
1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 1

Learning Label-Specific Features and Class-
Dependent Labels for Multi-Label Classification

Jun Huang, Student Member, IEEE, Guorong Li, Member, IEEE, Qingming Huang, Senior Member, IEEE,
and Xindong Wu, Fellow, IEEE

Abstract—Binary Relevance is a well-known framework for multi-label classification, which considers each class label as a binary classification
problem. Many existing multi-label algorithms are constructed within this framework and utilize identical data representation in the discrimination
of all the class labels. In multi-label classification, however, each class label might be determined by some specific characteristics of its own. In
this paper, we seek to learn label-specific data representation for each class label, which is composed of label-specific features. Our proposed
method LLSF can not only be utilized for multi-label classification directly, but also be applied as a feature selection method for multi-label learning
and a general strategy to improve multi-label classification algorithms comprising a number of binary classifiers. Inspired by the research works
on modeling high-order label correlations, we further extend LLSF to learn class-Dependent Labels in a sparse stacking way, denoted as LLSF-
DL. It incorporates both second-order and high-order label correlations. A comparative study with the state-of-the-art approaches manifests the
effectiveness and efficiency of our proposed methods.

Keywords—Multi-Label Classification, Label Correlation, Feature Selection.

F

1 INTRODUCTION

M ULTI-LABEL learning deals with examples having multiple
class labels simultaneously. It has attracted significant at-

tention from researchers and has been applied to a variety of
domains, such as text categorization [1], [2], image annotation
[3], [4], video annotation [5], [6], social networks [7], music
emotion categorization [8], [9]. The challenge is how to learn
a well-constructed classification model which can predict a set
of possible labels for unseen examples. The simplest approach
for multi-label classification is to perform problem transformation
[10], [11], where a multi-label problem is transformed into one or
more single-label subproblems. BR [3], one of the representative
algorithms of problem transformation, considers each class label as
an independent binary (one-vs-rest) classification problem. Then,
traditional single-label classification approaches, e.g., Logistic Re-
gression, Naive Bayesian, and SVM, can be used to solve these
binary classification problems directly.

The BR approach is theoretically simple and intuitive, and many
existing advanced multi-label classification algorithms are built
within this framework, such as [12], [13], [14], [15], [16], [17],
[18], [19]. In all the binary classification subproblems, the output
space is different, but the input space is the same. It implies that the
single data representation which is represented by all the features
of a data set is utilized in the discrimination of all the class labels.
In multi-label learning, however, the examples belong to multiple
labels simultaneously, and each class label might be determined by
some specific features of its own and these features are the most
pertinent and discriminative features to the corresponding class
label. For example, features like height and weight have strong
discriminability in the discrimination of whether a person is a

• J. Huang and G. Li are with the School of Computer and Control Engineering,
University of Chinese Academy of Sciences, Beijing 101480, China. E-mail:
huangjun13b@mails.ucas.ac.cn, liguorong@ucas.ac.cn.

• Q. Huang is with the School of Computer and Control Engineering, University
of Chinese Academy of Sciences, Beijing 101480, China, and the Key Lab of
Intelligent Information Processing, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, 100190, China E-mail: qmhuang@ucas.ac.cn.

• X. Wu is with the School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei 230009, China, and the Department of
Computer Science, University of Vermont, 33 Colchester Avenue, Burlington,
VT 05405. E-mail: xwu@cs.uvm.edu.

basketball player. Similarly, features coding and education have
strong discriminability when determining whether a person is a
computer engineer. These features could be considered as label-
specific features to the corresponding class label.

Traditional feature selection methods for single-label classifica-
tion can be employed to obtain label-specific features for multi-
label classification, e.g., Information Gain, Laplacian Score, and
Fisher Score. However, label correlation among class labels is
neglected. Some feature selection, dimension reduction and sub-
space learning methods have been proposed to learn discriminative
features for multi-label classification, e.g., S-CLS[20], MDDM
[13], and MLLS [12], but the low dimensional data representation
learned by these algorithms is shared by all the class labels. LIFT
[19] utilizes label-specific features to represent instances for pre-
dicting the corresponding class label. It can be viewed as a feature
mapping method, and lacks of interpretability, i.e. it is not clear that
which features have discriminability to each class label. Besides,
it does not take label correlation information into consideration.
Meanwhile, several works in multi-task learning [21], [22] have
been proposed to learn common-across-tasks features and task-
specific features, which yield good results.

Inspired by previous works, we first proposed Learning Label-
Specific Features for each class label by considering pairwise (i.e.
second-order) label correlations in our preliminary version [23],
denoted as LLSF. We assume that the label-specific features have
the following three properties:

1) discriminability: The label-specific features should be the
most pertinent and discriminative features to the corre-
sponding class label.

2) sparsity: Each class label is only determined by a subset of
relevant features of a given data set.

3) sharing: Any two strongly correlated class labels can share
more features with each other than two uncorrelated or
weakly correlated ones.

Fig. 1 shows the learning structure of LLSF. It exploits label-
specific features for the discrimination of each class label, and can
be directly applied to multi-label classification. Besides, it can be
utilized as a feature selection method for multi-label learning and
a general strategy to improve multi-label classification algorithms
comprising a number of binary classifiers. LLSF only exploits the
pairwise label correlation for multi-label classification. Meanwhile,

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 2

݀ଵ
...

݀௜
…

௝݀

…

݀௞
…

݀௣

ଵݕଵݕ

ଶݕ

ଷݕଷݕ

……

௟ݕ௟ݕ

݀ଵ
...

݀௜
…

௝݀

…

݀௞
…

݀௣
…

݂ሺ܆ଵ, ,ଵ܇ ଵሻߠ

݂ሺ܆ଶ, ,ଶ܇ ଶሻߠ

݂ሺ܆ଷ, ,ଷ܇ ଷሻߠ

݂ሺ… ,… ,… ሻ

݂ሺ܆௟, ,௟܇ ௟ሻߠ

Original
Feature Set

Label-Specific Data
Representation

Multi‐Label or
Binary Learner

Fig. 1. Label-specific features for each label are indicated in
different colors, and dashed arrows represent the output of
one binary classifier can be used as input for the others, e.g.,
in Classifier Chain (CC).

a high-order strategy has stronger correlation-modeling capabilities
than second-order strategies. We expect that LLSF could obtain
more competitive performance if we extend it to model high-order
label correlation. Modeling high-order label correlations has won
a great success in multi-label classification [24], [25], [26], [27],
[28], [29], [30], [31], but many of the previous works fail to pay
adequate attention to two critical issues [32]: error propagation and
unnecessary dependent relationships.

To overcome these drawbacks, we further extend LLSF to
model high-order label correlations by learning class-Dependent
Labels in a sparse stacking way, denoted as LLSF-DL. Our major
contributions are summarized as follows:
• We propose to learn label-specific data representation for

multi-label classification by considering label correlations.
• We further extend LLSF to learn class-dependent labels,

which exploits both second-order and high-order label cor-
relations.

• The proposed methods LLSF and LLSF-DL can not only
be utilized for multi-label classification directly, but also be
applied as a feature selection method for multi-label learning
and a general strategy to improve multi-label classification
algorithms comprising a number of binary classifiers.

• The experimental results on fifteen multi-label data sets show
the effectiveness and efficiency of our methods against the
state-of-the-art multi-label classification algorithms.

Difference to conference version. Compared to our conference
version paper [23], the extended work in this paper mainly in-
cludes: 1). We extend LLSF to exploit high-order label correlations
by learning class-Dependent Labels in a sparse stacking way.
2). We significantly strengthen the experiment part: (a) fifteen
data sets and nine comparing algorithms are used to evaluate the
effectiveness of our proposed methods. (b) the performance of
feature selection of LLSF is evaluated. (c) statistical tests, e.g.,
Friedman test, Nemenyi test and Wilcoxon signed-ranks test, are
added to test whether our proposed methods achieve a competitive
performance against the comparing algorithms.

The rest of this paper is organized as follows. Section 2 reviews
previous works on multi-label learning. Section 3 presents details
of the proposed methods LLSF and LLSF-DL. Experimental
results and analyses are shown in Section 4. Section 5 shows
the results of LLSF and LLSF-DL on large-scale multi-label data.
Finally, we conclude the paper in Section 6.

2 RELATED WORK
Research on multi-label learning originates from text categoriza-
tion [1]. Over the past decades, many well-established algorithms

have been proposed to solve multi-label learning problems in
various domains. According to the review papers [10], [11], these
algorithms can be grouped into two categories: problem transfor-
mation (fitting data to algorithm) and algorithm adaption (fitting
algorithm to data) approaches. Being a presentative framework of
the first category, BR [3] is simple and straightforward. However,
it suffers from several drawbacks: 1) BR does not take the
correlation information among different labels into consideration.
2) it becomes computationally unaffordable for data sets with
many labels. 3) the binary classifiers may suffer from the issue of
class-imbalance. Many existing advanced multi-label classification
algorithms are built within this framework to overcome different
drawbacks or solve new problems in multi-label learning.

For the first problem, many algorithms have been proposed
by mining second-order or high-order label correlations. Second-
order approaches exploit pairwise relationships between labels,
such as BP-MLL [2] and CLR [33]. High-order approaches tackle
multi-label learning problem by mining relationships between all
the class labels or subsets of class labels. CC [24] is a novel chain
algorithm which models high-order label correlations by using the
vector of class labels as additional features. It transforms a multi-
label classification problem into a chain of l binary classification
problems, and the i-th classifier hi is trained by using the results
of labels y1, y2, ..., yi−1 as additional input information. To predict
subsequent labels in a given chain order, CC resorts to using
outputs of the preceding classifiers, which makes them prone to
errors. The performance of CC is seriously constrained by the
training order of labels and error propagation. Besides, it may not
be appropriate that each label is dependent on all the preceding
labels in a given chain order. PCC [34] is an extended work on CC
by formulating a probabilistic interpretation. PCC suffers from the
computational issue that the inference requires time exponential in
the number of class labels. Moreover, the performance of PCC is
sensitive to the order of class labels while training. There are sev-
eral extended approaches on CC and PCC by searching for suitable
order of labels or dependent structures among labels and reducing
the computational complexity, e.g., HIROM [35], PruDent [32],
BCC [25], LEAD [26], PCC-beam [28], and MCC [29]. Existing
approaches mainly exploit label correlations globally by assuming
that the label correlations are shared by all the examples. In real-
world tasks, however, different examples may share different label
correlations, and few correlations are globally applicable. There are
several approaches on exploiting label correlations locally, such as
ML-LOC [36] and GCC [37].

Learning from multi-label data with large number of labels, the
number of requisite predictive models will be quite large, making
the training costs unaffordable. To address this issue, researchers
try to perform label space dimension reduction (LSDR), e.g., CS
[14], PLST [15], CPLST [16], CL [17], and FaIE [18]. For LSDR,
each original high-dimensional label vector is encoded to a low
dimensional code vector in a latent space. Then predictive models
are trained from the data matrix to code vectors, whose quantity is
much smaller than the original and thus can significantly reduce the
training costs. To predict an unseen example, a low-dimensional
code vector is firstly obtained with the learned predictive models on
its features and then efficiently decoded for recovering its predicted
label vector. If the learned predictive models and the decoding
process are effective enough, LSDR will be expected to yield
acceptable classification performance at much lower costs. Class
imbalance [38] is ubiquitous in Machine Learning, Data Mining
and Pattern Recognition applications. Several approaches, e.g.,
MLSC [39], IRUS [40], and COCOA [41], have been proposed
to tackle it in multi-label learning.

Existing feature selection, dimension reduction and subspace
learning methods aim to learn a low dimensional data representa-

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 3

tion for multi-label classification, which is shared by all the class
labels, e.g., gMLC [42], S-CLS[20], MDDM [13], and MLLS [12].
LIFT [19] exploits different feature sets to discriminate different
class labels. The label-specific features are learned by conducting
clustering analysis on the positive and negative examples for a
given label, and represented by distances between the original
instances and the instances in the centers of positive and negative
examples. It can be viewed as a feature mapping method, and does
not consider label correlations. Several approaches in multi-task
learning, e.g., DirtyLasso [21], GFLasso [22], MixedNorm [43],
and RMTL [44], have been proposed to learn common-across-
tasks features and task-specific features, and yielded good results.
DirtyLasso [21] utilizes `1,∞-norm and `1-norm to extract essential
features shared by the tasks and task-specific features, respectively.
DirtyLasso learns common features shared by all the tasks, and
does not model relatedness between tasks explicitly. GFLasso [22]
exploits a graph structure over the tasks and encourages highly
correlated tasks to share a common set of relevant features by
calculating distance between coefficient vectors of tasks, and `1-
norm is employed to extract task-specific features.

Previous work mainly utilizes identical feature representation to
discriminate all the class labels. In this paper, we propose to learn
label-specific features and class-dependent labels for multi-label
classification, which incorporates not only second-order, but also
high-order label correlations.

3 LEARNING LABEL-SPECIFIC FEATURES AND
CLASS-DEPENDENT LABELS

In this section, we first present how to model the properties of
label-specific features, and then introduce how to exploit second-
order and high-order label correlations. Last, we will give details
of optimization of the proposed model via accelerated proximal
gradient descent algorithm.

3.1 Notations
Let X = Rp be an input space with p-dimensional and Y =
{y1, y2, ..., yl} be a finite set of l possible class labels. We denote
the input data as a matrix X = [x1,x2, ...,xn]T ∈ Rn×p, and
the output labels as a matrix Y = [y1,y2, ...,yn]T ∈ {0, 1}n×l.
The i-th example is denoted by a vector with p attribute values
xi = [xi1, xi2, ..., xip], xi ∈ X , and yi = [yi1, yi2, ..., yil] is a
ground truth label of xi. Each element yij = 1 if the label yj is
associated with xi, otherwise yij = 0.

3.2 Discriminability and Sparsity of Label-Specific Fea-
tures
Discriminability indicates that the label-specific features should
be the most pertinent and discriminative to the corresponding
class label, and sparsity indicates that each class label is only
determined by a subset of relevant features of a given data set. We
can generalize our algorithm as the following optimization problem

min
wi

`(f(Xwi),yi) + β‖wi‖1 (1)

where `(·) is a loss function, and it can be implemented with
various loss functions. We choose the least square loss function
because of its efficiency and simplicity reported in many applica-
tions. By applying the least square loss function, the optimization
problem is then defined as

min
wi

1

2
‖Xwi − yi‖22 + β‖wi‖1 (2)

where wi = [w1i, w2i, ..., wpi]
T represents the regression parame-

ter of the model for the i-th label, and yi = [y1i, y2i, ..., yni]
T

represents the i-th column of Y, 1 ≤ i ≤ l. Eq (2) equals
Lasso [45]. The non-zero components wji of wi indicate that the
corresponding features are discriminative to label yi. Consequently,
these features could be considered as label-specific features of label
yi, and the number of them will be much smaller than p.

3.3 Incorporating Second-Order Label Correlations
In multi-label learning, class labels often have correlations with
each other. For example, an object that belongs to label y1 is
also likely belongs to label y2. Conversely, belonging to label
y1 can make an object less likely to belong to label y3. If two
class labels are strongly correlated, features discriminative to one
class label might be discriminative to the other. On the contrary, if
two class labels are uncorrelated or weakly correlated, the features
discriminative to one class label might not be discriminative to the
other. Therefore, we assume that two strongly correlated labels
can share more features with each other than two uncorrelated or
weakly correlated labels.

In LLSF, the label-specific features for the i-th label are de-
termined by non-zero components of wi. If label yi and label yj
are strongly correlated, features discriminative to yi may be also
discriminative to yj with a higher probability. Then the two labels
will share most of the label-specific features and the corresponding
coefficients wi and wj will be very similar, and thus their inner
product will be large; otherwise, the inner product will be small.
We incorporate second-order (i.e. pairwise) label correlation by
calculating the inner product between any pair of coefficient
vectors to model the property of sharing of label-specific features,
and the optimization problem is formulated as

min
wi

1

2
‖Xwi − yi‖22 +

α

2

l∑
j=1

rijw
iTwj + β‖wi‖1 (3)

where rij = 1− cij , cij represents the correlation between labels
yi and yj , and C ∈ Rl×l is the label correlation matrix. In this
paper, the correlation matrix C is calculated by cosine similarity.

Combing all the binary classifiers together, the final optimization
objective of LLSF can be rewritten as

min
W

1

2
‖XW −Y‖2F +

α

2
Tr(RWTW) + β‖W‖1 (4)

where W = [w1,w2, ...,wl] ∈ Rp×l,R ∈ Rl×l with elements rij ,
Y = [y1,y2, ...,yl] ∈ Rn×l, α ≥ 0 and β ≥ 0 are two tradeoff
parameters.

3.4 Learning Class-Dependent Labels
In multi-label learning, each label might be dependent on more
than one class label. According to [11], a high-order strategy has
stronger correlation-modeling capabilities than first-order (i.e. do
not model label correlations) and second-order strategies. But most
works fail to pay adequate attention to two critical issues [32]: error
propagation and unnecessary dependent relationships.

Inspired by previous works on modeling high-order label cor-
relation by stacking [27], [32], we further extend LLSF to in-
corporate high-order label correlations in a sparse stacking way,
denoted as LLSF-DL. A label space Y is augmented with the
feature space X as additional features, and `1 norm regularization
on Wy is employed to learn sparse label dependency relationships.
The sparsity regularization on Wy could remove unnecessary de-
pendency relationships. Thus, it can alleviate the negative influence
of error propagations from unnecessary dependency relationships.
The optimization of LLSF-DL is defined as

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 4

௜ݕ

ଶݕ ଵݕ… ௟݀௣…݀ଵݕ ݀ଶ

௫܅ ௬܅

Feature Set Label Set

Fig. 2. LLSF-DL: Learning Label-Specific Features and class-
Dependent Labels. The dashed arrows represent the corre-
sponding features or labels are not specific to yi.

min
Wx,Wy

1

2
‖XWx + YWy −Y‖2F +

α

2
Tr(RWT

xWx)

+ β‖Wx‖1 + γ‖Wy‖1 (5)

where Wx = [w1
x,w

2
x, ...,w

l
x] ∈ Rp×l,Wy = [w1

y,w
2
y, ...,w

l
y] ∈

Rl×l, α ≥ 0, β ≥ 0 and γ ≥ 0 are the tradeoff parameters, and
the definition of R is the same as LLSF.

3.5 Accelerated Proximal Gradient
Although the minimization of (4) and (5) are two convex optimiza-
tion problems, the objective functions are non-smooth due to the
non-smoothness of the `1 norm regularization terms. We use the
accelerated proximal gradient method to solve these non-smooth
optimization problems.

A general accelerated proximal gradient method can be written
as the following convex optimization problem

min
W∈H

{F (W) = f(W) + g(W)} (6)

where H is a real Hilbert space, both f(W) and g(W) are
convex. f(W) is further Lipschitz continuous, i.e. ‖∇f(W1) −
∇f(W2)‖ ≤ Lf‖∆W‖, where ∆W = W1−W2, and Lf is the
Lipschitz constant

Instead of directly minimizing F (W), proximal gradient algo-
rithms minimize a sequence of separable quadratic approximations
to F (W), denoted as

QLf (W,W(t)) = f(W(t)) + 〈∇f(W(t)),W −W(t)〉+

Lf
2
‖W −W(t)‖2F + g(W) (7)

Let G(t) = W(t) − 1
Lf
∇f(W(t)), then

W∗ = arg min
W

QLf (W,W(t)) (8)

= arg min
W

g(W) +
Lf
2
‖W −G(t)‖2F

In [46], the work has shown that setting W(t) = Wt +
bt−1−1
bt

(Wt−Wt−1) for a sequence bt by satisfying b2t+1−bt+1 ≤
b2t can improve the convergence rate to O(t−2), where Wt is the
result of W at the t-th iteration.

Before presenting the details of optimization for LLSF and
LLSF-DL, we first introduce the soft-thresholding operator. For
w ∈ R and ε > 0, the soft-thresholding operation is defined as

Sε[w] =

{
w − ε if w > ε
w + ε if w < −ε

0 otherwise
(9)

Algorithm 1: Optimization of LLSF
Input: Training data matrix X ∈ Rn×p, label matrix

Y ∈ Rn×l, and weighting parameters α, β, ρ.
Output: Coefficient matrix W∗ ∈ Rp×l.

1 Initialization:
b0, b1 ← 1; t← 1; W0,W1 ← (XTX + ρI)−1XTY;

2 calculate the Lipschitz constant Lf by (23);
3 initialize R by calculating the cosine similarity on Y;
4 repeat
5 W(t) ←Wt + bt−1−1

bt
(Wt −Wt−1);

6 G(t) ←W(t) − 1
Lf
∇f(W(t));

7 Wt+1 ← S β
Lf

(G(t));

8 bt+1 ←
1+
√

4b2t+1

2 ;
9 t← t+ 1;

10 until stop criterion reached;
11 W∗ ←Wt+1;

Proposition 3.1: If H is a Euclidean space endowed with the
Frobenius norm ‖ · ‖F and g(·) is `1 norm, then Wt+1 is given
by soft-thresholding the entries of G(t) as

Wt+1 = Sε[G
(t)] = arg min

W
ε‖W‖1 +

1

2
‖W −G(t)‖2F (10)

3.6 Optimization of LLSF Model
According to (4) and (6), f(W) and g(W) are defined as follows

f(W) =
1

2
‖XW −Y‖2F +

α

2
Tr(RWTW) (11)

g(W) = β‖W‖1 (12)

According to (11), we can calculate ∇f(W) as

∇f(W) = XTXW −XTY + αWR (13)

According to (8), (11) and (12), the coefficient matrix W can
be optimized by

W∗ = arg minWQLf (W,W(t))

= arg minW
Lf
2 ‖W −G(t)‖2F + g(W)

= arg minW
1
2‖W −G(t)‖2F + β

Lf
‖W‖1

(14)

where G(t) = W(t) − 1
Lf
∇f(W(t)).

Here g(W) is `1 norm regularization. According to Proposition
3.1, in each iteration, W can be obtained by the following soft-
thresholding operation,

Wt+1 = S β
Lf

[G(t)] (15)

The overall procedures of optimization for LLSF via accelerated
proximal gradient algorithm are summarized in Algorithm 1.

3.7 Optimization of LLSF-DL Model
According to (5) and (6), f(Wx,Wy) and g(Wx,Wy) can be
defined as follows

f(Wx,Wy) =
1

2
‖XWx+YWy−Y‖2F+

α

2
Tr(RWT

xWx) (16)

g(Wx,Wy) = β‖Wx‖1 + γ‖Wy‖1 (17)

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 5

Algorithm 2: Optimization of LLSF-DL
Input: Training data matrix X ∈ Rn×p, label matrix

Y ∈ Rn×l, and weighting parameters α, β, γ, ρ.
Output: Coefficient matrix W∗

x ∈ Rp×l and W∗
y ∈ Rl×l.

1 Initialization:
2 b0, b1 ← 1; t← 1;;
3 W0

x,W
1
x ← (XTX + ρI)−1XTY;

4 W0
y,W

1
y ← (YTY + ρI)−1YTY;

5 calculate the Lipschitz constant Lf by (24);
6 initialize R by calculating the cosine similarity on Y;
7 repeat
8 W

(t)
x ←Wt

x + bt−1−1
bt

(Wt
x −Wt−1

x);
9 G

(t)
x ←W

(t)
x − 1

Lf
∇f(W

(t)
x);

10 Wt+1
x ← S β

Lf

(G
(t)
x);

11 W
(t)
y ←Wt

y + bt−1−1
bt

(Wt
y −Wt−1

y);
12 G

(t)
y ←W

(t)
y − 1

Lf
∇f(W

(t)
y);

13 Wt+1
y ← S γ

Lf
(G

(t)
y);

14 bt+1 ←
1+
√

4b2t+1

2 ;
15 t← t+ 1;
16 until stop criterion reached;
17 W∗

x ←Wt+1
x , W∗

y ←Wt+1
y ;

According to (16), we can calculate ∇Wx
f(Wx,Wy) and

∇Wy
f(Wx,Wy) as follows

∇Wx
f(Wx,Wy) = XTXWx + XTYWy −XTY

+ αWxR

∇Wy
f(Wx,Wy) = YTYWy + YTXWx −YTY

(18)

Since there are two parameters, we can solve them alternatively.
With fixed Wy , according to (8), (16) and (17), the coefficient
matrix Wx can be optimized by

W∗
x = arg minWx QLf (Wx,W

(t)
x)

= arg minWx

Lf
2 ‖Wx −G

(t)
x ‖2F + g(Wx,Wy)

= arg minWx

1
2‖Wx −G

(t)
x ‖2F + β

Lf
‖Wx‖1

(19)

where G
(t)
x = W

(t)
x − 1

Lf
∇Wx

f(Wx,Wy). The solution Wt+1
x

can be obtained according to Proposition 3.1

Wt+1
x = S β

Lf

[G(t)
x] (20)

Similar to the optimization of Wx , the optimal solution of Wy

with fixed Wx can be inferred by

W∗
y = arg minWy

QLf (Wy,W
(t)
y)

= arg minWy

Lf
2 ‖Wy −G

(t)
y ‖2F + g(Wx,Wy)

= arg minWy

1
2‖Wy −G

(t)
y ‖2F + γ

Lf
‖Wy‖1

(21)

where G
(t)
y = W

(t)
y − 1

Lf
∇Wy

f(Wx,Wy). The solution Wt+1
y

can be obtained according to Proposition 3.1

Wt+1
y = S γ

Lf
[G(t)

y] (22)

We summarize all the procedures of optimization for LLSF-DL
via accelerated proximal gradient method in Algorithm 2.

Algorithm 3: Testing of LLSF
Input: Test data matrix Xt ∈ Rm×p; Coefficient matrix

W ∈ Rp×l; Threshold τ .
Output: Predicted Label Matrix: Yt; Score Matrix: St.

1 St ← XtW;
2 Yt ← sign(St − τ);

3.8 Lipschitz Constant
In this section, we will present how to calculate the Lipschitz
constant for LLSF and LLSF-DL.

For LLSF, given W1 and W2, according to (13), then we have

‖∇f(W1)−∇f(W2)‖2F
≤ (2‖XTX‖22 + 2‖αR‖22)‖∆W‖2F

where ∆W = W1 −W2. Therefore, the Lipschitz constant is

Lf =
√

2‖XTX‖22 + 2‖αR‖22 (23)

For LLSF-DL, given W1 = (W1
x,W

1
y) and W2 = (W2

x,W
2
y),

according to (18), we have

‖∇f(W1)−∇f(W2)‖2F

≤ (3(‖XTX‖22 + ‖XTY‖22 + ‖αR‖22) + 2‖YTY‖22)

∥∥∥∥ ∆Wx

∆Wy

∥∥∥∥2
F

where ∆Wx = W1
x −W2

x and ∆Wy = W1
y −W2

y . Therefore,
the Lipschitz constant is

Lf =
√

3(‖XTX‖22 + ‖XTY‖22 + ‖αR‖22) + 2‖YTY‖22 (24)

The proofs of Lipschitz continuity of (11) and (16) are provided
in the supplementary material.

3.9 Testing of LLSF
After training of LLSF, we can obtain the coefficient matrix W.
Given a testing data Xt, the predicted labels can be determined
by sign(St− τ) with the given threshold τ , where St = XtW. In
our experiments, τ is set to be 0.5. The details of testing of LLSF
are summarized in Algorithm 3.

LLSF can be utilized as a feature selection method for multi-
label classification, where features corresponding to the non-zero
components of wi are considered as the label-specific features of
label yi. It can be taken as the input of many existing multi-label
classification algorithms comprising a number of binary classifiers,
such as BR [3], LIFT [19], and ECC [24]. The procedures are
summarized in Algorithm 4.

3.10 Testing of LLSF-DL
Similar to CC and stacking approaches, the ground truth label Y
is available as additional features to induce each binary classifier
of LLSF-DL during the training stage1, whereas this information
is not available for new instances to be classified. Consequently, in
order to make LLSF-DL applicable, the help of some other (multi-
label) classifiers is needed to estimate Ŷt first, which can then be
used in place of Yt in the test stage.

In this paper, Ŷt ∈ {0, 1}m×l is first predicted by LLSF,
and then augmented with the data matrix Xt for prediction. The
prediction of LLSF-DL can be obtained by Ŷt = sign(St−τ) with

1. A very recent work [47] has identified this discrepancy between training and
testing as problematic in stacking and chaining approaches and suggests the use of
out-of-sample estimates (instead of ground truth labels) at training time.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 6

Algorithm 4: LLSF as a Feature Selection Method
Input: Training data matrix X ∈ Rn×p,label matrix

Y ∈ Rn×l, and weighting parameters α, β, ρ; Test
data matrix Xt ∈ Rm×p; Binary classifier learning
function f(·) and its parameters θ;

Output: Predicted Label Matrix: Yt; Score Matrix: St.
1 Training:
2 learn the coefficient matrix W of LLSF by Algorithm 1;
3 for i = 1 to l do
4 di ← find(wi 6= 0) ;
5 Xi ← X(:,di);
6 hi ← f(Xi,Y,θ);

7 Test:
8 for i = 1 to l do
9 Xi

t ← Xt(:,d
i);

10 [yit, s
i
t]← hi(X

i
t,Yt,θ);

11 Yt(:, i)← yit;
12 St(:, i)← sit;

Algorithm 5: Testing of LLSF-DL
Input: Test data matrix Xt ∈ Rm×p; Coefficient matrix

Wx ∈ Rp×l and Wy ∈ Rl×l; Threshold τ .
Parameters θ and k

Output: Predicted Label Matrix: Yt; Score Matrix: St.
1 Ŷt ← LLSF(Xt,θ, τ);
2 for i = 1 to k do
3 St ← XtWx + ŶtWy;
4 Ŷt ← sign(St − τ);

5 Yt ← Ŷt;

the given threshold τ , where St = XtWx + ŶtWy . Intuitively,
the more accurate the prediction of Ŷt by LLSF is, the more
accurate of Ŷt predicted by LLSF-DL is. Moreover, LLSF-DL is
expected to achieve better performance than LLSF. Thus, once Ŷt

is obtained, it can be used to fine-tune the prediction by itself. In
the experiment, we found that the result of Ŷt can be converged
within 3 times. The details are summarized in Algorithm 5.

3.11 Time Complexity
The complexity of LLSF has two parts: initializations and itera-
tions. To initialize W1, the calculation consists of some operations
of matrix multiplication and inversion. This leads to a complexity
of O(d2n+d3+dnl+d2l), where d is the dimensionality of a data
set, l is the number of labels and n is the number of instances.
The initialization of Lf refers to singular value decomposition,
whose complexity is O(d3 + l3). In the iterations, the time cost is
dominated by step 6. It needs to calculate the gradient of f(W),
which leads to a complexity of O(d2l+dl2). The total complexity
for the iterations is O(t(d2l + dl2)), where t is the number of
iterations. Similarly, the complexity of LLSF-DL also has two parts
(see Algorithm 2). In the initialization stage, the time complexity
is O(d2n+d3 +dnl+d2l) + O(l2n+ l3) + O(d3 + l3 +d2l). The
iterations need O(t(d2l + dl2 + l3)). Both LLSF and LLSF-DL
need memory of O(d2 + dl + l2 + nd+ nl).

4 EXPERIMENTS
4.1 Data Sets
We conduct experiments on fifteen multi-label benchmark data
sets [48], [49], [50], [51], [52], [53], [54], and the details of

TABLE 1
Description of Data Sets

Data set # Instances # Features # Labels Cardinality Domain
CAL500 502 68 174 26.044 music
genbase 645 1186 27 1.252 biology
medical 978 1449 45 1.245 text
language log 1459 1004 75 1.180 text
corel5k 5000 499 374 3.522 image
arts 5000 462 26 1.636 text(web)
education 5000 550 33 1.461 text(web)
recreation 5000 606 22 1.423 text(web)
science 5000 743 40 1.451 text(web)
rcv1(subset1) 6000 944 101 2.880 text
bibtex 7395 1836 159 2.402 text
corel16k001 13766 500 153 2.859 image
bookmark 87856 2150 208 2.028 text
imdb 120919 1001 28 2.000 text
nuswide 269468 500 81 1.869 image

which are summarized in Table 1. There are twelve regular-scale
and three relative large-scale data sets (i.e. bookmark, imdb, and
nuswide). They can be downloaded from the websites of Mulan2

[10], Lamda3 [13] and Meka4 [55]. Column “Cardinality” means
the average number of labels per example of a data set.

4.2 Comparison Methods
We compare our proposed methods LLSF and LLSF-DL with the
following state-of-the-art multi-label classification methods.

BR [3]: Binary Relevance decomposes a multi-label classifica-
tion problem into l independent binary classification subproblems.

DBR [27]: Dependent Binary Relevance models high-order label
correlations in a stacking way.

ECC [24]: Ensemble Classifier Chains. It is an ensemble version
of CC, where the ensemble size m is set to be 10. The chain order
yπ(1), yπ(2), ..., yπ(l) for each CC is generated randomly.

MCC [29]: Efficient monte carlo methods for multi-dimensional
learning with classifier chains. It is implemented in Meka [55].
SVM fitted with logistic models in the SMO implementation with
polynomial kernel is utilized as the base binary learner for each
binary classifier of MCC, and C is tuned in {10−4, 10−3, ..., 104}.

LIFT5 [19]: It exploits different features set for the discrimi-
nation of different class labels. The ratio parameter r is tuned in
{0.1, 0.2, ..., 0.5}.

Lasso [45]: It learns sparse label-specific features without con-
sidering label correlations. The regularizer parameter is searched
in {2−10, 2−9, ..., 210}.

GFLasso6 [22]: Graph-guide Fused Lasso. The two regulariza-
tion parameters are tuned in {2−10, 2−9, ..., 210}.

LLSF7: Parameters α, β are searched in {2−10, 2−9, ..., 210},
and ρ is searched in {0.1, 1, 10}. The threshold τ = 0.5 . The
Lipschitz constant Lf is calculated by (23).

LLSF-DL: Parameters α, β, γ are searched in {4−5, 4−4, ...,45},
and ρ is searched in {0.1, 1, 10}. The threshold τ = 0.5 and k = 3.
The Lipschitz constant Lf is calculated by (24).

LLSF-BR: The data composed of label-specific features learned
by LLSF of each label is set to be the training data for each
corresponding binary classifier of BR.

LLSF-ECC: The ensemble size m is set to be 10, and the chains
order yπ(1), yπ(2), ..., yπ(l) is generated randomly. Each classifier
hπ(i) is trained by using yπ(1), yπ(2), ..., yπ(i−1) as augmented
features with the label-specific features of label yπ(i).

2. http://mulan.sourceforge.net/datasets.html
3. http://lamda.nju.edu.cn/Data.ashx#data
4. http://meka.sourceforge.net
5. source code: http://cse.seu.edu.cn/PersonalPage/zhangml/index.htm
6. source code: http://www.cs.cmu.edu/%7Esssykim/softwares/softwares.html
7. source code: http://www.escience.cn/people/huangjun/index.html.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 7

TABLE 2
Experimental results of each comparing algorithm (mean±std) in terms of Hamming Loss, Accuracy, and Exact Match. ↑ (↓)

indicates the larger (smaller) the value, the better the performance. Best results are highlighted in bold

Data Set Hamming Loss↓
Lasso GFLasso BR DBR ECC MCC LIFT LLSF LSFS-DL

CAL500 0.137±0.004 0.257±0.010 0.137±0.003 0.138±0.003 0.168±0.008 0.204±0.006 0.138±0.005 0.144±0.005 0.238±0.041
genbase 0.001±0.001 0.001±0.000 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.002±0.001 0.001±0.000 0.001±0.000
medical 0.011±0.001 0.010±0.001 0.011±0.001 0.010±0.001 0.011±0.001 0.010±0.001 0.011±0.001 0.010±0.001 0.010±0.002
language log 0.021±0.004 0.016±0.001 0.016±0.001 0.045±0.002 0.016±0.001 0.015±0.001 0.016±0.001 0.018±0.001 0.019±0.000
corel5k 0.009±0.000 0.010±0.000 0.009±0.000 0.009±0.000 0.019±0.000 0.017±0.000 0.012±0.000 0.012±0.000 0.011±0.000
arts 0.054±0.001 0.053±0.001 0.053±0.002 0.166±0.019 0.056±0.001 0.060±0.001 0.052±0.001 0.057±0.002 0.058±0.002
education 0.038±0.001 0.053±0.001 0.037±0.001 0.116±0.007 0.041±0.002 0.050±0.003 0.036±0.000 0.042±0.001 0.043±0.001
recreation 0.054±0.001 0.054±0.002 0.052±0.001 0.195±0.012 0.055±0.005 0.061±0.002 0.052±0.001 0.055±0.001 0.061±0.002
science 0.031±0.001 0.034±0.000 0.030±0.001 0.153±0.005 0.032±0.001 0.035±0.000 0.030±0.001 0.035±0.001 0.038±0.001
rcv1(subset1) 0.026±0.001 0.026±0.000 0.026±0.000 0.037±0.001 0.029±0.000 0.034±0.000 0.026±0.000 0.029±0.000 0.029±0.001
bibtex 0.012±0.000 0.012±0.000 0.012±0.000 0.015±0.000 0.013±0.000 0.015±0.000 0.012±0.000 0.013±0.000 0.014±0.000
corel16k001 0.019±0.000 0.019±0.000 0.019±0.000 0.031±0.000 0.021±0.001 0.020±0.000 0.019±0.000 0.023±0.000 0.023±0.000

Data Set Accuracy ↑
Lasso GFLasso BR DBR ECC MCC LIFT LLSF LSFS-DL

CAL500 0.201±0.004 0.140±0.010 0.190±0.008 0.197±0.004 0.211±0.010 0.201±0.005 0.194±0.011 0.263±0.014 0.307±0.015
genbase 0.986±0.008 0.992±0.006 0.987±0.010 0.984±0.007 0.990±0.007 0.984±0.012 0.974±0.008 0.993±0.004 0.994±0.005
medical 0.726±0.027 0.738±0.025 0.742±0.025 0.766±0.033 0.756±0.025 0.764±0.020 0.686±0.030 0.756±0.019 0.755±0.032
language log 0.117±0.026 0.124±0.004 0.105±0.013 0.157±0.008 0.128±0.012 0.219±0.028 0.126±0.014 0.145±0.012 0.172±0.013
corel5k 0.055±0.006 0.056±0.004 0.039±0.006 0.049±0.003 0.086±0.003 0.104±0.003 0.118±0.009 0.144±0.007 0.146±0.005
arts 0.277±0.008 0.298±0.007 0.282±0.017 0.338±0.014 0.325±0.022 0.413±0.028 0.301±0.013 0.374±0.017 0.375±0.012
education 0.297±0.008 0.298±0.007 0.265±0.011 0.347±0.010 0.361±0.013 0.393±0.031 0.312±0.009 0.368±0.014 0.376±0.020
recreation 0.301±0.018 0.297±0.011 0.295±0.005 0.361±0.006 0.376±0.028 0.409±0.011 0.320±0.010 0.352±0.007 0.398±0.005
science 0.268±0.011 0.260±0.005 0.278±0.012 0.315±0.006 0.362±0.010 0.416±0.000 0.303±0.015 0.350±0.012 0.367±0.013
rcv1(subset1) 0.252±0.011 0.255±0.010 0.253±0.006 0.271±0.009 0.339±0.008 0.320±0.006 0.277±0.008 0.351±0.005 0.355±0.007
bibtex 0.303±0.007 0.308±0.012 0.346±0.012 0.292±0.010 0.332±0.006 0.342±0.037 0.317±0.009 0.360±0.011 0.383±0.010
corel16k001 0.038±0.002 0.050±0.002 0.018±0.001 0.161±0.002 0.091±0.016 0.106±0.001 0.026±0.002 0.144±0.005 0.155±0.005

Data set Exact Match ↑
Lasso GFLasso BR DBR ECC MCC LIFT LLSF LSFS-DL

CAL500 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
genbase 0.974±0.014 0.986±0.009 0.971±0.022 0.967±0.015 0.982±0.015 0.968±0.016 0.958±0.014 0.986±0.009 0.985±0.013
medical 0.631±0.029 0.653±0.025 0.643±0.035 0.681±0.034 0.689±0.037 0.694±0.016 0.612±0.037 0.668±0.025 0.670±0.030
language log 0.210±0.012 0.237±0.025 0.215±0.002 0.217±0.022 0.242±0.024 0.206±0.028 0.239±0.024 0.243±0.016 0.244±0.022
corel5k 0.005±0.003 0.005±0.001 0.006±0.001 0.006±0.003 0.003±0.003 0.007±0.004 0.015±0.003 0.008±0.001 0.010±0.003
arts 0.222±0.005 0.236±0.003 0.227±0.019 0.219±0.009 0.272±0.019 0.351±0.025 0.241±0.012 0.267±0.019 0.269±0.012
education 0.240±0.007 0.236±0.003 0.221±0.009 0.220±0.012 0.296±0.015 0.294±0.035 0.253±0.005 0.254±0.011 0.256±0.018
recreation 0.259±0.016 0.256±0.012 0.257±0.006 0.257±0.008 0.335±0.027 0.361±0.009 0.278±0.012 0.287±0.009 0.294±0.007
science 0.220±0.012 0.199±0.006 0.233±0.012 0.229±0.007 0.317±0.011 0.359±0.000 0.250±0.014 0.255±0.013 0.256±0.013
rcv1(subset1) 0.079±0.007 0.081±0.006 0.083±0.004 0.098±0.007 0.222±0.007 0.137±0.007 0.090±0.007 0.051±0.006 0.048±0.004
bibtex 0.171±0.012 0.176±0.014 0.187±0.013 0.176±0.008 0.189±0.000 0.173±0.000 0.168±0.010 0.178±0.015 0.168±0.007
corel16k001 0.007±0.001 0.009±0.001 0.004±0.001 0.007±0.001 0.019±0.004 0.017±0.002 0.006±0.001 0.014±0.002 0.015±0.003

LLSF-LIFT: The data composed of the label-specific features
of each class label is set to be the training data for each corre-
sponding binary classifier of LIFT, and the ratio parameter r is
tuned in {0.1, 0.2, ..., 0.5}.

For fair comparisons, libsvm [56] is utilized as the base
binary learner for each binary classifier of BR, DBR, ECC,
LIFT, LLSF-BR, LLSF-ECC and LLSF-LIFT, where the kernel
function is set as linear kernel, and the parameter C is tuned in
{10−4, 10−3, ..., 104}.

4.3 Results of Multi-Label Classification
We repeatedly run each comparing algorithm 5 times on 5 sets of
randomly partitioned training (80%) and testing (20%) data, and
the parameters are tuned by 5-fold internal cross validation on the
training data. Tables 2 and 3 report the average results of each
comparing algorithm over twelve regular-scale data sets in terms
of six evaluation metrics (the definition of each metric is provided
in the supplementary file).

Friedman test [57] is employed to conduct performance analysis
among the comparing algorithms. Table 4 provides the Friedman
statistics FF and the corresponding critical value in terms of
each evaluation metric. As shown in Table 4, at significance level
α = 0.05, the null hypothesis that all the comparing algorithms
perform equivalently is clearly rejected in terms of each evaluation
metric. Consequently, we can proceed with a post-hoc test [57] to
analyse the relative performance among the comparing algorithms.
The Nemenyi test [57] is employed to test whether our proposed
method LLSF or LLSF-DL achieves a competitive performance

TABLE 4
Summary of the Friedman statistics FF (k = 9, N = 12) and

the critical value in terms of each evaluation metric (k: #
Comparing algorithms; N : # Data sets)

Metric FF Critical Value (α = 0.05)
Hamming Loss 4.4098

2.0454

Accuracy 18.2431
Exact Match 4.5091
F1 15.2687
Macro F1 8.6465
Micro F1 19.0190

against the comparing algorithms, where LLSF or LLSF-DL is
considered as the control algorithm, respectively. The performance
between two classifiers will be significantly different if the corre-
sponding average ranks differ by at least the critical difference

CD = qα

√
k(k+1)

6N . For Nemenyi test, qα = 3.102 at significance
level α = 0.05, and thus CD = 3.4681 (k = 9, N = 12). Fig. 3
shows the CD diagrams on each evaluation metric. In each sub-
figure, any comparing algorithm whose average rank is within one
CD to that of LLSF or LLSF-DL is connected. Otherwise, any
algorithm not connected with LLSF or LLSF-DL is considered to
have significant different performance between them.

Based on these experimental results, the following observations
can be made:
• These first order algorithms (e.g., BR, LIFT, Lasso,) ob-

tain better performance on hamming loss (see Fig. 3(a))

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 8

TABLE 3
Experimental results of each comparing algorithm (mean±std) in terms of F1, Macro F1, and Micro F1. ↑ indicates the larger

the value, the better the performance. Best results are highlighted in bold

Data set F1 ↑
Lasso GFLasso BR DBR ECC MCC LIFT LLSF LSFS-DL

CAL500 0.330±0.005 0.240±0.017 0.314±0.010 0.324±0.006 0.341±0.013 0.325±0.009 0.319±0.016 0.410±0.017 0.464±0.017
genbase 0.990±0.007 0.994±0.005 0.991±0.008 0.989±0.005 0.992±0.006 0.989±0.010 0.979±0.007 0.995±0.003 0.996±0.004
medical 0.758±0.027 0.767±0.027 0.772±0.024 0.796±0.033 0.779±0.021 0.789±0.022 0.711±0.029 0.786±0.020 0.783±0.032
language log 0.136±0.034 0.134±0.004 0.115±0.016 0.202±0.009 0.138±0.013 0.074±0.020 0.136±0.014 0.161±0.012 0.198±0.014
corel5k 0.078±0.007 0.081±0.005 0.053±0.008 0.068±0.003 0.133±0.003 0.152±0.003 0.167±0.013 0.208±0.011 0.209±0.008
arts 0.297±0.009 0.321±0.008 0.303±0.016 0.408±0.014 0.345±0.023 0.437±0.029 0.323±0.014 0.414±0.017 0.414±0.012
education 0.317±0.009 0.321±0.008 0.280±0.012 0.419±0.010 0.373±0.014 0.430±0.030 0.332±0.010 0.408±0.015 0.419±0.021
recreation 0.317±0.019 0.312±0.011 0.309±0.006 0.424±0.006 0.390±0.029 0.427±0.012 0.336±0.009 0.375±0.008 0.437±0.006
science 0.285±0.011 0.283±0.005 0.295±0.012 0.369±0.007 0.378±0.010 0.438±0.000 0.322±0.015 0.384±0.013 0.412±0.014
rcv1(subset1) 0.320±0.012 0.323±0.013 0.320±0.007 0.347±0.011 0.390±0.010 0.395±0.008 0.350±0.011 0.456±0.006 0.461±0.008
bibtex 0.355±0.007 0.361±0.011 0.404±0.011 0.338±0.010 0.387±0.008 0.410±0.000 0.375±0.009 0.426±0.011 0.462±0.011
corel16k001 0.053±0.002 0.069±0.003 0.024±0.001 0.242±0.003 0.124±0.022 0.148±0.002 0.035±0.003 0.204±0.007 0.219±0.007

Data set Macro F1 ↑
Lasso GFLasso BR DBR ECC MCC LIFT LLSF LSFS-DL

CAL500 0.056±0.003 0.069±0.007 0.040±0.002 0.052±0.001 0.125±0.006 0.163±0.001 0.039±0.002 0.068±0.007 0.153±0.020
genbase 0.721±0.019 0.738±0.064 0.730±0.030 0.676±0.045 0.750±0.033 0.705±0.068 0.705±0.017 0.769±0.057 0.747±0.076
medical 0.322±0.018 0.370±0.020 0.350±0.018 0.368±0.025 0.366±0.015 0.321±0.022 0.270±0.020 0.352±0.034 0.363±0.017
language log 0.051±0.017 0.043±0.005 0.050±0.002 0.054±0.003 0.050±0.005 0.042±0.018 0.053±0.001 0.069±0.014 0.079±0.006
corel5k 0.017±0.001 0.014±0.001 0.019±0.003 0.028±0.002 0.050±0.003 0.044±0.002 0.025±0.003 0.039±0.002 0.039±0.002
arts 0.170±0.014 0.193±0.010 0.186±0.006 0.151±0.003 0.163±0.008 0.208±0.015 0.206±0.014 0.238±0.010 0.242±0.012
education 0.122±0.006 0.193±0.010 0.157±0.026 0.146±0.026 0.160±0.015 0.218±0.021 0.175±0.009 0.186±0.011 0.183±0.021
recreation 0.228±0.004 0.228±0.013 0.248±0.016 0.192±0.012 0.262±0.012 0.269±0.016 0.274±0.009 0.274±0.011 0.324±0.004
science 0.146±0.012 0.142±0.011 0.169±0.007 0.147±0.004 0.183±0.006 0.204±0.000 0.188±0.014 0.213±0.016 0.221±0.013
rcv1(subset1) 0.131±0.006 0.124±0.005 0.189±0.009 0.194±0.011 0.202±0.011 0.247±0.010 0.209±0.010 0.251±0.004 0.255±0.010
bibtex 0.222±0.009 0.228±0.009 0.303±0.009 0.238±0.010 0.296±0.005 0.331±0.000 0.290±0.017 0.328±0.003 0.368±0.009
corel16k001 0.016±0.002 0.014±0.002 0.021±0.004 0.046±0.002 0.041±0.004 0.031±0.001 0.024±0.003 0.064±0.004 0.069±0.002

Data set Micro F1 ↑
Lasso GFLasso BR DBR ECC MCC LIFT LLSF LSFS-DL

CAL500 0.328±0.006 0.242±0.018 0.309±0.010 0.320±0.005 0.341±0.015 0.330±0.010 0.313±0.016 0.409±0.018 0.468±0.017
genbase 0.989±0.006 0.993±0.005 0.987±0.011 0.986±0.007 0.992±0.005 0.985±0.009 0.979±0.006 0.994±0.004 0.994±0.005
medical 0.798±0.020 0.807±0.022 0.802±0.016 0.813±0.024 0.798±0.018 0.807±0.019 0.771±0.021 0.817±0.016 0.815±0.032
language log 0.193±0.029 0.214±0.011 0.196±0.027 0.196±0.005 0.217±0.030 0.133±0.032 0.224±0.020 0.233±0.014 0.278±0.011
corel5k 0.106±0.008 0.105±0.006 0.076±0.012 0.096±0.006 0.139±0.004 0.155±0.003 0.180±0.013 0.244±0.012 0.247±0.006
arts 0.356±0.008 0.378±0.011 0.367±0.017 0.297±0.018 0.374±0.011 0.413±0.022 0.383±0.014 0.445±0.017 0.445±0.014
education 0.399±0.009 0.378±0.011 0.374±0.016 0.324±0.012 0.430±0.008 0.420±0.027 0.422±0.013 0.459±0.013 0.462±0.013
recreation 0.386±0.018 0.381±0.015 0.384±0.007 0.291±0.006 0.425±0.013 0.423±0.005 0.405±0.009 0.430±0.010 0.462±0.003
science 0.361±0.011 0.341±0.006 0.374±0.012 0.225±0.005 0.416±0.007 0.431±0.000 0.400±0.016 0.436±0.014 0.441±0.014
rcv1(subset1) 0.365±0.014 0.366±0.011 0.366±0.006 0.335±0.011 0.395±0.008 0.402±0.006 0.387±0.012 0.495±0.005 0.500±0.006
bibtex 0.406±0.007 0.411±0.008 0.461±0.014 0.385±0.010 0.431±0.002 0.430±0.000 0.434±0.011 0.490±0.008 0.495±0.009
corel16k001 0.071±0.003 0.086±0.004 0.036±0.004 0.249±0.003 0.143±0.021 0.168±0.001 0.048±0.004 0.243±0.007 0.258±0.006

Critical Distance=3.4681
9 8 7 6 5 4 3 2 1

BR
LIFT
Lasso
GFLasso
ECC

LLSF
MCC

LLSF-DL
DBR

(a) Hamming Loss

Critical Distance=3.4681
9 8 7 6 5 4 3 2 1

LLSF-DL
MCC
LLSF
ECC
DBR

LIFT
GFLasso

Lasso
BR

(b) Accuracy

Critical Distance=3.4681
9 8 7 6 5 4 3 2 1

ECC
MCC
LLSF
LLSF-DL
LIFT

GFLasso
DBR

BR
Lasso

(c) Exact Match

Critical Distance=3.4681
9 8 7 6 5 4 3 2 1

LLSF-DL
LLSF
MCC
ECC
DBR

LIFT
GFLasso

Lasso
BR

(d) F1

Critical Distance=3.4681
9 8 7 6 5 4 3 2 1

LLSF-DL
LLSF
MCC
ECC
LIFT

DBR
GFLasso

BR
Lasso

(e) Macro F1

Critical Distance=3.4681
9 8 7 6 5 4 3 2 1

LLSF-DL
LLSF
ECC
MCC
LIFT

GFLasso
Lasso

BR
DBR

(f) Micro F1

Fig. 3. Comparison of LLSF or LLSF-DL (control algorithm) against other comparing algorithms with the Nemenyi test. Groups
of classifiers that are not significantly different from LLSF or LLSF-DL (at p = 0.05) are connected.

than these algorithms which incorporate second-order (e.g.,
LLSF, GFLasso) or high-order (e.g., ECC, MCC, LLSF-
DL, DBR) label correlations, as first-order algorithms try to
optimize hamming loss.

• While on exact match (see Fig. 3(c)), the algorithms, which
incorporate second-order (e.g., GFLasso, LLSF) or high-
order (e.g., ECC, MCC, LLSF-DL, DBR) label correlations,

obtain better performance than the first order algorithms
(e.g., BR and Lasso). As previous researches suggest that
optimizing exact match need to model label correlations.

• LLSF performs better than DBR and MCC, and worse than
other comparing algorithms in terms of hamming loss. On
exact match, LLSF performs worse than ECC and MCC, but
better than other comparing algorithms. LLSF significantly

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 9

TABLE 5
Experimental results of BR, LIFT and ECC after using label-specific features learned by LLSF (mean±std) in terms of each

evaluation metric. ↑ (↓) indicates the larger (smaller) the value, the better the performance

Data Set Hamming Loss↓ Accuracy↑ Exact Match↑
LLSF-BR LLSF-LIFT LLSF-ECC LLSF-BR LLSF-LIFT LLSF-ECC LLSF-BR LLSF-LIFT LLSF-ECC

CAL500 0.138±0.004 0.146±0.009 0.138±0.002 0.192±0.006 0.191±0.012 0.200±0.013 0.000±0.000 0.000±0.000 0.000±0.000
genbase 0.001±0.000 0.001±0.000 0.001±0.000 0.988±0.004 0.985±0.005 0.988±0.005 0.976±0.011 0.967±0.010 0.976±0.011
medical 0.010±0.001 0.011±0.001 0.010±0.001 0.755±0.022 0.718±0.026 0.766±0.014 0.669±0.034 0.640±0.031 0.691±0.024
language log 0.017±0.001 0.016±0.001 0.018±0.001 0.154±0.020 0.138±0.018 0.169±0.015 0.245±0.026 0.240±0.030 0.278±0.026
corek5k 0.009±0.000 0.009±0.000 0.011±0.001 0.053±0.006 0.047±0.006 0.101±0.016 0.009±0.004 0.007±0.003 0.017±0.003
arts 0.052±0.002 0.052±0.001 0.062±0.002 0.294±0.019 0.294±0.002 0.389±0.026 0.237±0.016 0.238±0.004 0.323±0.028
education 0.037±0.000 0.035±0.001 0.043±0.003 0.284±0.010 0.300±0.007 0.381±0.019 0.235±0.008 0.254±0.005 0.317±0.017
recreation 0.053±0.001 0.052±0.001 0.066±0.002 0.317±0.005 0.311±0.010 0.409±0.024 0.274±0.005 0.266±0.007 0.361±0.023
science 0.031±0.001 0.032±0.000 0.038±0.001 0.304±0.019 0.281±0.009 0.383±0.005 0.249±0.015 0.223±0.008 0.327±0.010
rcv1(subset1) 0.026±0.001 0.025±0.001 0.028±0.000 0.293±0.014 0.281±0.005 0.355±0.008 0.101±0.011 0.089±0.007 0.226±0.008
bibtex 0.011±0.000 0.013±0.000 0.012±0.000 0.373±0.007 0.341±0.005 0.358±0.008 0.211±0.003 0.178±0.006 0.221±0.007
corel16k001 0.019±0.000 0.019±0.000 0.021±0.001 0.018±0.003 0.020±0.001 0.105±0.023 0.004±0.001 0.003±0.001 0.020±0.003

Data Set F1↑ Macro F1↑ Micro F1↑
LLSF-BR LLSF-LIFT LLSF-ECC LLSF-BR LLSF-LIFT LLSF-ECC LLSF-BR LLSF-LIFT LLSF-ECC

CAL500 0.317±0.009 0.316±0.016 0.327±0.018 0.039±0.000 0.052±0.004 0.041±0.004 0.312±0.008 0.314±0.016 0.321±0.018
genbase 0.991±0.003 0.989±0.004 0.991±0.003 0.734±0.019 0.696±0.026 0.726±0.013 0.990±0.005 0.985±0.005 0.990±0.005
medical 0.784±0.019 0.745±0.025 0.791±0.011 0.356±0.013 0.317±0.011 0.362±0.017 0.814±0.015 0.789±0.024 0.809±0.017
language log 0.173±0.019 0.153±0.020 0.182±0.016 0.088±0.010 0.075±0.016 0.076±0.007 0.263±0.025 0.240±0.029 0.245±0.022
corel5k 0.072±0.007 0.064±0.008 0.138±0.023 0.025±0.003 0.023±0.003 0.030±0.004 0.104±0.011 0.092±0.011 0.161±0.029
arts 0.316±0.019 0.315±0.001 0.415±0.026 0.206±0.015 0.192±0.006 0.205±0.009 0.379±0.020 0.379±0.004 0.399±0.008
education 0.302±0.010 0.316±0.008 0.404±0.020 0.141±0.009 0.126±0.013 0.181±0.015 0.389±0.012 0.405±0.009 0.424±0.024
recreation 0.332±0.005 0.326±0.011 0.427±0.025 0.247±0.003 0.259±0.012 0.265±0.017 0.401±0.007 0.400±0.011 0.406±0.017
science 0.323±0.020 0.301±0.009 0.404±0.004 0.178±0.011 0.179±0.004 0.193±0.019 0.397±0.021 0.373±0.010 0.394±0.006
rcv1(subset1) 0.366±0.017 0.354±0.005 0.408±0.009 0.212±0.017 0.227±0.009 0.212±0.015 0.405±0.020 0.413±0.009 0.414±0.012
bibtex 0.432±0.007 0.404±0.006 0.408±0.008 0.332±0.009 0.297±0.006 0.301±0.006 0.481±0.013 0.446±0.004 0.461±0.010
corel16k001 0.023±0.004 0.027±0.002 0.146±0.034 0.021±0.003 0.018±0.003 0.039±0.002 0.035±0.005 0.038±0.003 0.167±0.033

TABLE 6
Wilcoxon Signed-Ranks Test for BR, LIFT, ECC againt their LLSF versions in terms of each evaluation metric (significance

level α = 0.05, p−values shown in the brackets)

Comparing Algorithm Hamming Loss Accuracy Exact Match F1 Macro F1 Micro F1

LLSF-BR vs BR tie[1e-0] win[9.8e-4] win[2e-3] win[2e-3] tie[3.7e-2] win[9.8e-4]
LLSF-LIFT vs LIFT tie[1e-0] tie[1e-0] tie[9.8e-1] tie[1e-0] tie[8.1e-1] tie[9.8e-1]
LLSF-ECC vs ECC tie[1.4e-1] win[3.9e-3] win[9.8e-3] win[1.6e-2] tie[6.5e-2] tie[2.3e-1]
LLSF-BR vs LIFT tie[7.3e-1] tie[3.5-1] tie[2.9e-1] tie[4.1e-1] tie[6.4-1] tie[4.4e-1]

outperforms BR, Lasso and GFLasso, achieves statistically
superior or at least comparable performance against LIFT,
DBR and ECC, and comparable performance against MCC
in terms of the other four evaluation metrics.

• LLSF-DL performs better than DBR and worse than other
comparing algorithms in terms of hamming loss. On exact
match, LLSF-DL performs worse than ECC and MCC, but
better than other comparing algorithms. Furthermore, LLSF-
DL significantly outperforms BR, Lasso, GFLasso and LIFT,
and achieves statistically superior or at least comparable
performance against DBR, ECC and MCC in terms of the
other four evaluation metrics.

• Furthermore, after modeling high-order label correlations,
LLSF-DL achieves better performance than LLSF except on
hamming loss.

Thus, our proposed methods achieve a competitive performance
against other well-established multi-label classification algorithms.

4.4 Results of Feature Selection
LLSF can be applied as a feature selection method for multi-label
learning and a general strategy to improve multi-label classification
algorithms comprising a number of binary classifiers. We evaluate
the performance of feature selection of LLSF in this section.

Firstly, we combine LLSF with BR [3], LIFT [19] and ECC
[24], and denote them as LLSF-BR, LLSF-LIFT and LLSF-ECC,
respectively. The data composed of label-specific features learned
by LLSF is used as the input for each corresponding binary
classifier of them. Table 5 reports the experimental results of

LLSF-BR, LLSF-LIFT and LLSF-ECC. To test whether the LLSF
extended version performs significantly better than its original
version, the Wilcoxon signed-ranks test [57] is employed. From
Tables 2, 3 and 5, we summarize the statistical test results at
significance level α = 0.05 and report them in Table 6. We can see
that LLSF-BR and LLSF-ECC achieve statistically superior or at
least comparable performance against their original versions. The
superior performance of LLSF-BR and LLSF-ECC clearly verifies
the effectiveness of employing label-specific features. LLSF-LIFT
is tied with LIFT, and LLSF-BR is tied with LIFT. However,
the low dimensional data representation learned by LLSF will
make LIFT and BR more efficient than using all the features (the
execution time of each comparing algorithm is provided in the
supplementary file).

Secondly, we compare LLSF with Lap-Score (Laplacian Score),
F-Score (Fisher Score), IG (Information Gain) and GFLasso. For
Lap-Score, the similarity matrix is calculated by cosine similairity
on the label matrix of the training data, and k is searched in {5,
15, 30} to construct the kNN graph. For IG, continuous data
is discretized to two quantization levels by a quantile method.
Parameters for GFLasso and LLSF are searched by 5-fold cross
validation on the training data. Libsvm [56] with linear kernel is
initialized as the binary classifier for each label, and the parameter
C is tuned in {10−4, 10−3, ..., 104}. Experiments are conducted
on genbase, medical, language log and bibtex, where the number
of features is larger than 1000. Fig. 4 shows the results of the
comparing algorithms in terms of six evaluation metrics when
using the top 10%*p, 20%*p, ..., 50%*p features selected by each

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 10

10 20 30 40 50
0.5

1

1.5

2

2.5

3x 10
-3

Percentage of selected features (%)

H
a

m
m

in
g

 L
o

ss

genbase

IG
Lap-Score
F-Score
GFLasso
LLSF
All-Fea

(a)

10 20 30 40 50
0.96

0.97

0.98

0.99

Percentage of selected features (%)

A
cc

u
ra

cy

genbase

IG
Lap-Score
F-Score
GFLasso
LLSF
All-Fea

(b)

10 20 30 40 50

0.975

0.98

0.985

0.99

0.995

Percentage of selected features (%)

F
1

genbase

IG
Lap-Score
F-Score
GFLasso
LLSF
All-Fea

(c)

10 20 30 40 50
0.92

0.94

0.96

0.98

Percentage of selected features (%)

E
xa

ct
 M

a
tc

h

genbase

IG
Lap-Score
F-Score
GFLasso
LLSF
All-Fea

(d)

10 20 30 40 50

0.5

0.6

0.7

0.8

Percentage of selected features (%)

M
a

cr
o

 F
1

genbase

IG
Lap-Score
F-Score
GFLasso
LLSF
All-Fea

(e)

10 20 30 40 50

0.97

0.98

0.99

Percentage of selected features (%)

M
ic

ro
 F

1

genbase

IG
Lap-Score
F-Score
GFLasso
LLSF
All-Fea

(f)

10 20 30 40 50
0.01

0.011

0.012

0.013

0.014

Percentage of selected features (%)

H
a
m

m
in

g
 L

o
ss

medical

(g)

10 20 30 40 50

0.65

0.7

0.75

0.8

Percentage of selected features (%)

A
cc

u
ra

cy

medical

(h)

10 20 30 40 50

0.65

0.7

0.75

0.8

Percentage of selected features (%)

F
1

medical

(i)

10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

Percentage of selected features (%)

E
xa

ct
 M

a
tc

h

medical

(j)

10 20 30 40 50

0.3

0.32

0.34

0.36

0.38

Percentage of selected features (%)

M
a

cr
o

 F
1

medical

(k)

10 20 30 40 50
0.74

0.76

0.78

0.8

0.82

Percentage of selected features (%)

M
ic

ro
 F

1

medical

(l)

10 20 30 40 50
0.014

0.016

0.018

0.02

Percentage of selected features (%)

H
a
m

m
in

g
 L

o
ss

language log

(m)

10 20 30 40 50
0.06

0.08

0.1

0.12

0.14

0.16

Percentage of selected features (%)

A
cc

u
ra

cy

language log

(n)

10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

Percentage of selected features (%)

F
1

language log

(o)

10 20 30 40 50

0.16

0.18

0.2

0.22

0.24

Percentage of selected features (%)

E
xa

ct
 M

a
tc

h

language log

(p)

10 20 30 40 50
0.02

0.04

0.06

0.08

0.1

0.12

Percentage of selected features (%)

M
a

cr
o

 F
1

language log

(q)

10 20 30 40 50
0.1

0.15

0.2

0.25

0.3

0.35

Percentage of selected features (%)

M
ic

ro
 F

1

language log

(r)

10 20 30 40 50
0.0115

0.012

0.0125

0.013

0.0135

Percentage of selected features (%)

H
a

m
m

in
g

 L
o

ss

bibtex

(s)

10 20 30 40 50
0.2

0.25

0.3

0.35

0.4

Percentage of selected features (%)

A
cc

u
ra

cy

bibtex

(t)

10 20 30 40 50
0.25

0.3

0.35

0.4

0.45

Percentage of selected features (%)

F
1

bibtex

(u)

10 20 30 40 50
0.1

0.12

0.14

0.16

0.18

0.2

Percentage of selected features (%)

E
xa

ct
 M

a
tc

h

bibtex

(v)

10 20 30 40 50

0.2

0.25

0.3

0.35

Percentage of selected features (%)

M
a

cr
o

 F
1

bibtex

(w)

10 20 30 40 50
0.35

0.4

0.45

0.5

Percentage of selected features (%)

M
ic

ro
 F

1

bibtex

(x)

Fig. 4. Results of feature selection: BR with SVM as the base binary classifier is employed as the multi-label classifier.

algorithm for each data set, where p is the dimensionality of each
data set. “All-Fea” means that the original data with no feature
selection is used as a baseline, and its performance is equal to BR’s.
As shown in Fig. 4, LLSF achieves better performance against
all the comparing algorithms in terms of each evaluation metric
in most cases. These results verify the effectiveness of feature
selection of LLSF.

4.5 Property of Coefficient Matrix W in LLSF
We assume that label-specific feature has three properties: discrim-
inability, sparsity and sharing. The experimental results presented
in Section 4.3 and Section 4.4 have shown the strong discriminabil-
ity of label-specific features. Fig. 5 shows an example of sparsity
of label-specific features on medical and rcv1(subset1) data sets.
The horizontal axis of each sub-figure indicates the index of class
label. The vertical axis of each sub-figure indicates the number
of label-specific features (i.e. ‖wi‖0) of each class label. It can
be seen that each label is only associated with a small number of
relevant features from the original features set. It is controlled by
the parameter β, the larger the value of β is, the more sparse of
the label-specific features is.

On the other hand, we assume that any two strongly correlated
class labels can share more features with each other than two
uncorrelated or weakly correlated ones. In our model, the label
correlation matrix C on Y is calculated by cosine similarity.
Each element of C is defined as cij = <yi,yj>

‖yi‖×‖yj‖ , where yi

0 10 20 30 40
0

50

100

150

200

250

Label Index

of

 L
ab

el
-S

pe
ci

fic
 F

ea
tu

re
s

(a) result of medical

0 20 40 60 80 100
0

100

200

300

400

500

600

Label Index

of

 L
ab

el
-S

pe
ci

fic
 F

ea
tu

re
s

(b) result of rcv1(subset1)

Fig. 5. The number of label-specific features learned by LLSF
for each class label with parameters α = 2−1, β = 2−1 and
ρ = 0.1.

is the i-th column of a label matrix Y. Exactly, the number
of shared features between two labels should be calculated by
sij =

∑p
k=1 ‖wki‖0‖wkj‖0. The larger the value of cij , the larger

the value of sij , and vice versa. For the convenient of optimization,
we approximate it by calculating sij = wiTwj .

Fig. 6 shows the correlation between class labels w.r.t the
proportion of shared features between them for five selected class
labels of imdb data. The proportion of shared features between two
labels is calculated by sij =

∑p
k=1 ‖wki‖0‖wkj‖0

‖wi‖0+‖wj‖0−
∑p
k=1 ‖wki‖0‖wkj‖0

. The
horizontal axis of each sub-figure indicates the index of each label,
and the vertical axis indicates the value of correlation or proportion

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 11

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Label Index

proportion of shared features - W
correlation - Y

(a) y1 to other labels

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Label Index

proportion of shared features - W
correlation - Y

(b) y2 to other labels

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Label Index

proportion of shared features - W
correlation - Y

(c) y3 to other labels

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Label Index

proportion of shared features - W
correlation - Y

(d) y4 to other labels

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Label Index

proportion of shared features - W
correlation - Y

(e) y5 to other labels

Fig. 6. Correlation w.r.t the proportion of shared features between class labels for five selected class labels of imdb data, and
the labels are sorted in descending order by the value of label correlation.

0 50 100 150
50

100

150

200

250

#iterations

lo
s
s

(a) LLSF

0 100 200 300
0

200

400

600

800

#iterations

lo
s
s

(b) LLSF-DL

Fig. 7. Loss of LLSF and LLSF-DL w.r.t # iterations on
genbase.

of shared features between two labels. As shown in Fig. 6, the
proportion of shared features decreases with the decreasing of label
correlation. This result verifies that approximately calculating sij
by wiTwj can model the property of sharing well to some extent.
But in some cases, the results are not consistent. One possible
reason might be the semantic gap between low level features and
high level class labels.

4.6 Convergence
In this paper, our methods are solved by iterative shrinkage-
thresholding. In [46], the iterative shrinkage-thresholding algo-
rithms are proven to converge in function values as O(t−2) with an
appropriate stepsize. Fig. 7 shows the value of the loss function of
LLSF (4) and LLSF-DL (5) w.r.t the number of iterations, respec-
tively. The value decreases dramatically, and tends to be stable after
100 iterations. The execution time of the comparing algorithms on
the same computer environment is provided in the supplementary
file. The experimental results show that LLSF and LLSF-DL are
more efficient than most of the comparing algorithms. LLSF-BR,
LLSF-ECC and LLSF-LIFT are more efficient than their standard
versions after using label-specific features learned by LLSF. These
results justify the efficiency of LLSF and LLSF-DL in multi-label
learning.

4.7 Parameters Sensitivity Analysis
We conduct parameter sensitivity analysis for LLSF, LLSF-DL and
LLSF-BR on rcv1(subset1) data over the trade-off parameters α,
β, γ, and ρ, where α controls the correlation between labels, β
controls the sparsity of label-specific features, γ controls the spar-
sity of class-dependent labels, and ρ is used for initialization of the
coefficient matrix. α, β, and γ are searched in {2−10, 2−9, ..., 210},
and ρ tuned in {10−3, 10−2, ..., 101}.

Sparsity of Label-Specific Features: Fig. 9(s) shows the influ-
ence of parameters α and β to the sparsity of label-specific features
learned by LLSF on rcv1(subset1) data. The ratio of sparsity is

-10 -8 -6 -4 -2 0 2 4 6 8 10 0

0.2

0.4

0.6

0.8

1

log2


S
pa

rs
ity

 R
at

io

Sparsity of Label-Specific Features

(a) Sparse ratio of LLSF

-10 -8 -6 -4 -2 0 2 4 6 8 10

Legend

, = 2-10

, = 2-9

, = 2-8

, = 2-7

, = 2-6

, = 2-5

, = 2-4

, = 2-3

, = 2-2

, = 2-1

, = 20

, = 21

, = 22

, = 23

, = 24

, = 25

, = 26

, = 27

, = 28

, = 29

, = 210

(b) Legend

Fig. 8. Influence of parameters α and β to the sparsity of
label-specific features learned by LLSF on rcv1(subset1).

calculated by #Zero components of W
p∗l , where p is the dimensionality

of a data set, and l is the number of class labels. Given α, the larger
the β is, the larger the ratio of sparsity is. While with the growing
of α, the ratio of sparsity goes down. LLSF and its extended
versions will be more efficient with a larger ratio of sparsity .

Performance of LLSF, LLSF-DL and LLSF-BR: We run these
methods 5 times with different settings of α, β and γ, and the 5
partitions of training and testing parts of rcv1(subset1) data are
fixed. The performance is evaluated in terms of F1, Macro F1 and
Micro F1, and the average results are shown in Fig. 9.

For results of LLSF (Fig. 9(a) to 9(f)) and LLSF-BR (Fig. 9(m)
to 9(r)). Given β, the performance is first improved and then
declines quickly with the increase of α. The label correlations
can be modeled well with an appropriate value of α. Given α,
with the increase of β, the performance is improved slightly and
then declines dramatically. If β is too small, LLSF can not filter
out irrelevant features to each class label, so the performance is
relative low. While irrelevant features will be filtered out with the
increasing of β so that the performance is improved accordingly.
However, the performance declines dramatically when β is too
large. Because the label-specific features are also filtered out.

For LLSF-DL, β and γ are set to be the same value. The results
are shown from Fig. 9(g) to 9(l). Given β and γ, its performance is
improved slightly and then degraded with the increase of α; Given
α, the result of LLSF-DL is improved slightly with the increase of
β and γ, and then declines dramatically when β and γ are too large.
If γ is too small, each label is dependent on all the labels, which is
equivalent to stacking. When γ is too large, we may learn a very
sparse dependent structure, so the performance declines quickly.
Comparing to LLSF, the performance of LLSF-DL is more stable.

With a fixed setting of α, β, and γ, the performance of LLSF
and LLSF-DL is improved slightly and then declines with the
increase of ρ, and the best results are obtained at ρ = 0.1 or
ρ = 1 in most cases. Detailed experimental results are provided in
the supplementary file.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 12

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2


F
1

LLSF

(a) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2


F
1

LLSF

(b) varying β

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

log
2


M
a
c
ro

 F
1

LLSF

(c) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

log
2


M
a
c
ro

 F
1

LLSF

(d) varying β

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2


M
ic

ro
 F

1

LLSF

(e) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2


M
ic

ro
 F

1

LLSF

(f) varying β

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2


F
1

LLSF-DL

(g) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2
, log

2


F
1

LLSF-DL

(h) varying β and γ

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

log
2


M
a
c
ro

 F
1

LLSF-DL

(i) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

log
2
, log

2


M
a
c
ro

 F
1

LLSF-DL

(j) varying β and γ

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

log
2


M
ic

ro
 F

1

LLSF-DL

(k) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

log
2
, log

2


M
ic

ro
 F

1

LLSF-DL

(l) varying β and γ

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

log
2


F
1

LLSF-BR

(m) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

log
2


F
1

LLSF-BR

(n) varying β

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

log
2


M
a
c
ro

 F
1

LLSF-BR

(o) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

log
2


M
a
c
ro

 F
1

LLSF-BR

(p) varying β

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2


M
ic

ro
 F

1

LLSF-BR

(q) varying α

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

log
2


M
ic

ro
 F

1

LLSF-BR

(r) varying β

Fig. 9. Parameter sensitivity analysis of LLSF, LLSF-DL and LLSF-BR on rcv1(subset1). The legend is the same as the one
shown in Fig. 8.

The performance of our proposed methods are sensitive to the
parameters. To use our proposed methods, we suggest that α
should be set greater than or equal to β and γ, especially for
large scale data sets. More results of parameter sensitivity analysis
on other data sets are provided in the supplementary file. In real
applications, an appropriate setting of parameters can be searched
by cross validation in terms of one evaluation metric or several
evaluation metrics simultaneously.

5 APPLICATION TO LARGE-SCALE DATA SET
In this section, we apply the proposed methods to relative large-
scale multi-label data. We compare them with three baseline meth-
ods: kNN (k is searched in {7, 8, ...,11}), RidgeReg (Ridge Regres-
sion, the regularization parameter is tuned in {2−10, 2−9, ..., 210}),
and LibLinear (L1R LR: Logistic Regression with `1 Norm, C
is tuned in {10−4, 10−3, ..., 104}). The experiment is conducted
on three relative large-scale multi-label data sets, i.e. bookmarks,
imdb and nus-wide (see Table 1). Friedman and Nemenyi tests
[57] are employed to conduct performance analysis among the
comparing algorithms, and the detailed results are provided in
the supplementary file. The experimental results show that our
proposed methods achieve comparable performance against other
three comparing algorithms in terms of each evaluation metric.

6 CONCLUSION
In this paper, an extension to our preliminary version [23] is
presented which learns label-specific features and class-dependent
labels for multi-label classification by modeling high-order label
correlations in a sparse stacking way. The proposed methods

LLSF and LLSF-DL can be utilized as a feature selection method
for multi-label learning. The learned label-specific features for
each label can be applied as input to existing multi-label clas-
sification algorithms comprising a number of binary classifiers.
Comprehensive comparisons with several well-established multi-
label classification algorithms over fifteen multi-label benchmark
data sets manifest the competitive performance of our methods.
Moreover, the performance of LLSF is improved after modeling
the high-order label correlations. In the future, we will apply our
methods to multi-target regression.

REFERENCES

[1] A. K. McCallum, “Multi-label text classification with a mixture model
trained by em,” in AAAI’99 Workshop on Text Learn., 1999.

[2] M.-L. Zhang and Z.-H. Zhou, “Multilabel neural networks with applications
to functional genomics and text categorization,” IEEE Trans. Knowl. Data
Eng., vol. 18, no. 10, pp. 1338–1351, 2006.

[3] M. R. Boutell, J.-B. Luo, X.-P. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recognit., vol. 37, no. 9, pp. 1757–1771,
2004.

[4] F.-M. Sun, J.-H. Tang, H.-J. Li, G.-J. Qi, and T. S. Huang, “Multi-label
image categorization with sparse factor representation,” IEEE Trans. Image
Process, vol. 23, no. 3, pp. 1028–1037, 2014.

[5] F. Kang, R. Jin, and R. Sukthankar, “Correlated label propagation with
application to multi-label learning,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recog., 2006, pp. 1719–1726.

[6] G.-J. Qi, X.-S. Hua, Y. Rui, J.-H. Tang, T. Mei, and H.-J. Zhang, “Correlative
multi-label video annotation,” in Proc. ACM Multimedia, 2007, pp. 17–26.

[7] X. Wang and G. Sukthankar, “Multi-label relational neighbor classification
using social context features,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2013, pp. 464–472.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 13

[8] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas, “Multi-label
classification of music into emotions,” in Int. Soci. Music Inf. Retri., 2008,
pp. 325–330.

[9] B. Wu, E.-H. Zhong, A. Horner, and Q. Yang, “Music emotion recognition
by multi-label multi-layer multi-instance multi-view learning,” in Proc. ACM
Multimedia, 2014, pp. 117–126.

[10] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” Data
Mining Knowl. Discov. Handbook, O. Maimon, L. Rokach (Ed.), Springer,
2nd edition, 2010.

[11] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837, 2014.

[12] S.-W. Ji, L. Tang, S.-P. Yu, and J.-P. Ye, “Extracting shared subspace for
multi-label classification,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2008, pp. 381–389.

[13] Y. Zhang and Z.-H. Zhou, “Multilabel dimensionality reduction via depen-
dence maximization,” ACM Trans. Knowl. Discov. Data, vol. 4, no. 3, pp.
1–21, 2010.

[14] J. Langford, T. Zhang, D. J. Hsu, and S. M. Kakade, “Multi-label prediction
via compressed sensing,” in Proc. Neural Inf. Process. Syst., 2009, pp. 772–
780.

[15] F. Tai and H.-T. Lin, “Multilabel classification with principal label space
transformation,” Neural Compt., vol. 24, no. 9, pp. 2508–2542, 2012.

[16] Y.-N. Chen and H.-T. Lin, “Feature-aware label space dimension reduction
for multi-label classification,” in Proc. Neural Inf. Process. Syst., 2012, pp.
1529–1537.

[17] T.-Y. Zhou, D.-C. Tao, and X.-D. Wu, “Compressed labeling on distilled
labelsets for multi-label learning,” Mach. Learn., vol. 88, no. 1-2, pp. 69–
126, 2012.

[18] Z.-J. Lin, G.-G. Ding, M.-Q. Hu, and J.-M. Wang, “Multi-label classification
via feature-aware implicit label space encoding,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. 325–333.

[19] M.-L. Zhang and L. Wu, “Lift: Multi-label learning with label-specific
features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 1, pp. 107–
120, 2015.

[20] A. Alalga, K. Benabdeslem, and N. Taleb, “Soft-constrained laplacian score
for semi-supervised multi-label feature selection,” Knowl. Inf. Syst., pp. 1–24,
2015.

[21] A. Jalali, S. Sanghavi, C. Ruan, and P. K. Ravikumar, “A dirty model for
multi-task learning,” in Proc. Neural Inf. Process. Syst., 2010, pp. 964–972.

[22] S. Kim, K. Sohn, and E. P. Xing, “A multivariate regression approach to
association analysis of a quantitative trait network,” Bioinformatics, vol. 25,
no. 12, pp. 204–212, 2009.

[23] J. Huang, G.-R. Li, Q.-M. Huang, and X.-D. Wu, “Learning label specific
features for multi-label classification,” in Proc. IEEE Int. Conf. Data Mining,
2015, pp. 181–190.

[24] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-
label classification,” in Proc. Eur. Conf. Mach. Learn., 2009, pp. 254–269.

[25] J. H. Zaragoza, L. E. Sucar, E. F. Morales, C. Bielza, and P. Larrañaga,
“Bayesian chain classifiers for multidimensional classification,” in Proc. Int.
Joint Conf. Artif. Intell., 2011, pp. 2192–2197.

[26] M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting label
dependency,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2010, pp. 999–1008.

[27] E. Montañes, R. Senge, J. Barranquero, J. Ramón Quevedo, J. José Del Coz,
and E. Hüllermeier, “Dependent binary relevance models for multi-label
classification,” Pattern Recognit., vol. 47, no. 3, pp. 1494 – 1508, 2014.

[28] K. Abhishek, V. Shankar, M. A. Krishna, and E. Charles, “Beam search
algorithms for multilabel learning,” Mach. Learn., vol. 92, no. 1, pp. 65–89,
2013.

[29] J. Read, L. Martino, and D. Luengo, “Efficient monte carlo methods for
multi-dimensional learning with classifier chains,” Pattern Recognit., vol. 47,
no. 3, pp. 1535 – 1546, 2014.

[30] G. Tsoumakas, I. Katakis, and L. Vlahavas, “Random k-labelsets for mul-
tilabel classification,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 7, pp.
1079–1089, 2011.

[31] F. Briggs, X. Fern, and R. Raich, “Context-aware miml instance annotation:
exploiting label correlations with classifier chains,” Knowl. Inf. Syst., vol. 43,
no. 1, pp. 53–79, 2015.

[32] A. Alali and M. Kubat, “Prudent: A pruned and confident stacking approach
for multi-label classification,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 9,
pp. 2480–2493, 2015.

[33] J. Fürnkranz, E. Hüllermeier, E. Loza Mencı́a, and K. Brinker, “Multilabel
classification via calibrated label ranking,” Mach. Learn., vol. 73, no. 2, pp.
133–153, 2008.

[34] K. Dembczyński, W. Cheng, and E. Hüllermeier, “Bayes optimal multilabel
classification via probabilistic classifier chains,” in Proc. Int. Conf. Mach.
Learn., 2010, pp. 1609–1614.

[35] W. Bi and J. Kwok, “Bayes-optimal hierarchical multilabel classification,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 11, pp. 2907–2918, 2015.

[36] S.-J. Huang and Z.-H. Zhou, “Multi-label learning by exploiting label
correlations locally,” in Proc. AAAI Conf. Artif. Intell., 2012.

[37] J. Huang, G.-R. Li, S.-H. Wang, W.-G. Zhang, and Q.-M. Huang, “Group
sensitive classifier chains for multi-label classification,” in Proc. IEEE Int.
Conf. Multimedia Expo, 2015, pp. 1–6.

[38] R. Prati, G. Batista, and D. Silva, “Class imbalance revisited: a new
experimental setup to assess the performance of treatment methods,” Knowl.
Inf. Syst., vol. 45, no. 1, pp. 247–270, 2015.

[39] E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas, “Dealing
with concept drift and class imbalance in multi-label stream classification,”
in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 1583–1588.

[40] M. A. Tahir, J. Kittler, and F. Yan, “Inverse random under sampling for class
imbalance problem and its application to multi-label classification,” Pattern
Recognit., vol. 45, no. 10, pp. 3738–3750, 2012.

[41] M.-L. Zhang, Y.-K. Li, and X.-Y. Liu, “Towards class-imbalance aware multi-
label learning,” in Proc. Int. Joint Conf. Artif. Intell., 2015.

[42] X. Kong and P. Yu, “gmlc: a multi-label feature selection framework for
graph classification,” Knowl. Inf. Syst., vol. 31, no. 2, pp. 281–305, 2012.

[43] J.-H. Chen, J. Liu, and J.-P. Ye, “Learning incoherent sparse and low-rank
patterns from multiple tasks,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2010, pp. 1179–1187.

[44] J.-H. Chen, J.-Y. Zhou, and J.-P. Ye, “Integrating low-rank and group-sparse
structures for robust multi-task learning,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2011, pp. 42–50.

[45] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society, Series B, vol. 58, pp. 267–288, 1994.

[46] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems,” SIAM J. Imaging Sci., vol. 2, no. 1, pp. 183–202,
2009.

[47] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, and I. Vlahavas, “Multi-
target regression via input space expansion: treating targets as inputs,” Mach.
Learn., vol. 104, no. 1, pp. 55–98, 2016.

[48] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M. Blei, and M. I.
Jordan, “Matching words and pictures,” J. Mach. Learn. Res, vol. 3, pp.
1107–1135, 2003.

[49] P. Duygulu, K. Barnard, J. F. G. de Freitas, and D. A. Forsyth, Object
Recognition as Machine Translation: Learning a Lexicon for a Fixed Image
Vocabulary. Springer Berlin Heidelberg, 2002, pp. 97–112.

[50] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1:a new benchmark
collection for text categorization research,” J. Mach. Learn. Res, vol. 5, pp.
361–397, 2004.

[51] S. Diplaris, G. Tsoumakas, P. A. Mitkas, and I. Vlahavas, Protein Classi-
fication with Multiple Algorithms. Springer Berlin Heidelberg, 2005, pp.
448–456.

[52] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multilabel text classification
for automated tag suggestion,” in Proceedings of the ECML/PKDD 2008
Discovery Challenge, 2008.

[53] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: A
real-world web image database from national university of singapore,” in
Proc. ACM Int. Conf. Image and Video Retrieval, 2009, pp. 48:1–48:9.

[54] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic annota-
tion and retrieval of music and sound effects,” IEEE Trans. Audio, Speech,
and Language Processing, vol. 16, no. 2, pp. 467–476, 2008.

[55] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “MEKA: A multi-
label/multi-target extension to Weka,” J. Mach. Learn. Res, vol. 17, no. 21,
pp. 1–5, 2016.

[56] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-
chines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27, 2011.

[57] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J.
Mach. Learn. Res, vol. 7, pp. 1–30, 2006.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2608339, IEEE
Transactions on Knowledge and Data Engineering 14

Jun Huang received the M.S. degree in comput-
er science from Anhui University of Technology,
Ma’anshan, China, in 2011. Now, he is a Ph.D. stu-
dent in School of Computer and Control Engineer-
ing, University of the Chinese Academy of Sciences
(UCAS). Before joining UCAS, he was a lecturer
with Anhui University of Technology. His research
interests include machine learning and data mining.

Guorong Li received her B.S. degree in computer
science from Renmin University of China, in 2006 and
Ph.D. degree in computer science from the Gradu-
ate University of the Chinese Academy of Sciences
in 2012. Now, she is an associate professor with-
in the University of Chinese Academy of Sciences.
Her research interests include object tracking, pat-
tern recognition, cross-media analysis and multi-label
learning.

Qingming Huang is currently a professor and deputy
dean in the School of Computer and Control Engi-
neering, University of Chinese Academy of Sciences
(UCAS). His research interests include multimedia
computing, image/video processing, pattern recogni-
tion and computer vision. He has published more than
300 academic papers in international journals such
as IEEE Transactions on Image Processing, IEEE
Transactions on Multimedia, IEEE Transactions on
CSVT, and at top level international conferences in-
cluding ACM Multimedia, ICCV, CVPR, VLDB, IJCAI,

etc.

Xindong Wu received the bachelors and masters de-
grees in computer science from the Hefei University
of Technology, China, and the PhD degree in artificial
intelligence from the University of Edinburgh, United
Kingdom. He is a Yangtze River Scholar in the School
of Computer Science and Information Engineering
at the Hefei University of Technology, China, and a
professor of computer science at the University of
Vermont. His research interests include data mining,
knowledge-based systems, and Web information ex-
ploration. He is the Steering Committee chair of the

IEEE International Conference on Data Mining (ICDM), the editor-in-chief
of Knowledge and Information Systems (KAIS, by Springer), and a series
editor of the Springer Book Series on Advanced Information and Knowledge
Processing (AIKP). He was the editor-in-chief of the IEEE Transactions on
Knowledge and Data Engineering (TKDE, by the IEEE Computer Society)
between 2005 and 2008. He served as a program committee chair/cochair for
ICDM 03 (the 2003 IEEE International Conference on Data Mining), KDD-07
(the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining), and CIKM 2010 (the 19th ACM Conference on Information
and Knowledge Management). He is Fellow of the IEEE and AAAS.

