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a b s t r a c t

Genetic Algorithms (GAs) are the most popular used methods of the evolutionary algorithm family. GA
effectiveness highly depends on the choice of the search space range for each parameter to be optimized.
The search space being a set of potential solutions may contain the global optimum and/or other local
optimums. Being often a problem-based experience, a bad choice of search spaces will result in poor solu-
tions. In this paper, a novel optimization approach based on GAs is proposed. It consists in moving the
search space range during the optimization process toward promising areas that may contain the global
optimum. This dynamic search space allows the GA to diversify its population with new solutions that are
not available with fixed search space. As a result, the GA optimization performance can be improved in
terms of solution quality and convergence rate. The proposed approach is applied to optimal design of
multimachine power system stabilizers. A 16-machine, 68-bus power system is considered. The obtained
results are evaluated and compared with other results obtained by ordinary GAs. Eigenvalue analysis and
nonlinear system simulations demonstrate the effectiveness of the proposed approach in damping the
electromechanical oscillations and enhancing the system dynamic stability.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The extension of interconnected power systems is continually
increasing because of the constantly growth in electric power de-
mand. At the same time, the power systems are almost operated
ever closer to their transient and dynamic stability limits. With
heavy power transfers, such systems exhibit inter-area modes of
oscillation of low frequency (0.1–0.8 Hz). The stability of these
modes has become a source of preoccupation in today’s power sys-
tems. In some cases, the related oscillatory instability may lead to
major system blackouts [1,2].

Due to their flexibility, easy implementation and low cost,
Power System Stabilizers (PSSs) stay the most used devices to
damp small signal oscillations (0.1–2 Hz) and enhance power sys-
tem dynamic stability [2,3]. PSS parameter setting is commonly
based on the linearization of power system model around a nom-
inal operating point. The purpose is to provide an optimal perfor-
mance at this point as well as over a wide range of operating
conditions and system configurations [4,5].

The past two decades have seen an explosion of metaheuristic
optimization methods. Most of these methods are inspired by nat-
ure and can be classed in two important categories that are evolu-
tionary algorithms and swarm intelligence. Numerous algorithms

based on these methods have been widely applied to the problem
of multimachine PSS design.

Genetic Algorithms (GAs), the most popular evolutionary algo-
rithms, have been used in numerous research works concerning
the optimum design of PSSs [6–13]. The authors, in [6–8], devel-
oped new approaches based on GAs to optimize the PSS parame-
ters in multimachine power systems. Wang et al. [9] used a GA
based-approach, taking several oscillation modes into consider-
ation for avoiding suboptimal damping performance in other
modes. GAs are used to design fuzzy logic PSSs in [10] and neu-
ro-fuzzy logic PSSs in [11]. A GA-based PSS design in a multima-
chine power system is presented in [12]; the PSS parameters are
tuned via simulation experiments based on nonlinear model of
the system. In [13], Non-dominated Sorting GA (NSGA-II) is em-
ployed to search the optimal tuning of PSS parameters.

Particle Swarm Optimization (PSO), a quite popular method of
the swarm intelligence family, is suggested in [14–17] to design ro-
bust PSSs. An algorithm of PSO-based fuzzy logic PSSs is proposed
in [18] to damp the multimachine power system oscillations. In
[19], the authors developed three PSO algorithms based PSSs for
an interconnected power system composed of three stand alone-
power systems. Hussein et al. [20] introduced a PSO based-indirect
adaptive fuzzy PSS to damp inter-area modes of oscillation follow-
ing disturbances in power systems. In [21] a hybrid optimization
technique is presented for optimum tuning of PSS parameters in
a multimachine power system. The hybrid technique is derived
from PSO by adding the passive congregation model. A Modified
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PSO algorithm (MPSO) is proposed in [22] for optimal placement
and tuning of PSSs in power systems. The MPSO integrated the
PSO with passive congregation (to decrease the possibility of a
failed attempt at detection or a meaningless search) and the cha-
otic sequence (to improve the global searching capability).

A Bacteria Foraging Algorithm (BFA) based optimal neuro-fuzzy
scheme is developed in [23] to design intelligent adaptive PSSs for
improving the dynamic and transient stability performances of
multimachine power systems. In [24], a modified algorithm of
BFA, named Smart Bacteria Foraging Algorithm (SBFA), is presented
for optimal tuning of PSSs.

In [25], an Artificial Bee Colony (ABC) algorithm is employed for
better stability of the power system, while an ABC algorithm based
rule generation method is proposed in [26] for automated fuzzy
PSS design to improve power system stability and reduce the de-
sign effort.

A Differential Evolution (DE) algorithm is applied in [27] to
solve the problem of PSS coordination design based on the nonlin-
ear time-domain simulation. A new hybrid DE algorithm, called
gradual self-tuning hybrid DE, is developed in [28] for rapid and
efficient searching of an optimal set of PSS parameters. A DE algo-
rithm is employed in [29] to tune multiband PSSs in a portion of
the high voltage Mexican power grid.

A novel method of PSS design using the multiobjective optimi-
zation approach named Strength Pareto Evolutionary Algorithm
(SPEA) is introduced in [30].

The Harmony Search (HS), one of modern heuristic optimization
algorithms, is employed in [31] for optimal parameter tuning of
PSSs in multimachine power systems.

GAs are powerful global optimization methods. Their funda-
mental concept is based on natural selection in the evolution pro-
cess, which is completed by two genetic operations (crossover and
mutation) [32]. Independent of the problem complexity, the only
GA requirements are to specify an appropriate objective function
and to place finite bounds on the parameters to be optimized.

Several approaches are reported in the literature to improve GA
performance in searching for the global optimum, such as self-
adaptive GA operators, self-adaptive GA population size, parallel
GAs, and others [33–43].

In [33], a Self-Adaptive Migration Model GA (SAMGA) is pro-
posed, where the population size, the number of points of cross-
over and the mutation rate are adaptively determined over each
generation. Further, the migration of individuals between popula-
tions is decided dynamically. A Self-Organizing GA (SOGA) is inves-
tigated in [34]. In this algorithm, a new dominant selection
operator is introduced that enhances the action of the dominant
individuals, along with a new cyclical mutation operator that peri-
odically varies the mutation rate during the optimization pro-
cesses. In [35], a second selection step after reproduction is
proposed. This self-adaptive selection mechanism, referred to as
offspring selection, is closely related to the general selection model
of population genetics. In [36], new variants of the uniform cross-
over operator that adaptively introduce selective pressure on the
recombination stage are proposed, while a new variant of adaptive
population sizing is discussed in [37] that depends on the actual
ease or difficulty of the algorithm to generate new child chromo-
somes that outperform their parents. The authors discussed in
[38] the problem of the self-adaptive GA parameters. The control
of GA parameters is encoded within the chromosome of each indi-
vidual. The values of the control parameters are thus entirely
dependent on the evolution mechanism and on the problem con-
text. In [39], a novel GA, entitled Self-adaptive GA (SaGA), is pro-
posed. During the optimization process, the whole populations
are classified into subgroups. Self-adaptive mechanism updates
the subgroups and adjusts the control parameters to assure an
optimal balance between exploration and exploitation. In [40], an

adaptive algorithm that can adjust the control parameters of GAs
according to the observed performance is investigated. The param-
eter adaptation occurs in parallel to the running of the GA. An Effi-
cient Parallel GA (EPGA) is presented in [41] for the problem of
large-scale optimal power flow. The length of the original chromo-
some is successively reduced based on the decomposition level and
adapted with the topology of the new partition. An Improved Dy-
namic GA (IDGA) is presented in [42]. During the evolution process,
the crucial parameters, including mutation and crossover rates, are
dynamically adjusted in order to get the optimal global solution.
Togan et al. discussed [43] two new self-adaptive member group-
ing strategies (to reduce the size of the optimization problem), and
a new strategy to set the initial population (to reduce the number
of search to reach the optimum design in the solution space).

Good results may be obtained by these kinds of optimization
approaches. However, if the sought global optimum is being out-
side the proposed search space of the problem, none of these ap-
proaches can thus allow the GA to find this optimum. Other
optimization approaches based on the idea of dynamically reduc-
ing the search space size, like dynamic search-space reduction
strategy [44–49], are also proposed in the literature. These ap-
proaches can be only interesting in local optimum search.

The high dependence of GA performance on the choice of the
problem’s search space range makes the optimization more diffi-
cult, in particular when the parameters to be optimized are numer-
ous and different in nature. Furthermore, if the search space size is
too small, it is evident that the GA will converge to a local opti-
mum, unless the sought global optimum is already being in this
search space. On the other hand, if the search space size is too
large, the optimization tends to be easily got trapped in a local
optimum. To resolve this problem, we propose an approach con-
sisting in moving the search space range over the GA generations
toward new areas, but only when it is necessary. Consequently,
the GA can diversify its population with new solutions that are
not available in the case of fixed search space. Thus, these dynamic
search spaces can significantly improve the GA performance in
terms of solution quality and convergence rate.

The proposed approach is applied to optimal design of multima-
chine PSSs. The power system considered is the 16-machine, 68-
bus New England/New York interconnected system [50]. Eigen-
value analysis and nonlinear system simulations are carried out
to assess the effectiveness of the optimized PSSs to damp the elec-
tromechanical modes of oscillations and enhance the system dy-
namic stability. The performance of the proposed approach is
also compared to that of ordinary GAs reported in the literature.

2. Problem statement

2.1. Power system model and PSS structure

A power system can be modeled by a set of nonlinear differen-
tial–algebraic equations. In damping control design, small-signal
model obtained by linearizing the system around an operation
point is commonly used [51]. For a power system with n machines
and NPSS stabilizers, the state equation of the linearized system
model can be expressed as:

D _X ¼ A � DX þ B � DU ð1Þ

where X is the vector of the system state variables, A is system state
space matrix, B is system input matrix, U is the vector of the PSS
output signals.

The well-known Heffron–Phillips linearized model, a commonly
used model in damping control design, is employed to represent
the multimachine power system. The small-perturbation transfer
function bloc-diagram of the ith machine is given in Fig. 1. In this
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configuration, the third-order model is employed to represent the
system synchronous machines [52], and so:

DX ¼ ½Ddi;Dxi;DE0qi;DEfdi�T ð2Þ

The equations of the system linear model are the following:

D _xi ¼
1

Mi
�DiDxi �

Xn

j¼1

ðK1ijDdjÞ �
Xn

j¼1

ðK2ijDE0qjÞ
 !

þ 1
Mi

DTmi ð3Þ

D _di ¼ x0Dxi ð4Þ

D _E0qi ¼
1

T 0doi

�
Xn

j¼1

ðK4ijDdjÞ �
Xn

j¼1

1
K3ij

DE0qj

� �
þ DEfdi

 !
ð5Þ

D _Efdi ¼
1

Tai
�Kai

Xn

j¼1

ðK5ijDdjÞ � Kai

Xn

j¼1

ðK6ijDE0qjÞ � DEfdi

 !
þ Kai

Tai
DUi

ð6Þ

where for the ith machine, di and xi are the rotor angle and speed
respectively; E0qi is the internal voltage behind the d-axis transient
reactance; Efdi is the equivalent excitation voltage; Mi and Di are
the machine inertia coefficient and damping coefficient respec-
tively; x0 is the synchronous speed; T 0doi is the d-axis open-circuit
transient time constant; Tmi is the mechanical torque; Kai and Tai

are the automatic voltage regulator gain and time constant respec-
tively; Ui is the PSS output signal at the machine; K1ij–K6ij are the
linearization constants.

The fast-acting high-gain excitation systems used to improve
the transient stability limit of synchronous machines lead at the
same time to degradation in the system damping. This conflicting
performance of the excitation control loop was resolved by intro-
ducing a component of supplementary damping torque propor-
tional to the machine rotor speed deviations. PSS is one of the
most cost-effective systems to produce the aimed stabilizing sig-
nals. A widely used conventional lead–lag PSS is considered in this
study [52]. For the ith PSS in a multimachine power system, the
transfer function, as given in (7), consists of an amplification block

Fig. 1. Heffron–Phillips block diagram of multimachine power system.
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Fig. 2. Dynamic GA schematic.
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with a control gain Ki, a washout block with a time constant Twi,
and two lead–lag blocks for phase compensation with time con-
stants T1i, T2i, T3i, and T4i:

VPSSiðsÞ ¼ Ki �
sTwi

1þ sTwi
� ð1þ sT1iÞ
ð1þ sT2iÞ

� ð1þ sT3iÞ
ð1þ sT4iÞ

� �
� DxiðsÞ ð7Þ

The PSS output signal VPSSi is a voltage added to the generator
exciter input. The generator speed deviation Dxi is typically used
as the PSS input signal. The time constants Twi, T2i, and T4i are usu-
ally predetermined [53]. However, the stabilizer gain Ki and time
constants T1i and T3i still remain to be optimized.

2.2. Objective function

To ensure a well damping system over a wide range of operat-
ing conditions and system configurations, a robust PSS tuning must
be designed. The PSS design problem is formulated as an optimiza-
tion problem with eigenvalue-based multiobjective function.

The optimization problem can be stated as:

maximize f ðxÞ; x 2 Rn

xmin
i 6 xi � xmax

i ; i ¼ f1;2; . . . ;ng
ð8Þ

– f(x) is the problem’s objective (or multiobjective) function. The
multiobjective function employed, given in (9), is formulated to
optimize a composite set of two eigenvalue-based objective
functions; comprising eigenvalue real part (r) and damping fac-
tor (f) of the system dominant electromechanical modes.

f ðxÞ ¼ �maxðrÞ þminðfÞ ð9Þ

The use of this multiobjective function will shift the system
modes into a D-shape sector in the complex s-plane; and thus
the system damping can be furthermore improved [54]. The
D-shape sector criteria that can guarantee a good stability oper-
ating area for a wide range of operating conditions are chosen as
following: rcr = –1, fcr = 10%.

– xmin
i and xmax

i are the search space boundaries of the xi parame-
ter to be optimized. In our problem, the parameters to be opti-
mized are:

Kmin
i 6 Ki � Kmax

i

Tmin
1i 6 T1i � Tmax

1i

Tmin
3i 6 T3i � Tmax

3i ; i ¼ 1;2; . . . ;NPSS

ð10Þ

3. Proposed approach

In effect, during the optimization running, the values of one or
more parameters to be optimized may reach one of the associated
search space boundaries. This may happen after many generations
or even from the beginning of the optimization. However, the opti-
mal parameter values may exist outside the proposed search space
boundaries. As a result, the objective function evolution will decel-
erate converging to a local optimal solution. Thus, it will be inter-
esting if the problem’s search space can move over the
optimization process toward the global optimum area.

The principle of our proposed approach consists in releasing the
search space boundaries, during the GA running, and allowing
them to attain different values depending on the optimization pro-
cess needs. These dynamic search spaces can then assure an effi-
cient and fast convergence to the global optimum, Fig. 2.

The flowchart of the proposed approach is given in Fig. 3. The
GA optimization is initialized with fixed search space boundaries

[xmin
i , xmax

i ]. Tolerance margins (emin, emax) are set for both bound-
aries of search spaces. The tolerance margin can be determined
as 1–5% of the associated search space size. When the value of a
parameter to be optimized attains the range of the associated tol-

Fig. 3. Dynamic GA flowchart.
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erance margin, for many consecutive generations (Ngener), this may
mean that the optimal value may exist beyond the initial bound-
ary. In this case, the related boundary will be modified by predeter-
mined values (Dmin, Dmax) that can be determined as 1–5% of the
associated search space size. As a result, the search space range
can dynamically moves by always keeping its initial size. This pro-
cess can be occurred several times in the course of the optimiza-
tion while it is necessary. Finally, in order to keep the search
space as feasible solution area, the decrease and increase of search
space boundaries should be limited to minimum and maximum
limits (Xmin, Xmax).

4. Results and discussion

To validate the effectiveness of the proposed approach, many
applications on several multimachine power systems having
different sizes have been performed. In this paper, the results

obtained with a relatively large power system which is the New
England/New York interconnected system (16-machine, 68-bus),
Fig. 4, are presented. Details of the system data can be found in
[50].

The obtained results of the proposed approach have been eval-
uated and compared to ordinary GA results [55].

4.1. System analysis without PSSs

A linear representation of the system without PSSs is formed
around the studied nominal operating point. The repartition of
the system dominant electromechanical modes in the complex s-
plane is given in Fig. 5. It clearly shows that the system is unstable.

The first conventional step in PSS design is to identify the best
effective generators for PSS locations. The participation factor
method is widely used to find the optimum PSS locations. The
application of this method demonstrates that 14 generators are

Fig. 4. A single line representation of a 16-machine 68-bus power system.
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mainly involved in the system dominant modes and they must be
equipped with PSSs.

4.2. Ordinary GA-based PSS design

The coordinated synthesis of PSS parameters is optimized using
an ordinary GA with fixed search spaces, as developed in [55], case
A. The GA control parameters and the fixed PSS parameters’ values
are given in Tables 1 and 2, respectively. The search space bound-
aries of the optimized 42 PSS parameters stay fix over the optimi-
zation process. They are given as following:

1 6 Ki � 40
0:01 6 T1i � 1
0:01 6 T3i � 1; i ¼ 1;2; . . . ;NPSS; NPSS ¼ 14

ð11Þ

The final values of the optimized PSS parameters are listed in
Table 3.

The multiobjective function evolution as a function of genera-
tion number is shown in Fig. 6. We find that it attains at the end
of optimization a value of 1.154. However, we can also notice that
the convergence rate significantly decreases from the 150th
generation.

Fig. 7 gives the repartition of the system dominant electrome-
chanical modes with the optimized PSSs. We notice that almost
modes are shifted in the D-shape sector. However, some of them
remain very close to the sector limits with a maximum eigenvalue
real part rmax = –0.99 and a minimum damping factor fmin = 16.2%.

4.3. Dynamic GA-based PSS design

In this part of study, the proposed GA approach based on dy-
namic search spaces is applied. For the optimization initialization,
the same search spaces used in the case of ordinary GA optimiza-
tion, as given in (11) are used. The same GA control parameters
and the same values of fixed PSS parameters (Tables 1 and 2,
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Fig. 5. System electromechanical modes without PSSs.

Table 1
GA control parameters.

Population size 75
Variable number/PSS 3
Crossover probability Pc 0.9
Mutation probability Pm 0.005
Generation number 300

Table 2
Fixed PSS parameters.

Twi T2i T4i

10 0.1 0.05

Table 3
Optimized PSS parameters with ordinary GA.

No. PSS No. G Ordinary GA-based PSS optimization

K T1 T3

1 53 38.99 0.856 0.846
2 54 16.74 0.505 0.328
3 55 38.98 0.817 0.634
4 56 13.62 0.501 0.256
5 57 10.64 0.121 0.257
6 59 03.51 0.506 0.127
7 60 20.60 0.550 0.379
8 61 03.00 0.997 0.145
9 62 05.06 0.995 0.748
10 63 01.26 0.731 0.168
11 64 39.56 0.909 0.084
12 65 38.73 0.395 0.095
13 67 39.86 0.272 0.026
14 68 37.97 0.135 0.197
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Fig. 6. Multiobjective function evolution with ordinary GA-PSSs.
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Fig. 7. System electromechanical modes with ordinary GA-PSSs.
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respectively) are also used. The optimized PSS parameters’ values
are given in Table 4.

This application clearly shows that the expansion of some opti-
mized parameters beyond their initial search space boundaries al-
lows a well improving in the multiobjective function evolution, as
shown in Fig. 8. In this case, we notice that the multiobjective func-
tion rapidly attains, at the 115th generation only, a value of 1.154
which is equal to the final value attained in the previous case.
Then, it continues to improve attaining a value of 1.345 at the
end of the optimization.

To illustrate the optimized parameters’ evolution when using
dynamic GA in comparison to the evolution when using ordinary
GA, we present by way of an example the optimization evolution
of the gain value of the 13th PSS K(13) (connected to the generator
G.67), Fig. 9.

– On Fig. 9a, the PSS gain K(13) attains and remains, from the
125th generation, at values that are very close to the maximum
boundary of the related search space.

– On the contrary, on Fig. 9b, the gain takes, from the 150th gen-
eration, new values that are higher than the initial maximum
boundary. The final optimized value is 45.34.

This can clearly demonstrate the approach effectiveness in find-
ing the optimal parameter values against the problem arisen when
using fixed search spaces.

Concerning the optimization effectiveness in enhancing the sys-
tem dynamic stability, this can be confirmed by eigenvalue analy-
sis and nonlinear system simulations.

The system damping enhancement based on eigenvalue analy-
sis is illustrated in Fig. 10. It can be noticed that all the system
modes are well shifted in the D-shape sector with rmax = –1.2
and fmin = 14.48%.

Table 4
Optimized PSS parameters with dynamic GA.

No. PSS No. G Dynamic GA with large search space-based PSS
optimization

K T1 T3

1 53 25.10 0.914 1.070
2 54 16.21 0.879 0.455
3 55 21.79 0.847 0.200
4 56 05.70 0.253 0.443
5 57 10.56 0.133 0.249
6 59 08.54 0.198 0.161
7 60 21.36 0.937 0.492
8 61 12.90 0.708 0.041
9 62 22.13 0.716 0.055
10 63 09.78 0.065 0.321
11 64 13.04 0.433 0.200
12 65 41.48 0.453 0.086
13 67 45.34 0.162 0.004
14 68 47.20 0.012 0.228
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Fig. 8. Multiobjective function evolution with dynamic GA-PSSs.
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Fig. 9. Optimization evolution of the PSS parameter (K(13)): (a) with ordinary GA-
PSSs (b) with dynamic GA-PSSs.
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The nonlinear time-domain simulations are carried out for a 6-
cycle three-phase fault at bus 60 at the end of line 25#60, assum-
ing also that the two lines (16#17 and 25#26) are out of service.
The response of the system with PSSs tuned by dynamic GA is com-
pared to the system response when using ordinary GA-PSSs. The
rotor speed deviations of the generators G.53, G.59, G.60, G.61,
and G.68, under the proposed severe scenario, are shown in
Fig. 11. It can be seen that the system time-response and overshoot
are well improved when using the dynamic GA optimization.

To assess the system response enhancement in nonlinear sys-
tem simulations, the performance index, Integral Time Absolute
Error (ITAE), is being used as:

ITAE ¼
Z 10

0
t � jDx1j þ jDx2j þ � � � þ jDx16jð Þ � dt ð12Þ

It is worth mentioning that the lower the value of this index, the
better is the system response in terms of time-domain
characteristics.

Applying this index relation, we find for the dynamic GA opti-
mization that ITAE = 17.6. On the other hand, the index value when
using the ordinary GA optimization is ITAE = 48.8. Thus, it can be
clearly proved the superiority of the system performance charac-
teristics in terms of ‘ITAE’ index when using the dynamic GA opti-
mization compared to the optimization based on ordinary GA.

For more demonstration of the dynamic GA robustness toward
the size of the initial search space, the previous optimization is car-
ried out with an initial small search space that is equal to the half
of the search space given in (11). The GA control parameters are ta-
ken the same as in the previous case (Table 1). The optimized PSS
parameters’ values are given in Table 5.

The gradual moving of some parameters’ search spaces con-
stantly guides the optimization toward the global optimum area.
We notice that the multiobjective function evolution, shown in
Fig. 12, attains at the 180th generation a value of 1.153 which is
equal to the final value in the case of ordinary GA. Then, it contin-
ues to advance and attains at the end of the optimization a value of
1.346. Thus, the principle of dynamic search space gratefully helps
the optimization to be independent of the size of the problem’s
search space.
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Fig. 11. Generator speed variations under severe scenario: (a) with ordinary GA-
PSSs (b) with dynamic GA-PSSs.

Table 5
Optimized PSS parameters with dynamic GA.

No. PSS No. G Dynamic GA with small search space-based PSS
optimization

K T1 T3

1 53 42.84 0.410 0.938
2 54 44.78 0.211 0.530
3 55 30.72 0.932 0.326
4 56 14.14 0.253 0.404
5 57 10.49 0.168 0.208
6 59 03.41 0.315 0.303
7 60 10.37 0.396 0.874
8 61 15.75 0.131 0.121
9 62 07.30 0.386 0.231
10 63 04.47 0.191 0.400
11 64 27.44 0.400 0.123
12 65 25.70 0.044 0.155
13 67 46.85 0.024 0.182
14 68 42.93 0.279 0.015
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Fig. 12. Multiobjective function evolution with dynamic small search space GA.

Table 6
Result comparison.

OGA DLSSGA DSSSGA

Optimization final-value 1.154 1.345 1.346
Relative optimization final-value% (compared

to OGA)
– 16.5% 16.6%

Relative convergence rate% (compared to OGA) – 62% 40%

H. Alkhatib, J. Duveau / Electrical Power and Energy Systems 45 (2013) 242–251 249



Finally, to evaluate the optimization effectiveness, in terms of
the optimal solution and convergence rate, we summarize, in Table
6, a comparison of the results obtained with:

– Ordinary GA (OGA).
– Dynamic Large Search Space GA (DLSSGA).
– Dynamic Small Search Space GA (DSSSGA).

5. Conclusion

In this paper, a new optimization approach based on dynamic
search space GAs has been proposed. With ordinary GAs, the opti-
mization performance is often restricted by the choice of the prob-
lem’s search space. The sought global optimum may be located
outside the chosen search space range. In this case, it is not possi-
ble to attain this optimum. In the proposed dynamic GA, we have
proved that it is possible to overcome this problem by moving
the search space range over the optimization process toward
new areas. Consequently, it is possible to reach the global optimum
regardless of the position of this optimum toward the initial search
space. The approach effectiveness is validated on multimachine
PSS design for enhancing power system stability. The performance
of dynamic GA-PSSs design is compared to the results obtained
with ordinary GA-based PSS design. It has been found that the opti-
mization based on dynamic GA can attain better solutions even
when using search spaces that are far form the global optimum po-
sition. The convergence rate is also more improved. In terms of
power system stability, eigenvalue analysis has confirmed the effi-
ciency of the proposed algorithm to provide good damping charac-
teristics to electromechanical modes of oscillations. Nonlinear
time-domain simulations have also demonstrated the robustness
of the system with quick decay of system oscillations. In this
way, the system dynamic stability can be well enhanced and the
power transfer capability can also be extended.
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