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Abstract

Dual phase (DP) steels having a microstructure consisting of a Ferrite matrix, in which particles of Marten-
site are dispersed, have received a great deal of attention due to their useful combination of high strength,
high work hardening rate and ductility, all of which are favorable properties for forming processes. Experi-
mental investigation into the e3ect of the harder phase volume fraction, morphology and phase distribution on
mechanical properties of the dual phase steels is well established and comprehensive in the literature. In the
present work, a micromechanical model is developed to capture the mechanical behavior of such materials,
adopting the constitutive behavior of the constituents from the literature. Analytical approaches have been used
in the past to model the DP steel material behavior, but theoretical treatments are based on the assumption of
uniform deformation throughout the constituents, neglecting the local strain gradients. This assumption contra-
dicts experimental observations, reduces the understanding of the mechanics and mechanism of deformation of
such materials. Based on the micromechanical modeling of cells, several idealizations are investigated out of
which the axisymmetric model is shown to display intrinsic ability to capture the expected material behavior
in terms of the trend of the stress–strain curves with increasing volume fraction of the second phase and in
terms of the deformation 7elds of the constituents.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well established that low-carbon multiphase (MP) steels developed in the past decades o3er
impressive mechanical properties, such as high work hardening rate and good ductility, which also
have the advantage of reduced cost, superior formability, and excellent surface 7nish over other
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high-strength low-alloy (HSLA) steels. Experimental investigation into the e3ect of size, morphology
and phase distribution of MP steels has been comprehensively reported in the literature with focus
on having two phases. The advantages of dual phase (DP) steels were 7rst reported by Rashid [1].
The pearlitic HSLA steels developed by microalloying with di3erent additives have shown signi7cant
increase in strength compared to the commercial plain carbon steels, but are inferior in terms of
ductility and formability. Rashid and Cprek [2] reported results of annealed vanadium alloyed steel
(GM 980X) to display a promising decrease in the yield strength, higher ultimate strength, higher
work hardening rate, and elimination of yield point elongation with considerable increase in ductility
and formability.

Tremendous e3orts since the above report was released have been placed on exploring various
aspects of DP steels. The e3ect of volume fraction (Vm) of the harder phase (Martensite) has been
investigated by di3erent authors (Jiang et al. [3], Bag et al. [4], Tomita [5], Byun and Kim [6] and
Tomota [7]). Increasing the volume fraction of the harder phase was found to increase the yield and
ultimate strengths of the aggregate. Bag et al. [4] reported that the increase in strength with Vm only
extends up to Vm ∼ 55%, after which a reduction in strength is observed. The same was observed
by Byun and Kim [6] but at a di3erent value of Vm. Shen et al. [8] have observed this as well
without specifying the value of Vm at which this takes place. They attribute this to carbon dilution,
which softens the Martensite phase, thus dropping the overall strength of the aggregate. This can
also be elucidated by considering the Joaul–Crussard analysis reported by Byun and Kim [6] where
they show that the stages of strain hardening display three distinct regions for Vm less than 30%
and two stages of strain hardening for Vm greater than 30%.

Shen et al. [8] have shown, using a scanning electron microscope equipped with a tensile straining
stage, that the distribution of the strains between the Ferrite and Martensite phases, as well as among
the di3erent grains of each phase was observed to be inhomogeneous. They observed that the Ferrite
phase deformed immediately and at a much more rapid rate than the delayed deformation of the
Martensite. They have also shown, using scanning electron microscopy, that at low Vm only the
Ferrite matrix deforms, with no measurable strain occurring in the Martensite particles. At high
Vm, however, they have shown that shearing of the interface between the Martensite and Ferrite
occurs extending the strain into the Martensite islands after the Ferrite matrix is excessively strained,
which is in agreement with Rashid and Cprek [2]. They add, that when the %C is constant as
Vm increases, the di3erence in the strain in the two phases decreases, in agreement with above
observations mentioned in the last paragraph. Observations by Rashid and Cprek [2] also indicate
that the Martensite phase deforms after excessive straining of the Ferrite matrix due to load being
transferred to Martensite islands through the Martensite–Ferrite interface. This is in contrast to other
HSLA steels, where the Ferrite phase deforms while the harder phase does not experience any
signi7cant deformation. The strain distribution between the phases in the DP steels is believed to
delay necking and strain to fracture as indicated by a higher strain rate index compared to the other
HSLA steels.

The di3erent stages of strain hardening have been attributed [2,4,6,7] to the following phases of
deformation:

(1) Both component phases are elastic.
(2) The softer phase is deformed plastically while the harder phase only elastically.
(3) Both components deform plastically.
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Micromechanical modeling of DP steels has received little attention, despite their attractive combi-
nation of high strength and toughness. Questions regarding optimum phase combinations persist and
accurate predictive models are necessary to minimize costly trial-and-error methods of development.
Micromechanical models are used to understand the local mechanics and mechanisms governing
the macroscopic elastic–plastic deformation of heterogeneous solids. They provide overall behav-
ior from known properties of the individual constituents and their detailed interaction unlike the
macromechanical approach where the heterogeneous structure behavior has to be known to predict
the aggregate behavior using a computational model.

Many early works in micromechanical modeling focused on voids within a solid matrix.
McClintock [9] considered the evolution of a single cylindrical void in an in7nite matrix subjected
to axisymmetric loading at the remote boundary. Rice and Tracy [10] used a variational approach to
investigate the response of an isolated spherical void in an in7nite medium. Both authors considered
a rigid perfectly plastic material. Numerous authors have proposed improvement to these works.
Gurson [11] proposed approximate yield criteria for ductile porous media using a micromechanical
approach. Tvergaard [12] used Gurson’s yield criteria and introduced the micromechanical modeling
of cells based on a random distribution of particles that can be idealized by considering a regular
three-dimensional array of hexagonal cylinders of a matrix material, each containing a spherical void
or particle. The problem was further simpli7ed by modeling axisymmetric geometry, where Tver-
gaard assumed that an in7nite series of stacked circular cylinders containing spherical particles is
a good approximation for the three-dimensional stacked hexagonal array. Symmetry arguments are
then used to limit the RVE to 1=4 of the axisymmetric cell.

Since Tvergaard introduced his stacked hexagonal array (SHA) model, di3erent investigators have
used it to model materials of widely di3erent groups. Numerous investigators have shown through
experimental and modeling studies that the distribution of the phases strongly a3ects the macroscopic
material response due to the di3erent deformation 7elds and localization, which arises in the matrix.
A comprehensive review of this work is given by Socrate and Boyce [13]. Hung and Kinloch [14]
modeled toughening mechanisms of rubber-modi7ed epoxy polymers using both axisymmetric and
plane strain RVEs. The plane strain staggered square array model was reported to better capture the
prevailing direction of shear distribution which appears to be at an angle of approximately ±45◦ to
the direction of the applied load. This pattern was captured for di3erent materials by many authors
as reported in Socrate and Boyce [13]. However, Socrate and Boyce reported that while unit cell
RVEs based on the staggered square array can e3ectively capture some important features of the
deformation patterns, they cannot truly represent the complexity of the two-phase material and may
misrepresent the e3ect of the actual three-dimensional nature of the structure. Socrate and Boyce
[13] studied the micromechanics of toughened polycarbonate and compared the traditional SHA
model to the V-BCC model they developed which di3ers from the SHA model only in the boundary
condition at one side of the model. They reported that at high volume fractions of the second phase,
the V-BCC model accurately captures the trend of the stress–strain curves while the SHA model does
not. In a more recent paper, Socrate et al. [15] modeled multiple crazing in high-impact polystyrene
using the SHA model. Tzika et al. [16] studied micromechanics of deformation in particle toughened
polyamides, where they used the SA RVE with boundary conditions similar to that in Tvergaard [17]
in a study of cavity growth and interaction between small and large voids. Neither the SHA model
nor the V-BCC model developed by Socrate and Boyce were similar to the material phenomenon
and consequently the SA model was used.
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Of particular relevance to the class of materials examined in this study is the work by Ishikawa
et al. [18], where the authors have developed a micromechanical model for Ferrite–Pearlite DP steel.
They used the SHA and the V-BCC models and reported that the V-BCC model could better capture
the general stress–strain trend in terms of the strain hardening. Huper et al. [19] have also developed
a micromechanical model for the Ferrite–Bainite DP steel using the plane strain idealization and
reported stress–strain curves based on assumed single-phase material behavior.

In this work, a micromechanical model for the Ferrite–Martensite steel is developed. Neither of
these phases will undergo transformation as a result of deformation at room temperature, which is
the condition being addressed. The importance of this type of steel prevails in its appealing com-
bination of strength and ductility compared to other DP steels modeled in earlier work. Martensite
volume fractions as high as 59% are considered. Di3erent idealizations based on the micromechani-
cal modeling of cells are explored and compared. The examination of the idealized models is carried
out from two perspectives in parallel. Rather than looking only at the general stress–strain trend as
presented in previous studies, the deformation 7elds of the constituents are examined and compared
to the experimental results of Shen et al. [8] and Rashid and Cprek [2], as a means of assessing
which idealization better describes the real material behavior. In addition, by considering aggregate
strains up to 35%, the model’s ability to capture the gain in strength and uniform strain as the Vm
increases to a certain level and then a reduction of uniform strain and gain of strength as the Vm
is further increased, is also investigated. This tradeo3 between strength and uniform strain is an
extremely important factor in the optimization of microstructures for DP steels. Moreover, accurate
prediction of strain distribution between phases and within each phase is equally important, particu-
larly when related to the development of theories to describe ductile failure or failure under fatigue
loading.

2. Micromechanical modeling

The unique mechanical properties of the MP steels are attributable to their microstructure, which
can be considered on several levels, all of which inMuence the 7nal behavior of the material. At
the 7nest, is the structure of individual atoms in space, which inMuence the electrical, magnetic,
thermal and elastic behavior of the material. At the next level, is the arrangement of atoms in
space at which most metals retain a regular atomic arrangement or crystal structure. The crystal
structure in each phase inMuences the mechanical properties of metals such as ductility and strength.
Dislocations, imperfections happening in nature, exist and may be controlled to produce profound
changes in properties. At the third level, is the grain structure; the crystal structure changes its
orientation between grains, thus inMuencing material properties. Finally, in many materials, more
than one phase is present with each phase having its unique crystal structure and properties. Control
of the type, size, distribution, and amount of each phase within the main body of the material
provides additional ways to control properties.

It is reasonably easier and cheaper to model on the fourth level as each constituent of the material
(each phase) can be considered a homogeneous isotropic part of the aggregate while from the
atomic to the grain levels of structure, the properties are not realistically represented by an isotropic
continuum. In addition, in modeling the material to capture its essential behavior requires a certain
size of volume element, which embodies the essential features of the microstructure, and this is
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not feasible on the 7ner levels but, reasonably, possible on the phase structure level. Furthermore,
controlling the microstructure on the 7ner levels requires addition of costly alloying elements, in
addition to the heat treatment processes required, unlike controlling the phase size, shape, volume
fraction and distribution which can be achieved by controlling the heat treatment processes alone.
Finally, considering the microstructure on this level will enhance unique properties already developed
by alloying and is considered as the ultimate in material processing, that can be achieved at low
cost.

Micromechanical analysis of MP materials provides overall (aggregate) behavior from known
properties of the individual constituents and their detailed interaction. On the other hand, in the
macromechanical approach, the heterogeneous structure behavior has to be known to predict the
aggregate behavior using a computational model. Another advantage in modeling micromechanically
is that all phase combinations of di3erent size, morphology, phase distribution and volume fraction
can be analyzed by only having the constituent’s mechanical behavior.

Micromechanical models are frequently invoked in order to understand the local mechanics and
mechanisms governing the macroscopic elastic–plastic deformation of heterogeneous solids. There
are three basic features to a micromechanical model for a generic MP composite:

(a) Geometric de7nition of a representative volume element (RVE), which embodies the essential
features of the microstructure.

(b) The constitutive description of the mechanical behavior of each phase and the interface bound-
aries, whenever applicable.

(c) A homogenization strategy (procedure) for macroscopic mechanical behavior of the aggregate
based on the response of the RVE [13].

2.1. Representative volume element (RVE)

A prominent feature of the micromechanical modeling of cells is the transition from a medium
with a periodic microstructure to an equivalent homogeneous continuum, which e3ectively represents
the composite material. In a two-phase microstructure, a spatially periodic RVE is assumed to deform
in a repetitive way and each RVE resembles its neighboring cells in all aspects. This is indeed a
simplifying assumption, but has proved to be satisfactory and is widely accepted. The extent to
which the RVE captures the behavior of the microstructure depends in a way on how accurately the
RVE captures the morphological features of the actual microstructure [13].

Modeling the microstructure based on plane strain or axisymmetric cell models reduces the com-
plexity of 3D modeling and minimizes the computational cost. Di3erent idealizations based on plane
strain or axisymmetric models are reported in the literature, all of which proved to capture the es-
sential real material behavior to some degree. Huang and Kinloch [14] concluded after comparing
results of 3D models with previous work, that axisymmetric models could be used without signi7cant
loss in accuracy.

The simplest plane strain idealization that is used to represent the periodic array of a two-phase
material is based on a simple square array (PS1) with axes of the array parallel to the loading
direction, as shown in Fig. 1a. As an alternative, the staggered square array (PS2), shown in Fig. 1b,
eliminates the inhomogeneous nature of the simple square array due to the periodic alignment of
rows by the shift of the particles in every other row horizontally. The hexagonal array (PS3), shown
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(a) (b) (c)

Fig. 1. Two-dimensional plane strain material idealizations: (a) simple square array (PS1); (b) staggered square array
(PS2); and (c) stacked hexagonal array (PS3).

Fig. 2. The SHA model: (a) three-dimensional array of stacked hexagonal cylinders, each containing a spherical particle;
(b) the deformed and undeformed shape of the RVE under axial loading; and (c) the SHA axisymmetric RVE cell.

in Fig. 1c, has also been used by some researchers, and shown to have accuracy similar to the
staggered square array model.

Axisymmetric idealizations have been widely used and reported to accurately capture the real
material behavior. It is reported by some authors (Socrate and Boyce [13]) that it provides a better
representation of the morphology of real materials and captures the real material behavior more
accurately, especially at high volume fractions of the harder phase. The most common axisymmetric
model, the SHA RVE shown in Fig. 2 has been comprehensively used for di3erent materials. This
model is conceptually the axisymmetric analog of the idealization shown in Fig. 1a. A more recent
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axisymmetric model developed by Socrate and Boyce [13], the body centered cubic (V-BCC), which
di3ers from the SHA model in only the boundary condition with neighboring cells accounting for
the interaction of adjacent cells, has also been employed by several researchers.

2.2. The constitutive behavior of each material phase

The behavior of each steel phase can be determined by tests on steels consisting of a single phase.
This is achievable by heating the steel to the required temperature and then cooling at controlled rates
using the time–temperature transformation (TTT) diagram to get the desired phase. The single-phase
steels can then be tested in tension or compression to obtain the characteristic behavior of a speci7c
phase. The constitutive behaviors of Bainite, Martensite, Pearlite and approximated behavior of Ferrite
have been reported in the literature [18,20]. In the micromechanical model, the constitutive behavior
of the constituents will only be required to investigate the aggregate behavior, which is thus far
achievable. The interaction of phases (interface boundaries) will be ignored, as it is considerably
small, on the order of few atomic sizes, compared to the phases being modeled.

Each phase is considered to be an elastic–plastic solid and it is assumed that the strain ‘rate’ can
be additively decomposed into elastic and plastic components

�̇ij = �̇eij + �̇
p
ij; (1)

where the elastic component is described by Hooke’s law. The plastic strain rate is given as

�̇pij = 0; f¡ 0;

�̇pij =
3
2
�̇p

�
�′ij ; f = 0;

(2)

where the deviatoric stresses �′ij=�ij− 1=3�kk and the equivalent stress, �, and the equivalent strain
rate, �̇p, are de7ned as

� =

√
3
2
�′ij�′ij ;

�̇p =

√
2
3
�̇pij�̇

p
ij: (3)

The von Mises yield condition is assumed:

f = � − Q�; (4)

where Q� is a function of the equivalent plastic strain and is taken to describe the isotropic hardening.
The hardening behavior of the two phases is taken from the experimental results obtained by

Davies [21] and expressed by the following:

Q�f = Kf(�0 + �
p
f)
nf ;

Q�m = Km(�0 + �pm)
nm ; (5)

where the subscripts f and m denote Ferrite and Martensite, respectively, and �0 is taken to be equal
to 0.002 in this work, Km and Kf are taken to be 2409 and 597 MPa, respectively and nm and nf
are 0.07 and 0.31, respectively. The stress vs. plastic strain for each phase is shown in Fig. 3.
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E: Engineering stress vs. engineering strain
T: True stress vs. logarithmic strain 
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Fig. 3. Behavior of the Martensite and Ferrite phases shown as true stress vs. true strain and engineering stress vs.
engineering strain for uniaxial tensile stress conditions.

To better illustrate the di3erence in uniform elongation between the two phases, the behavior
under uniaxial tension stress is considered. Under these conditions, the equivalent stress reduces to
the true uniaxial stress, �true, and the equivalent plastic strain is equal to the plastic strain along the
direction of loading or true strain, �true. The corresponding engineering quantities are related to the
true quantities as follows:

�eng = exp(�true)− 1;

�eng = �true=(1 + �eng): (6)

The engineering stress vs. engineering strain response for uniaxial tension loading is also shown
in Fig. 3, where the di3erence in uniform strain (strain at maximum engineering stress) for the two
phases is quite apparent. 1

2.3. Homogenization method

The macroscopic stress components are computed as the volume average of the microscopic
components according to the following equations:

Sij =
1
V

∫
V
�ij dV; (7)

Eij =
1
V

∫
V
�ij dV; (8)

where Sij and Eij are the macroscopic average component of stresses and strains over the microscopic
volume of the micromechanical model. The macromechanical behavior of the aggregate is, therefore,
approximated by the volume average of the micromechanical behavior. The question of how this
averaging process is performed has an obvious e3ect on the accuracy of the aggregate constitutive
model.

1 It should be noted that no fracture criteria has been employed so the response shown cannot predict the limiting strain
value of the phase under tensile loading.
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3. Rule of mixtures

The microstructures that are obtained in steels from austenitic transformation comprise a widely
dispersed range of mechanical properties. To estimate the mechanical properties of such materials,
empirical equations describing the UTS and the 0.2% o3set yield strength are often considered for
single-phase materials [22,23]. For aggregates consisting of two or more phases, homogenization
techniques, the most common of which known as the rule of mixtures are also commonly employed.
The simplest of these assume either uniform strain, known as the Voigt estimate, or uniform stress,
which is known as the Reuss estimate. The two estimates have been shown by Hill [24] to be upper
and lower bounds, respectively. Using Eq. (5), the Voigt and Reuss bounds can be written as

Q�c = VmKm(�0 + �pm)
nm + (1− Vm)Kf(�0 + �pf)nf ;

�pc + �0 = Vm

(
Q�m
Km

)1=nm

+ (1− Vm)
(

Q�f
Kf

)1=nf

; (9)

where the subscript ‘c’ denotes the aggregate. As shown in Fig. 4, for low Martensite volume
fractions the two bounds are relatively close, but at higher volume fractions the discrepancy is
quite large. A modi7ed form of the rule of mixtures was proposed by Bourell and Rizk [20]. The
Ferrite part contains a term, which accounts for the inMuence of the Austenite–Martensite-induced
transformation strain on the Ferrite matrix. This equation was also used to investigate the upper and
lower bound of the stress vs. strain trend, as was done in Fig. 4. The results obtained using the
modi7ed rule of mixtures with the prestrain induced in the Ferrite matrix by the Austenite–Martensite
transformation at di3erent volume fractions of the harder phase show that the di3erence between the
ordinary and modi7ed rule of mixtures to be negligible at low Vm and about 1–2% at high Vm.
The large discrepancy in the upper and lower bound in either case demonstrates the need to use
methods other than the simple rule of mixtures for predicting the aggregate response.
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Fig. 4. Upper and lower bound predicted by ROM for several volume fractions, Vm: (a) 3.2%; (b) 13.6%; (c) 24.8%;
and (d) 32%.
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Di3erent straining models based on rule of mixtures have been used in the past by various authors
in analyzing the strength of DP steels. Two main assumptions were made, one assumes the material
as a mixture of two ductile phases deforming at the same ratio, also called isostrain models. On
the other hand, the second assumption made by some workers followed Ashby’s theory of particle
strengthening [25]. Others like Speich and Miller [26] and Szewczyk and Gurland [27] considered
the di3erence between the strain in the Martensite and Ferrite but held the strain ratio constant
throughout the entire tensile process. A comprehensive review of the above is given by Szewczyk
and Gurland [27] and Korzekwa et al. [28]. Elastic–plastic behavior of two-phase polycrystalline
materials have also been predicted by using the Mori–Tanaka [29] method, which is used as the
basis for many continuum analytical models [30–32].

Korzekwa et al. [28] presented a detailed evaluation of the methods such as the rule of mixtures,
isostrain assumption, strain partitioning models (also called continuum models) and the isostress
models. They asserted that although most of the treatments predict the increase in strength and
decrease in ductility that accompany an increase in Vm reasonably well, some of the correlations
may be fortuitous as the basic assumption used to model the strain distribution between the Ferrite
and Martensite are inconsistent with experimental microscopic observations they presented. Ostrom
[33] in a study of the analytical models concluded that without knowledge of how stress and strain
develop in the two phases during deformation, no conclusive results could be reached and thus
the models based on rule of mixtures are not reliable. In addition, the traditional simulations of the
deformation and fracture of solids by application of continuum mechanics and averaged macroparam-
eters or homogenization methods are not suScient for developing a predictive theory of deformed
solids. Internal microstructure evolution should also be considered as they a3ect the mechanical
properties of materials substantially. Local values of the elastic–plastic parameters at the microlevel
di3er widely from the averaged macrodata, a fact widely validated and accepted. The computational
micromechanical methods provide these local data. In this work the micromechanical modeling of
cells is used to understand the mechanics and mechanism of deformation in DP steels.

4. Finite element modeling

Finite element analysis, using several di3erent micromechanical models, has been used to carry
out the homogenization procedure. The analyses considered were limited to 2D, plane strain and
axisymmetric cases to keep computational time reasonable. The analysis was performed using the
commercial code ABAQUS. Each phase, namely Martensite and Ferrite, is considered to be an
elastic–plastic solid as described by Eqs. (1)–(5), with E = 200 GPa and �= 0:3.
Two plane strain idealizations, namely the PS1 and PS2, are considered in this work. The PS2

idealization is developed in order to better capture the interaction between the neighboring hard
particles, as previously discussed. The PS3 idealization has been reported by Socrate and Boyce
[13] to display very similar results as the PS2 and thus has not been considered. Four-noded, linear,
quadrilateral (axisymmetric and plane strain) elements were used. The same mesh is used for the
SHA and PS1 idealizations, di3ering only in element type. Due to symmetry, only the shaded area
of Fig. 1 is modeled.

Referring to Fig. 5, the volume fraction, Vm, is computed as �a2=4L2 and 2=3a3=L3 for the
plane strain and axisymmetric cases, respectively. Referring to the same 7gure, symmetry boundary
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Fig. 5. Dimensions of the micromechanical model.

conditions are used for sides S1 and S2, while side S3 has a uniform displacement in the x1 direction
and side S4 has uniform displacement in the x2 direction. Cases for speci7ed displacement in the x2
direction on side S4 as well as speci7ed normal traction have both been considered. The aggregate
strains are computed as

E11 = ln(u1(L; x2)=L);

E22 = ln(u2(x1; L)=L): (10)

The engineering normal stress in the x2 direction is computed from the resultant force divided
by the original area, from which using Eq. (6), the Cauchy stress component is computed. For the
SHA micromodels the state of stress is uniaxial, such that the S22 and E22 components of stress and
strain are equal to the corresponding equivalent quantities. For the plane strain case (E33 =0), S33 is
well approximated by the intermediate value of the other normal stresses (S33 = (S11 + S22)=2) after
a plastic strain a few times the strain at yield [34]. Since S11 = 0, S33 is taken to be S22=2 and the
equivalent stress and strain are computed from Eq. (3).

Each mesh has also been subjected to both prescribed traction and displacement boundary con-
ditions along side S4 (see Fig. 5). For a properly developed RVE, the homogenization procedure
should yield the same equivalent stress vs. equivalent strain as described by Hill [24]. The compar-
ison for PS1 for a Vm of 11.8% is shown in Fig. 6. Similar results were obtained for the other two
models.

The predicted response for the aggregate is computed for each case for varying Martensite volume
fractions as shown in Fig. 7. The engineering stress vs. engineering strain response is chosen to
present the results so that the di3erence in uniform strain (strain at maximum engineering stress)
can be seen clearly as this would not be possible to observe in the true stress vs. logarithmic strain.
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Fig. 6. Comparison of behavior predicted for the aggregate material using traction and displacement boundary conditions
on side S4 for the PS1 model and Vm = 11:8%.
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As shown in Fig. 8, the response given for each model is quite similar at low volume fractions.
However, signi7cant di3erences become apparent for volume fractions above approximately 23%.
Fig. 9 shows the results for the di3erent models at an approximate volume fraction of 32–36%.
The response for the axisymmetric SHA model is quite similar and consistent with experimentally
observed behavior, i.e. engineering stress increases up to a maximum, which occurs at the onset
of instability. The plane strain models appear to overpredict strain hardening, which unrealistically
suppresses the localization. This can also be seen in Figs. 7b and c, where increasing Vm results in
increasing hardening, which is contradictory to what is observed experimentally [4,5,7,8].

The evolution of equivalent plastic strain for the axisymmetric, PS1 and PS2 idealizations are
shown in Fig. 10, corresponding to nominal strains of 10%, 20% and 30%. All three models show
the heterogeneous distribution of strain, which agrees with experimental observations of Shen et al.
[8] and Rashid and Cprek [2]. However, only the axisymmetric SHA model shows plastic strain
extending into the Martensite. In both plane strain models the Martensite remains elastic. Although
the amount of plastic strain in the Martensite is quite small (¡ 8%), the e3ect on the overall material
response is signi7cant. This is demonstrated quite clearly in Fig. 11, which compares the response
in the axisymmetric case treating the Martensite as an elastic solid to that when the Martensite is
considered an elastic–plastic solid. Treating the material as an elastic solid results in a response,
which is, quite similar to that observed in the plane strain models, and contrary to experimental
observations. The plastic deformation of the Martensite is, therefore, judged to be quite important
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Fig. 10. Contours of equivalent plastic strain for nominal strains of 10%, 20%, and 30%: (a) plane strain (PS2) model;
(b) plane strain (PS1) model; and (c) the SHA axisymmetric model.

and must necessarily be captured by an appropriate micromechanical model. In the case of the
constituent behavior considered here, this only occurs for the axisymmetric model.

5. Conclusion

Of the cases considered, only the axisymmetric SHA model displays the trend of increase in the
engineering stress and the reduction of the onset of strain localization with increasing Vm. In both
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Fig. 11. Predicted behavior using SHA axisymmetric model with Vm = 29:4% treating Martensite as an elastic and an
elastic–plastic solid.

PS1 and PS2 cases, the strain hardening in the material was overpredicted which unrealistically
suppressed localization as shown in Figs. 7(b,c).

The above phenomenon is believed to occur for several reasons. The most signi7cant of which
is attributed to the deformation stages, which take place in the Martensite particles and the Ferrite
matrix. As mentioned earlier, Shen et al. [8] and Rashid and Cprek [2] have shown experimentally,
using scanning electron microscopic micrographs, that the Martensite particles deform after the Ferrite
matrix is excessively deformed. Shen et al. [8] have also shown using a scanning electron microscopy
equipped with a straining stage that at low Vm only the Ferrite matrix deforms with no measurable
strain occurring in the Martensite particles. Very small strains in the peripheral areas of Martensite
islands were reported using an interferential microscope. At high Vm they have shown that shearing
of the interface between Martensite and Ferrite occurs extending the strains into the Martensite
islands.

All the models considered have similar stress–strain trends at low Vm as depicted in Fig. 8. The
Martensite particles undergo no measurable strain, which is in agreement with experimental observa-
tion by Shen et al. [8]. At high Vm, the Martensite particles in PS1 and PS2 models behave elastically
while it plastically deforms in the axisymmetric SHA case. Although, the plastic deformation that
takes place in the Martensite particles is small, it is believed to be an important phenomenon, which
alters the mechanics of deformation of the aggregate signi7cantly as shown in Fig. 11. The inability
of plane strain models to show any plastic deformation in the Martensite particles is believed to be
the main reason behind the suppression of the localization behavior they display. In the plane strain
idealization, the Martensite particles are geometrically assumed to be long cylinders in a Ferrite
matrix, rather than a spherical particle in a cylindrical matrix. As a result, for the same volume
fraction, the area fraction of Martensite is larger in the axisymmetric model, causing yield to occur
at lower strains, which more closely resembles the actual material response.

Shen et al. [8] reported the extent to which the Martensite and Ferrite particles deform and
show that, in addition to strain being inhomogeneous in both the Ferrite and the Martensite, strains
in both increase linearly with increasing the macroscopic strain of the specimen. They have also
reported that the Martensite plastic deformation is negligible at nominal strain levels of about 10%
and in the range of 5–10% at 30% nominal strain of the specimen, which agrees well with results
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observed in the axisymmetric SHA model. It is worthwhile mentioning that Shen et al. [8] reported
Martensite deformation levels for various combinations of Vm and %C in the steel. Increasing the
Vm with constant %C in the steel would cause dilution of the carbon in the Martensite particles,
which reduces its strength, but this is reported to be signi7cant only in volume fractions above 30%.
Dilution e3ect in the levels of Vm reported by Shen et al. [8] are negligible as the plastic deformation
of the Martensite particles are reported to be very close in all the cases.

In this work, a micromechanical model for the DP steels consisting of Martensite particles dis-
persed in a matrix of Ferrite has been developed. The axisymmetric idealization proved to capture
the material behavior of this material both in terms of general stress–strain trend and in terms of
deformation 7elds in both constituents of the aggregate. The axisymmetric model is shown to capture
the mechanism of deformation of DP steels observed and reported in the literature, of displaying
the three phases of deformation as mentioned in the material background. The model succeeded
in capturing the trend of increase in strength and uniform strain with increasing volume fraction of
Martensite to a certain value and then increasing strength and decrease of uniform strain with further
increase in volume fraction. This model will prove valuable for determining optimum Vm for DP
steels while minimizing the amount of required experimental work. In addition, it provides a unique
tool for understanding the mechanics and mechanisms of deformation taking place in such materials
which can be used in developing a predictive theory of deformed solids for both ductile failure or
failure under fatigue loading.
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