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This work presents a methodology for the allocation of fixed capacitor banks in electrical power distribu-
tion systems by applying a bio-inspired optimization technique. The goal is to optimize the distribution
network operation over a planning horizon by minimizing the system losses with minimum cost of
investment in capacitors. For this aim to be achieved, this work proposes improvements to the
Monkey Search optimization technique to achieve a better representation of the capacitor allocation
problem and to increase the computational efficiency. Distribution systems that are widespread in the
literature are used to evaluate the proposed methodology.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

The allocation and control of reactive power support in electri-
cal distribution systems (EDS) by using capacitor banks leads to an
optimization problem that has been extensively investigated in
the literature. The significance of this problem is supported
by the benefits that come from this optimization alternative and
the requirements set out by regulatory institutions such as the
National Electric Energy Agency (ANEEL) to operate these systems.
Technical loss reduction [1], power factor correction and improve-
ment of the system voltage profiles are among the capacitor
allocation benefits [2–4].

The optimal capacitor allocation in EDS consists of a combinato-
rial mixed-integer nonlinear programming problem. Therefore,
two characteristics of this problem are the following [5]: (i) the
existence of several feasible solutions, which results in a
non-convex solution region with several local optimal points,
thereby making it difficult to obtain the global optimal solution
and (ii) a combinatorial explosion of the options of allocations as
the size of the electrical grid increases.

Because of the above characteristics, the proposed methods for
optimal capacitor allocation in EDS should combine the ability to
obtain high quality solutions with processing times that are not
prohibitive for the analysis of these systems [6]. This scenario is
conducive to implementation of artificial intelligence systems,
heuristic and meta-heuristic optimization techniques, including
bio-inspired methods.

In this context, the application of genetic algorithms has been
extensively investigated in the literature [7–9]. Tabu search [10],
simulated annealing [11], artificial ant colonies [12], [13], particle
swarms [14], honey bee colony algorithm [15,16], gravitational
search algorithm [17], artificial neural networks [18] and fuzzy
logic [19,20] have also been investigated for capacitor allocation
in EDS. The compromise between the quality of solutions and the
processing times, and the development of simple algorithms are
challenges for these types of methods.

Reference [15] proposes the artificial bee colony algorithm for
optimal capacitor placement aiming to minimize power system
losses and unbalances while maintaining the nodal voltages in
acceptable ranges. Using the same technique, reference [16] pre-
sents an approach to allocate fixed capacitors along radial distribu-
tion networks. High potential buses for capacitor placement are
initially identified by the observations of loss sensitivity factor
with weak voltage buses. The gravitational search algorithm is
used in [17] for optimal capacitor placement in radial distribution
systems to reduce power losses subjected to the voltage limits
constraints.

Hybrid approaches that combine two optimization techniques
have also been proposed. In [21], a combination of fuzzy expert
system for capacitor placement and genetic algorithm for capacitor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2015.05.034&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2015.05.034
mailto:leonardo.willer@ufjf.edu.br
http://dx.doi.org/10.1016/j.ijepes.2015.05.034
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


F.G. Duque et al. / Electrical Power and Energy Systems 73 (2015) 420–432 421 
sizing is proposed to enhance voltage stability by minimizing
power and energy loss.

Reference [5] presents a heuristic constructive algorithm for
capacitor bank allocation in EDS. In this algorithm, there is an ini-
tial selection of a set of busbars that are candidate for allocation
using sensitivity indexes based on Lagrange multipliers, which
are obtained from an optimal power flow tool (OPF). This selection
of the candidate busbars limits efficiently the search space, thereby
contributing to reduce the processing times and increasing the
quality of the solution.

Reference [22] propose a heuristic algorithm that comprises
a loss sensitivity technique to select the candidate locations
for the capacitor placement and a loss saving equation with
respect to the capacitor currents to determine the size of the
capacitors at the compensated nodes. The objective is to reduce
the power loss and improve the voltage profile. However, this
algorithm does not consider the costs of the capacitors and
losses. These same objectives are addressed in [23] by using a
simulated annealing algorithm for feeder reconfiguration and
capacitor settings.

Based on the application of bio-inspired optimization meth-
ods for the optimal allocation of fixed capacitor banks in distri-
bution systems, this paper proposes a modified monkey search
(MMS) algorithm to optimize the system operation during a
planning horizon through the system losses minimization with
the minimum investment cost in capacitors. Therefore, enhance-
ments to the original Monkey Search (MS) method [24] are pre-
sented to accommodate the peculiarities of the problem and to
increase the computational efficiency of the proposed modified
algorithm. It is noteworthy that the application of this method
for the capacitor allocation is still not extensively explored in
the literature [25] and that the improvements proposed in this
paper consists of contributions to this problem. These contribu-
tions made the monkey search technique easier to be applied to
this practical problem. From the features of this optimization
method, its application can be extended to other practical prob-
lems by making some adaptations. Case studies on systems
known in the literature demonstrate the advantages of the tech-
nique proposed in this paper.
Formulation of the problem

The mathematical optimization problem associated with the
optimal capacitor allocation in distribution systems to minimize
the energy loss and the investment cost can be formulated as
follows.
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where:
OBF
 objective function  

Nt
 number of load levels

Nc
 number of distribution branches

ceu
 energy cost ($/kW h) for load level u

Tu
 duration time (h) of load level u

Lij,u
 active power loss (kW) of branch ij at load level u

Nb
 number of candidate busbars for capacitor bank allocation

Nbc
 maximum number of capacitor banks per busbar

Xi
 set of the busbars connected to busbar i through

distribution branches

Cb
 unitary cost of the reactive power support from capacitors

($/kVAr)

DImi
 state (1, allocated or 0, not allocated) of capacitor bank m at

busbar i

Pgi,u
 active power generated at busbar i at load level u

Pli,u
 active power load at busbar i at load level u

pij,u
 active power flow between busbars i and j at load level u

kQi
 lagrange multiplier: reflect the sensitivity of the objective

function to changes in the reactive power injection to
busbar i
Qbmi
 power of capacitor bank m at busbar i (kVAr)

Qgi,u
 reactive power generated at busbar i at load level u

Qli,u
 reactive power load at busbar i at load level u

qij,u
 reactive power flow between busbars i and j at load level u

gij
 conductance of branch ij

hij;u
 phase angle between busbars i and j at load level u

Vi,u
 voltage magnitude at busbar i at load level u

Vmin
 lower voltage limit at the busbars
The objective function (OBF) defined in (1) involves the total cost
associated with the energy loss (first term), considering different load
levels u, and the investment cost in capacitor banks (second term).
This function had been also used in [5]. Other terms can be added
to the objective function, as the annual cost of peak power loss
(kp � Lp), where kp is the equivalent unitary cost of the peak power
loss during one year ($/kW-year) and Lp is the peak power loss
(kW-year) [26]. In the present work, some case studies include these
terms.

Eqs. (1.1) and (1.2) correspond to the balance constraints of the
active and reactive power in each busbar, respectively. Eq. (1.3) is
used for calculating the power loss in branch ij. The lower voltage
limits at the busbars are considered through (1.4).

The capacitor bank allocation is represented by a corresponding
amount of reactive power injected into candidate busbar i accord-
ing to Eq. (1.2). This amount is given by multiplying the power of
each bank by the number of banks allocated at this busbar.

For each busbar i, the decision regarding the capacitor alloca-
tion is determined by the discrete variable, DImi. For illustration,
it is supposed that the maximum number of banks per busbar
(Nbc) is equal to 3 and that a single bank is allocated at busbar i.
In this case, one of variables DI1,i, DI2,i or DI3,i is equal to 1, whereas
the two remaining variables are equal to zero. For treatment of the
discrete variables, DIm,i, an algorithm based on the bio-inspired
optimization technique MS is proposed.

The modified monkey search algorithm

The bio-inspired optimization technique known as Monkey
Search (MS) was developed in [24,27]. This technique is inspired
by the behavior of a monkey searching for food in a jungle. Such
a search is performed by climbing up and down trees that contain
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food sources. As the search continues, the monkey stores and
updates in its memory the best route found. This adaptive memory
is then used for achieving more promising routes among various
possible alternatives.

Similar to other techniques based on heuristics and bio-inspired
behaviors, the MS method seeks to determine high-quality solu-
tions in a computationally efficient manner. The Modified
Monkey Search (MMS) algorithm presented in this paper is based
on the MS algorithm of [24,27]. Both algorithms associate the
mechanisms of the adaptive memory and evolution of routes, as
aforementioned, for applying to the search processes of combina-
torial optimization problems. This association is summarized
hereinafter:

(i) A tree consists of a set of nodes that are linked by paths, as
pictured in Fig. 1 where the first node ‘‘A’’ is the root.

(ii) The root and nodes of a tree contain food sources that are
related to the possible solutions for an optimization
problem.

(iii) A branch of a tree is associated with a perturbation in the
current solution of the search process that allows the transi-
tion to another solution, in analogy to climbing the tree from
one node to another.

(iv) The adaptive memory is associated with the storage of the
information acquired during scanning the solution space
and is used to conduct the search process.

From the previous definitions, the paths of the tree in Fig. 1 are
(i) ‘‘A–B–D’’, (ii) ‘‘A–B–E’’, (iii) ‘‘A–C–F’’ and (iv) ‘‘A–C–G’’. Node ‘‘A’’
is the initial solution and the remaining nodes correspond to the
derived solutions. This tree has three levels, where the first level
consists of node ‘‘A’’, the second level comprises nodes ‘‘B’’ and
‘‘C’’ and the third level nodes ‘‘D’’, ‘‘E’’, ‘‘F’’ and ‘‘G’’. The third level
nodes form the top of this tree. The highlighted path ‘‘A–B–E’’
comprises branches ‘‘A–B’’ and ‘‘B–E’’ and nodes ‘‘A’’, ‘‘B’’ and ‘‘E’’.

The proposed modifications and improvements in the MS
method seek to represent better the capacitor allocation problem.
The search process of the proposed MMS algorithm can be divided
into two steps.

(1) Step 1 – Search in the initial tree: When the proposed MMS
method initiates the search process, there is no information
regarding the paths to be investigated, i.e., there are no solu-
tions stored in the memory. Thus, the search in the initial
tree is full and involves all candidate paths. From the results
of this full search, the adaptive memory mechanism begins
to store a set of solutions that will serve as references for
future trees, which are referred to as subsequent trees.
A

B

C

D

E

F

G

Fig. 1. The tree structure of the proposed MMS algorithm.
(2) Step 2 – Search in subsequent trees: The subsequent trees in
the proposed MMS method are obtained from perturbations
of the best solution found in the initial tree. From the refer-
ence memory formed in Step 1, the optimization algorithm
performs a directed sweep in the subsequent trees, thereby
avoiding the full search process and accelerating the investi-
gation of these trees until a convergence criterion is met,
which will be explained later.

The main aspects of the proposed MMS algorithm, including the
definition of parameters, convergence criteria and perturbation
mechanisms of the solutions, are addressed hereafter.

 

Parameters of the initial tree

The initial tree involves a set of solutions obtained from a
search process that starts from a single solution, node ‘‘A’’ in
Fig. 1. For the capacitor bank allocation problem, this initial solu-
tion, the root of the initial tree, is not random and corresponds to
the base case, i.e., to the condition without any capacitor bank
allocation.

The search procedure in the initial tree is exhaustive due to the
lack of prior information regarding the solution space. However, in
the proposed MMS algorithm, the convergence of the initial tree is
obtained when all paths are covered.

Each tree has a binary-structured system, where at each node
one of two perturbation options can be selected and each choice
leads to a new node. From node ‘‘A’’ of Fig. 1, node ‘‘B’’ can be
selected through the upper branch or node ‘‘C’’ via the lower
branch. The codification for the decisions taken in this structure
can be ‘‘0’’ for the lower branch and ‘‘1’’ for the upper branch.
Thus, the covered path ‘‘A–B–E’’ is represented by the binary code
as 1–0, which means that this path consists of the upper
branch from ‘‘A’’ (‘‘A–B’’) followed by the lower branch from ‘‘B’’
(‘‘B–E’’).

The depth (h) of a tree is defined by the number of levels minus
1. So the depth of the tree in Fig. 1 is given by h = 3–1 = 2. The
number of paths (c) of a tree is limited by parameter h according
to Eq. (2).

c ¼ 2h ð2Þ

where:
c
 number of possible paths in the tree

h
 height of the tree
Thus, the number of paths in the tree of Fig. 1 is equal to
c = 2h = 22 = 4.

The routes taken in the MMS algorithm include processes
of climbing up and down a tree. Each climbing down process
occurs in the opposite direction of the previous stage of climbing
up, i.e., covering the same nodes, however, in the opposite
direction.

The parameter ‘‘depth’’ of the tree (h) has great importance
because it determines the number of paths to be investigated
and consequently, the number of solutions to be evaluated. The
choice of this parameter should consider the following aspects:

(i) Elevated h value – THE greater the depth of the tree, the
greater is the number of paths and candidate solutions. As
the parameter h increases, the chance of obtaining a high
quality solution increases, but the processing time also
increases.
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(ii) Low h value – a low value of h implies shorter computational
times for convergence of the MMS; however, it limits the
search space and thus affects the quality of the solution.

Based on these aspects, for choosing a value for h that is ade-
quate for each specific problem, there is a compromise between
the quality of the solution and the computational requirements.

One advantage of the proposed MMS is the reduced number of
parameters to be adjusted. For example, once the parameter h is
choosen, the parameter c is a function of h as shown in Eq. (2).

Adaptive memory

The adaptive memory of the proposed MMS algorithm consists
of a list of the ten best solutions found. This memory is formed
during the search in the initial tree and it is updated during the
searches in the subsequent trees.

To explain the formation and updating of the adaptive memory,
consider that after the search in the initial tree, the memory is
given by memom1 of Eq. (3), which is formed by solutions m1,m1

to m10,m1 arranged in descending order of quality.

memom1 ¼ m1;m1;m2;m1;m3;m1;m4;m1;m5;m1;m6;m1;m7;m1;½
m8;m1;m9;m1;m10;m1� ð3Þ

where:
memom1
 initial adaptive memory

mn,mi
 solution stored in position n during exploration of tree

mi; mi = m1 for the initial tree
Table 1
Capacitor allocation defined by m1,m1 after searching tree m1.

Number of busbars 1 2 6 8 10
Number of banks 1 1 2 3 1

 

The vector of Eq. (3) is obtained by an exhaustive search in the
initial tree (m1). The best solution of this vector is m1,m1 and it is
defined as the root of the first subsequent tree (m2). This solution
is perturbed until the convergence criterion of the subsequent tree
is reached, which will be explained later. The process of updating
the memory is performed every time a solution better than that
belonging to the set [m1,m1: m10,m1] is found. Hence, the new solu-
tion is inserted in this set at a position defined according to its qual-
ity and the subsequent values are shifted to the right. The value in
the last position, m10,m1, is discarded and replaced by the value
stored in m9,m1, m9,m1 receives the value of m8,m1, and so on, until
the position after the new solution. In this update mechanism, the
size of the vector memo remains the same, with ten positions.

As an example, during the search process in tree m2, solutions
m1,m2 and m2,m2 found in m2 are better than solutions m3,m1 and
m6,m1 found in tree m1 and included in the initial memory of
Eq. (3), respectively. In this case, the new configuration of the
adaptive memory, updated after searching tree m2, is shown in
Eq. (4).

ð4Þ

where memomi is the adaptive memory obtained after convergence
of tree mi and the solutions highlighted with gray shades updated
memom2.

It is observed that the updating memory procedure is not
restricted only to solutions better than m1,m1. In the example
above, m1,m2 and m2,m2 are not better than m1,m1 but are better than
m3,m1 and m6,m1, respectively. This updating strategy allows faster
convergence of the algorithm and consequently increases its com-
putational efficiency in relation to the Monkey Search in [24,27],
which limit the updating procedure to solutions better than
m1,m1. Thus, the proposed updating strategy is an improvement
of the MMS algorithm.
Perturbation mechanism of the current solution

The procedure performed to modify the optimal solution con-
tained in the root of the tree is defined as a perturbation. In the
problem of capacitor bank allocation, this perturbation comprises
some unit increases or decreases in the number of capacitor banks
in randomly selected candidate busbars. The numbers of unit
increments and decrements are also random and can vary from
one to three. To exemplify this perturbation mechanism, a system
with 10 busbars is considered, and after searching tree m1, the best
solution found, m1,m1, is given by Table 1.

According to Table 1, the solution given by m1,m1 after searching
tree m1 establishes 1 capacitor bank at busbars 1, 2 and 10, two
banks at busbar 6 and three banks at busbar 8. Supposing that
the random values for the numbers of unit increments and decre-
ments are equal to 1 and 2, respectively, and that the randomly
selected busbars are busbar 2 for the unit increment and busbars
6 and 8 for the unit decrements, solution m1,m1 after this perturba-
tion is given by Table 2, where the highlighted positions refer to
the values updated after the perturbation mechanism.

The perturbation mechanism must meet the constraint of the
maximum number of banks per busbar (Nbc). Therefore, if one bus-
bar that already contains Nbc capacitor banks allocated is selected
for increment, another busbar should be selected until this con-
straint is met. Similar reasoning holds for the case in which a bus-
bar without capacitor allocation is selected for decrement of its
number of banks. Also in this case, another busbar should be
selected until the constraint of the minimum number of banks
(zero) is satisfied.

Convergence

The convergence criterion of a tree in the proposed MMS algo-
rithm differs from the respective criterion in the MS [24,27].
Convergence of a tree in the MS algorithm is achieved when all
the branches of this tree are covered (exhaustive search for
branches). This criterion applies to both the initial tree and subse-
quent trees. In the proposed MMS, the convergence criterion for
the initial tree differs from the criteria for the subsequent trees,
as described here.

Criterion for the initial tree: The convergence of the initial tree
is obtained when all paths of this tree are covered (exhaustive
search for paths). The concept of path was previously described.

Criterion for subsequent trees: The convergence of a subsequent
tree is obtained when at least one of the following conditions is
met:

(i) The solution obtained by a perturbation is better than the
root solution of the tree, i.e., the quality of a perturbed solu-
tion (mn,mi) is greater than the quality of the best solution
(m1,mi). In the problem of optimal capacitor allocation, this
condition is met when OBF(mn,mi) < OBF(m1,mi).

(ii) All paths of the subsequent tree are covered.

In addition to the convergence criterion for a tree that allows
the transition to another tree, there is a global convergence crite-
rion for the proposed MMS algorithm, which also differs from the
respective criterion of the MS. In the MS algorithm, the global con-
vergence is achieved when all the memory values are sufficiently
close. In the proposed MMS algorithm, the global convergence is
achieved when at least one of the following conditions is met:

 



Table 2
Optimal capacitor banks allocation after the perturbation. Start

Data entry

Convergence?

Perturbation of ibest - mi
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Improvement in fitness?

Update solution
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No
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Fig. 2. Flowchart of the proposed MMS algorithm.
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(i) The difference between the objective functions of the solu-
tions of the last and first positions of the adaptive memory
is less than or equal to a tolerance e. Thus, this condition is
achieved when OBF(m10,mi) � OBF(m1,mi) 6 e for a given tree
mi.

(ii) A maximum number of trees (ntmax) are covered.

Intensification process

The proposed MMS algorithm stores the paths that lead to the
best solutions of the adaptive memory shown in Eq. (4) during
the optimization procedure. Then, the intensification process
intensifies the search process in these paths after a predefined
number of perturbations that lead to them (nperi). In this sense,
the MMS can evaluate solutions with the allocation of any total
number of capacitor banks in the beginning of the search process.
During this process, if a candidate solution is included in the adap-
tive memory nperi times, the total number of capacitor banks will
be fixed at the value that has been obtained in this solution. For
example, if the solution of Table 1 gets into the adaptive memory
nperi times during the search process, the total number of capaci-
tor banks of the subsequent candidate solutions will be fixed at 8.

From the aforementioned aspects of the proposed MMS
algorithm, Table 3 summarizes the differences between this
approach and the MS technique of [24,27]. These differences arose
from the modifications and improvements to represent better the
capacitor allocation problem.

Flowchart of the proposed MMS algorithm

Fig. 2 presents the flowchart of the proposed MMS algorithm.
The steps of this algorithm are described as follows.

Step 1: Input Data. In this step, the distribution system data are
obtained and the MMS parameters are defined.
Step 2: Climbing up the initial tree. This step consists of explor-
ing the initial tree from its root, which corresponds to the base
case, without any capacitor bank allocation. The root is succes-
sively perturbed until the top is reached. The root and each
node achieved in the tree are solutions for the optimal capacitor
allocation evaluated each one through the optimization prob-
lem formulated in (1). The quality or fitness of each solution
Table 3
Comparison between the proposed MMS and the MS algorithms.

Algorithm/
criterion

Proposed MMS MS

Trees Initial – subsequent Initial = subsequent
Search in

subsequent
trees

Depends on the convergence of
the tree

Full

Convergence
of the tree

All paths are covered All branches are covered

Path Root to top Root to top or
Intermediate node to
top

Root solution The best solution of the adaptive
memory

Any solution stored in
the adaptive memory

Intensification
process

There is an intensification
process to improve the solution

There is no
intensification process
is inversely proportional to its objective function (OBF) associ-
ated with the total cost of loss and investment.
Step 3: Initialization of the adaptive memory (memo). The n
better solutions found in the initial tree are stored in memo
in descending order of fitness. The first element of memo is
named ibest. In the proposed algorithm, n is set to 10.
Step 4: Beginning of search in the subsequent tree mi.
Perturbation of ibest to generate two new nodes or solutions
through the perturbation mechanism described before.
Step 5: Choosing the new current solution. The node generated
at Step 4 that presents the better fitness is chosen.
Step 6: Evaluation of the new current solution chosen at Step 5.
Two situations can occur: (i) if the chosen solution presents fit-
ness better than ibest, this solution replaces ibest and the con-
vergence of tree mi is achieved, in this case counter i is
incremented and a new tree mi begins to be explored from
Step 4; (ii) otherwise, the adaptive memory is updated if the
new current solution is better than at least one solution of
memo, in this case the algorithm goes to Step 7.
Step 7: Global convergence criteria evaluation. In this step, the
global convergence criteria previously described are assessed. If
at least one of the presented conditions is achieved, the algo-
rithm is ended. Otherwise, it goes to Step 8.
Step 8: The algorithm verifies if the top of tree mi was achieved.
If the answer is ‘yes’, it means that no solution better than ibest
has been found from the root to the top of mi. In this case, the
algorithm returns to Step 4 to perform a new perturbation
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Table 4
Tutorial case: solutions of the initial adaptive memory.

Position Costs ($)

m1,m1 21,175.90
m2,m1 21,229.42
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process in ibest. This procedure is the climbing down process.
Otherwise, i.e., if the top has not been achieved, the algorithm
remains in the climbing up process at Step 9.
Step 9: Perturbation of the current solution. As previously
described, the perturbation mechanism generates two new
solutions candidate to the new current solution. From this
generation, the algorithm goes to Step 5.

Case studies

To evaluate the proposed MMS algorithm, case studies were
performed using the following systems: (i) Tutorial Case, a system
of 15 busbars [28]; (ii) Case 1, a system of 33 busbars [29];
(iii) Case 2, a system of 34 busbars [30]; (iv) Case 3, a system of
85 busbars [28]; (v) Case 4, a system of 69 busbars [31]; and
Case 5, a system of 476 busbars [32]. The parameters of the
proposed MMS algorithm for these studies are:

� The parameter ‘‘depth’’ is given by h = 8, which results in a total
number of paths in each tree c = 2h = 28 = 256 according to
Eq. (2).
� The initial total number of capacitor banks is equal to 15.
� Tolerance e for the global convergence is equal to zero.
� The maximum number of trees for the global convergence

(ntmax) is equal to 20.
� The number of times that a solution must get into the adaptive

memory (nperi) for fixing the total number of capacitor banks of
the candidate solutions is equal to 100 (intensification process).

Other meta-heuristic optimization techniques were developed
to be compared with the proposed MMS approach. These tech-
niques are the Monkey Search (MS) [24,27], Genetic Algorithm
(GA) and the Simulated Annealing (SA). The GA parameters were
obtained from references [5]: (i) crossover probability 95%,
(ii) mutation probability 2%, (iii) population size 300, (iv) number
of generations 100, (v) convergence criterion based on number of
generations, (vi) elitism, (vii) decimal coding, (viii) roulette
selection, and (ix) two point crossover. The SA parameters for
all the case studies were obtained from reference [23]:
(i) Boltzmann constant 1, (ii) initial temperature 30, (iii) maximum
number of iterations 300, (iv) cooling rate 0.95.

All simulations using the proposed MMS and the developed MS,
GA and SA algorithms were performed using a 3.40-GHz Intel
Corei7–2600 processor with 4 GHz RAM. The constraint related
to minimum voltage of 0.9 pu in all busbars is applied to all cases.
m3,m1 21,240.06
m4,m1 21,322.87
m5,m1 21,367.37
m6,m1 21,497.35
m7,m1 21,661.31
m8,m1 21,676.33
m9,m1 21,780.89
m10,m1 21,902.45

Table 5
Tutorial case: number of evaluated solutions and the best solution of each tree.

Tree (mi) Evaluated solutions Cost of the ibest ($)

m1 256 32,478.66 ? 21,175.90
m2 10 21,175.90 ? 21,110.34
m3 14 21,110.34 ? 21,097.01
m4 16 21,097.01 ? 21,068.62
m5 20 21,068.62 ? 21,015.76
m6 35 21,015.76 ? 20,945.40
m7 96 20,945.40 ? 20,682.30
m8 158 20,682.30 ? 20,471.15
m9 254 20,471.15 ? 20,220.96

 

Tutorial case: 15 busbar system

The system of 15 busbars of [28] was used as a tutorial system
to clarify the steps of the proposed MMS algorithm. This system
has a substation (SS), 14 load busbars and nominal voltage of
11 kV. Fig. 3 illustrates the diagram of this system.

In this case, a unique load level (1.0 pu) is considered. The
energy cost for this level is 0.06 $/kW h, the investment cost in
capacitors is 4.0 $/kVAr, the duration time is 1 year and all load
busbars are candidate for capacitor allocation. For this study, a
maximum of three capacitor banks of 200 kVAr per busbar was
considered. The active losses for the base case, without capacitor
allocation, is 61.79 kW or 541,311.00 kW h. The cost formulated
in (1) for the objective function is $ 32,478.66 for the base case.

From the base case, the search in the initial tree starts. This
search continues until all paths of the initial tree, involving 256
solutions, are covered, in accordance with the convergence criteria
for this tree. After this search, the ten best solutions found are
selected to initialize the adaptive memory (memo). Table 4
presents the active losses for the ten best solutions found in the
initial tree.

The next step consists of searching the subsequent trees looking
for improving the adaptive memory. This search is not full, i.e., it
does not cover all paths in the subsequent trees. Table 5 presents
the number of the evaluated solutions and the cost of the best solu-
tion (ibest) of each tree.

From Table 5, it can be observed that the total cost modeled in
the OBF (1) decreased from $ 32,478.66 (base case) to $ 21,175.90
after the search in the initial tree (m1). The root of tree m2 is the
best solution found in m1 and so on. Starting in the root of m2,
ten perturbation processes are performed in this tree until a solu-
tion better than its root is achieved, which is the convergence
criterion for m2. Then, ten solutions are evaluated in m2 before
its convergence criterion is met. The same reasoning applies for
the other trees. The final solution given by the proposed algorithm
is that found after searching the last tree (m9) and presents a total
cost of $20,220.96. Fig. 4 presents the convergence of the proposed
algorithm for this tutorial case in which the x-axis gives the
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Fig. 4. Tutorial case: convergence of the proposed MMS algorithm.
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cumulated number of perturbations until the final solution of cor-
responding mi in the convergence curve is obtained.

It can be observed in Table 5 and in Fig. 4 that as the optimiza-
tion process evolves, i.e., as the index i of tree mi increases, a larger
number of perturbations is required to obtain a solution better
than its root and then the number of evaluated solutions of mi
increases with the index i. This behavior occurs because as the
algorithm evolves, better solutions are obtained and it becomes
more difficult to overcome the current best solution.

Table 6 presents the results associated with the best solution
found by the proposed algorithm after its convergence or after
the convergence of tree m9, as well as the main aspects of this
algorithm for the tutorial case as the computational time. The
second line presents the numbers of the busbars that received
capacitor allocation with the corresponding amount of reactive
support in parentheses. As the size of each capacitor bank is 200
kVAr, the algorithm established the allocation of one (1) bank to
each of busbars 4, 6, 7, 12 and 15.

From Table 6, the total cost of the best solution found by the
MMS algorithm is $ 20,220.96, which represents a reduction of
37.74% related to the base case. After evaluating 351 candidate
solutions, or after searching trees m1 to m6, 301 solutions had been
included in the adaptive memory, of which 100 established five
capacitors banks. As the parameter that controls the intensification
process (nperi) is equal to 100, the proposed MMS begun to main-
tain the total number of banks of all candidate solutions as 5 from
this point until the convergence of the algorithm (search in trees
m7 to m9). Thereby, from tree m7 the MMS algorithm evaluated
508 more solutions setting the total number of banks to 5 until
Table 6
Tutorial case: results and general aspects of MMS.

Total loss (kW h) 270,349.33
Optimal locations and sizes (kVAr) 4(200), 6(200), 7(200), 12(200),

15(200)
Total (kVAr) 1000
Costs of losses ($) 16,220.96
Costs of allocation ($) 4000.00
Total cost ($) 20,220.96
Cost reduction (%) 37.74
Minimum voltage (pu) 0.9674
Processing time (seconds) 2.82
Number of covered trees 9
Total number of evaluated

solutions
859
the convergence totaling 859 evaluated solutions. Table 7 presents
the numbers of solutions that had been included in the adaptive
memory until the beginning of tree m7 with the corresponding
number of capacitor banks, where it can be noticed that 100 solu-
tions defined five banks until this point, as highlighted in the table.

Case 1

The 33-busbar system [29], nominal voltage 1266 kV, base
power 100 MVA, has a power loss of 202.68 kW and is pictured
in Fig. 5. This case study considers an operation during one year
or 8760 h and a unique load level (1.0 pu). The energy cost for
losses is 300 $/kW h, the size of each capacitor bank is 300 kVAr,
the maximum number of capacitor banks per busbar is three,
and all load busbars are candidate for capacitors allocation with
an investment cost of 25,000 $/kVAr [33]. Without capacitor allo-
cation, the total cost corresponds to the loss cost and is equal to
$ 5,326,354.85. Table 8 presents the results obtained by the pro-
posed MMS approach and by other methods, considering the
objective function previously modeled in Eq. (1). The solution of
the proposed approach is highlighted in Table 8. The financial per-
centage return relates to the total cost.

From Table 8, it can be observed that the proposed MMS algo-
rithm led to the result with the smallest total cost. Besides, the
minimum voltage obtained with the MMS approach is the highest
among the evaluated methods. Moreover, it is observed in Table 8
that references [22,34] considered other sizes for the capacitor
banks. The CPU time for reference [33] was not given.

Case 2

The topology of the 34-busbar system [30] is shown in Fig. 6.
This case considers the same conditions of reference [35] such as
the operation time (one year or 8760 h), a unique load level (1.0
pu), and commercially available capacitors sizes with the corre-
sponding costs in $/kVAr. To enable a proper comparison with
[35] and other references, in this case the objective function is
composed of two terms [35]: (i) the investment cost in reactive
power support from capacitors, $/kVAr as in Table 9, and (ii) the
annual cost of peak power loss, where kp is 168.00 $/kW-year.
Moreover, the total energy loss cost is not considered as in [35],
and all load busbars are candidate for capacitor allocation.

The results obtained by the proposed MMS algorithm and by
other approaches are given in Table 10. The net saving and
percentage return relates to the total cost. It can be observed from
Table 10 that references [22,35,39] consider continuous sizes for
the capacitors, because they did not determine only multiple
values of the sizes in Table 9. However, in the present work, the
reactive powers from capacitors were modeled as discrete and
multiple values of the size of a bank because it is more practical
for fixed capacitors banks. Moreover, this modeling leads to better
results, total cost and minimum voltage, than [22,35–39] for this
case, as well as if compared to the developed MS, GA and SA
algorithms.

Case 3

The 85-busbar [28] has a distribution feeder with voltage level
of 11 kV. This system is shown in Fig. 7. This case considers the
same load levels, unitary costs for peak power loss and capacitors,
sizes for capacitors, candidate busbars, operation time, and objec-
tive function described for Case 2 and obtained from [35]. Table 11
presents the results of the MMS algorithm and of other methods
for this network. For this case, references [35,36,39] considered
continuous sizes for the capacitors, as described in the previous
case, instead of discrete banks as the proposed approach, which
gave the best total cost and minimum voltage.

 

 



Table 7
Tutorial case: number of solutions with the corresponding number of capacitors banks until tree m7.

Fig. 6. 34-Busbar system.

Fig. 5. 33-Busbar system.
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Case 4

The 69-busbar system [31], whose voltage level is 12.66 kV, has
1 substation, 69 busbars, 74 distribution branches and the config-
uration of Fig. 8. This case comprises three load levels: light (0.5 pu
during 1000 h), medium (1.0 pu during 6760 h) and heavy load
(2.45 pu during 1000 h). Therefore, the total operation time is
8760 h or one year. The costs for the energy loss and capacitors
are 0.06 $/kW h e 4.00 $/kVAr, respectively. The capacitors size is
200 kVAr and the maximum number of banks per busbar is three.
These same operation conditions are given in reference [5], which
also considers the following set of busbars candidate for capacitor
allocation: [7 8 9 10 11 12 14 15 16 17 18 21 24 26 27 49 50 51 54
55 59 61 62 64 65 66 67 68 69]. This same set is considered by the
proposed MMS in this case for comparison purposes. The objective
function is given by Eq. (1) as in Case 1.

For this case, two analyses were done: Case 4a – without the
constraints of nodal voltage limits for comparison purposes, and
Table 8
Case 1: comparison of the proposed method results with previous publications.
Case 4b – with the lower voltage limit constraints (0.9 pu at all bus-
bars). By considering the voltage limits, Case 4b, the power flow
does not converge for the heavy load level and a load cut is
required for the system operation. The present paper did not use
a load cut model, but the maximum load level to operate the sys-
tem with the minimum voltage of 0.9 pu was determined empiri-
cally (1.3 pu). Therefore, Case 4a considers 2.45 pu for the heavy
load level and Case 4b considers 1.3 pu.

The results obtained by the MMS approach and by others are
shown in Table 12 (Case 4a) and Table 13 (Case 4b), where the three
values for columns ‘‘Minimum Voltage’’, ‘‘Total Loss’’ and ‘‘Loss
Cost’’ consist of the results for the light, medium and heavy load
levels.

As previously described, Refs. [22,40] did not consider discrete
values for the capacitor banks and the proposed approach also
determined for this case the best total cost among the methods
used for comparison. From Tables 12 and 13, it can be pointed
out that in Case 4b all the minimum voltages are above the limit
of 0.9 pu, whereas in Case 4a, which does not consider the voltage
limit constraint, some voltages present unsuitable for the system
operation. By considering the voltage limits constraints, the pro-
posed MMS approach gave the smallest total cost compared with
the developed MS, GA and SA algorithms.
Case 5

This case handles a real medium-scale (13.8 kV) system with
476 busbars [32] that comprises two distribution feeders. This
 



Table 10
Case 2: comparison of the proposed method results with previous publications.
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Fig. 7. 85-Busbar system.

Table 9
Case 2: possible sizes of capacitors and costs in $/kVAr.

kVAr 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100
$/kVAr 0.500 0.350 0.253 0.220 0.276 0.183 0.228 0.170 0.207 0.201 0.193 0.187 0.211 0.176
kVAr 2250 2400 2550 2700 2850 3000 3150 3300 3450 3600 3750 3900 4050 N/A
$/kVAr 0.197 0.170 0.189 0.187 0.183 0.180 0.195 0.174 0.188 0.170 0.183 0.182 0.179 N/A
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study involves three load levels: light (0.5 pu during 1000 h), med-
ium (1.0 pu during 6760 h) and heavy load (2.45 pu during 1000 h),
totaling one year of operation. The unitary cost of energy loss is
given by ceu = 0.06 $/kW h for the light and medium loads and
ceu = 0.108 $/kW h for the heavy load. The capacitors size is 200
kVAr, the maximum number of capacitor banks per busbar is three
and their cost is given by 4 $/kVAr [5].

In this case, the sensitivity index (BS) proposed in [5] for select-
ing the candidate busbars for capacitor allocation was used for
comparison purpose, which is defined for each busbar i as:

 



Fig. 8. 69-Busbar system.

Table 11
Case 3: comparison of the proposed method results with previous publications.

Table 12
Case 4a: comparison of the proposed method results with previous publications.
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Table 13
Case 4b: results from the proposed and developed methods.

Table 14
Case 5a: comparison of the proposed method results with previous publications.

Table 15
Case 5b: results from the proposed and developed methods.
From this index application, the list of candidate busbars is
given by:
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[9 10 11 13 14 15 16 19 20 22 23 24 25 26 27 29 31 33 35 36 37
38 40 41 42 43 44 46 48 49 52 54 55 56 59 60 62 63 64 66 69 70 72
73 74 75 77 79 81 82 83 87 90 93 96 97 100 101 102 105 107 108
109 111 112 113 114 115 116 118 119 122 123 125 127 128 129
132 133 134 135 136 140 141 145 150 155 156 159 160 161 228
229 230 256 267 268 289]

The same analyses carried out in Case 4 were done in Case 5:
Case 5a – without the constraints of nodal voltage limits for com-
parison purposes, and Case 5b – with the lower voltage limit con-
straints (0.9 pu). In both cases, the same aforementioned load
levels from [5] were considered and the objective function is given
as in Eq. (1). The results for Cases 5a and 5b are presented in Tables
14 and 15.

It can be observed that the total cost increases from Case 5a to
Case 5b, because Case 5b is more constrained and practical due to
the voltage limits and then it requires more capacitors support.
Even so, Case 5b leads to a reduction of 5.20% in relation to the base
case (without capacitor allocation). It can be notice that the solu-
tions of the proposed approach are highlighted in Tables 10–15.
Conclusions

This paper presented an algorithm based on a Modified Monkey
Search optimization technique for capacitor allocation in distribu-
tion systems to minimize the total cost involving the system losses
and investment in capacitors. Therefore, modifications were pro-
posed to the Monkey Search algorithm of the literature consisted
of technical improvements to adequately represent the character-
istics and constraints of the capacitor allocation problem. These
modifications allowed the suitable application of the Monkey
Search based approach to the practical problem of capacitor alloca-
tion in electrical distribution networks, which reinforce the
research lines that investigate the application of combinatorial
optimization methods to practical engineering problems.
Important constraints, such as different system load levels, are
considered by the proposed methodology. From the results
obtained, the proposed algorithm seemed to be robust and compu-
tationally efficient for the systems tested, thereby combining qual-
ity and reduced processing times.
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