
Factorized Decision Trees for Active Learning in
Recommender Systems

Rasoul Karimi, Martin Wistuba, Alexandros Nanopoulos, Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL)

Samelsonplatz 1, University of Hildesheim, D-31141 Hildesheim, Germany
Email:[karimi,wistuba ,nanopoulos,schmidt-thieme]@ismll.uni-hildesheim.de

Abstract—A key challenge in recommender systems is how
to profile new users. A well-known solution for this problem is
to use active learning techniques and ask the new user to rate
a few items to reveal her preferences. The sequence of queries
should not be static, i.e in each step the best query depends on
the responses of the new user to the previous queries. Decision
trees have been proposed to capture the dynamic aspect of this
process. In this paper we improve decision trees in two ways.
First, we propose the Most Popular Sampling (MPS) method to
increase the speed of the tree construction. In each node, instead
of checking all candidate items, only those which are popular
among users associated with the node are examined. Second,
we develop a new algorithm to build decision trees. It is called
Factorized Decision Trees (FDT) and exploits matrix factorization
to predict the ratings at nodes of the tree. The experimental
results on the Netflix dataset show that both contributions are
successful. The MPS increases the speed of the tree construction
without harming the accuracy. And FDT improves the accuracy
of rating predictions especially in the last queries.

I. INTRODUCTION

Recommender systems help web users to address infor-
mation overload in a large space of possible options [1]. In
many applications, such as in e-commerce, users have too
many choices and too little time to explore them all. Moreover,
the exploding availability of information makes this problem
even tougher.

Collaborative filtering is the traditional technique for rec-
ommender systems which fall into two categories: memory-
based algorithms and model-based algorithms. In memory-
based techniques, the value of the unknown rating is computed
as an aggregate of the ratings of some other (usually, the N
most similar) users for the same item [2]. Model-based col-
laborative techniques provide recommendations by estimating
parameters of statistical models for user ratings. Nevertheless,
recent research (especially as has been demonstrated during
the Netflix challenge1) indicates that Matrix Factorization
(MF) [3] is a superior prediction model compared to other
approaches [3].

Evidently, the performance of collaborative filtering de-
pends on the amount of information that users provide re-
garding items, most often in the form of ratings. However, a
well identified problem is that users are reluctant to provide
information for a large amount of items [4], [5]. This fact im-
pacts negatively on the quality of generated recommendations.
A simple and effective way to overcome this problem, is by
posing queries to new users in order that they express their

1www.netflixprize.com

preferences about selected items, e.g., by rating them. Never-
theless, the selection of items must take into consideration that
users are not willing to answer a lot of such queries. To address
this problem, active learning methods have been proposed to
acquire the most informative ratings, i.e ratings from users that
will help most in determining their interests [5], [4].

The query selection process can be personalized or non-
personalized. In the non-personalized way, at first a set of
items are selected according to some criteria such as popularity
or entropy [6] and then they are shown one by one to the
new user to rate them. In this way, all new users receive
the same set of queries regardless of their responses to the
previous queries. Due to this limitation, it does not provide
good performance [7].

In the personalized approach, the queries are not selected
beforehand but they are selected based on the new user’s
responses to the previous queries. New users receive different
queries depending on how they have rated the previous queries.
Although the previous ratings should be taken into account to
find the next query, they cannot be found online, i.e when new
users are being queried. This is because finding the queries is
time consuming and users are not willing to wait for being
asked the next query. Therefore, we need to train a model
offline and use it when new users come to the system. Decision
trees have already been proposed as such models [8], [7].

Initially, new users are at the root of the tree. The first
query is asked and depending on how new users rate it, they
move down to different child nodes. This process continues
until enough queries are asked. At each node of the tree, the
new user is linked to the training users who have the same
ratings to all queried items so far. The goal of this connection
is to leverage their ratings to predict the ratings for the new
user. The predicted rating of each item is simply the average
over all ratings that the associated users have given to the target
item (item average) [7].

In this paper we make the following contributions:

• Formulate active learning for recommender systems.
The formulation is then used to compare the proposed
method against the baseline.

• Propose the Most Popular Sampling (MPS) method to
speed up the tree construction algorithm. In each node,
instead of checking all candidate items, only those
which are popular among users associated with the
node are examined. The results show that it increases

the speed of the tree construction without harming the
accuracy.

• Develop a new algorithm to build decision trees. It is
called Factorized Decision Trees (FDT) and exploits
matrix factorization to predict the ratings at nodes
of the tree. Our results indicate that it improves the
accuracy especially in the last queries.

II. RELATED WORK

In this section, we first summarize the related work on
active learning. Next, we focus on the related work that applies
active learning in recommender systems.

A. Related Work on Active Learning

Cohn et al. [9] describe how optimal data selection tech-
niques can be applied to statistically-based learning algorithms
like a mixture of Gaussians and locally weighted regression.
The algorithm selects instances that minimize the expected
error on test data. There are two main limitations for this
method: at first, it assumes that the distribution of test data is
known which is not always the case. Second, it might choose
a query which is optimal for improving the prediction model
but the Oracle is not able to label it. Therefore, knowing the
answer of this query is not possible. Roy and McCallum [10]
eliminated these two issues by considering a limited pool
data and then estimating the true test distribution from this
pool. However the computation time of this method is high,
especially when the size of the pool data is large. Moreover, the
estimation of the test data distribution from the pool data might
be inaccurate. Baram and et al. [11] proposed a framework
based on a multi-armed bandit algorithm to combine several
active learning algorithms. The idea behind this framework is
that the best active learning algorithm depends on the dataset
and should be determined at run time. In this framework all
active learning algorithms have chances to select queries.

Osugi and et al. [12] proposed a lighter version of [11]
that includes only two active learning algorithms. One algo-
rithm selects examples which are close to decision boundary
(exploitation) and the other algorithm selects examples that
are far from the decision boundary (exploration). Nguyen and
Smeulders [13] offer a framework to incorporate clustering into
active learning. This method, which is based on logistic regres-
sion, chooses samples close to the classification boundary and
samples which are cluster representatives. Furthermore, within
the set of cluster representatives, it starts with the highest
density clusters first. Poupart [14] proposed an idea to apply
Reinforcement Learning (RL) for the active learning problem.
This method explicitly models the sequence of queries with a
Markov Decision Process (MDP) and learns the best sequence
of queries with RL. The introduced idea has been applied for
patient treatment in a hospital that is different from pool-based
active learning problems. In order to apply this idea to the
pool-based active learning problem, one should define state,
action, and a reward function according to the characteristics
of active learning which is non-trivial.

B. Related Work on Active Learning for Recommender Sys-
tems

Active learning, in the context of the new-user problem,
was introduced by Kohrs and Merialdo [15]. This work

suggested a method based on nearest-neighbor collaborative
filtering, which uses entropy and variance as the loss function
to identify the queried items. Al Mamunur et al. [6] expanded
this work, by considering the popularity of items and also
personalizing the item selection for each individual user.
Boutilier et al. [16] applied the metric of expected value of
utility to find the most informative item to query, which is to
find the item that leads to the most significant change in the
highest expected ratings.

Jin and Si [4] developed a new active learning algorithm
based on AM which is similar to applying active learning for
parameter estimation in Bayesian networks [17]. This method
uses the entropy of the model as the loss function. However,
this work does not directly minimize the entropy loss function,
because the current model may be far from the true model and
relying only on the current model can become misleading. To
overcome this problem, this work proposes to use a Bayesian
network to take into account the reliability of the current
model. This Bayesian approach is, however, complex and
intractable for real applications (demands excessive execution
time). Harpale and Yang [5] extended [4] by relaxing the
assumption that a new user can provide a rating for any
queried item. This approach personalizes active learning to the
preferences of each new user as it queries only those items for
which users are expected to provide a rating for. Karimi et.
al [18] applied the most popular item selection to AM. The
results show that it competes in accuracy with the Bayesian
approach while its execution time is in the order of magnitude
faster than the Bayesian method.

Karimi et. al [19] developed a non-myopic active learning
which capitalizes explicitly on the update procedure of the MF
model. Initially, this method queries items that if the new user’s
features are updated with the provided rating, it will change the
features as much as possible. Its goal is to explore the latent
space to get closer to the optimal features. Then, it exploits
the learned features and slightly adjusts them. Karimi et.
al. [20] by being inspired from existing optimal active learning
for the regression task, exploits the characteristics of matrix
factorization and develops a method which approximates the
optimal solution for recommender systems. Karimi et. al. [21]
improved the most popular item selection according to the
characteristics of MF. It finds similar users to the new user
in the latent space and then selects the item which is most
popular among the similar users.

The idea of using decision trees for cold-start recommenda-
tion was proposed by Al Mamunur et. al [8]. Golbandi et. al [7]
improved [8] by advocating a specialized version of decision
trees to adapt the preference elicitation process to the new
user’s responses. Zhou et. al [22] modified [7] by associating
matrix factorization to decision trees. First, item features are
initialized randomly. Then, decision trees are built. Each node
of the tree represents a group of users who share the same
user features. After learning the tree, the item features are
updated using the learned user features. The loop continues
until convergence is reached.

We believe that [22] is too expensive both in terms of time
and memory. The computation complexity for constructing
decision trees is O(q

∑
iN

2
i + l|I|k3 + l|I|2k2) where q is

the depth of the tree, Ni is the number of ratings by user i,
l is the number of nodes, |I| is the number of items, and k

is the number of latent features [22]. Imagine we are going
to apply this method for the Netflix dataset. In this dataset,∑
iN

2
i ≈ 6.4810, |I| ≈ 18k, k is usually > 50. The number

of nodes l is
∑q
i=0 3

i , so let’s say q = 7, then l would
be 3280. Considering all these numbers, applying [22] for
large datasets is very expensive. The complexity becomes even
larger when we note that decision trees are not built only once.
After building decision trees in one iteration, item features are
updated and again decision trees are build using the updated
item features. And the loop continues until the convergence is
met. Although [22] conduct their experiments on the Netflix
data set, unfortunately the authors do not report the running
time of their algorithm. Moreover, in addition to the time
complexity, the required memory to store decision trees is also
large. We have to store user features of all nodes to update item
features after building the tree.

III. BACKGROUND

A. Matrix Factorization

Matrix Factorization (MF) is the task of approximating the
true, unobserved ratings-matrix R by R̂ : R|U |×|I| where U
is the set of users and I is the set of items. It maps both
users and items to a latent space of dimensionality k. In this
space, user-item interactions are modeled as inner products.
In the latent space, each item i is represented with a vector
hi ∈ Rk. The elements of hi indicate the importance of
factors in rating item i by users. Some factors might have
higher effect and vice versa. In the same way, each user u
is represented with a vector wu ∈ Rk in the latent space.
For a given user the element of wu measure the influence
of the factors on user preferences. Different applications of
MF differ in the constraints that are sometimes imposed on
the factorization. The most common form of MF is finding a
low-rank approximation (unconstrained factorization) to a fully
observed data matrix minimizing the sum-squared difference
to it.

The resulting dot product, hTi wu, captures the interaction
between user u and item i. However, the full rating value is
not just explained by this interaction and the user and item
bias should also be taken into account. This is because part of
the rating values is due to effects associated with either users
or items, i.e biases, independent of any interactions.

By considering the user and item bias, the predicted rating
is computed as follows [3]:

r̂ui = µ+ bi + bu + hTi wu (1)

where µ is the global average, bi is the item bias and bu is the
user bias. The major challenge is computing the mapping of
each item and user to factor vectors hi, wu ∈ Rk. The mapping
is done by minimizing the following squared error [23]:

Opt(D,W,H) =
∑

(u,i)∈D

(
(rui − µ− bu − bi − hTi wu)2 (2)

+λ(‖hi‖2+ |wu‖2)+γ(b2i +b2u)

)

where λ is the regularization factor, and D is the set of the
(u, i) pairs for which rui is known, i.e the training set D. The
usual method to train MF is stochastic gradient descent [3].
This algorithm shuffles the ratings and then loops through all
of them by picking a random triple (u,i,r) and updates the
corresponding parameters in equation 2. After each epoch, the
error of the loss function is checked. If the error is smaller than
ε, the training stops. Otherwise it continues until L iterations.

B. Bootstrapping Recommendation by Trees

As our method relies on [7], we briefly explain it in this
section. In [7] decision trees are used for bootstrapping a
recommender system. In the tree, each interior node is labeled
with an item i ∈ I and each edge with the user’s response
to item i. The new user preference elicitation corresponds to
following a path starting at the root by asking the user to
rate items associated with the tree nodes along the path and
traversing the edges labeled by the users response until a leaf
node is reached. Here, decision trees are ternary. Each internal
tree node represents a single item on which the user is queried.
After answering the query, the user proceeds to one of the three
subtrees, according to her answer. The answer is either Like,
Dislike, or Unknown.

Each tree node represents a group of users and predicts item
ratings by taking the average of ratings among corresponding
users. Formally, let t be a tree node and Ut ⊆ U be its
associated set of users. The predicted rating of item i at the
node t is:

r̂t(i) =
sum(t)i + λ1r̂

p(i)

n(t)i + λ1
(3)

where sum(t)i is the sum of ratings of item i in node t,
n(t)i is the number of ratings of item i. To avoid over-fitting,
predictions at each node are regularized towards the predictions
at the parent node. λ1 is the regularization factor. The smaller
the number of ratings, the larger the regularization.

The squared error associated with node t and item i is:
e2(t)i =

∑
u∈Ut∩R(i)

(rui − r̂ui)2 where R(i) stands for the set

of users rating item i. Also, the overall squared error at node
t is: e2(t) =

∑
i

e2(t)i .

Building decision trees is done in a top-down manner.
For each internal node the best splitting item is the one
which divides the users into three groups such that the total
squared prediction error is minimized. This process continues
recursively with each of the subtrees and at the end all users
are partitioned among subtrees.

Suppose we are at node t. Per each candidate item i,
three child nodes are defined: tL(i), tD(i), tU(i) representing
users who like the item i, dislike it, and have not rated it
respectively. The squared error associated with this item is
Errt(i) = e2(tL) + e2(tD) + e2(tU). Among all candidate
items, the item which minimizes the following equation is the
best :

splitter(t) = argmin
i∈I

Errt(i) (4)

IV. PROBLEM SETTINGS

The cold-start problem in recommender systems is usually
studied from the perspective of active learning [4], [5], [19],
[20], [21]. The reason is because of an analogy between this
problem and a similar problem which exists in machine learn-
ing community. In supervised machine learning, sometimes
there is not enough labeled data to train a model. But there is
a set of unlabeled data and it is possible to ask their labels from
an oracle. However, querying the labels is costly. Therefore,
a few instances from the unlabeled data set are selected for
querying but those which are effective to improve the accuracy
of the model. This situation is very similar to the new user
problem in recommender system. As the new user has not
rated any item, it is not possible to train a personalized model
for her. But there are many items and we can ask the new user
to rate (label) them. However, the new user does not wish to
be queried too many times. Therefore, a few items should be
selected for querying but those which are effective to improve
the new user model. Due to this analogy, techniques which are
used to ask new users to rate items are usually called active
learning for recommender systems.

However, there are a few papers which do not explicitly
call their works active learning. For example, [7] prefer to
name their method as bootstrapping. Although the names are
different, principally they have the same goal: to learn new
user preferences as much as possible with a few questions. In
order to make this analogy more clear, we introduce a formal
definition for active learning in recommender systems and then
compare it with the bootstrapping.

A. Active Learning in Recommender Systems

Let U be a set (of users), I be another set (of items),
and Y ⊆ R be a (finite) set of possible ratings, e.g., Y :=
{1, 2, 3, 4, 5}. Denote by a triple (u, i, y) ∈ U×I×Y a rating
y of user u for item i.

For a data set D ⊆ U × I × Y denote the set of all users
occurring in D by

U(D) := {u ∈ U | (u, i, y) ∈ D}

Subsets E ⊆ I×Y are called user profiles. The profile of user
u in D is denoted by

Du := {(i, y) ∈ I × Y | (u, i, y) ∈ D}

The rating of item i ∈ I in user profile E ⊆ I × Y is denoted
by

y(i;E) :=

{
y , if (i, y) ∈ E
. , else

Given

• a data set D ⊆ U × I × Y ,

• a loss ` : Y × R→ R, and

• a maximal number K ∈ N of queries,

the active learning for recommender systems problem is to find
a questionnaire Ŷ of maximal queries K s.t. for another data
set Dtest ⊆ U × I × Y (sampled from the same distribution,

not being used during training, and with non-overlapping users,
i.e., U(D) ∩ U(Dtest) = ∅) the average loss

`(Dtest; Ŷ) :=
1

|Dtest|
∑

(u,i,y)∈Dtest

`(y, Ŷ (Du)(i)) (5)

is minimal.

As Dtest does not exist during the training phase, active
learning techniques do not directly optimize equation 5. Most
of them select difficult examples, i.e. examples which the
current model is uncertain about their labels. Hopefully, the
difficult examples will reduce the test error significantly.

B. Active Learning or Bootstrapping?

After this formal definition, we can have a better com-
parison between active learning in recommender systems and
bootstrapping. In bootstrapping, the best item is the item
which minimizes the train error (equation 4). But in active
learning, the best item is the item which minimizes the test
error (equation 5). Even this simplification has also been
studied in the literature of active learning but with a minor
difference. [10] replaces D with the set of unlabeled data to
estimate how candidate examples would reduce the test error.
In this paper, we follow the same approach which is taken
by [7] and choose items which minimize D.

V. MOST POPULAR SAMPLING

A naive construction of the tree would be intractable if the
number of items and ratings is large. Therefore, [7] proposes
a solution for that. The idea is to expand ”Unknown” child
nodes in a different way using some statistics collected from
”Like” and ”Dislike” child nodes. In this paper, we propose a
sampling method which makes the tree construction algorithm
even faster. This method is called Most Popular Sampling
(MPS).

In each node, instead of checking all candidate items, only
those which are popular among users associated with the node
are examined. Formally, let I ′ := {i ∈ I | Rank(i) < M} in
which Rank(i) is the popularity ranking of item i and M is
the sampling size. Then the equation (4) is changed as follows:

splitter(t) = argmin
i∈I′

Errt(i) (6)

To understand why this heuristic works, one needs to
return to a challenge that exists in recommender systems. In
recommender systems, users usually provide a few ratings.
Therefore, many items do not receive ratings from most of the
users. If the candidate item is not popular, most of the users go
to the ”Unknown” child node. In this case, the predictions in
the ”Unknown” child node would not be significantly different
from the predictions in the current node because the associate
users of two nodes and consequently the mean ratings are
the same. Moreover, as the number of users in ”Like” and
”Dislike” nodes are not many, the predictions at these nodes
are heavily regularized towards the predictions in current node.
Therefore, the predictions at these nodes do not significantly
improve too. However, splitting nodes with popular items

distributes users more or less uniformly among child nodes.
This would lead to new predictions which do not suffer from
the mentioned problems.

VI. FACTORIZED DECISION TREES

Factorized Decision Trees (FDT) improves [7] by incorpo-
rating MF into decision trees. The motivation is that as MF
outperforms item average in ratings prediction for active users,
it makes sense to use it for new users as well. To add MF to
decision trees, we should take into account how users have
been partitioned in the tree.

Initially, all users are at the root. Then they are partitioned
into three groups based on their answer to the first selected
query. Each child node represents a set of users who have the
same answer to the queried item. As each user goes to one of
the child nodes at level 1, the unification of the associated users
of all nodes gives us a complete set of users. This phenomena
is true for all levels and training users have been completely
partitioned among all nodes at each level. Due to this fact, we
consider one MF model per each level of the tree (Figure 1).

Formally, let Vl := {t1, ..., tn} be a set of nodes at level
l. We define a set of pseudo users Ul = {u1, ..., un} in
which ui represents node ti. The ratings of each pseudo user
ui is the unification of all ratings of associated users of the
corresponding node ti. A MF model is trained with |Ul| users
and |I| items to predict (ŷ;E). In this way, MF is trained using
the complete version of the dataset while the structure of the
tree is also kept. Another possibility is to have one model
per each node ti. But in this case, we would lose part of the
data which is not included in the ratings of the corresponding
pseudo user ui. Also, we need to train more MF models which
makes the tree construction slower.

Fig. 1. The first two levels of decision trees. FDT considers one MF model
per each level. The number of pseudo users is equal to the number of nodes
and the number of items is fixed in all levels.

Algorithm 1 describes the details of FDT. At first, the
structure of decision trees is learned according to [7] with
a minor difference. [7] randomize the item selection process
in the way that items that more significantly reduce the error
would have more chances to be selected as splitter. The
randomization is useful for online evaluations and also for
asking new users to rate multiple items in each query. As we
do not conduct online evaluation and also we ask new users to
provide ratings for one item in each query, the randomization is
removed and the splitter item is selected in a fully deterministic
manner.

After constructing the tree, a post processing is done on
top of the tree to learn the labels of the tree, i.e the rating
predictions. For each level, the best hyper-parameters of MF

are found and then MF is retrained with those parameters.
Finally, the predictions are updated using MF. We do not
exploit MF during the tree construction because it causes too
much complexity. We will return to this issue soon. At level 0,
the root of the tree, there is only one node. It means we should
train a MF with one pseudo user. However, it is not expected
that a MF model with a single user significantly improves the
item average. Therefore, for the root node we switch to the
item average and compute the predictions similar to [7].

The maximum level of the tree is K which is the maximum
number of queries. As the number of pseudo users varies at
each level of the tree, the data set of each level is different
from other levels. Therefore, we have to do hyper-parameter
search per each level. The hyper-parameters of MF includes:
number of latent factors k, learning rate α, user and item
feature regularization λ, and user and item bias regularization
γ.

Algorithm 1 The algorithm of Factorized Decision Trees
1: Construct decision trees according to [7]
2: for level l = 1 to K do
3: for each α do
4: for each λ do
5: Train MF
6: Compute error on the validation data
7: end for
8: end for
9: Retrain MF with the best hyper-parameters (α, λ)

10: Update rating predictions of pseudo users at level l
11: end for

In order to analyze the complexity of FDT, first we need
to know the complexity of Bootstrapping [7] because FDT
relies on it to build the tree. The complexity of Bootstrapping
is O(d ·

∑
u∈U |R(u)|2) where d is the depth of the tree and∑

u∈Ut
|R(u)| is the total number of ratings of the dataset [7].

According to the algorithm 1, FDT would also have the same
complexity, plus the overhead of training MF model at each
level of decision trees. In the other hand, the time complexity
of MF is O(|D|·k·L) [24]. Hence, the total time complexity of
FDT is O(d ·

∑
u∈St

|R(u)|2 + d · |D| · k ·L). Please note that
the complexity of finding the hyper-parameters is not taken
into account like [7]. Compared with the time complexity of
functional matrix factorization (fmf) [22], FDT is much less
complicated. As it was already pointed out, the complexity of
fmf is O(q

∑
iN

2
i + l|I|k3 + l|I|2k2) which makes it really

slow for large datasets like the Netflix.

So far, MF did not have any role on building the tree.
The tree is built according to [7] and afterwards MF is used
to change the predicted ratings at each node. But this is not
optimal. Now that MF is used for rating prediction, the best
split item of each node is the one which reduces the error of
MF not the item average model. However, choosing the split
item of each node based on MF poses challenges which makes
it intractable.

Suppose we want to select the q-th query. It means that
we are in a node at the (q − 1)-th level of decision trees. For
this node, there are |I| − q− 1 candidate items. The best item
is the one which minimizes the error of MF in the next level.
However, to train MF, we need to expand all nodes at level

TABLE I. RMSE RESULTS OF DECISION TREES FOR VARIOUS SAMPLING NUMBER. TIME IS DISPLAYED IN HOURS:MINUTES MEASURED ON A 4 CORES
MACHINE EACH CORE 2.4 GHZ

#samples time initial error query 1 query 2 query 3 query 4 query 5 query 6 query 7 query 8 query 9 query 10
200 04:25 0.9872 0.9784 0.9718 0.9658 0.9618 0.9587 0.9567 0.9553 0.9545 0.9539 0.9536

1000 12:30 0.9872 0.9784 0.9718 0.9661 0.9620 0.9589 0.9568 0.9555 0.9546 0.9540 0.9537
17770 119:54 0.9872 0.9784 0.9718 0.9661 0.9620 0.9589 0.9568 0.9555 0.9546 0.9540 0.9537

q − 1 to generate a new dataset including all pseudo users at
level q. Therefore, the best selected item of each node is not
independent of the rest of the node exist at the same level. It
means we have to check all selections and choose the one with
the minimum error. However, checking all selections would
be very expensive. At level l, there are 3l nodes, therefore
the total number of selections which must be examined is
(|I| − i − 1)3

l

. In the other hand, the time complexity of
matrix factorization learning algorithm is O(L×|D|×k) [24].
Therefore, the complexity of finding the best q-th query is
O((|I| − i− 1)3

q−1 × L× |D| × k). Considering all levels of
the tree, constructing the tree in this way would be intractable.

In general, the number of nodes at level i is 3i and the
number of users is equal in all levels. However, there are two
situations where this general rule is broken. Suppose we are
at level i. While we are splitting nodes, we might encounter a
node which among its associated users, there is no user who
have specific answer to the split item. For example, there is
no user who likes the split item. In that case, the node of the
missing answer is created but it is null, i.e it has no associated
users. When nodes at level i + 1 are split, the null node is
not split because it has no associated user. Thus, the number
of nodes at level i+ 2 would be 3(i+2) − 3 because the three
child nodes of the null node are missing in level i+ 2.

The second situation happens when a node is split but the
summation of errors at child nodes is larger than the error at the
current node. According to [7], such nodes are not expanded.
It means again the number of nodes in the next level would be
three nodes less than the expected number. Moreover, as the
associated users of such nodes get stack in the current node,
the number of users in the next level would also be less than
the number of users in the current level. We call these nodes
as deadlock nodes.

In our experiments, from level 6 to 8, we observed a few
deadlock nodes. In these levels the training data contains less
number of ratings compared to the previous levels because
the ratings of the associated users of the deadlock nodes are
not used in the next level. However, the number of removed
ratings is less than 100 which compared to 100M ratings is
neglectable and we can say that the total number of ratings in
all levels of decision trees are equal.

VII. EXPERIMENTAL RESULT

In this section, we examine experimentally the performance
of the proposed method.

A. Experimental set up

The main challenge in applying active learning for recom-
mender systems is that users are not willing to answer many
queries in order to rate the queried items. For this reason, we
report the performance of all examined methods in terms of
prediction error (RMSE) versus the number of queried items,

which is simply denoted as the number of queries. The RMSE
is computed as follows:

RMSE =

√√√√ 1

N

∑
u,i∈Dtest

u

(rui − r̂ui)2 (7)

where Dtest
u is the set of the test items of user u, r̂ui is the

predicted rating of user u for item i, and rui is the true (actual)
rating. Thus, we examine the problem of selecting at each step,
the item for which each new user u will be queried to provide
a rating. The item has to be selected in order to minimize the
RMSE based on the MF model. The RMSE of each test user
is measured separately and then the average RMSE over all
test users is reported.

To regenerate the reported results of this paper, the way
that the parameters are initialized should be taken into account.
The parameters of MF are initialized randomly with a normal
distribution of N(0, 001). The random seed is set to 1 and
then a sequence of random numbers are generated to initialize
user features, item features, user bias, item bias, and finally to
shuffle the dataset and choose a random instance (u, i, r) for
the stochastic gradient descent.

In our experiment, 8 or 10 queries are asked from each
new user and we compare it against [7] which is called
Bootstrapping in the next section. We first implemented [7] by
ourself. Then we followed the same hyper-parameters reported
in [7] to calibrate our results against it. After ensuring that
our implementation is correct, we changed one of the hyper-
parameters in our experiments: [7] do not expand nodes in
which the the number of ratings is less than β = 200000 and
stops the learning. The goal is to save the runtime. In our
experiments we set β to zero because MPS is already able to
save the runtime and there is no need to stop the learning.
The results show that this setting is significantly beneficial.
For β = 200000, the RMSE is 0.971 after 5 queries but for
β = 0 the RMSE would be 0.958. Also, for β = 200000 the
learning converges after 6 queries but for β = 0 it continues
until 8-th query.

As [7] conduct their experiment on the Netflix dataset,
we also run our experiments on this dataset. The dataset is
already split into train and test datasets. However, this split is
not suitable for cold-start evaluation protocol since users in the
training and test sets are the same. As test users are considered
as new users, they should not already appear in the training
set. Therefore, we split all users into two disjoint subsets, the
training set and the test set, containing 75% and 25% users,
respectively. The tree is learned using the ratings of training
users in the training data. To find the hyper-parameters of MF,
the ratings of training users in the test data is used (validation
data). The users in the test set are assumed to be new users.
The ratings of test users in the Netflix training dataset are
used to generate the user responses in the interview process.

To evaluate the performance after each query, the ratings of
test users in the Netflix test data are used.

TABLE II. THE POPULARITY RANKING OF THE SELECTED ITEMS

#query average rank
1 136
2 56.6
3 172.4
4 495.8
5 324.3
6 544.9
7 760.1
8 520.6
9 1327.8
10 2564.8

B. Results

First, we report the results of MPS. We do not use MF in
this part and the tree is constructed according to [7]. However,
to expand nodes only a subset of all candidate items are
checked based on MPS. Table I shows how MPS affects the
accuracy in different queries. As it is clear, MPS does not
harm the accuracy at all while speeds up the tree construction
algorithm in the order of magnitude. This observation shows
that the best items to query are among popular items and non-
popular items are irrelevant. To understand why this happens,
we should see the rating frequencies of items. Figure 2 shows
the distribution of items’ rating frequencies in the Netflix
dataset. According to this distribution, most of the items
have received less than 1000 ratings. Therefore, splitting users
with a non-popular item will move most of the users to the
”Unknown” child node and, as it was discussed in section V,
recommender systems gain nothing.

However, splitting the nodes with popular items distributes
the users of the current among children nodes in a way that
there are enough users at children nodes to provide accurate
predictions. For example, in the case of the first selected item,
49461 users like it, 29913 users dislike it and 280767 do not
rate it. As there are enough users in ”Like” and ”Dislike” nodes
and the number of ”Unknown” users are much less than the
current node, the new predictions are significantly different
from the current node’s predictions leading to significant
improvement in new predictions.

Table II provides more insights about why sampling pop-
ular items is working. In this table, the average popularity
ranking of the selected items for each query is shown. In the
initial queries, the ranking is rather small. As we go to the
lower levels, the ranking increases. In some levels, the average
ranking is larger than 200 or 1000. One could expect that for
those queries, the sampling would harm the accuracy. However,
the results in table I show that this is not the case and we can
simply ignore items which their ranking is larger than 200 or
1000. Surprisingly, sampling 200 items even slightly improves
the accuracy after 2 queries. To understand the reason of this
evidence, the learning algorithm of decision trees should be
taken into account. Decision trees are built by choosing the
items which minimize the training error. But those items do not
necessary minimize the test error as well. Therefore, it makes
sense to ignore some items which lead to smaller training error
but we are unsure about their test error. The results show that
items which are very popular pose lower uncertainty about
their test error, thought the reason is not clear for us.

Fig. 2. Distribution of items’ rating frequency in the Netflix dataset

Now we go on to show the results of the other contribution
of this paper which is adding MF to decision trees. In this part,
MPS was not used and the tree is constructed by checking all
candidate items. Table III shows the RMSE of FDT (Factorized
Decision Trees) versus the baseline [7]. Both methods start
with the same initial error because as it was already pointed
FDT uses the item average for rating prediction at the root of
the tree. In the first query, Bootstrapping and FDT are more or
less equal. It is because there are only 3 pseudo users in the
first level. The superiority of MF against the item average is
more obvious when MF is trained with many users. As we go
down to the lower levels, the number of pseudo users increases
and the benefit of rating prediction with MF becomes more
clear and after 8 queries, the amount of improvement is 0.005
which is significant on the Netflix dataset. As asking more
queries would not significantly improve [7], we stop FDT after
8 queries.

An interesting point is that in the last queries, there is not
much improvement in Bootstrapping. It is due to hierarchical
regularization used in this method. In the hierarchical regular-
ization, predicted ratings at each node are regularized towards
the predictions in their parents. In the nodes which appear at
deeper levels, the effect of the regularization increases due to
dropping the number of ratings. Although, hierarchical regular-
ization prevents harming the accuracy in going to deeper levels
but the accuracy gain would also be small and unjustified.
Therefore, we need to come up with a solution which is able
to keep improve the accuracy in deeper levels. And this is
what FDT does. In FDT, the number of ratings is almost equal
in all levels, so we do not need hierarchical regularization.
Instead, we exploit typical regularization used in MF, i.e.
L2 regularization. As the results show, this approach is quite
successful to improve the accuracy at deeper levels. Thus, if
new users are willing to answer more queries, FDT is able
use them while the performance of Bootstrapping significantly
drops in the last queries.

Even small lift in RMSE leads to significant financial ben-
efit for companies [25]. Therefore, the achieved improvements
are relevant. The same observation is made in the related works
even for smaller datasets [4], [5] as the problem is difficult:
there are many candidates items to ask their ratings from new
users but new users are willing to rate just a few of them.
Moreover, we start without any ratings from the new user
which makes the problem more severe.

To find hyper-parameters, a grid search methodology was

TABLE III. RMSE RESULTS OF FACTORIZED DECISION TREES (FDT) VERSUS BOOTSTRAPPING. THE RMSE OF EACH TEST USER IS MEASURED
SEPARATELY AND THEN THE AVERAGE RMSE OVER ALL TEST USERS IS REPORTED

method initial error query 1 query 2 query 3 query 4 query 5 query 6 query 7 query 8
FDT 0.9872 0.9776 0.9707 0.9649 0.9602 0.9554 0.9531 0.9514 0.9498

Bootstrapping 0.9872 0.9784 0.9718 0.9661 0.9620 0.9589 0.9568 0.9555 0.9546

followed. The hyper-parameters of each level are reported in
table IV. In our experiments varying k did not change the
results, so we fixed it to 70. Also, the best value of γ was
0.0001 for all levels.

TABLE IV. HYPER-PARAMETERS OF MF IN ALL LEVELS

level α λ
1 0.0013 0.001
2 0.0013 0.001
3 0.001 0.001
4 0.0012 0.003
5 0.0012 0.003
6 0.0013 0.01
7 0.0015 0.01
8 0.0006 0.02

VIII. CONCLUSION

A main challenge in recommender systems is to provide
useful recommendations to new users. Decision trees have
already been proposed to build a questionnaire which is used
by recommender systems to pose questions to new users.
In this way, the system would be able to learn new users’
preferences with a few questions and then provide useful
recommendations to them. In this paper, we improved decision
trees construction in two ways: first, the learning algorithm
speeds up by most popular sampling. Second, the accuracy
of the rating predictions improves by incorporating MF into
decision trees.

As the future work, we plan work on other sampling
criteria. Also, we consider to use clustering techniques instead
of decision trees to partition users and find an appropriate
questionnaire.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[2] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, “GroupLens: Applying collaborative filtering to usenet
news,” Communications of the ACM, vol. 40, no. 3, pp. 77–87, 1997.

[3] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, pp. 30–37, 2009.

[4] R. Jin and L. Si, “A bayesian approach toward active learning for collab-
orative filtering,” in Proceedings of the 20th conference on Uncertainty
in artificial intelligence, 2004.

[5] A. S. Harpale and Y. Yang, “Personalized active learning for col-
laborative filtering,” in Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2008, pp. 91–98.

[6] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A.
Konstan, and J. Riedl, “Getting to know you: Learning new user
preferences in recommender systems,” in International Conference on
Intelligent User Interfaces (IUI). ACM Press, 2002, pp. 127–134.

[7] N. Golbandi, Y. Koren, and R. Lempel, “Adaptive bootstrapping of
recommender systems using decision trees.” in WSDM. ACM, 2011,
pp. 595–604.

[8] A. M. Rashid, G. Karypis, and J. Riedl, “Learning preferences of new
users in recommender systems: an information theoretic approach,”
SIGKDD Explor. Newsl., vol. 10, no. 2, pp. 90–100, Dec. 2008.

[9] D. A. Cohn, G. Z., and M. Jordan, “Active learning with statistical
models,” in Advances in Neural Information Processing Systems(NIPS),
1995.

[10] R. Nicholas and A. McCallum, “Toward optimal active learning through
monte carlo estimation of error reduction,” in International Conference
on Machine Learning (ICML), 2001.

[11] Y. Baram, R. El-Yaniv, K. Luz, and M. Warmuth, “Online choice of
active learning algorithms,” Journal of Machine Learning Research,
vol. 5, pp. 255–291, 2004.

[12] T. Osugi, D. Kun, and S. Scott, “Balancing exploration and exploitation:
A new algorithm for active machine learning,” in IEEE International
Conference on Data Mining (ICDM), 2005.

[13] T. Nguyen and A. Smeulders, “Active learning using pre-clustering,” in
International Conference on Machine Learning (ICML), 2004.

[14] P. Poupart, “Non-myopic active learning: A reinforcement learning
approach,” in Google Talk, March 2009.

[15] A. Kohrs and B. Merialdo, “Improving collaborative filtering for new
users by smart object selection,” in International Conference on Media
Features (ICMF), 2001.

[16] C. Boutilier, R. S. Zemel, and B. Marlin, “Active collaborative filtering,”
in Conference on Uncertainty in Artificial Intelligence(UAI), 2003.

[17] S. Tong and D. Koller, “Active learning for parameter estimation in
bayesian networks,” in Advances in Neural Information Processing
Systems(NIPS), 2000.

[18] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme,
“Active learning for aspect model in recommender systems,” in IEEE
Symposium on Computational Intelligence and Data Mining (CIDM).
IEEE, 2011.

[19] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thiemee,
“Non-myopic active learning for recommender systems based on matrix
factorization,” in IEEE Information Reuse and Integration (IRI). IEEE,
2011.

[20] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme,
“Towards optimal active learning for matrix factorization in recom-
mender systems,” in 23th IEEE International Conference on Tools With
Artificial Intelligence (ICTAI), 2011.

[21] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thiemee,
“Exploiting the characteristics of matrix factorization for active learning
in recommender systems,” in RecSys, 2012, pp. 317–320.

[22] K. Zhou, S.-H. Yang, and H. Zha, “Functional matrix factorizations for
cold-start recommendation,” in Proceedings of the 34th international
ACM SIGIR conference on Research and development in Information
Retrieval, ser. SIGIR ’11. ACM, 2011, pp. 315–324.

[23] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, ser.
KDD ’08. ACM, 2008, pp. 426–434.

[24] S. Rendle and L. Schmidt-Thieme, “Online-updating regularized kernel
matrix factorization models for large-scale recommender systems,” in
ACM Conference on Recommender Systems (RecSys). ACM, 2008,
pp. 251–258.

[25] Y. Koren, “How useful is a lower rmse?”
http://www.netflixprize.com/community/viewtopic.php?id=828/,
accessed: 15-04-2013.

