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a b s t r a c t

A particle swarm optimization (PSO) approach for finding the optimal size and location of capacitors is
reported in this work. The proposed technique finds optimal locations for shunt capacitors from the daily
load curve. In addition, it determines the suitable values of fixed and switched capacitors. A dynamic sen-
sitivity analysis method is used to select the candidate installation locations of the capacitors to reduce
the search space of this problem. In case of more than one location, the dynamic sensitivity helps in
deciding other locations considering the effect of previously decided locations and values of capacitors.
A simple iterative method is used to compute the power flow. The results obtained for well studied
70-bus and 135-bus systems are compared with the solutions obtained by Tabu Search (TS), Hybrid
and Genetic Algorithm. It is demonstrated that the proposed PSO approach offers the global optimal solu-
tion with greater saving.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Electrical energy supply from generation sites to ultimate con-
sumers reach via the transmission, sub transmission and distribu-
tion segments of the overall power system. Such energy transfer is
accompanied by network dependent power losses which have the
effect of increasing the peak load on the system. It is acknowledged
by all that the bulk of the power loss occurs on the distribution sys-
tem which is 13% of the total power generated [1]. The reactive
power accounts for a portion of these losses. Some of these losses
due to reactive power can be reduced by application of shunt
capacitors on primary distribution feeders to relieve capacity
requirement. Hence, optimal capacitor allocation in electrical dis-
tribution networks has always been the concern of electric power
utilities. Optimal capacitor allocation problem deals with determi-
nation of location, size, type and number of capacitors to be in-
stalled such that the maximum economic benefits are achieved
without violating the operational constraints. Several formulations
have been suggested for this problem and they have been solved by
available computational techniques. A survey of these techniques
by Ng et al. [1] classifies these techniques in four groups of analyt-
ical, numerical programming, heuristics, and artificial intelligence.

Analytical method in conjunction with heuristics for capacitor
placement was introduced by Neagle and Samson [2] and
ll rights reserved.
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subsequently by cook [3]. A pioneering work which determines
the capacitor sizes as discrete variables using dynamic program-
ming technique was reported by Duran [4]. More rigorous
approaches were suggested in 1980’s [5–8]. Grainger and Lee [5]
formulated this problem as a non-linear programming problem
by treating the capacitors locations and sizes as continuous
variables. Fawzi et al. [6] incorporated the released substation
kva and the voltage rise at light-load level into a model developed
by Neagle and Samson [2]. Ponnavaikko and Prakasa Rao [7] pro-
posed a model, which considered the load growth and the discrete
nature of capacitor size, apart from those considered in [5] and
used a local optimization technique. Kaplan [8] presented a formu-
lation of feeders with multiple laterals and suggested a heuristic
solution algorithm. Baran and Wu [9] presented a problem
formulation similar to that of Grainger and Lee [5], a non-linear
optimization problem, but incorporated the distribution power
flow equation, constraints on node voltage magnitudes at different
load levels and discrete nature of capacitor sizes, into the model
and the resulting formulation represents a mixed-integer program-
ming problem. Maximum saving objective of this problem and its
formulation & solution as mixed integer linear problem is reported
by Khodr et al. [10]. Two phase solution, formulation as conic prob-
lem and its solution by interior point method in phase-I and mixed
integer linear programming formulation and solution in phase-II of
this problem is suggested in [11]. A heuristic method is proposed
by Segura et al. [12] in which a relaxed version of the exact
mathematical model of the problem is solved using interior point
method. Mixed integer non-linear programming has been
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Nomenclature

Sk
i velocity of individual constant

rand(), Rand() uniform random number between 0 and 1
xk

id current position of individual i at iteration k
pbest best value attained by individual i
gbest global best value i at iteration k
C1 & C2 acceleration of the group
w inertia weight factor
wmax maximum value of inertia weight (0.9 in this study)
wmin minimum value of inertia weight (0.4 in this study)
itermax maximum iteration number (generations)
iter current iteration number
x unknown power flow (depend) variables
y known or specified (independent) variables
Vm voltage at mth node
Vmin minimum acceptable voltage
Vmin

sys minimum system voltage in an iteration

Vmax maximum system voltage (1.0 pu in this study)
Kei energy cost constant for load level i
Kcj capacitor cost constant depending on type of capacitor

placed at jth location
PLi power loss at ith load level with corresponding time

duration Ti

Cj injected kvar at jth node
Ti duration of load level i
n number of load levels
k number of locations
hi voltage angle at node i
hj voltage angle at node j
Pj active power at bus j
Qj reactive power at bus j
PL total power loss in the system
rij real part of impedance between nodes i and j
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suggested by Leonardo et al. [13] for capacitor placement as well as
reconfiguration in order to achieve the objective of minimum en-
ergy loss operation of radial distribution network. A direct search
method has been used by Ramalinga Raju et al. [14] in which a best
suited node for a particular size of capacitor out of all possibilities
is identified and then the capacitor is placed.

The analytical methods are very fast but they suffer from inabil-
ity to escape local optima. The application of search and evolution-
ary techniques started in early 1990s in order to overcome this
problem of analytical techniques. The evolutionary techniques,
simulated annealing, Tabu Search and GA have been reported by
several authors [15–29]. In this dissection, Chiang et al. [15] pre-
sented a general capacitor placement problem formulation by tak-
ing practical aspects of capacitors and the operational constraints
at different load levels into consideration and solved by simulated
annealing. These authors further extended this method by incorpo-
rating the cost associated with capacitor placement considering it
to be a step-like function and treating the capacitor sizes and con-
trol settings as discrete variables [16]. The Tabu Search technique
to find an optimal solution has been used by Huang et al. [17].
Gallego et al. [18] presented same problem using Hybrid Approach,
a combination of Tabu Search and heuristics.

Genetic algorithm (GA) based method was initially introduced
by Ajjarapu and Albama [19] which was further extended by Boone
and Chiang [20] and later by Sundharajan and Pahwa [21] with
additional features. Miu et al. [22] reported two stages GA for this
problem in which the solution obtained by GA in first stage is fur-
ther improved by sensitivity based heuristics at the second stage.
Levitin et al. [23] included system capacity release, peak load
reduction and reduction of annual energy loss in a feeder in their
formulation of optimal capacitor allocation problem and solved
by GA.

Further improved form of GA was applied by Kim et al. [24] for
this problem that combines GA with a stochastic variant of the
simplex method called elite based simplex GA (ESGA). In order to
avoid local minima of GA, normally large population is desired that
require high processing time. This can be overcome by use of micro
genetic algorithm wherein De Souza et al. [25] applied fuzzy logic
to reduce the search space and micro genetic algorithm for solution
of capacitor allocation problem. Use of fuzzified multiple objective
function: reducing the total cost of energy loss and capacities,
increasing the margin loading of feeders and improving voltage
profile and solution by GA was proposed by Hsiao et al. [26]. Ants
are capable of finding the shortest path from food sources to their
nests. Inspired by this behavior of real ant colonies, ant algorithm
was developed. However, further improved version of this method,
out detection by bird differential evolution (ADHDE) was applied
by Chiou et al. [27]. This is achieved by reducing the number of
mutations. Similarly, principle of plant growth process was
exploited by Srinivasas Rao et al. [28] to make use of plant growth
simulation algorithm for the solution of capacitor placement prob-
lem. Haghifam and Malik [29] attempted to overcome the problem
of uncertainty and time variation in load by fuzzy representation of
load. Final solution is obtained by GA. Their implementation of GA
uses two row chromosomes to represent the capacitor values of
fixed and switchable type. Szuvovivski et al. [30] suggested use
of other voltage regulators along with capacitor for such applica-
tions. They solved this problem using both GA and optimal power
flow.

It can be observed from above review that the initial methods of
capacitor placement problem used analytical methods which are
basically conventional optimization techniques. These optimiza-
tion methods work on the basis of search directions generated
from derivatives of the function. Therefore, it becomes imperative
to express the problem in the form of continual differentiable func-
tion; otherwise, these methods loose efficiency. The later methods
starting from 90s are evolutionary and AI based. Combinations of
more than one method are also reported. But GA has been found
to be attractive and has been widely used. However, a more recent
method of particle swarm optimization (PSO) has proved to be
more capable and had been applied for many optimization prob-
lems related to power system such as economic dispatch of gener-
ators [31] and reactive power and voltage control [32]. Apart from
these its application for capacitor allocation also has been ex-
plored. Prakash and Sydulu [33] applied PSO technique for capaci-
tor placement problem but in their formulation the objective
function is not very clear. The PSO technique used by AlHajri
et al. [34] does not reveal the constraint handling methodology.
Yu et al. [35] demonstrated the application of PSO for this problem
considering harmonics and demonstrated on a single and small 9
bus system. The constraints are handled using conventional pen-
alty function method. This idea was further extended by Eajal
and El-Hawary [36] to account for unbalanced operating condi-
tions also. Demonstration of PSO is further reported by Etemadi
and Fotuhi-Firuzabad [37] where in reliability cost is also included
along with the cost of losses and investment in the objective func-
tion. However, unconstrained problem has been formulated and
solved in this approach. Kim et al. [38] proposed non-linear interior
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point method to enhance the search speed of PSO which maxi-
mizes loadability.

Advantages of PSO over other existing methods for capacitor
placement problem have been demonstrated in above mentioned
publications [31–38]. Further exploitation of PSO for this problem
with added benefits is addressed in this paper. The problem of han-
dling inequality constraints by conventional penalty function
method is resolved by using a different technique. The power flow
solutions are obtained by self developed backward sweep power
flow method reported in [39]. The results obtained by the proposed
method for 70-bus and 135-bus test systems are compared with
other methods. It is demonstrated that the proposed method out
performed with less computational time. Saving in 10 years oper-
ation, losses and voltage profile are criteria for comparison. The
type of capacities to be installed at various buses in also suggested
in this work.

2. Problem formulation

The general capacitor placement problem is to determine the
places (number and location), types and settings of capacitors to
be placed on radial distribution system. The objectives are to re-
duce the energy loss on the system and to maintain the voltage
regulation while keeping the cost of capacitors addition to a
minimum.

In order to calculate the energy losses in the system, the load
variations in the system for a given period of time are taken into
account. It is assumed that the load variation could be approxi-
mated in discrete level and the entire load varies in a conforming
manner. Vowing to these assumptions, the load duration curve is
approximated by a piecewise linear function and the time period
is divided into intervals during which the load level is assumed
to be constant.

2.1. Mathematical representation

The objective is to minimize the sum of energy loss and the
capacitor costs satisfying operational and power balance con-
straints. This can be mathematically expressed as:

Minimize
Xn

i¼1

KeiTiPLi
þ
Xk

j¼1

KcjCj ð1Þ

Subjected to, Power flow balance expressed as

Fðx; yÞ ¼ 0 ð2Þ

Limits on voltage magnitude expressed as

Vmin
6 Vm 6 Vmax ð3Þ

 

 

2.2. Sensitivity calculations

The basic objective of capacitor installation is reduction in
losses. This objective can be met if capacitor is installed at a loca-
tion which has maximum contribution towards loss reduction as
all locations may not have identical effect. This objective can be
achieved by knowing the sensitivity of active power loss to reactive
power injection at a node. The buses having higher sensitivities
would be candidate locations. This will in tern reduce the search
space. Such a relation is described in Ref. [40] which expresses
the change in active power loss of the system due to change in
reactive power injection at a node as

@PL

@Q i
¼ 2

Xn

j¼1

ðaijQ j þ bijPjÞ ð4Þ
where

aij ¼ rijCosðhi � hjÞ=ViVj

bij ¼ rijSinðhi � hjÞ=ViVj

The sensitivity of all the nodes is calculated using Eq. (4). The nodes
with higher sensitivities are chosen for candidate locations.

3. Particle swarm optimization

Particle swarm optimization (PSO) is one of the evolutionary
techniques which were first introduced by Kennedy and Eberhart
in 1995 [41]. The method is developed from researches on swarm
such as fish schooling and bird flocking. This method is capable of
handling continuous state variables easily and search a solution
space effectively. However, the method can be extended to treat
continuous and discrete variables. The PSO algorithm uses evolu-
tionary operators to manipulate the individuals, like in other evo-
lutionary computational algorithms. Each individual in PSO flies in
the search space with velocity which is dynamically adjusted
according to flying experience of its own and its companions. Each
individual is treated as a volume less particle in the d-dimension
search space.

At each time step, the particle swarm optimization concept con-
sists of velocity change of each particle toward its individual best
(pbest) and global best (gbest) locations. Acceleration is weighted
by a random term, with separate random numbers being generated
for acceleration toward pbest and gbest locations.

A general engineering optimization problem can be defined as

Minimize f ðXÞ

where ith particle in d-dimensional space is represented as

Xii ¼ fxi1; xi2; . . . ; xidg

The best previous position of the ith particle is recorded and
represented as

pbesti
¼ fpbesti1

;pbesti2
; . . . ;pbestid

g

The index of the best particle among all the particles in the pop-
ulation is represented by gbest. The rate of the position change
(velocity) for particle ‘i’ is represented as Si = {si1, si2, . . . , sid}

The modified velocity and position of each individual particle
can be calculated using the current velocity and the distance from
pbest to gbest, as expressed by the following formulae [42]

Skþ1
i ¼ w � Sk

i þ C1 � randðÞ � ðpbestk
i � xk

i Þ þ C2 � RandðÞ

� ðgbestk � xk
i Þ ð5Þ

Smin
6 Si 6 Smax

xkþ1
i ¼ xk

i þ Skþ1
i

ð6Þ

The parameter Smax in the above procedures determines the resolu-
tion, or fitness, with which regions between the present position
and target position are searched. If Smax is too high, particles may
fly past the good solutions. If Smax is too small, particles may not ex-
plore sufficiently beyond local solutions [43]. Smax is often set with-
in 10–20% of the dynamic range of the variable. The constants C1

and C2 represent the weighting of the stochastic acceleration terms
that pull each particle toward pbest and gbest positions. Low values
allow particles to roam far from target regions before being tugged
back. On the other hand, high values result in abrupt movement to-
ward, or past, the target regions. Hence, the acceleration constants
C1 and C2 are often set to be 2.0 according to past experiences.

Suitable selection of inertia weight w in Eq. (5) provides a
balance between global and local exploration and exploitation,
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and on average results in less iterations required to find a
sufficiently optimal solution. As originally developed, w often de-
creases linearly from about 0.9 to 0.4 during a run. In general,
the inertia weight w is set according to the following equation

W ¼ wmax �
wmax �wmin

itermax

� �
� iter ð7Þ

 

 

3.1. Constraints handling

Traditionally, the objective function is regarded as the fitness
function and the inequality constraints are converted to penalty
functions and added to the objective function. The drawback of this
method is that an excellent particle can be misjudged as inappro-
priate for the penalty factors. Besides, penalty parameters are usu-
ally assigned by empirical approach and are deeply affected by the
problem model. For the sake of avoiding this, a binary fitness has
been used: one for optimal objective and the other for the binding
constraints. Optimal objective fitness is equal to the value of the
expression (1) which represents the cost of energy lost and capac-
itors installed.

Binding constraints fitness value is adopted to scale the level of
violation, calculated as follows:

Binding fitnessðzÞ ¼
zmin � z; z < zmin

z� zmax; z > zmax

0 else

8><
>: ð8Þ

where z is the value of the inequality constraint, zmin and zmax are
the lower and upper limits of the inequality constraints.

The fitness to binding constraints of the particles is considered
first and if a particle does not satisfy the binding constraints, it is
regenerated. This way feasible particles are generated that guaran-
tee the fulfillment of binding constraints superior to infeasible par-
ticles that violate the binding constraints. Thus entering into
feasible region is considered before obtaining global optimal solu-
tion. There is no need to set up the penalty parameter.
4. Implementation of PSO for optimal capacitor allocation

4.1. Coding strategy

The purpose of this PSO implementation is to determine the
capacitor values (kvar) at the candidate locations during various
load levels. If, there are ‘n’ different load levels and ‘k’ number of
candidate locations, the PSO returns ‘nk’ design variables. Since
practical capacitors available in market and maximum size of
capacitor that can be placed as considered in this implementation
are 300 and 1500 kvar respectively, the capacitor values that can
be obtained from this algorithm would be any of 0, 300, 600,
900, 1200 and 1500 kvar. Since these six values of capacitors are
to be represented, three binary bits for each value is suggested.

Thus the reactive power to be injected from a candidate bus is
coded in binary form using three bits suitable to take care up to
1500 kvar at a bus considering each step of 300 kvar. In case, five
nodes are selected as candidate locations, the string length used
would be 5 � 3 = 15 bits for single load level throughout the day.
Table 1
Example of coding/decoding a string/chromosome.

Load level L1 L2

Location 1 2 3 4 5 1 2
Chromosome 001 100 101 011 101 000 101
Value (kvar) 300 1200 1500 900 1500 0 1500
However, in present problem, the load of a day consists of three
load levels. Therefore, the string’s length for five locations would
be three times this value resulting in a string length of
5 � 3 � 3 = 45 bits. This way appropriate number of strings can be
formed to represent a desired population size. A coded example
string, 00110010101110100010111001001100001000011100,
along with decoded values of kvar is shown in Table 1. The string
represents a solution/chromosome (capacitor values) for five loca-
tions at three different load levels.

4.2. Implementation of algorithm

The PSO for above discussed problem of capacitor placement
can be implemented using following steps.

1. Determination of Candidate Locations
a. Input the distribution system branch impedance values

and bus real and reactive power data.
b. Find Sensitivity Factors.
c. Select the buses with higher sensitivity factors as candi-

date locations.
2. Optimization by particle swarm algorithm

a. Input PSO control data
b. Initialize population with random strings.
c. Outer Loop: while Gen 6Max. Gen.
d. Enter the inner loop.

i For each string decode into a test configuration.
ii For each load demand: low, medium and high
3
0
9

� Apply load demand
� Call distribution load flow solver.
� Check voltage constraints.
� Determine real power loss and energy loss.
iii Compute capacitor cost.
iv Compute total cost function. (fitness function)
v Calculate the previous best performance of each particle

and save it as pbest.
vi Calculate the best performance of al the particles and save

it as gbest.
vii Calculate the velocity of each particle using pbest and

gbest.
viii Update each particle.

ix If so obtained particle satisfies all constraints and is better
than previous values then change pbest to new value.

x Inner Loop: while (pop number 6 pop size).
xi Calculate the best value of all pbest and save as gbest.

xii Undo generation.
e. The obtained value is gbest, the global solution obtained by
algorithm, decode it and find the capacitor values at differ-
ent load conditions.

f. Calculate the savings obtained with resultant solution.

5. Simulation results

The proposed particle swarm optimization technique based
solution methodology for capacitor placement has been imple-
mented in C++ using Pentium III 450 MHz, 256 MB computer.
L3

4 5 1 2 3 4 5
11 010 001 100 001 000 011 100
00 600 300 1200 300 0 900 1200



Table 2
Duration and energy cost per year for 70 bus system.

Load level L1 L2 L3

Load level value 0.625 1.0 1.25
Duration time (h) 1000 6760 1000

Energy loss cost KðNT$=KW hÞ
e

0.7 1.78 2.95
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The results for the 70-bus and 135-bus test systems have been ob-
tained and reported in this section. The population size of 100 and
itermax as 100 have been chosen for PSO for both the test cases.

The annual demand curve is approximated by 360 identical dai-
ly demand variation curves. This demand variation curve is used to
calculate energy loss. The entire load of a day has been divided into
three load levels L1, L2, and L3 with time periods T1, T2, and T3.

The maximum range of capacitor to be installed at a candidate
location is taken as 1500 kvar. The capacitors are regarded as
discrete variables and as multiples of standard bank (300 kvar).
The investment cost of fixed type capacitor is NT$ 56,300 per bank
and switched type capacitor is NT$ 74,900 per bank. The cost is
taken in NT$ for fare comparison with Tabu Search and Hybrid
methods reported in [17,18] respectively. The minimum
acceptable voltage taken for this study is 0.9 pu.

5.1. Choice of capacitor type

If the reactive power requirement at a bus remains same for all
load levels, a fixed valued capacitor equal to the reactive power
requirement of the bus is installed at that bus. On the other hand
if the reactive power requirement at a bus varies with load levels,
a switchable capacitor equal to reactive power requirement at
highest load level is installed at that bus.

5.2. 70-Bus system

The data for this system is taken from [16]. The load levels L1, L2

and L3, time periods T1, T2 and T3 and energy cost data are given in
Table 2. Ten year planning horizon has been considered with yearly
Table 3
Effect of variation in number of locations for 70-bus at normal load.

No. of Locations 1 2

Selected buses Static sensitivity 50 50, 5
Dynamic sensitivity 50 50, 1

Losses (kw) Static sensitivity 161.488 153.
Dynamic sensitivity 161.488 147.
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Fig. 1. Savings vs no. of
load growth rate of 9.55% for the first three years as considered in
Ref. [17]. Since the peak load has reached the maximum capacity of
5000 kW of feeders, after that the load is assumed constant till the
end of planning horizon.

A sensitivity analysis as described in Section 2.2 is incorporated
into algorithm to determine the candidate locations for placing the
capacitor in the distribution system. A priori estimation of these
candidate locations helps to reduce the search space of the optimi-
zation problem. According to sensitivity calculations, the five buses,
in descending order of their sensitivities are 50, 53, 17, 10, and 43.

5.2.1. Choice of number of locations
In order to ascertain the optimal number of locations, the num-

ber of locations of capacitors is varied according to descending or-
der of their sensitivities. The system losses after capacitor
allocation are recorded as tabulated in Table 3. These losses are
shown for a single load level of L2 (normal load) in this table. The
system loss without capacitors at this load level is 225 kW. It is ob-
served from this table that the losses in the system decreases as the
number of locations of capacitors installation increase. However,
the decrease in losses slowly saturates as the number of locations
increase. But the installation cost of these capacitors increases with
increase in number of locations causing reduction in saving. There-
fore, the number of locations should be chosen corresponding to
maximum saving. In order to ascertain the long term impact, the
savings for ten years operation with respect to number of locations
were obtained as shown by bar chart in Fig. 1. It is obvious from
this figure that the maximum saving is achieved corresponding
to four locations. Therefore, capacitors should be installed at four
locations of 50, 53, 17 and 10. This procedure is called optimal
capacitor allocation using static sensitivity since the effect of
capacitors installed at previously decided locations have not been
incorporated while deciding the next location.

5.2.2. Effect of dynamic sensitivity
A priori selection of locations based on sensitivity values called

static sensitivity have been used in TS [17] and Hybrid [18]
3 4 5

3 50, 53,17 50, 53, 17, 10 50, 53,17, 10, 43
6 50, 16,10 50, 16, 10, 39 50, 16, 10, 39, 4

690 147.402 143.9768 143.976
67 146.05 143.415 143.415

3 4 5

f Locations

itivity analysis

locations (70-Bus).



Table 4
Comparative results for 70-bus system.

Method Optimal locations L1 L2 L3 Optimal size (kvar) and type

Fixed Switched

Tabu search [17] 11 300 600 600 300 300
50 300 900 900 300 600
53 300 300 300 300 –
Vmin (p.u) 0.9564 0.9271 0.9075 Total = 1800
Loss (kw) 56.073 152.248 245.629

Hybrid method [18] 10 0 300 300 – 300
16 300 300 300 300 –
38 300 300 300 300 –
50 900 900 1200 900 300
53 000 300 300 – 300
Vmin (p.u) 0.9590 0.9315 0.9122 Total = 2400
Loss (kw) 55.0 144.00 234.00

GA 10 0 300 600 – 600
17 300 300 300 300 –
50 600 900 1200 – 1200
53 300 300 300 300 –
Vmin (p.u) 0.9603 0.9313 0.9142 Total = 2400
Loss (kw) 54.79 143.97 233.64

PSO static sensitivity 50 600 900 900 600 300
53 0 300 600 – 600
17 300 300 300 300 –
10 300 300 300 300 –
Vmin (p.u) 0.9612 0.9323 0.9148 Total = 2100
Loss (kw) 54.79 143.97 233.64

PSO dynamic sensitivity 50 900 1200 1200 900 300
16 300 300 300 300 –
10 0 300 300 – 300
39 0 600 600 – 600
Vmin (p.u) 0.9603 0.9313 0.9142 Total = 2400
Loss (kw) 54.79 143.41 231.55
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methods. But whenever a capacitor is placed at a location, the sys-
tem conditions change, as a result, the very next location to be se-
lected may not be same as the one obtained in static sensitivity
analysis. In order to incorporate this effect, dynamic sensitivity
has been calculated and used. Accordingly, the initial installation
is done at node 50 having highest sensitivity in this case. The val-
ues of capacitors are determined by PSO. The sensitivities at all
nodes are calculated again following this installation. The node
having highest sensitivity, according to fresh sensitivity calcula-
tions following earlier allocation, is selected for second location.
This process is repeated till optimal number of locations is deter-
mined. The optimal number of locations is that number at which
maximum saving is achieved. The optimal locations so determined
in this case are 50, 16, 10, and 39 as against 50, 53, 17, and 10 in
case of static sensitivity. Only two nodes 50 and 10 are common
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Fig. 2. Savings obtained by di
in both the procedures. The losses corresponding to various loca-
tions for placement using dynamic sensitivity are also shown in Ta-
ble 3 and savings are plotted in Fig. 1 along with static sensitivity.
The losses are less and savings are more in case of dynamic sensi-
tivity as shown Table 3 and Fig. 1 respectively.

5.2.3. Comparison with Tabu Search, Hybrid and GA methods
The performance of the proposed PSO method has been com-

pared with TS, Hybrid and GA. The bases of comparison are number
of locations, total capacitance required (fixed and switchable), sys-
tem losses and saving achieved. These values for all the methods
are tabulated in Table 4 except saving which is shown in Fig. 3
for ten years. This table divulge that the TS method suggests only
three locations and total capacitance of 1800 kvar where as all
other methods propose four locations and higher capacitor values
Tabu search

Hybrid

GA

PSO (Static)

PSO (Dynamic)

fferent methods (70-Bus).
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Table 5
Effect of variation in number of locations for 135-bus at normal load.

No. of Locations 1 2 3 4

Chosen buses 155 155, 43 155, 43, 20 155, 43, 20, 130
Losses (kw) 323.923 317.531 302.263 301.862
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than that of TS. However, the voltage profiles in other methods are
better and losses are lower as evident in Table 4. The saving is least
by TS as compared to other methods. All other methods Hybrid, GA
and PSO dynamic suggest capacitor allocation of 2400 kvar in total
at four different locations in exception to 2100 kvar by PSO static.
The voltage profiles and losses obtained using GA, PSO static and
PSO dynamic are comparable with superior voltage profile and
lower losses compared to hybrid method. However, losses in case
of PSO dynamic are marginally lower resulting in greater saving
compared to other methods as seen in Fig. 2. Thus PSO dynamic
out performed other methods.
5.3. 135-Bus system

This network is a part of the distribution system of Tres Lagoas,
Brazil and the data is obtained from the authors of Ref. [18]. The
test conditions of the system are same as documented by the study
conducted by Gallego et al. [18] using hybrid method. The load lev-
els L1, L2 and L3 are 0.5, 1.0, and 1.8 respectively and duration of
these load levels and energy costs are same as shown in Table 2.
Table 6
Comparative results for 135-bus system.

Method optimal locations L1 L

Hybrid method [18] 20 300 6
43 600 6
155 600 1
Loss (kw) 118.78 3

GA method 20 600 6
43 600 9
155 600 9
Loss (kw) 116.78 3

PSO 20 600 9
43 900 9
155 900 9
Loss (kw) 115.16 3
The sensitivity calculation is performed in the beginning to deter-
mine the location of capacitors. The sensitivities of the first four
nodes in descending order of their sensitivities are 155, 43, 20,
and 130. Finally the dynamic sensitivity has been used to deter-
mine the suitable locations due to its advantages demonstrated
earlier for 70-bus system.

Following the selection of locations for installation of capaci-
tors, particle swarm optimization is used for determination of
values of capacitors at each location. The losses corresponding to
various locations are tabulated in Table 5 for normal loading, L2,
2 L3 Optimal size (kvar) and type

Fixed Switched

00 600 300 300
00 600 600 –
200 1200 600 600
13.53 501.53 Total = 2400

00 600 600 –
00 900 600 300
00 1200 600 600
02.67 495.86 Total = 2700

00 900 600 300
00 900 900 –
00 900 900 –
02.26 494.25 Total = 2700
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and savings for 10 years are plotted in Fig. 3. As the number of
locations increases, investment cost increases according to in-
crease in capacitor values but the losses in the system decrease
and savings increase up to certain value beyond which reverse
trend is observed. Thus, as the locations increase, the savings ob-
tained increase up to certain locations after which the savings de-
crease. It is seen from Fig. 3 that maximum saving is achieved for
three locations. Further increase in number of locations causes de-
crease in savings. It is to be noted that these results have been
achieved using PSO with dynamic sensitivities.
5.3.1. Comparison with Hybrid Method and Genetic Algorithm
The results of present study are compared with hybrid [18] and

GA methods. Three locations are reported for hybrid method also
and these locations are same (20, 43 and 155) as obtained for
PSO dynamic. The losses and total capacitor values (fixed and
switchable) are tabulated in Table 6. This table reveals that the
capacitor values of 2400 kvar are required in hybrid method as
against 2700 kvar in GA and PSO. However, losses are less in case
of GA and PSO compared to hybrid method and least in case of
PSO. This reduction in losses reminds greater saving. In view of
this, the savings were obtained for these three methods for
10 years and are displayed in Fig. 4. It is obvious from this figure
that the saving is least in case of hybrid and maximum in case of
PSO. Thus the PSO dynamic has outperformed once again for this
system also.
5.3.2. Computational time
It can be observed from the foregoing discussions that the per-

formance of GA and PSO were found to be superior as compared to
other methods. Evolutionary nature of both the methods is respon-
sible for this which helps them in avoiding local minima. However,
GA involves complex operators like reproduction, crossover and
mutation which require time consuming process of swapping of
strings. On the contrary, PSO is a simple technique in which a
string is modified using dynamically changing velocity. Thus
requiring less computational burden compared to GA. The compar-
ison of execution time of PSO and GA with respect to number of
locations is shown in Fig. 5. As the number of locations increases,
the length of the string of each chromosome increases resulting
in more computational burden in GA. Since PSO does not involve
any complex operations mentioned above, its computational
burden increases marginally with number of locations as
demonstrated in this figure. Thus the computational time is very
less in case of PSO compared to GA.
6. Conclusions

The out come of the work carried out in this paper can be sum-
marized as under:

(i) Formulation of Optimal Capacitor placement problem and
its solution using particle swarm optimization method is
reported.

(ii) Static and Dynamic sensitivity analysis are carried out for
selection of the locations of capacitors. Dynamic sensitivity
yields improved results.

(iii) Performance of PSO has been studied on two widely referred
test systems namely 70-Bus and 135-Bus.

(iv) Comparison of PSO is carried out with other methods like
Tabu Search, Hybrid Method and Genetic Algorithm

(v) Results demonstrate that PSO yields greater savings, lesser
losses and better voltage profile compared to other methods.

(vi) Computation time of PSO is very less when compared with
Genetic Algorithm.

(vii) Type of capacitors (fixed or switchable) to be installed is also
suggested.

(viii) Further possible applications of the PSO for combinatorial
optimization problem in power systems are thus
encouraged.
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