction performance.

Two additional measurements [45,48] are often used in multi-
label subcellular localization prediction. They are overall locative
accuracy (OLA) and overall actual accuracy (OAA). The former is
given by

OLA ¼ 1XN

i¼1

jLðQiÞj

XN

i¼1
jMðQiÞ \ LðQiÞj; ð17Þ

and the latter is given by

OAA ¼ 1
N

XN

i¼1

D½MðQiÞ;LðQiÞ� ð18Þ 
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where

D½MðQiÞ;LðQiÞ� ¼
1 ; if MðQiÞ ¼ LðQiÞ
0 ;otherwise:

�
ð19Þ

According to Eq. (17), a locative protein is considered to be cor-
rectly predicted if any of the predicted labels matches any labels in
the true label set. On the other hand, Eq. (18) suggests that an actual
protein is considered to be correctly predicted only if all of the pre-
dicted labels match those in the true label set exactly. For example,
for a protein coexisting in, say, three subcellular locations, if only
two of the three are correctly predicted, or the predicted result con-
tains a location not belonging to the three, the prediction is consid-
ered as incorrect. In other words, when and only when all of the
subcellular locations of a query protein are exactly predicted with-
out any over-prediction or under-prediction can the prediction be
considered as correct. Therefore, OAA is a more stringent measure
as compared with OLA. OAA is also more objective than OLA. This
is because locative accuracy is liable to give biased performance
measure when the predictor tends to over-predict, that is, giving
large jMðQiÞj for many Qi. In the extreme case, if every protein is
predicted to have all of the M subcellular locations, according to
Eq. (17) the OLA is 100%. But obviously the predictions are wrong
and meaningless. On the contrary, OAA is 0% in this extreme case,
definitely reflecting the real performance.

Among all of the metrics mentioned above, OAA is the most
stringent and objective. This is because if some (but not all) of
the subcellular locations of a query protein are correctly predicted,
the numerators of the other four measures (Eqs. (12)–(17)) are
non-zero, whereas the numerator of OAA in Eq. (18) is 0 (thereby
contributing nothing to the frequency count). Note that OAA and
HL are equivalent to absolute true and absolute false, respectively,
used in Ref. [58].

In statistical prediction, leave-one-out cross-validation (LOOCV)
is considered to be the most rigorous and bias-free method [71].
Hence, LOOCV was used to examine the performance of mPLR-Loc.

Results and discussion

Effect of adaptive decisions on mPLR-Loc

Fig. 4A shows the performance of mPLR-Loc on the virus dataset
for different values of h (Eq. (11)) based on leave-one-out cross-val-
idation. In all cases, the penalty parameter q of the logistic regres-
sion was set to 1.0. The performance of mPLR-Loc at h = 0.0 is not
provided because according to Eq. (10) and Eq. (11) all of the query
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Fig.4. Performance of mPLR-Loc with respect to h based on leave-one-out cross-valida
definitions of the performance measures in the boxed legend.
proteins will be predicted as having all of the M subcellular loca-
tions, defeating the purpose of prediction. As is evident from
Fig. 4A, when h increases from 0.1 to 1.0, the OAA of mPLR-Loc
increases first, reaches the peak at h = 0.5, with OAA = 0.903, which
is nearly 2% (absolute) higher than mGOASVM (0.889). The Preci-
sion achieved by mPLR-Loc increases until h = 0.5 and then remains
almost unchanged when h P 0.5. On the contrary, OLA and Recall
peak at h = 0.1, and these measures drop with h until h = 1.0.
Among these metrics, no matter how h changes, OAA is no higher
than the other five measurements.

An analysis of the predicted labels fLðQiÞ; i ¼ 1; . . . ;207g sug-
gests that the increase in OAA is due to the reduction in the number
of over-prediction, that is, the number of cases where
jMðQiÞj>jLðQiÞj. When h > 0.5, the benefit of reducing the over-
prediction diminishes because the criterion in Eq. (10) becomes
so stringent that some of the proteins were under-predicted, that
is, the number of cases where jMðQiÞj < jLðQiÞj. When h increases
from 0.1 to 0.5, the number of cases where jMðQiÞj > jLðQiÞj
decreases while at the same time jMðQiÞ \ LðQiÞj remains almost
unchanged. In other words, the denominators of Accuracy and F1
decrease while the numerators for both metrics remain almost
unchanged, leading to better performance for both metrics. When
h > 0.5, for the similar reason mentioned above, the increase in
under-prediction outweighs the benefit of the reduction in over-
prediction, causing performance loss. For Precision, when h > 0.5,
the loss due to the stringent criterion is counteracted by the gain
due to the reduction in jMðQiÞj, the denominator of Eq. (13). Thus,
the Precision increases monotonically when h increases from 0.1 to
1. However, OLA and Recall decrease monotonically with respect to
h because the denominator of these measures (see Eqs. (17) and
(14)) is independent of jMðQiÞj and the number of correctly pre-
dicted labels in the numerator decreases when the decision crite-
rion is getting stricter.

Fig. 4B shows the performance of mPLR-Loc (with q = 1) on the
plant dataset. This figures shows that the trends of OLA, Accuracy,
Precision, Recall, and F1 are similar to those of mPLR-Loc in the virus
dataset. The figure also shows that the OAA achieved by mPLR-Loc
is monotonically increasing with respect to h and reaches the opti-
mum at h = 1.0, in contrast to the results in the virus dataset where
the OAA is almost unchanged when h P 0.5.

 

Effect of regularization on mPLR-Loc

Fig. 5 shows the performance of mPLR-Loc with respect to the
parameter q (Eq. (8)) on the virus dataset. In all cases, the adaptive
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tion on the virus dataset (A) and the plant dataset (B). See Eqs. (12)–(18) for the 
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Fig.5. Performance of mPLR-Loc with respect to q in Eq. (8) based on leave-one-out
cross-validation on the virus dataset. See Eqs. (12)–(18) for the definitions of the
performance measures in the boxed legend.
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thresholding parameter h was set to 0.8. As can be seen, the varia-
tions of OAA, Accuracy, Precision, and F1 with respect to q are very
similar. More important, all four of these metrics show that there is
Table 2
Comparing mPLR-Loc with state-of-the-art multi-label predictors based on leave-one-out

Label Subcellular location LOOCV locative accuracy

Virus-mPLoc [44] KNN-SVM [

1 Viral capsid 8/8 = 1.000 8/8 = 1.000
2 Host cell membrane 19/33 = 0.576 27/33 = 0.81
3 Host ER 13/20 = 0.650 15/20 = 0.75
4 Host cytoplasm 52/87 = 0.598 86/87 = 0.98
5 Host nucleus 51/84 = 0.607 54/84 = 0.65
6 Secreted 9/20 = 0.450 13/20 = 0.65
Overall actual accuracy (OAA) – –
Overall locative accuracy (OLA) 152/252 = 0.603 203/252 = 0
Accuracy – –
Precision – –
Recall – –
F1 – –
HL – –

Note. –, the corresponding references do not provide the related metrics; Host ER, host
measures. The P value between the OAA of mPLR-Loc and mGOASVM on the virus datas

Table 3
Comparing mPLR-Loc with state-of-the-art multi-label predictors based on leave-one-out

Label Subcellular location LOOCV locative accuracy

Plant-mPLoc [45]

1 Cell membrane 24/56 = 0.429
2 Cell wall 8/32 = 0.250
3 Chloroplast 248/286 = 0.867
4 Cytoplasm 72/182 = 0.396
5 Endoplasmic reticulum 17/42 = 0.405
6 Extracellular 3/22 = 0.136
7 Golgi apparatus 6/21 = 0.286
8 Mitochondrion 114/150 = 0.760
9 Nucleus 136/152 = 0.895
10 Peroxisome 14/21 = 0.667
11 Plastid 4/39 = 0.103
12 Vacuole 26/52 = 0.500
Overall actual accuracy (OAA) –
Overall locative accuracy (OLA) 672/1055 = 0.637
Accuracy –
Precision –
Recall –
F1 –
HL –

Note. –, the corresponding references do not provide the related metrics. See Eqs. (12)–(1
mPLR-Loc and mGOASVM on the plant dataset is 7.262 � 10�7.
a wide range of q values for which the performance is optimal. This
suggests that introducing the penalty term in Eq. (3) not only helps
to avoid numerical difficulty but also improves performance.

Fig. 5 shows that the OLA and Recall are largely unaffected by
the change in q. This is understandable because the parameter q
is to overcome numerical difficulty when estimating the LR param-
eters b. More specifically, when q is small [say, log(q) < �5], the
value of q is insufficient to avoid matrix singularity in Eq. (7),
which leads to extremely poor performance. When q is too large
[say, log(q) > 5], the matrix in Eq. (6) will be dominated by the
value of q, which also causes poor performance. The OAA of
mPLR-Loc reaches its maximum 0.903 at log(q) = �1.

 

Comparing with state-of-the-art predictors

Tables 2 and 3 compare the performance of mPLR-Loc against
several state-of-the-art multi-label predictors on the virus and
plant dataset. All of these predictors derive the feature vectors
from GO terms. From the classification perspective, Virus-mPLoc
[43] uses an ensemble optimized evidence-theoretic (OET)-KNN
classifier, iLoc-Virus [45] uses a multi-label KNN classifier, KNN-
SVM [47] uses an ensemble of classifiers combining KNN and
cross-validation using the virus dataset.

48] iLoc-Virus [46] mGOASVM [49] mPLR-Loc

8/8 = 1.000 8/8 = 1.000 8/8 = 1.000
8 25/33 = 0.758 32/33 = 0.970 30/33 = 0.909
0 15/20 = 0.750 17/20 = 0.850 17/20 = 0.850
8 64/87 = 0.736 85/87 = 0.977 86/87 = 0.989
1 70/84 = 0.833 82/84 = 0.976 81/84 = 0.964
0 15/20 = 0.750 20/20 = 1.000 17/20 = 0.850

155/207 = 0.748 184/207 = 0.889 187/207 = 0.903
.807 197/252 = 0.782 244/252 = 0.968 239/252 = 0.948

– 0.935 0.942
– 0.939 0.957
– 0.973 0.965
– 0.950 0.955
– 0.026 0.023

endoplasmic reticulum. See Eqs. (12)–(18) for the definitions of the performance
et is 1.1750 � 10�4.

cross-validation using the plant dataset.

iLoc-Plant [47] mGOASVM [49] mPLR-Loc

39/56 = 0.696 53/56 = 0.946 50/56 = 0.893
19/32 = 0.594 27/32 = 0.844 25/32 = 0.781
252/286 = 0.881 272/286 = 0.951 281/286 = 0.983
114/182 = 0.626 174/182 = 0.956 164/182 = 0.901
21/42 = 0.500 38/42 = 0.905 35/42 = 0.833
2/22 = 0.091 22/22 = 1.000 19/22 = 0.864
16/21 = 0.762 19/21 = 0.905 18/21 = 0.857
112/150 = 0.747 150/150 = 1.000 149/150 = 0.993
140/152 = 0.921 151/152 = 0.993 146/152 = 0.961
6/21 = 0.286 21/21 = 1.000 21/21 = 1.000
7/39 = 0.179 39/39 = 1.000 36/39 = 0.923
28/52 = 0.538 49/52 = 0.942 45/52 = 0.942
666/978 = 0.681 855/978 = 0.874 888/978 = 0.908
756/1055 = 0.717 1015/1055 = 0.962 989/1055 = 0.937
– 0.926 0.939
– 0.933 0.956
– 0.968 0.952
– 0.942 0.949
– 0.013 0.010

8) for the definitions of the performance measures. The P value between the OAA of 
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Fig.6. Receiver operating characteristic (ROC) curves of mPLR-Loc and mGOASVM on the virus dataset (A) and the plant dataset (B). The values in parentheses in the boxed
legend are the respective area under the ROC curves (AUCs). The gray dotted line represents the ROC purely based on chance.
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SVM, mGOASVM [48] uses a multi-label SVM classifier, and the
mPLR-Loc uses a multi-label penalized logistic regression classifier
incorporated with the proposed adaptive decision scheme.

As shown in Table 2, mPLR-Loc performs significantly better
than Virus-mPLoc and iLoc-Virus. Both the OLA and OAA of
mPLR-Loc are more than 15% (absolute) higher than iLoc-Virus.
They also perform significantly better than KNN-SVM in terms of
OLA. When comparing with mGOASVM, although the OLA of
mPLR-Loc is slightly smaller than that of mGOASVM, the OAA of
mPLR-Loc is 2% (absolute) higher than that of mGOASVM. In terms
of Accuracy, Precision, F1, and HL, mPLR-Loc performs better than
mGOASVM. In terms of Recall, mGOASVM performs the best among
all of the predictors. This is understandable because according to
the analysis in the ‘‘Effect of adaptive decisions on mPLR-Loc’’ sub-
section, the Recall decreases when h increases. The results suggest
that the mPLR-Loc performs better than the state-of-the-art classi-
fiers. The individual locative accuracies of mPLR-Loc are remark-
ably higher than those of Virus-mPLoc, iLoc-Virus, and KNN-SVM
and are comparable to those of mGOASVM.

Similar conclusions can be drawn from Table 3, where the supe-
riority of mPLR-Loc over Plant-mPLoc, iLoc-Plant, and mGOASVM is
more evident compared with that in Table 2.

Moreover, the P values [72] between the OAA of mPLR-Loc and
mGOASVM on the virus and plant datasets are 1.1750 � 10�4 and
7.262 � 10�7, respectively, suggesting that the performance of
mPLR-Loc is significantly better than that of mGOASVM on both
datasets.

To assess the prediction performance of mPLR-Loc at different
decision thresholds, receiver operating characteristic (ROC) curves
were used. Note that ROC curves are applicable to binary classifica-
tion systems only. Because our subcellular localization problems
are multi-label and multi-class, ROC curves cannot be directly
applied. To tackle this problem, we adopted the one-versus-rest
strategy to generate an ROC curve for each subcellular location
and then averaged the ROC curves as the final output. Fig. 6A
and B show the ROC curves of mPLR-Loc and mGOASVM for the
virus dataset and plant dataset, respectively.3 As can be seen from
Fig. 6A, the area under the curve (AUC) of mPLR-Loc is larger than
3 Note that we cannot draw the ROC curves for other predictors because we canno
obtain their prediction scores to calculate the false positive rates and true positive
rates at different operating points.
t

that of mGOASVM. Specifically, the AUC for mPLR-Loc is 0.986,
whereas that for mGOASVM is 0.963, suggesting that on average
mPLR-Loc performs better than mGOASVM. Although the ROC curves
for Virus-mPLoc, KNN-SVM, and iLoc-Virus cannot be shown here
due to the unavailability of prediction scores, by inferring from other
performance measurements of these predictors, we can optimisti-
cally expect that the AUC of mPLR-Loc will be much larger than that
of these predictors. Similar conclusions can be drawn from Fig. 6B for
the plant dataset except that the improvement of mPLR-Loc over
mGOASVM is not so significant as compared with the virus dataset.
Specifically, the AUC for mPLR-Loc is 0.980, whereas that for
mGOASVM is 0.976.

Prediction of novel proteins

To further demonstrate the effectiveness of mPLR-Loc, a novel
and independent plant dataset was created to compare mPLR-Loc
with state-of-the-art multi-label predictors using independent
tests. To ensure that the test proteins are really novel to mPLR-Loc,
the registration dates of these proteins in Swiss–Prot should be later
than that of the training proteins. It is also important to ensure that
none of these novel proteins appears in the GOA database used by
mPLR-Loc. Because the plant dataset used for training the predictors
was created on 29 April 2008 and the GOA database used by mPLR-
Loc was released on 8 March 2011, we selected the proteins that
were added to Swiss–Prot between 8 March 2011 and 9 July 2014
according to the strict criteria specified in Ref. [44]. In other words,
this new dataset contains the latest novel proteins and has never
been used by other researchers and in other studies. Specifically, this
new plant dataset contains 564 plant proteins, of which 472 belong
to one subcellular location, 85 belong to two locations, 6 belong to
three locations, 1 belongs to four locations, and none belongs to five
or more locations. This means that the number of locative proteins
[46] is (472 � 1 + 85 � 2 + 6 � 3 + 1 � 4 = 664). These locative pro-
teins are distributed in 12 subcellular locations, which are detailed
as follows: 36 in cell membrane, 7 in cell wall, 148 chloroplast,
146 in cytoplasm, 38 in endoplasmic reticulum, 18 in extracellular,
23 in Golgi apparatus, 63 mitochondrion, 144 in nucleus, 14 in per-
oxisome, 6 in plastid, and 21 in vacuole. Fig. 7A shows the break-
down of this novel dataset. As can be seen, the majority (76%) of
plant proteins are located in chloroplast, cytoplasm, mitochondrion,
and nucleus, whereas proteins in the other 8 subcellular locations
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totally account for less than 24%. The novel dataset is downloadable
from the mPLR-Loc web server. For unbiased performance
evaluation, the sequence similarity of this novel dataset was cut
off at 25%.

Fig. 7B shows the distribution of the logarithm of E-values of the
test proteins, which were obtained by using the training proteins
as the repository and the test proteins as the query proteins in
the BLAST search. If we use a common criterion that homologous
proteins should have E-values less than 10�4, then 172 of 564 (or
30.5%) test proteins are homologs of the training proteins. Note
that this does not mean that BLAST can predict all 172 of these test
proteins correctly. Actually, using BLAST’s homology transfers
(based on the CC field of the homologous proteins) achieves signif-
icantly lower accuracy than the homology rate, as validated in our
previous study [29]. As shown in Table 4, the prediction accuracy
Table 4
Comparing mPLR-Loc with state-of-the-art multi-label plant predictors based on independ

Label Subcellular location Independent test locative ac

Plant-mPLoc [45]

1 Cell membrane 15/36 = 0.417
2 Cell wall 0/7 = 0
3 Chloroplast 91/148 = 0.615
4 Cytoplasm 20/146 = 0.137
5 Endoplasmic reticulum 4/38 = 0.105
6 Extracellular 0/18 = 0
7 Golgi apparatus 6/23 = 0.261
8 Mitochondrion 27/63 = 0.429
9 Nucleus 105/144 = 0.729
10 Peroxisome 6/14 = 0.429
11 Plastid 0/6 = 0
12 Vacuole 5/21 = 0.238
Overall actual accuracy (OAA) 165/564 = 0.293
Overall locative accuracy (OLA) 279/664 = 0.420
Accuracy 0.381
Precision 0.414
Recall 0.445
F1 0.413
HL 0.124

Note. The performance for Plant-mPLoc [45] and iLoc-Plant [47] are calculated based
performance measures.
of mPLR-Loc on this test set is significantly higher than this homol-
ogy rate. This suggests that the information available in the GOA
database plays a very important role in the prediction process.

Table 4 compares the performance of mPLR-Loc against several
state-of-the-art multi-label plant predictors on the new plant data-
set. All of the predictors use the 978 proteins of the plant dataset
(see Fig. 3) for training the classifier and perform independent tests
on the new 564 proteins. As can be seen, mPLR-Loc performs sig-
nificantly better than Plant-mPLoc and iLoc-Plant in terms of all
performance metrics. Surprisingly, when comparing with
mGOASVM, mPLR-Loc also performs better than mGOASVM in
terms of all performance metrics. In particular, the OAA of mPLR-
Loc is nearly 3% better than that of mGOASVM. This suggests that
mPLR-Loc performs robustly better than existing state-of-the-art
predictors.
ent tests using the new plant dataset.

curacy

iLoc-Plant [47] mGOASVM [49] mPLR-Loc

1/36 = 0.028 13/36 = 0.361 21/36 = 0.583
0/7 = 0 0/7 = 0 1/7 = 0.143
77/148 = 0.520 127/148 = 0.858 126/148 = 0.851
35/146 = 0.240 31/146 = 0.212 41/146 = 0.281
5/38 = 0.132 16/38 = 0.421 13/38 = 0.342
0/18 = 0 3/18 = 0.167 3/18 = 0.167
1/23 = 0.044 3/23 = 0.130 3/23 = 0.130
14/63 = 0.222 28/63 = 0.444 28/63 = 0.444
68/144 = 0.472 67/144 = 0.465 74/144 = 0.514
0/14 = 0 8/14 = 0.571 9/14 = 0.643
1/6 = 0.167 0/6 = 0 0/6 = 0
11/21 = 0.524 11/21 = 0.524 11/21 = 0.524
161/564 = 0.286 238/564 = 0.422 254/564 = 0.450
213/664 = 0.321 307/664 = 0.462 330/664 = 0.497
0.328 0.475 0.509
0.359 0.512 0.552
0.339 0.492 0.527
0.342 0.493 0.529
0.123 0.097 0.090

on their corresponding web servers. See Eqs. (12)–(18) for the definitions of the
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Fig.8. Comparing mPLR-Loc with multi-label probabilistic SVMs (mProbSVM) [72] on the number of proteins in confidence subsets (A) and the performance on different
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details of confidence subsets.

4 Note that because we have shown the advantages of using GO term frequency
features over the 1–0 value method in our previous studies, to avoid repetition, we do
not implement similar experiments in this article.
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Biological significance of using GO term frequency features

The GOA database is constructed by various biological research
communities around the world (http://geneontology.org/page/go-
consortium-contributors-list). It is possible that some annotations
for the same proteins are done by different GO consortium contrib-
uting groups around the world. In this case, it is likely that the
annotations of the same biological process, molecular function, or
cellular component for the same protein by different research
groups are different or even contradictory, which may result in
the inaccuracy or inconsistency of the GO annotations. In other
words, there are inevitably some noisy data or outliers in the
GOA database. In particular, when the traditional 1–0 value
method [43,44] was used to extract the GO features, the influence
of those ‘‘noise-contained’’’ GO terms will be emphasized because
of their presence for a query protein. These noisy data and outliers
may negatively affect the performance of machine-learning-based
approaches.

For this concern, first we need to admit that these noisy data
and outliers are likely to exist in the GOA database; unfortunately,
it is not easy to distinguish them from correct GO annotations.
Only wet-lab experimentalists can rely on their biological knowl-
edge to discriminate these noisy data or outliers and remove them
from the database. However, by using the term frequency informa-
tion of GO features, we can somewhat suppress the influence of
these noisy data and outliers. The reasons are elaborated below.

In this article, term frequency information was used to empha-
size those annotations that are confirmed by different research
groups. From our observations, the same GO term for the same
protein may appear more than once in the GOA database, but pos-
sibly with different evidence codes or from different contributing
databases. This means that these kinds of GO terms are validated
several times by different research groups and by different ways,
leading to the same annotation results. On the contrary, if different
research groups annotate the same protein by different GO terms
whose annotations are contradictory with each other, the frequen-
cies of these GO terms for this protein should be low. In other
words, the higher the frequency a GO term appears, the more times
this GO annotation is confirmed by different research groups and
the more credible the annotation of this GO term. By using the
term frequency in our feature vectors, we can enhance the influ-
ence of those GO terms that appear more frequently; in other
words, we can enhance the influence of those GO terms whose
annotations are consistent with each other. Meanwhile, we can
indirectly suppress the influence of those GO terms that appear
less frequently; in other words, we can suppress the influence of
those GO terms whose annotations are contradictory to each other.

The advantages of using the GO term frequency features is evi-
dent by the superior results shown in our previous studies [48,54],
where using GO term frequency information performs significantly
better than using the 1–0 value.4

Analysis of confidence levels

Classifiers that can produce posterior probabilities of classes are
useful for many practical applications. The posterior probabilities
indicate the confidence in assigning an instance to a particular
class. In multi-class classification, assigning an unknown instance
to the class with maximal posterior probability is a typical applica-
tion of the probabilistic output scores produced by these classifiers.

Probabilistic scores are particularly useful in multi-label classi-
fication, where an instance may belong to more than one class.
Standard SVMs, kNNs, or other conventional classifiers can pro-
duce only uncalibrated and non-probabilistic output scores. Unlike
multi-class classification, decisions in multi-label classification
cannot be based solely on the maximal output scores, which makes
standard SVMs less effective. One possible way to solve this prob-
lem is to convert the SVM output scores into calibrated posterior
probabilities [73]. However, the results in this subsection show
that it is inferior to mPLR-Loc proposed in this article.

By using a penalized logistic regression classifier, the proposed
mPLR-Loc predictor possesses intrinsic properties of generating
probabilistic output scores. These probabilistic scores can be
directly interpreted as confidence levels (i.e., the confidence in
assigning an unknown instance to a certain class). The larger the
score, the higher the confidence level. For example, in Fig. A11 of

http://www.geneontology.org/page/go-consortium-contributors-list
http://www.geneontology.org/page/go-consortium-contributors-list
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Appendix B, the posterior probabilities for the 12 locations of a
query protein are [0,0,0,0.87,0,0,0,0,0.96,0,0,0]. According to the
decision scheme in Eq. (10), the query protein will be assigned to
the 4-th and 9-th classes, namely ‘‘cytoplasm’’ and ‘‘nucleus.’’
Moreover, because the score in position 9 is larger than that in
position 4, this protein is more likely to be located in ‘‘nucleus’’
than in ‘‘cytoplasm.’’

Based on this observation, we propose using the maximum
score produced by the logistic regressions as the overall confidence
level of a decision. Specifically, given a query protein Qi, the pos-
terior score sm(Qi) for the m-th (m 2 {1, . . ., M}) location is deter-
mined by Eq. (9). Then, we find the maximum score among all of
the locations:

smaxðQiÞ ¼max
M

m¼1
smðQiÞ: ð20Þ

Then, we divide the confidence into four levels:

C ¼

very high ðVHÞ if 0:8 6 smaxðQiÞ 6 1:0;
median high ðMHÞ if 0:5 6 smaxðQiÞ < 0:8;
median low ðMLÞ if 0:2 6 smaxðQiÞ < 0:5;
very low ðVLÞ if 0 6 smaxðQiÞ < 0:2:

8>>><
>>>:

ð21Þ

For ease of reference, ‘‘very high,’’ ‘‘median high,’’ ‘‘median low,’’
and ‘‘very low’’ are abbreviated as VH, MH, ML, and VL, respectively.
In other words, if smax(Qi) P 0.8, then the confidence of the deci-
sion is very high; on the contrary, if smax(Qi) < 0.2, then the confi-
dence is very low, meaning that the decision may be wrong.
Based on Eq. (21), the proteins in a dataset can be divided into four
subgroups: GVH , GMH , GML, and GVL. For example, smax of proteins in
GVL are all less than 0.2.

To demonstrate the effectiveness of the confidence levels and
the superiority of mPLR-Loc over other probabilistic classifiers,
we have compared mPLR-Loc with a multi-label probabilistic
SVM classifier [73] (mProbSVM for short) using different confi-
dence subsets derived from the virus dataset. Here, a confidence
subset is the union of protein subgroups whose proteins receive
confidence scores higher than or equal to a specific confidence
level.5 For example, VH + MH in the x-axis label of Fig. 8A represents
the union of GVH and GMH , meaning that the proteins in this subset
have confidence scores larger than or equal to 0.5.

According to Ref. [73], SVM scores can be converted to probabi-
listic scores through a sigmoid function. This idea can be extended
to multi-label multi-class classification as follows. Given a query
protein Qi, the calibrated probabilistic score psvm

m ðQiÞ for the m-th
location can be defined as

psvm
m ðQiÞ ¼

1
1þ eðA�ssvm

m ðQiÞþBÞ ; ð22Þ

where A and B can be trained via cross-validation and ssvm
m ðQiÞ is the

uncalibrated SVM score of the query protein Qi for the m-th
location.

Fig. 8A shows the numbers of proteins in each of these confi-
dence subsets produced by mPLR-Loc and mProbSVM. The exces-
sively small number of proteins in the VH subset produced by
mProbSVM implies that mProbSVM is not very confident in classi-
fying the majority of the proteins in the dataset. Fig. 8A also shows
that for all of the confidence subsets, mPLR-Loc can always find a
larger number of proteins than mProbSVM. This phenomenon,
together with the results in Fig. 8B, suggests that mPLR-Loc not
only performs better than mProbSVM in terms of classification
accuracy but also classifies more proteins at a higher confidence
level than mProbSVM. Although mProbSVM achieves a perfor-
5 It is logically acceptable that if a decision with lower confidence is trustworthy,
then those decisions with higher confidence should also be trustworthy.
mance comparable to that of mPLR-Loc in the VH subset, the num-
ber of proteins in this subset for mProbSVM (135 of 207) is much
smaller than that for mPLR-Loc (190 of 207). This means that even
for this stringent condition, mPLR-Loc is still better than
mProbSVM in terms of classification accuracy and classification
confidence.

Conclusions

This article has proposed an efficient multi-label predictor,
namely mPLR-Loc, which is based on multi-label penalized logistic
regression incorporated with an adaptive decision scheme to pre-
dict subcellular localization of both single- and multi-label pro-
teins. Given a query protein, a GO-based feature vector is
constructed by exploiting the information in the GOA database.
The GO vector is presented to one-versus-rest penalized logistic
regression classifiers to obtain M scores, where M is the number
of classes with a single label. The scores are then compared with
an adaptive decision threshold that is proportional to the maxi-
mum of the M scores for predicting the number of labels as well
as the class label(s) of the query protein.

Comparing with existing multi-label predictors, mPLR-Loc has
the following advantages: (i) it uses a multi-label penalized logistic
regression classifier equipped with an adaptive decision strategy
that can tackle multi-label problems effectively; (ii) not only can
it rapidly and accurately provide prediction decisions, it also is able
to give probabilistic confidence scores for the prediction decisions;
and (iii) it adopts a successive search strategy to incorporate useful
homologous information for constructing discriminative feature
vectors.

Experimental results on two recent benchmark datasets dem-
onstrate that mPLR-Loc performs significantly better than existing
state-of-the-art multi-label predictors specializing in virus or plant
proteins. For readers’ convenience, mPLR-Loc is available online
(http://bioinfo.eie.polyu.edu.hk/mPLRLocServer).
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Appendix A. Derivatives for penalized logistic regression

In the ‘‘Single-label penalized logistic regression’’ subsection, to
minimize E(b), we may use the Newton–Raphson algorithm to
obtain Eq. (4), where the first and second derivatives of E(b) are
as follows:

@EðbÞ
@b

¼ �
XN

i¼1

xiðyi � pðxi; bÞÞ þ qb ¼ �XTðy � pÞ þ qb ðA23Þ

and

@2EðbÞ
@b@bT

¼
XN

i¼1

@xipðxi; bÞ
@bT

� �
þ qI

¼
XN

i¼1

xi
@

@bT

ebTxi

1þ ebTxi

 !" #
þ qI

¼
XN

i¼1

xi
ebTxi xT

i ð1þ ebTxi Þ � ebTxi ebTxi xT
i

ð1þ ebTxi Þ2

" #
þ qI

¼
XN

i¼1

xi
xT

i ebTxi

1þ ebTxi
� 1
1þ ebTxi

" #
þ qI

¼
XN

i¼1

xixT
i pðxi; bÞð1� pðxi; bÞÞ þ qI ¼ XTWXþ qI: ðA24Þ 
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Fig.A9. An example of using a plant protein sequence in the Fasta format as input to the mPLR-Loc server.

Fig.A10. Prediction results of the mPLR-Loc server for the plant protein sequence
input in Fig. A9.

Fig.A11. Confidence scores of the mPLR-Loc server for the plant protein sequence
input in Fig. A9.
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In Eqs. (A23) and (A24), y and p are N-dim vectors whose ele-
ments are fyig

N
i¼1 and fpðxi; bÞgN

i¼1, respectively, X = [x1, x2, . . .,
xN]T, W is a diagonal matrix whose i-th diagonal element is p(xi;
b)[1 � p(xi;b)], i = 1, 2, . . ., N.
Appendix B. mPLR-Loc web server

For readers’ convenience, a web server for mPLR-Loc has been
developed. The mPLR-Loc server can deal with two species (i.e.,
virus and plant) and two different input types (i.e., protein
sequences in Fasta format and protein accession numbers in Uni-
ProtKB format). After going to the home page of the mPLR-Loc ser-
ver, select a combination of species type and input type. Then,
input the query protein sequences or accession numbers or upload
a file containing a list of accession numbers or protein sequences.
For example, Fig. A9 shows the screenshot that uses a plant protein
sequence in Fasta format as input. After clicking the ‘‘Predict’’ but-
ton and waiting approximately 13 s, the prediction results as
shown in Fig. A10 and the probabilistic scores as shown in
Fig. A11 will be produced. The prediction result in Fig. A10 includes
the Fasta header, BLAST E-value, and predicted subcellular loca-
tion(s). Fig. A11 shows the confidence in the predicted subcellular
location(s). In this figure, mPLR-Loc predicts the query sequence as
‘‘cytoplasm’’ and ‘‘nucleus’’ with confidence scores greater than 0.8
and 0.9, respectively.
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