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Preface

Diode lasers and related photonic integrated circuits have become even more
commercially important since the first edition of this book was published, in 1995.
They are used in a wide variety of applications ranging from the readout sources
in DVD and Blu-ray disk players, laser printers, mice and pointers, to the complex
multiwavelength transmitters and receivers in optical fiber communication systems
that carry hundreds of gigabits per second of information. New applications, such
as solid-state lighting sources, or sources for high-spectral-efficiency telecommuni-
cations networks continue to emerge as the devices become more varied, reliable,
manufacturable, and inexpensive.

In this edition, the GaN-based materials, which have become important in the
UV/blue/green wavelength regions as well as for solid-state lighting, are included
with equal emphasis to the GaAs and InP-based materials, which provide emission
from the red to about 1 micron in wavelength on GaAs and over the 1.3–1.6 micron
wavelength range on InP. Thus, the range of applications that can be addressed
with a mastery contents of this edition is very broad.

This book has been written to be a resource for professors, graduate students,
industry researchers, and design engineers dealing with the subject of diode lasers
and related photonic integrated circuits for a range of applications. The depth of
coverage is relatively advanced, but the initial chapters provide a working knowl-
edge of semiconductor lasers before delving into much of the advanced material.
Appendices are used both to provide a review of background material as well as
some of the details of the more advanced topics. Thus, by appropriate use of the
appendices, the text can support teaching the material at different academic levels,
but it remains self-contained.

Significant new material has been added, to both improve on the original text,
and to address important technology developments over the last decade. One of
the key novel features is the addition of many worked examples throughout all the
chapters to better illustrate how to apply the theory that is being covered. New
homework problems have also been added to supplement the previous ones, some

xvii



xviii PREFACE

of which are less complex than the previous problems, because many found them
too difficult for beginning students or casual reference readers.

New topics that are being covered in this second edition are more introductory
material related to benefits, applications and basics of laser diodes and photonic ICs;
additional methods for analytic calculation of S parameters based on Mason’s rule;
expanded treatment of DFB and VCSEL lasers; additional material on quantum
dots, gain and other material parameters for both GaN, InP and GaAs based active
regions and devices; treatment of the mode-locked lasers and injection locking;
total internal reflection mirrors and beam splitters; a new appendix and section on
mutimode interference effects and devices; treatment of star couplers and photonic
multiplexers, demultiplexers and routers, and their design; expanded treatment of
losses in dielectric waveguides; treatment of light propagation in curved waveg-
uides; significantly expanded treatment of tunable and widely tunable laser diodes;
expanded treatment of externally modulated lasers, including Mach-Zehnder mod-
ulators and semiconductor optical amplifiers; additional material on waveguide
photodiodes, optical transceivers and triplexers; and a full section on basics and
PICs for coherent communications.

Also available online with the second edition will be a number of password-
protected tools, such as BPM and S and T matrix computation code, DFB laser
code, mode solving code, as well as color versions of all figures, all of which
should be useful for instructors and students, as well as other readers.

The full text is intended for use at the graduate level, although a fairly
comprehensive introductory course on diode lasers at an advanced undergraduate
level could be based around the material in Chapters 1 through 3 together with
Appendices 1 through 7.

It is assumed that the readers have been exposed to elementary quantum mechan-
ics, solid-state physics, and electromagnetic theory at the undergraduate level. It
is also recommended that they have had an introductory optoelectronics course.
Appendices 1 and 3 review most of the necessary background in just about all of
the required detail. Thus, it is possible to use the book with less prior educational
background, provided these review appendices are covered with some care.

For use in a more advanced graduate class, it would not be necessary to cover
the material in the first seven appendices. (Of course, it would still be there for
reference, and the associated homework problems could still be assigned to ensure
its understanding. Nevertheless, it is still recommended that Appendix 5, which
covers the definitions of modal gain and loss, be reviewed because this is not well
understood by the average worker in the field.) The coverage could then move
efficiently through the first three chapters and into Chapters 4 and 5, which deal
with the details of gain and laser dynamics in a first course. For more focus on the
gain physics some of Appendices 8 through 12 could be included in the coverage.
In any event, their inclusion provides for a very self-contained treatment of this
important subject matter.

Chapters 6 and 7 deal more with the electromagnetic wave aspects of pho-
tonic ICs and diode lasers. This material is essential for understanding the more
advanced PIC type of devices used in modern fiber-optic links and networks.



PREFACE xix

However, keeping this material to last allows the student to develop a fairly
complete understanding of the operation of diode lasers without getting bogged
down in the mathematical techniques necessary for the lateral waveguide analysis.
Thus, a working understanding and appreciation of laser operation can be gained
in only one course. Chapter 6 deals with perturbation, coupled-mode theory and
modal excitation while Chapter 7 deals with dielectric waveguide analysis. Putting
Chapter 6 first emphasizes the generality of this material. That is, one really does
not need to know the details of the lateral mode profile to develop these pow-
erful techniques. Using the coupled-mode results, gratings and DFB lasers are
again investigated. Historically, these components were primarily analyzed with this
theory. However, in this text grating-based DFB and DBR lasers are first analyzed
in Chapter 3 using exact matrix multiplication techniques, from which approximate
formulas identical to those derived with coupled mode theory result. The prolif-
eration of computers and the advent of lasers using complex grating designs with
many separate sections has led the authors to assert that the matrix multiplication
technique should be the primary approach taught to students. The advent of the
vertical-cavity laser also supports this approach. Nevertheless, it should be realized
that coupled-mode theory is very important to reduce the description of the prop-
erties of complex waveguide geometries to simple analytic formulae, which are
especially useful in design work. Chapter 7 also introduces some basic numerical
techniques, which have become indispensable with the availability of powerful per-
sonal computers and efficient software for solving complex numerical algorithms.
The finite-difference technique is introduced for optical waveguide analysis, while
the beam-propagation method is discussed as a key tool for analyzing real PIC
structures.

Chapter 8 pulls together most of the material in the first seven chapters by
providing a comprehensive overview of the development of photonic integrated
circuits, with a series of design examples of relatively complex photonic integrated
circuits.

Unlike many books in this field, this book is written as an engineering text. The
reader is first trained to be able to solve problems on real diode lasers, based on
a phenomenological understanding, before going into the complex physical details
such as the material gain process or mode-coupling in dielectric waveguides. This
provides motivation for learning the underlying details as well as a toolbox of
techniques to immediately apply each new advanced detail in solving real problems.
Also, attention has been paid to accuracy and consistency. For example, a careful
distinction between the internal quantum efficiency in LEDs and injection efficiency
in lasers is made, and calculations of gain not only illustrate an analysis technique,
but they actually agree with experimental data. Finally, by maintaining consistent
notation throughout all of the chapters and appendices, a unique self-contained
treatment of all of the included material emerges.

L. A. COLDREN

S. W. CORZINE

M. L. MAŠANOVIĆ
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CHAPTER ONE

Ingredients

1.1 INTRODUCTION

Diode lasers, like most other lasers, incorporate an optical gain medium in a
resonant optical cavity. The design of both the gain medium and the resonant
cavity are critical in modern lasers. A sample schematic of a laser cavity and its
elements is shown in Fig. 1.1. In this case, an optional mode selection filter is
also added to permit only one cavity mode to lase. The gain medium consists of
a material that normally absorbs incident radiation over some wavelength range
of interest. But, if it is pumped by inputting either electrical or optical energy,
the electrons within the material can be excited to higher, nonequilibrium energy
levels, so the incident radiation can be amplified rather than absorbed by stimu-
lating the de-excitation of these electrons along with the generation of additional
radiation. The resonant optical cavity supports a number of cavity standing waves,
or modes. As illustrated in Figs. 1.1b and c, these occur where the cavity length
is a multiple of a half wavelength. If the resulting gain is sufficient to overcome
the losses of some resonant optical mode of the cavity, this mode is said to have
reached threshold, and relatively coherent light will be emitted. The resonant cavity
provides the necessary positive feedback for the radiation being amplified, so that a
lasing oscillation can be established and sustained above threshold pumping levels.
A typical diode laser light-pump current characteristic is shown in Fig. 1.1d. The
threshold can be identified on an output light power vs. pump characteristic by a
sharp knee, as illustrated in Fig. 1.1d.

For various applications, a single lasing mode inside a laser cavity is preferred.
Different methods in cavity design can be used to favor the lasing of one mode
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FIGURE 1.1: (a) A schematic of a simple laser diode. (b) Necessary ingredients for a
single-frequency laser cavity—two mirrors, a gain medium, and a mode selection filter,
which is required only for single wavelength λ operation. (c) Spectral characteristics of
laser elements that get superimposed for single mode operation: cavity modes are given by
m · λ

2 = n̄L, where the mode number m is an integer, and n̄ is the effective index of refraction
(d) Typical light-current diode laser characteristic.

relative to others. The response of the optical mirrors can be tailored to support a
single mode. Often, additional optical filtering elements will be incorporated inside
the resonant cavity, to insure single mode operation of the laser. Fig. 1.1c shows
the spectral response of the various elements of this cavity. This resonant optical
cavity is defined by two broadband mirrors, with flat spectral responses, which
define a number of cavity modes. An additional mode filtering element, with a
defined bandpass optical transfer function, is included. The optical gain medium
has a certain spectral response, which, in combination with the spectral response
of the filter, will define which cavity mode will be singled out. As in any other
oscillator, the output power level saturates at a level equal to the input minus any
internal losses.

Since their discovery, lasers have been demonstrated in solid, liquid, gas
and plasma materials. Today, the most important classes of lasers, besides
the widespread diode/(or semiconductor) lasers are, gas, dye, solid-state, and
fiber lasers, the latter really being fiber-optic versions of solid-state lasers. The
helium–neon gas laser, the widely tunable flowing-dye laser, the Nd-doped YAG
(yttrium–aluminum–garnet) solid-state and the Er or Yb-doped silica fiber lasers
are four popular examples. Figure 1.2 shows commercial examples of Nd-YAG
and dye lasers, an Er-doped fiber amplifier (EDFA), as well as a packaged diode
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1190 mm
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FIGURE 1.2: Examples of solid-state (upper left), dye (upper right), and fiber laser (bottom
left) systems compared to a packaged diode laser chip (bottom right). To function, the diode
laser also requires some drive electronics, and this increases its net size somewhat.

laser for comparison. The EDFA is used in fiber-optic systems to compensate
losses, and with the addition of mirrors placed in the fiber, it can also become
a laser. Diode lasers are distinguished from these other types primarily by their
ability to be pumped directly by an electrical current. Generally, this results in a
much more efficient operation. Overall power conversion efficiencies of ∼50%
are not uncommon for a diode laser, whereas efficiencies on the order of 1% are
common for gas and solid-state lasers, which traditionally have been pumped
by plasma excitation or an incoherent optical flashlamp source, respectively.
However, in recent years diode laser pumps have been used for both bulk
solid-state lasers as well as fiber lasers, and wall plug efficiencies better than 25%
have been achieved. Efficiencies of some gas lasers can be somewhat higher than
that of the He-Ne laser, such as in the case of the CO2 gas laser, which has a
typical efficiency of over 10%. Another type of gas laser, the so-called Excimer
laser, uses transitions between highly excited atomic states to produce high-power
ultraviolet emission, and these are used in the medical industry for a variety of
surgical procedures as well as in the semiconductor industry for patterning very
fine features. Dye lasers are almost always used in a research environment because
of their relatively high maintenance requirements, and they are generally pumped
by other high power bench-top lasers. Their appeal is that their output wavelength
can be tuned by as much as 10% for a given dye and mirror set, and by changing
these, wavelengths from the near IR through much of the visible can be provided
from a single commercial product.

Because of their longer cavities gas, dye, solid-state and fiber lasers also tend
to have more coherent outputs than simple semiconductor lasers. However, more
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sophisticated single-frequency diode lasers can have comparable linewidths in the
low megahertz range.

Another major attribute of diode lasers, their high reliability or useful life-
time, has led to their widespread use in important applications such as fiber-optic
communications systems. Whereas the useful life of gas or flash-lamp-pumped
solid-state lasers is typically measured in thousands of hours, that of carefully
qualified diode lasers is measured in hundreds of years. Recent use of diode lasers to
pump solid-state and fiber lasers may, however, provide the best advantages of both
technologies, providing high reliability, improved efficiency, and low linewidth.

Net size is another striking difference between semiconductor and other lasers.
Whereas gas, solid-state and fiber lasers are typically tens of centimeters in length,
diode laser chips are generally about the size of a grain of salt, although the mount-
ing and packaging hardware increases the useful component size to the order of a
cubic centimeter or so. The diode lasers are mass-produced using wafer scale semi-
conductor processes, which makes them really inexpensive compared to all other
types of lasers. The semiconductor origins of diode lasers allows for semiconductor
integration techniques to be applied, and for multiple building blocks to be defined
along the common waveguide, yielding functionally complex devices and opening
a new field of photonic integrated circuits. Diode lasers with integrated optical
amplifiers, modulators and similar other functions have been realized. In addition,
monolithic widely tunable diode lasers and transmitters have been conceived and
developed, in a footprint much smaller than that of external-cavity widely tunable
lasers. Arrays of diode lasers and transmitters have been commercialized as well,
for both optical pumping, and telecom purposes.

Diode lasers are used in many consumer products today. Examples are illustrated
in Fig. 1.3. The most widely used diode lasers on the planet by far are those used in
CD/DVD players, DVD ROM drives and optical mice. These diode lasers produce
light beams in the red part of the visible spectrum at a wavelength of 0.65 μm.
Recent improvements of the diode lasers emitting in the blue visible part of the
spectrum have allowed for higher density DVD discs to be developed, resulting in
the Blu-ray Disc technology, operating at 0.405 μm. Visible red diode lasers have
replaced helium-neon lasers in supermarket checkout scanners and other bar code
scanners. Laser printers are commonly used to produce high-resolution printouts,
enabled by the high resolution determined by the wavelength of the diode laser
used (780 nm or lower). Laser pointers, patient positioning devices in medicine
utilize diode lasers emitting in the visible spectrum, both red and green.

In fiber-optic communication systems, diode lasers are primarily used as light
sources in the optical links. For short reach links, a directly modulated diode
laser is used as a transmitter. For longer reach links, diode lasers are used in
conjunction with external modulators, which can be external to the diode laser
chip, or integrated on the same chip. Complex diode laser-based photonic integrated
circuits are currently deployed in a number of optical networks. In addition, Erbium
doped fiber amplifiers, a key technology that is utilized for signal amplification in
the existing fiber-optic networks, has in part been enabled by the development of
high power, high reliability diode pump lasers.



1.2 ENERGY LEVELS AND BANDS IN SOLIDS 5

FIGURE 1.3: Examples of the most common products that utilize diode lasers. (left) red
laser in a DVD player shown in laptop computer; (center-top) blue laser in a Blu-ray Disc
player; (center-bottom) red laser in a laser printer; (right-top) red laser in a bar-code scanner;
(right-bottom) red (and sometimes green or blue) laser in a pointer.

There are many other areas where diode lasers are utilized. In medical appli-
cations, diode lasers are used in optical coherence tomography, an optical signal
acquisition and processing method allowing extremely high quality, micrometer-
resolution, three-dimensional images from within optical scattering media (e.g.,
biological tissue) to be obtained. In remote sensing, diode lasers are used in light
detection and ranging (LIDAR) technology, new generation of optical radars that
offer much improved resolution compared to the classical radio-frequency radars,
due to light’s much shorter wavelength. Other, similar applications are in range
finding and military targeting.

In this chapter, we shall attempt to introduce some of the basic ingredients
needed to understand semiconductor diode lasers. First, energy levels and bands in
semiconductors are described starting from background given in Appendix 1. The
interaction of light with these energy levels is next introduced. Then, the enhance-
ment of this interaction by carrier and photon confinement using heterostructures
is discussed. Materials useful for diode lasers and how epitaxial layers of such
materials can be grown is briefly reviewed. The lateral patterning of these layers
to provide lateral current, carrier, and photon confinement for practical lasers is
introduced. Finally, examples of different diode lasers are given at the end of the
chapter.

1.2 ENERGY LEVELS AND BANDS IN SOLIDS

To begin to understand how gain is accomplished in lasers, we must have some
knowledge of the energy levels that electrons can occupy in the gain medium.
The allowed energy levels are obtained by solving Schrdinger’s equation using the
appropriate electronic potentials. Appendix 1 gives a brief review of this impor-
tant solid-state physics, as well as the derivation of some other functions that we
shall need later. Figure 1.4 schematically illustrates the energy levels that might
be associated with optically induced transitions in both an isolated atom and a
semiconductor solid. Electron potential is plotted vertically.



6 INGREDIENTS

−Ev

−Ec

E′2

E21

E′1

ATOM SOLID

Conduction
band

Valence
band

FIGURE 1.4: Illustration of how two discrete energy levels of an atom develop into bands
of many levels in a crystal.

In gas and solid-state lasers, the energy levels of the active atomic species are
only perturbed slightly by the surrounding gas or solid host atoms, and they remain
effectively as sharp as the original levels in the isolated atom. For example, lasers
operating at the 1.06 μm wavelength transition in Nd-doped YAG, use the 4F3/2

level of the Nd atom for the upper laser state #2 and the 4I11/2 level for the lower
laser state #1. Because only these atomic levels are involved, emitted or absorbed
photons need to have almost exactly the correct energy, E21 = hc/1.06 μm.

On the other hand, in a covalently bonded solid like the semiconductor materials
we use to make diode lasers, the uppermost energy levels of individual constituent
atoms each broaden into bands of levels as the bonds are formed to make the solid.
This phenomenon is illustrated in Fig. 1.4. The reason for the splitting can be
realized most easily by first considering a single covalent bond. When two atoms
are in close proximity, the outer valence electron of one atom can arrange itself into
a low-energy bonding (symmetric) charge distribution concentrated between the
two nuclei, or into a high-energy antibonding (antisymmetric) distribution devoid
of charge between the two nuclei. In other words, the isolated energy level of the
electron is now split into two levels due to the two ways the electron can arrange
itself around the two atoms.1 In a covalent bond, the electrons of the two atoms
both occupy the lower energy bonding level (provided they have opposite spin),
whereas the higher energy antibonding level remains empty.

If another atom is brought in line with the first two, a new charge distribution
becomes possible that is neither completely bonding nor antibonding. Hence, a third
energy level is formed between the two extremes. When N atoms are covalently
bonded into a linear chain, N energy levels distributed between the lowest-energy
bonding state and the highest-energy antibonding state appear, forming a band of
energies. In our linear chain of atoms, spin degeneracy allows all N electrons to
fall into the lower half of the energy band, leaving the upper half of the band
empty. However in a three-dimensional crystal, the number of energy levels is
more generally equated with the number of unit cells, not the number of atoms. In

1The energy level splitting is often incorrectly attributed to the Pauli exclusion principle, which forbids
electrons from occupying the same energy state (and thus forces the split, as the argument goes). In
actuality, the splitting is a fundamental phenomenon associated with solutions to the wave equation
involving two coupled systems and applies equally to probability, electromagnetic, or any other kind
of waves. It has nothing to do with the Pauli exclusion principle.
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typical semiconductor crystals, there are two atoms per primitive unit cell. Thus, the
first atom fills the lower half of the energy band (as with the linear chain), whereas
the second atom fills the upper half, such that the energy band is entirely full.

The semiconductor valence band is formed by the multiple splitting of the
highest occupied atomic energy level of the constituent atoms. In semiconduc-
tors, the valence band is by definition entirely filled with no external excitation at
T = 0 K. Likewise, the next higher-lying atomic level splits apart into the conduc-
tion band, which is entirely empty in semiconductors without any excitation. When
thermal or other energy is added to the system, electrons in the valence band may
be excited into the conduction band analogous to how electrons in isolated atoms
can be excited to the next higher energy level of the atom. In the solid then, this
excitation creates holes (missing electrons) in the valence band as well as electrons
in the conduction band, and both can contribute to conduction.

Although Fig. 1.4 suggests that many conduction—valence band state pairs may
interact with photons of energy E21, Appendix 1 shows that the imposition of
momentum conservation in addition to energy conservation limits the interaction
to a fairly limited set of state pairs for a given transition energy. This situation is
illustrated on the electron energy versus k -vector (E − k) plot shown schematically
in Fig. 1.5. (Note that momentum ≡ �k.) Because the momentum of the interacting
photon is negligibly small, transitions between the conduction and valence band
must have the same k -vector, and only vertical transitions are allowed on this
diagram. This fact will be very important in the calculation of gain.

1.3 SPONTANEOUS AND STIMULATED TRANSITIONS:
THE CREATION OF LIGHT

With a qualitative knowledge of the energy levels that exist in semiconductors, we
can proceed to consider the electronic transitions that can exist and the interactions

E2

E1

Ec

Ev

E

k

FIGURE 1.5: Electron energy vs. wave vector magnitude in a semiconductor showing a
transition of an electron from a bound state in the valence band (E1) to a free carrier state
in the conduction band (E2). The transition leaves a hole in the valence band. The lowest
and highest energies in the conduction and valence bands are Ec and Ev , respectively.
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FIGURE 1.6: Electronic transitions between the conduction and valence bands. The first
three represent radiative transitions in which the energy to free or bind an electron is supplied
by or given to a photon. The fourth illustrates two nonradiative processes.

with lightwaves that are possible. Figure 1.6 illustrates the different kinds of elec-
tronic transitions that are important, emphasizing those that involve the absorption
or emission of photons (lightwave quanta).

Although we are explicitly considering semiconductors, only a single level in
both the conduction and valence bands is illustrated. As discussed earlier and in
Appendix 1, momentum conservation selects only a limited number of such pairs
of levels from these bands for a given transition energy. In fact, if it were not for
a finite bandwidth of interaction owing to the finite state lifetime, a single pair
of states would be entirely correct. In any event, the procedure to calculate gain
and other effects will be to find the contribution from a single state pair and then
integrate to include contributions from other pairs; thus, the consideration of only
a single conduction–valence band state pair forms an entirely rigorous basis.

As illustrated, four basic electronic recombination/generation (photon emission/
absorption) mechanisms must be considered separately:

1. Spontaneous recombination (photon emission)

2. Stimulated generation (photon absorption)

3. Stimulated recombination (coherent photon emission)

4. Nonradiative recombination

The open circles represent unfilled states (holes), and the solid circles represent
filled states (electrons). Because electron and hole densities are highest near the
bottom or top of the conduction or valence bands, respectively, most transitions
of interest involve these carriers. Thus, photon energies tend to be only slightly
larger than the bandgap (i.e., E21 = hν ∼ Eg ). The effects involving electrons in
the conduction band are all enhanced by the addition of some pumping means to
increase the electron density to above the equilibrium value there. Of course, the
photon absorption can still take place even if some pumping has populated the
conduction band somewhat.

The first case (Rsp) represents the case of an electron in the conduction band
recombining spontaneously with a hole (missing electron) in the valence band
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to generate a photon. Obviously, if a large number of such events should occur,
relatively incoherent emission would result because the emission time and direction
would be random, and the photons would not tend to contribute to a coherent
radiation field. This is the primary mechanism within a light-emitting diode (LED),
in which photon feedback is not provided. Because spontaneous recombination
requires the presence of an electron–hole pair, the recombination rate tends to be
proportional to the product of the density of electrons and holes, NP. In undoped
active regions, charge neutrality requires that the hole and electron densities be
equal. Thus, the spontaneous recombination rate becomes proportional to N 2.

The second illustration (R12) outlines photon absorption, which stimulates the
generation of an electron in the conduction band while leaving a hole in the
valence band.

The third process (R21) is exactly the same as the second, only the sign of the
interaction is reversed. Here an incident photon perturbs the system, stimulating the
recombination of an electron and hole and simultaneously generating a new pho-
ton. Of course, this is the all-important positive gain mechanism that is necessary
for lasers to operate. Actually, it should be realized that the net combination of
stimulated emission and absorption of photons, (R21 − R12), will represent the net
gain experienced by an incident radiation field. In an undoped active region, net
stimulated recombination (photon emission) depends on the existence of photons in
addition to a certain value of electron density to overcome the photon absorption.
Thus, as we shall later show more explicitly, the net rate of stimulated recombina-
tion is proportional to the photon density, Np , multiplied by (N − Ntr ), where Ntr

is a transparency value of electron density (i.e., where R21 = R12).
Finally, the fourth schematic in Fig. 1.6 represents the several nonradiative ways

in which a conduction band electron can recombine with a valence band hole with-
out generating any useful photons. Instead, the energy is dissipated as heat in the
semiconductor crystal lattice. Thus, this schematic represents the ways in which
conduction band electrons can escape from usefully contributing to the gain, and
as such these effects are to be avoided if possible. In practice, there are two general
nonradiative mechanisms for carriers that are important. The first involves nonra-
diative recombination centers, such as point defects, surfaces, and interfaces, in the
active region of the laser. To be effective, these do not require the simultaneous
existence of electrons and holes or other particles. Thus, the recombination rate
via this path tends to be directly proportional to the carrier density, N . The sec-
ond mechanism is Auger recombination, in which the electron–hole recombination
energy, E21, is given to another electron or hole in the form of kinetic energy.
Thus, again for undoped active regions in which the electron and hole densities
are equal, Auger recombination tends to be proportional to N 3 because we must
simultaneously have the recombining electron–hole pair and the third particle that
receives the ionization energy. Appendix 2 gives techniques for calculating the car-
rier density from the density of electronic states and the probability that they are
occupied, generally characterized by a Fermi function.
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1.4 TRANSVERSE CONFINEMENT OF CARRIERS AND PHOTONS
IN DIODE LASERS: THE DOUBLE HETEROSTRUCTURE

As discussed in the previous section, optical gain in a semiconductor can only
be achieved through the process of stimulated recombination (R21). Therefore, a
constant flow of carriers must be provided to replenish the carriers that are being
recombined and converted into photons in the process of providing gain. For this
flow of carriers in the gain material to happen, the semiconductor must be pumped
or excited with some external energy source. A major attribute of diode lasers is
their ability to be pumped directly with an electrical current. Of course, the active
material can also be excited by the carriers generated from absorbed light, and
this process is important in characterizing semiconductor material before electrical
contacts are made. However, we shall focus mainly on the more technologically
important direct current injection technique in most of our analysis.

The carrier-confining effect of the double–heterostructure (DH) is one of the
most important features of modern diode lasers. After many early efforts that used
homojunctions or single heterostructures, the advent of the DH structure made the
diode laser truly practical for the first time and led to two Nobel prize awards in
physics in the year 2000. Figure 1.7 gives a schematic of a broad-area pin DH
laser diode, along with transverse sketches of the energy gap, index of refraction,
and resulting optical mode profile across the DH region. As illustrated, a thin slab
of undoped active material is sandwiched between p- and n-type cladding layers,
which have a higher conduction–valence band energy gap. Typical thicknesses of
the active layer for this simple three-layer structure are ∼0.1–0.2 μm. Because the
bandgap of the cladding layers is larger, light generated in the active region will
not have sufficient photon energy to be absorbed in them (i.e., E21 = hν < Egcl ).

For this DH structure, a transverse (x -direction) potential well is formed for
electrons and holes that are being injected from the n- and p-type regions, respec-
tively, under forward bias. As illustrated in part (b), they are captured and confined
together, thereby increasing their probability of recombining with each other. In
fact, unlike in most semiconductor diodes or transistors that are to be used in purely
electronic circuits, it is desirable to have all the injected carriers recombine in the
active region to form photons in a laser or LED. Thus, simple pn-junction theory,
which assumes that all carriers entering the depletion region are swept through
with negligible recombination, is totally inappropriate for diode lasers and LEDs.
In fact, a better assumption for lasers and LEDs is that all carriers recombine in
the i -region. Appendix 2 also discusses a possible “leakage current,” which results
from some of the carriers being thermionically emitted over the heterobarriers
before they can recombine.

To form the necessary resonant cavity for optical feedback, simple cleaved facets
can be used because the large index of refraction discontinuity at the semiconduc-
tor–air interface provides a reflection coefficient of ∼30%. The lower bandgap
active region also usually has a higher index of refraction, n , than the cladding,
as outlined in Fig. 1.7c, so that a transverse dielectric optical waveguide is formed
with its axis along the z -direction. The resulting transverse optical energy density
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FIGURE 1.7: Aspects of the double-heterostructure diode laser: (a) a schematic of the
material structure; (b) an energy diagram of the conduction and valence bands vs. transverse
distance; (c) the refractive index profile; and (d) the electric field profile for a mode traveling
in the z -direction.

profile (proportional to the photon density or the electric field magnitude squared,
|E |2) is illustrated in Fig. 1.7d.

Thus, with the in-plane waveguide and perpendicular mirrors at the ends, a
complete resonant cavity is formed. Output is provided at the facets, which only
partially reflect. Later we shall consider more complex reflectors that can provide
stronger feedback and wavelength filtering function, as illustrated in Fig 1.1. One
should also realize that if the end facet reflections are suppressed by antireflection
coatings, the device would then function as an LED. When we analyze lasers in
the next chapter, the case of no feedback will also be considered.

The thickness of the active region in a DH plays an important role in its optical
properties. If this thickness starts to get below ∼100 nm, quantum effects on optical
properties must be taken into account, and this regime of operation will be referred
to as the quantum confined regime. For dimensions larger than 100 nm, we can
assume that we are working with a continuum of states, and this regime is called
the bulk regime.



12 INGREDIENTS

E

x
Ec

Ev

E

x

Ec

Ev

(a ) (b)

FIGURE 1.8: Transverse band structures for two different separate-confinement heterostruc-
tures (SCHs): (a) standard SCH; (b) graded-index SCH (GRINSCH). The electric field
(photons) are confined by the outer step or graded heterostructure; the central quantum
well confines the electrons.

It turns out that many modern diode lasers involve a little more complexity in
their transverse carrier and photon confinement structure as compared to Fig. 1.7,
but the fundamental concepts remain valid. For example, with in-plane lasers,
where the light propagates parallel to the substrate surface, a common depar-
ture from Fig. 1.7 is to use a thinner quantum-well carrier-confining active region
(d ∼ 10 nm) and a surrounding intermediate bandgap separate confinement region
to confine the photons. Figure 1.8 illustrates transverse bandgap profiles for such
separate-confinement heterostructure, single quantum-well (SCH-SQW) lasers. The
transverse optical energy density is also overlaid to show that the photons are
confined primarily by the outer heterointerfaces and the carriers by the inner
quantum well. Quantum-well active regions reduce diode laser threshold current
and improve their efficiency and their thermal properties. The important concepts
related to the quantum-well active regions are introduced in Appendix 1 and further
discussed in detail in Chapter 4.

Example 1.1 An InP/InGaAsP double-heterostructure laser cross-section con-
sists of a 320 nm tall InGaAsP separate confinement heterostructure waveguide
region with the bandgap corresponding to 1.3 μm (1.3 Q), clad by InP on both
sides.

Problem: (1) Determine the effective index of the fundamental transverse mode of
this waveguide. (2) Determine the rate of decay of the normalized electric field U.

Solution: To solve this problem, we utilize the tools from the Appendix 3. Because
this optical waveguide structure is symmetric, we can utilize the expression (A3.14)
to solve for the effective index. Then, we can compute the wave vector component
along x, kx , and the decay constant γ using Equation (A3.7). From the problem
statement, the refractive index of the InGaAsP region can be found in Table 1.1,
nII = 3.4.
For the cladding, the refractive index value at 1.55 μm is nI = nIII = 3.17. From
Eq. (A3.12), the normalized frequency, V , is given by

V = k0d(n2
II − n2

III)
1
2 = 2π

1.55 μm
0.32 μm (3.42 − 3.172)

1
2 = 1.594
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Using Eq. (A3.14), we can compute the value of the normalized propagation para-
meter b,

b = 1 −
ln

(
1 + V 2

2

)
·

V 2

2

= 1 −
ln

(
1 + 1.5942

2

)
1.5942

2

= 0.354

and the effective index value,

n̄ = (n2
IIb + n2

I (1 − b))
1
2 = (3.42 · 0.354 + 3.172 · (1 − 0.354))

1
2 = 3.253

To determine the minimum thickness of the top p doped cladding, we can compute
the decay constant γ using Eq. (A3.7), remembering that the propagation constant
β = k0n̄ ,

γ = k0(n̄
2 − n2

I )
1
2 = 2π

1.55 μm
(3.2532 − 3.172)

1
2 = 2.9591 μm−1

Thus, for a 1 μm thick cladding, the optical energy decays to exp (−2.9591) =
0.0027 at the top surface. We can observe that the rate of decay is strongly depen-
dent on the refractive index difference between the waveguide and the cladding—-
for a larger difference, the field intensity outside the waveguide region decays
faster. In a real laser, the active region would probably be defined by a set of
quantum wells in the center of the InGaAsP double heterostructure region. This
would complicate solving for the effective index, and this case will be treated in
Chapter 6, when we talk about the perturbation theory.

1.5 SEMICONDUCTOR MATERIALS FOR DIODE LASERS

The successful fabrication of a diode laser relies very heavily on the properties
of the materials involved. There is a very limited set of semiconductors that
possess all the necessary properties to make a good laser. For the desired dou-
ble heterostructures at least two compatible materials must be found, one for the
cladding layers and another for the active region. In more complex geometries, such
as the SCH mentioned earlier, three or four different bandgaps may be required
within the same structure. The most fundamental requirement for these different
materials is that they have the same crystal structure and nearly the same lattice
constant, so that single-crystal, defect-free films of one can be epitaxially grown
on the other. Defects generally become nonradiative recombination centers, which
can steal many of the injected carriers that otherwise would provide gain and
luminescence. In a later section we shall discuss some techniques for performing
this epitaxial growth, but first we need to understand how to select materials that
meet these fundamental boundary conditions.

Table 1.1 lists the lattice constants, bandgaps, effective masses, and indices of
refraction for some common materials. (Subscripts on effective masses, C, HH,
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LH, and SH, denote values in the conduction, heavy-hole, light-hole, and split-off
bands, respectively.)

Figure 1.9 plots the bandgap versus lattice constant for several families of III–V
semiconductors. These III–V compounds (which consist of elements from columns
III and V of the periodic table) have emerged as the materials of choice for lasers
that emit in the 0.7–1.6 μm wavelength range. This range includes the important
fiber-optic communication bands at 0.85, 1.31, and 1.55 μm, the pumping bands
for fiber amplifiers at 1.48 and 0.98 μm, the window for pumping Nd-doped YAG
at 0.81 μm, and the wavelength used for classic DVD disc players at 0.65 μm.
Most of these materials have a direct gap in E–k space, which means that the
minimum and maximum of the conduction and valence bands, respectively, fall
at the same k -value, as illustrated in Fig. 1.5. This facilitates radiative transitions
because momentum conservation is naturally satisfied by the annihilation of the
equal and opposite momenta of the electron and hole. (The momentum of the
photon is negligible.)

The lines on this diagram represent ternary compounds, which are alloys of the
binaries labeled at their end-points. The dashed lines represent regions of indirect
gap. The areas enclosed by lines between three or four binaries represent quater-
naries, which obviously have enough degrees of freedom that the energy gap can
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FIGURE 1.9: Energy gap vs. lattice constant of ternary compounds defined by curves that
connect the illustrated binaries. The values in this plot were obtained from [2, 5] and are
valid at T = 0 K. Details on how these values can be converted to room temperature values
are given in the references cited.
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be adjusted somewhat without changing the lattice constant. Thus, in general, a
quaternary compound is required in a DH laser to allow the adjustment of the
energy gap while maintaining lattice matching. Fortunately, there are some unique
situations that allow the use of more simple ternaries. As can be seen, the AlGaAs
ternary line is almost vertical. That is, the substitution of Al for Ga in GaAs does
not change the lattice constant very much. Thus, if GaAs is used as the substrate,
any alloy of Alx Ga1−x As can be grown, and it will naturally lattice match, so that
no misfit dislocations or other defects should form. As suggested by the formula,
the x -value determines the percentage of Al in the group III half of the III–V com-
pound. The AlGaAs/GaAs system provides lasers in the 0.7–0.9 μm wavelength
range. For DH structures in this system, about two-thirds of the band offset occurs
in the conduction band. For shorter wavelengths into the red (e.g., 650 nm as used
in DVDs), the AlInGaP/GaAs system is generally employed. In this case lattice
matching requires a precise control of the ratios of Al:In:Ga in the quaternary
regions.

The most popular system for long-distance fiber optics is the InGaAsP/InP sys-
tem. Here the quaternary is specified by an x and y value (i.e., In1−x Gax Asy P1−y ).
This is grown on InP to form layers of various energy gap corresponding to wave-
lengths in the 1.0–1.6 μm range, where silica fiber traditionally had minima in
loss (1.55 μm) and dispersion (1.3 μm). Using InP as the substrate, a range of
lattice-matched quaternaries extending from InP to the InGaAs ternary line can be
accommodated, as indicated by the vertical line in Fig. 1.9. Fixing the quaternary
lattice constant defines a relation between x and y . It has been found that choos-
ing x equal to ∼0.47y results in approximate lattice matching to InP. The ternary
endpoint is In0.53Ga0.47As. For DH structures in this system, only about 40% of
the band offset occurs in the conduction band.

InGaAsP lasers and photonic integrated circuits (PICs) generally need to be
operated at a constant temperature to maintain their performance. This is primarily
due to the fact that with the increasing temperature, the electron leakage current
from the quantum well increases. The main material parameter controlling the
current leakage is the conduction band offset. Due to their much lighter effec-
tive mass, electrons require much tighter confinement with increasing temperature
than holes. To improve the diode laser performance at high temperatures, particu-
larly of interest for the fiber-optic metropolitan area network deployment, material
engineering was successfully employed to increase the conduction band offset,
through introduction of InGaAlAs material system. This material system enables
quantum wells with the conduction band offset of �Ec = 0.7�Eg. Changing the
barrier from �Ec = 0.4�Eg to �Ec = 0.7�Eg will lead to the reduction of the
leakage current density from J = 50 A/cm2 to J = 1.5 A/cm2. Uncooled oper-
ation of lasers and integrated laser electroabsorption modulator PICs have been
demonstrated at both 1310 nm and 1550 nm, and this remains an active area of
research and deployment.

Lattice constants of ternary and quaternary compounds can be precisely calcu-
lated from Vegard’s law, which gives a value equal to the weighted average of
all the four possible constituent binaries. For example, in In1−x Gax Asy P1−y , we
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obtain

a(x , y) = xyaGaAs + x(1 − y)aGaP + (1 − x)yaInAs + (1 − x)(1 − y)aInP. (1.1)

Similarly, the lattice constants for other alloys can be calculated. For example,
in the AlInGaP/GaAs case, we would be considering a linear superposition of
the lattice constants of the binaries AlP, InP, and GaP to match that of GaAs.
And for InGaAlAs/InP, it would be the InAs, GaAs, AlAs binary lattice constants
superimposed to match that of InP. The following example illustrates the application
of the Vegard’s law to the crystal lattice.

Example 1.2 InP-based 1550 nm vertical cavity surface emitting lasers have
been made with AlAsSb/AlGaAsSb multilayer mirrors.

Problem: Calculate the fraction of As in the AlAsSb mirror layers for lattice
matching to InP.

Solution: To solve this problem, we will use the Vegard’s law. The composition
of any AlAsSb alloy can be specified by value x , where x is the percentage of As
in the alloy AlSb1−x Asx . From Table 1.1, the lattice constants of InP, AlAs and
AlSb are aInP = 5.8688 Å, aAlAs = 5.660 Å, and aAlSb = 6.1355 Å, respectively.
Using Vegard’s law,

aInP = xaAlAs + (1 − x)aAlSb.

Therefore, the fraction of As in the lattice matched mirror layer is

x = aInP − aAlSb

aAlAs − aAlSb
= 0.56.

Other parameters, for example, bandgap, can also be interpolated in a similar
fashion to Eq. (1.1), however a second-order bowing parameter must oftentimes
be added to improve the fit. The ternary lines in Fig. 1.9 were obtained using the
following modified version of Vegard’s law,

EgABC (x) = xEgAB + (1 − x)EgAC − x(1 − x)CABC , (1.2)

where CABC is an empirical bowing parameter.
When interpolating, one must be careful if different bands come into play in the

process. For example, in AlGaAs, the values for GaAs and Al0.2Ga0.8As can be
linearly extrapolated for direct gap AlGaAs up to x ∼ 0.45, but at this point the
indirect band minimum becomes the lowest, so the gap for higher x-values is then
interpolated from this point using energy gap values that correspond to the first
indirect band for both GaAs and AlAs. This extrapolation will be needed in some
homework exercises. Here, we give a simple example of bandgap calculation in a
ternary compound.
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Example 1.3

Problem: A wurtzite structure GaInN quantum well contains 53% of Ga and 47%
of N. The bowing parameter for the direct bandgap of this ternary is C = 1.4 eV.
What is the bandgap of this quantum well?

Solution: To calculate the bandgap, we need to use Vegard’s law, including
the correction introduced by the bowing parameter. From Table 1.1, the direct
bandgaps for GaN and InN are Eg1 = 3.510 eV and Eg2 = 0.78 eV, respectively.
Using Eq. (1.2),

EgGaInN = 0.53 · Eg1 + 0.47 · Eg2 − 0.53(0.47)1.4 eV = 1.878 eV.

In addition to the usual III–V compounds discussed earlier, Table 1.1 also lists
some of the nitride compounds. These compounds had originally gained attention
because of their successful use in demonstrating LEDs emitting at high energies
in the visible spectrum. Whereas the InAlGaAsP based compounds are limited to
emission in the red and near infrared regions, the nitrides have demonstrated blue
and UV emission. GaN-based optoelectronic devices have achieved considerable
progress since their first demonstration in 1996. Development of advanced
epitaxial growth techniques, defect-reduced substrates, and sophisticated device
design has resulted in high performance light-emitting diodes (LEDs) and
laser diodes (LDs) with wide commercial presence. GaN-based LEDs have
been particularly successful in solid-state lighting and display applications
(traffic signal lights, automobile lights, flashlights), while laser diodes have
emerged as critical components in the next generation of the high density DVD
disk players (Blu-ray). Nitride components continue to generate considerable
interest in such applications as projection displays, high resolution printing, and
optical sensing, and thus remain an active area of research, development and
commercialization.

Lattice matching is generally necessary to avoid defects that can destroy the
proper operation of diode lasers. However, it is well known that a small lattice
mismatch (�a/a ∼ 1%) can be tolerated up to a certain thickness (∼20 nm) with-
out any defects. Thus, for a thin active region, one can move slightly left or right
of the lattice matching condition illustrated in Fig. 1.9 or by Eq. (1.1). In this case,
the lattice of the deposited film distorts to fit the substrate lattice in the plane,
but it also must distort in the perpendicular direction to retain approximately the
same unit cell volume it would have without distortion. Figure 1.10 shows a cross
section of how unit cells might distort to accommodate a small lattice mismatch.
After a critical thickness is exceeded, misfit defects are generated to relieve the inte-
grated strain. However, up to this point, it turns out that such strained layers may
have more desirable optoelectronic properties than their unstrained counterparts.
In particular, due to their small dimensions of less than 10 nm, strained quantum
wells can be created without introducing any undesired defects into the crystal.
These structures will be analyzed in some detail in Chapter 4. In fact, it is fair to
say that such strained-layer quantum wells, contained within separate-confinement
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Compressive Tensile

FIGURE 1.10: Schematic of sandwiching quantum wells with either a larger or smaller
lattice constant to provide either compressive or tensile strain, respectively.

heterostructures as illustrated in Fig. 1.7, have become the most important form of
active regions in modern diode lasers.

One of the key factors in determining the output wavelength of a quantum-well
laser besides the material composition is the well width, or the so-called quantum-
size effect. As illustrated in the following example, as a quantum-well is made
more narrow, the lowest state energy is squeezed up from the well bottom, and the
transition wavelength is made shorter. The barrier height plays an important role
in this process as well because this limits the amount the energy can move away
from the well bottom. These issues are covered in Appendix 1.

Example 1.4 An 80 Å wide quantum well composed of InGaAsP, lattice
matched to InP, with the bandgap corresponding to 1.55 μm (1.55 Q), is surrounded
by an InGaAsP barrier, lattice matched to InP, with the bandgap wavelength of
1.3 μm (1.3 Q).

Problem: Determine the energy and wavelength for photons generated in recom-
bination between the ground states of the quantum well at room temperature.

Solution: In order to solve this problem, we utilize the tools from Appendix 1.
We will determine the energy levels of this quantum well using Eq. (A1.14). First,
we need to compute the energy of the ground state for this quantum well with
infinitely high walls. Then, we need to determine the quantum numbers taking into
account that this quantum well has finite walls, using Eq. (A1.17).

As mentioned in the problem statement, both the quantum well and the barrier are
lattice matched to InP. From Table 1.1, Ebarrier = 0.954 eV, and Ewell = 0.800 eV.
In this material system, only 40% of the band offset occurs in the conduction band.
Therefore, the quantum well barrier height in the conduction band is given by V0C =
0.4 (Ebarrier − Ewell) = 61.6 meV and V0V = 0.6 (Ebarrier − Ewell) = 92.4 meV in the
valence band.

From Eq. (A1.14), the ground state energy for a quantum well with infinite walls,
E∞

1c , is given by

E∞
1c = 3.76

m0

m

(
100 Å

l

)2

meV = 3.76
1

0.045

(
100

80

)2

meV = 130.55 meV
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where m = mc was taken from Table 1.1. Similarly, for the valence band,
E∞

1v = 15.88 meV, with m = mHH. Now, we can calculate nmax for both quantum

wells using Eq. (A1.17), nmaxc =
√

V0c
E∞

1c
= 0.69, and nmaxv =

√
V0v
E∞

1v
= 2.41. The

normalized variable nmax, when rounded up to the nearest integer, yields the
largest number of bound states possible. Either by reading the chart in Fig. A1.4 or
using Eq. (A1.18), we can calculate the lowest quantum numbers for both cases:

n1c ≈ 2

π
arctan [nmaxc (1 + 0.6nmaxc+1)] = 0.49

n1v ≈ 2

π
arctan [nmaxv (1 + 0.6nmaxv+1)] = 0.78

Thus, E1c = n2
1cE∞

1c = 31.35 meV and E1v = n2
1vE∞

1v = 9.66 meV. Finally, the
photon energy is given by

Ephoton = Ewell + E1c + E1v = 841.01 meV.

This energy corresponds to the wavelength

λ = 1.23985 eV μm

0.84101 eV
= 1.47 μm.

1.6 EPITAXIAL GROWTH TECHNOLOGY

To make the multilayer structures required for diode lasers, it is necessary to
grow single-crystal lattice-matched layers with precisely controlled thicknesses over
some suitable substrate. We have already discussed the issue of lattice matching
and some of the materials involved. Here we briefly introduce several techniques
to perform epitaxial growth of the desired thin layers.

We shall focus on the three most important techniques in use today: liquid-phase
epitaxy (LPE), molecular beam epitaxy (MBE), and organometallic vapor-phase
epitaxy (OMVPE). OMVPE is often also referred to as metal-organic chemical
vapor deposition (MOCVD), although purists do not like the omission of the word
epitaxy. As the names imply, the three techniques refer to growth either in liq-
uid, vacuum, or a flowing gas, respectively. The growth under liquid or moderate
pressure gas tends to be done near equilibrium conditions, so that the reaction
can proceed in either the forward or reverse direction to add or remove material,
whereas the MBE growth tends to be more of a physical deposition process. Thus,
the near-equilibrium processes, LPE and MOCVD, tend to better provide for the
removal of surface damage at the onset of growth, and they are known for pro-
viding higher quality interfaces generally important in devices. MBE on the other
hand provides the ultimate in film uniformity and thickness control.

Figure 1.11 gives a cross section of a modern LPE system. In this system the
substrate is placed in a recess in a graphite slider bar, which forms the bottom of
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FIGURE 1.11: Schematic of a liquid-phase epitaxy (LPE) system [3]. (Reprinted, by per-
mission, from Applied Physics Letters.)

a sequence of bins in a second graphite housing. The bins are filled with solutions
from which a desired layer will grow as the substrate is slid beneath that bin.
This entire assembly is positioned in a furnace, which is accurately controlled in
temperature. There are several different techniques of controlling the temperature
and the dwell time under each melt, but generally the solutions are successively
brought to saturation by reducing the temperature very slowly as the substrate
wafer is slid beneath alternate wells. In modern systems, the process of slider
positioning and adjusting furnace temperature is done by computer control for
reproducibility and efficiency. However, LPE is rapidly being replaced by MOCVD
for the manufacture of most diode lasers.

The melts typically consist mostly of one of the group III metals with the other
constituents dissolved in it. For InGaAsP growth, In metal constitutes most of the
melt. For an In0.53Ga0.47 as film only about 2.5% of Ga and 6% As is added to the
melt for growth at 650◦C. For InP growth only about 0.8% of P is added. Needless
to say, the dopants are added in much lesser amounts. Thus, LPE growth requires
some very accurate scales for weighing out the constituents and an operator with
a lot of patience.

Figure 1.12 shows a schematic of an MOCVD system. The substrate is posi-
tioned on a susceptor, which is heated typically by rf induction, or in some cases,
by resistive heaters. The susceptor is placed into a reactor, which is designed
to produce a laminar gas flow over the substrate surface. The gas carrier differ-
ent growth species, and by precise control of the species concentration and flow
rates, substrate temperature and pressure, highly precise growth is accomplished.
Both low-pressure and atmospheric-pressure systems are being used. Whereas the
atmospheric-pressure system uses the reactant gases more effectively, the layer
uniformity and the time required to flush the reactor before beginning a new layer
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Schematic view of an MOCVD reactor
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FIGURE 1.12: Schematic of a metal-organic chemical vapor deposition (MOCVD) system
[1]. (From GaInAsP Alloy Semiconductors, T. P. Pearsall, Ed., Copyright © John Wiley &
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

is long. Low pressure is more popular where very abrupt interfaces between layers
are desired, and this is very important for quantum-well structures. Typical growth
temperature for InP based compounds is around 625◦C.

As can be seen, a large part of the system is devoted to gas valving and mani-
folding to obtain the proper mixtures for insertion into the growth reactor chamber.
The sources typically used for MOCVD consist of a combination of hydrides such
as arsine (AsH3), phosphine (PH3), and organometallic liquids, which are used to
saturate an H2 carrier gas. Example organometallics are triethylindium and triethyl-
gallium. Dopants can be derived from either other hydrides or liquid sources. For
example, H2S or triethyl-zinc can be used for n- or p-type dopants, respectively.

One of the key concerns with MOCVD is safety. The problems are primarily
with the hydrides, which are very toxic. Thus, much of the cost of an MOCVD
facility is associated with elaborate gas handling, monitoring, and emergency dis-
posal techniques. Recently, there has been some industry effort to work with less
toxic liquid sources for As and P (e.g., t-butyl-arsine and t-butyl-phosphine).
Although still toxic, liquid sources give off only modest amounts of poisonous
gases due to their vapor pressure, and such quantities could be accommodated by
conventional fume hoods. Still, even though the hydrides have to be contained in
high-pressure gas cylinders, which conceivably can fail and release large quantities
of concentrated toxic gas in a short time, they remain the industry standard to
this day.

Figure 1.14 shows a cross section of a solid-source MBE growth chamber. As
illustrated, MBE is carried out under ultrahigh vacuum (UHV) conditions. Con-
stituent beams of atoms are evaporated from effusion cells, and these condense
on a heated substrate. Liquid nitrogen cryoshields line the inside of the system to
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FIGURE 1.13: Photographs of (left) a single-wafer, horizontal flow MOCVD growth system
at UC Santa Barbara, manufactured by Thomas Swan. The glass reactor, housing a graphite
susceptor, is shown in the inset. Quartz heating lamps are visible underneath the reactor.
(right) GEN20 MBE system, manufactured by Veeco, an ultra-flexible tool with a design
configurable for III-V and emerging materials.

condense any stray gases. For stoichiometry control MBE makes use of the fact
that the group V elements are much more volatile than the group III elements.
Thus, if the substrate is sufficiently hot, the group V atoms will reevaporate unless
there is a group III atom with which to form the compound. At the same time, the
substrate must be sufficiently cool so that the group III atoms will stick. Therefore,
the growth rate is determined by the group III flux, and the group V flux is typi-
cally set to several times that level. Typical growth temperatures for the AlGaAs
system are in the 600–650◦C range. However, because Al tends to oxidize easily,
and such oxides create nonradiative recombination centers, AlGaAs lasers may be
grown over 700◦C.

One of the key features of MBE is that UHV surface analysis techniques can be
applied to the substrate either before or during growth in the same chamber. One
of the most useful tools is reflection high-energy electron diffraction (RHEED),
which is an integral part of any viable MBE system. It is particularly useful in
monitoring the growth rate in situ because the intensity of the RHEED pattern
varies in intensity as successive monolayers are deposited.

Some hybrid forms of the last two techniques have also been developed (i.e., gas
source MBE, metal-organic MBE (MOMBE), and chemical beam epitaxy (CBE)
[7, 8]). These techniques are particularly interesting for the phosphorous-containing
compounds, such as the important InGaAsP. Basically, gas-source MBE involves
using the hydrides for the group V sources. Generally, these gases must be cracked
by passing them through a hot cell prior to arriving at the substrate. MOMBE uses
the metal-organics for the group III sources; again, some cracking is necessary.
CBE is basically just ultralow-pressure MOCVD because both the group III and
V sources are the same as in an MOCVD system. However, in the CBE case one
still retains access to the UHV surface analysis techniques that have made MBE
viable.
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FIGURE 1.14: Schematic of a molecular beam epitaxy (MBE) system [4]. (Reprinted, by
permission, from Journal of Applied Physics.)

Photographs of a research MOCVD and a research MBE system are shown in
Fig. 1.13.

1.7 LATERAL CONFINEMENT OF CURRENT, CARRIERS, AND PHOTONS
FOR PRACTICAL LASERS

Practical diode lasers come in two basic varieties: those with in-plane cavities
and those with vertical cavities. The in-plane (or edge-emitting) types have been
in existence since the late 1960s, whereas the vertical cavity (or vertical-cavity
surface-emitting-laser–VCSEL for short) types have been viable only since about
1990. As mentioned earlier, feedback for the in-plane type can be accomplished
with a simple cleaved-facet mirror; however, for vertical-cavity lasers a multi-
layer reflective stack must be grown below and above the active region for the
necessary cavity mirrors. Figure 1.15 illustrates both types. Of course, many prac-
tical edge-emitters also use more complex mirrors as discussed in Chapter 3.

As suggested by this figure, practical lasers must emit light in a narrow beam,
which implies that a lateral patterning of the active region is necessary. In the case
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FIGURE 1.15: Schematic of in-plane and vertical-cavity surface-emitting lasers showing
selected coordinate systems.

of the in-plane types, a stripe laser is formed that typically has lateral dimensions
of a few microns. Similarly, the vertical-cavity types typically consist of a circular
dot geometry with lateral dimensions of a few microns. This emitting aperture of
a few microns facilitates coupling to optical fibers or other simple optics because
it is sufficiently narrow to support only a single lateral mode of the resulting
optical waveguide, but sufficiently wide to provide an emerging optical beam with
a relatively small diffraction angle. However, in the case of the VCSEL there
continues to be an important multimode-fiber optic market in which it is usually
desired to use multimoded VCSELs that can fill the modal spectrum of the fibers.

Figure 1.16 shows cross-sectional scanning electron micrographs (SEMs) of
both the in-plane and vertical-cavity lasers. The reference coordinate systems, also
introduced in Fig. 1.15, are somewhat different for these two generic types of diode
lasers. The difference arises from our insistence on designating the optical propa-
gation axis as the z -axis. We shall also refer to this direction as the axial direction.
For both types the lateral y-direction is in the plane of the substrate. For in-plane
lasers the vertical to the substrate is the transverse x -direction, as illustrated in
Fig. 1.7, whereas for vertical-cavity lasers the x -direction lies in the plane and is
deemed a second lateral direction.

Once we have decided that a lateral patterning of the active region is desirable
for lateral carrier and photon confinement, we also must consider lateral current
confinement. That is, once the active region is limited in lateral extent, we must
ensure that all the current is injected into it rather than finding some unproductive
shunt path. In fact, current confinement is the first and simplest step in moving from
a broad-area laser to an in-plane stripe or vertical-cavity dot laser. For example,
current can be channeled to some degree simply by limiting the contact area.
However, in the best lasers current confinement is combined with techniques to
laterally confine the carriers and photons in a single structure.

Lateral confinement of current, carriers, and photons has been accomplished
in literally dozens of ways, and there are even more acronyms to describe all of
these. For brevity’s sake, we will focus on only a few generic types illustrated in
Fig. 1.17. Here we illustrate schematic transverse-lateral (x-y) edge-emitter laser
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(a)

(b)

FIGURE 1.16: Cross-sectional SEMs of (a) in-plane and (b) vertical-cavity semiconductor
lasers.

cross sections along with calculated optical mode intensity profiles. The first two
types only provide current confinement, the third adds a weak photon confinement,
and the last four provide all three types of confinement. The first four can be cre-
ated by patterned etching, deposition, and implantation techniques typically found
in semiconductor fabrication facilities, but the last three require at least one semi-
conductor regrowth step in addition, which is more specialized and perhaps costly.
The examples are explicit for in-plane lasers, but many are also applicable to
vertical-cavity lasers as illustrated by the analogous schematics shown in Fig. 1.18.

Figure 1.17a illustrates a simple oxide stripe laser. This stripe laser is the sim-
plest to make because the area of current injection is limited simply by limiting
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FIGURE 1.17: Lateral confinement structures for in-plane lasers: (a) oxide-stripe
provides weak current confinement; (b) proton-implant provides improved current
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(f) blocking-junction BH can provide current, photon, and carrier confinement; and (g) the
buried-ridge-stripe BRS can also provide current, photon, and carrier confinement.
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FIGURE 1.18: Schematics of VCSELs. (a) Proton-implanted, multimode with only current
confinement; (b) dielectrically apertured with current and photon confinement; (c) mesa-
confined with possible current and photon confinement.

the contact area. This laser has some current confinement, but no carrier or photon
confinement. The proton-implanted configuration of Fig. 1.17b can provide current
confinement by creating semi-insulating regions beneath the contact surface. It
uses the fact that implanted hydrogen ions (protons) create damage and trap out
the mobile charge, rendering the implanted material nearly insulating. Generally,
the implant and resulting semi-insulating region is limited to a region between the
contact and the active region, so that the contact can be wider while nonradiative
recombination is avoided in the active region.

The configurations of Fig. 1.17a and b are described as gain-guided stripe lasers
because the current is apertured, but there is no lateral index step or heterobarrier
to provide a potential well for photons or carriers. Thus, carriers injected into the
active region can diffuse laterally, decreasing the laser’s efficiency, and there is
also no lateral index change to guide photons along the axis of the cavity, so
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optical losses tend to be high. Although these two configurations were of some
commercial importance in the early days of diode lasers before the advent of
viable etching or regrowth techniques, currently their use is limited for commercial
edge-emitters. However, multimode VCSELs, which use a relatively large diameter
>10 microns, are still produced using the proton-implant technology because this
can be done at very low cost. The oxide stripe laser is still used in the lab to
characterize material because the processing is so simple, and proton isolation is
still used to limit current leakage in combination with other confinement techniques
in practical edge-emitters, but the implant areas are kept away from the active region
for reduced loss and improved reliability.

Figure 1.17c illustrates a surface ridge laser that combines current confinement
with a weak photon confinement. The efficiency of current injection can be high,
but because the processing involves etching down to just above the active region,
carriers are still not confined laterally. They are free to diffuse laterally and recom-
bine without contributing to the gain. The etching depth is adjusted to provide
just enough effective lateral index change to provide a single lateral mode opti-
cal waveguide. Quantum-well-SCH transverse waveguide structures together with
selective chemical etches can provide the desired lateral index profiles and sepa-
ration from the active region to avoid surface-related carrier recombination. The
ridge structure continues to be a popular choice, both because of its fabrication
simplicity and its reasonable performance characteristics, especially if operated far
above threshold where the lateral carrier diffusion effects are less important because
they saturate at threshold. Because of the weak optical confinement, the surface
ridge only allows relatively large radius waveguide bends. For sharper bends a
stronger lateral index step is needed. Figure 1.17d shows the case of a deeply
etched ridge that provides strong lateral confinement of photons, carriers, and cur-
rent. It provides for much sharper waveguide bends. However, in this case it is
very important that the sidewalls be formed very smoothly to limit optical losses,
and some procedure must be used to limit the nonradiative recombination of car-
riers at the surface of the active region, which forms an inherent array of defects.
Also, the deeply etched ridge will need to be much narrow than the surface ridge
to support only a single lateral optical mode. Thus, it may be more difficult to
couple light into and out of it because of the resulting large diffraction angle, and
its thermal impedance will also be higher because of its smaller connection area to
the substrate.

Figures 1.17e, f, & g illustrate examples of buried-heterostructure (BH) lasers,
in which the active region is surrounded by higher-bandgap, lower-index-of-
refraction semiconductor materials so that carriers and photons are confined
laterally as well as transversely. Thus, a lateral (y) cut through the active region
gives very analogous plots for the bandgap and electric field as the transverse
(x ) cut in Fig. 1.7. The three different cases confine the injected current in three
different ways to prevent it from leaking around the active region. The first (e)
uses the growth of a semi-insulating layer of semiconductor on either side of an
etched ridge to confine the current to flow only into the active region; the second
(f) uses two or more reverse biased junctions in the regrown regions; and the third
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(g) follows an overgrowth of doped material above and beside the active region
by an implant to prevent current flow along the sides. In this latter case, the lower
turn-on voltage of the active-region diode also tends to funnel the current through
this region even without the lateral implants.

There are still other ways of forming BH lasers that are not illustrated in
Fig. 1.17, using techniques such as quantum-well intermixing (QWI). For QWI,
only one epitaxial growth is performed, and then the active layer to the left and
right of the desired active stripe is modified to increase its bandgap after growth
by the diffusion of impurities or vacancies across the quantum-well active region.
The diffusing species cause an intermixing of the original cladding and active
quantum-well lattice atoms by requiring them to hop from site to site as the diffus-
ing species move through. Thus, the absorption edge energy of the quantum wells
is increased in these regions providing lateral carrier confinement to the central
undiffused region.

Figure 1.18 shows schematic VCSEL cross sections together with calculated
optical mode profiles for three types of lateral confinement structures. These differ
from Fig. 1.17 because for the VCSEL, axial-lateral (z-y) cross sections are given,
even though cross sections of the epitaxial wafer with its surface normal being
the vertical axis are shown in both cases. Circular symmetry in the x-y plane of
the wafer is assumed. Nearly all VCSELs use quantum wells placed at a standing
wave maximum of the electric field, as will be discussed in later chapters and
specifically Appendix 5. The first case (a) illustrates a proton-implanted VCSEL
that uses the implant to generate a current confinement aperture much like the
edge-emitter of Fig. 1.17b. As already mentioned, these are usually formed with
relatively large diameters >10 μm to deliberately have multimode outputs. The
second example (b) illustrates the dielectrically apertured VCSEL. The aperture is
usually formed by an oxidation of a AlAs or a high Al content AlGaAs layer very
close to the active region (sometimes referred to as “oxide-confined”), although
it has also been formed by an etched air-gap. The low-index, insulating aperture
provides lateral current and optical confinement. As the aperture is close to the
active region, the current confinement tends to be quite good. The optical confine-
ment results from the lensing action of the dielectric aperture that refocuses light
resonating between the two planar mirror stacks. Blunt apertures are generally
used, and some optical scattering loss results, but if tapered to be more lenslike,
these apertures can act as near perfect lenses and scattering losses or internal
diffraction loss can be effectively eliminated [6]. The third VCSEL example (c)
also provides good optical and current confinement, but in this case the inclu-
sion of a small thickness semiconductor disk above the active region provides
the optical lensing element. It also yields current confinement if the disk pro-
vides a lower resistance path to the active region than the surrounding areas.
One popular approach is to form a low resistance tunnel junction layer struc-
ture that is etched off everywhere except for this small disk. This configuration
does require a regrowth of the mirror material above the disk confinement element,
whereas the first two VCSEL geometries can be formed after a single epitaxial
growth step.
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1.8 PRACTICAL LASER EXAMPLES

Figures 1.19 and 1.20 give cross-sectional schematics and illustrative characteris-
tics of a number of experimental in-plane and vertical-cavity lasers. The figure
captions contain some of the relevant descriptive details. In the chapters to follow,
the operating principles of such lasers will be detailed.

Figure 1.19 illustrates results from five edge-emitting in-plane lasers. The first
(a) is a simple gain-guided stripe laser that is illustrative of designs used for high-
power pump lasers. In this case the active region is a strained InGaAs quantum
well in an AlGaAs SCH waveguide to provide emission in the 910–990 nm range.
Narrow stripe lasers that can be coupled into a single mode optical fiber and
have wavelengths 980 nm of this general composition are used to pump Er-doped
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FIGURE 1.19: (a) schematic and L-I characteristic for 915 nm wavelength InGaAs/GaAs
100 μm wide broad-area laser using vacancy-induced QWI at the facets to avoid COD [7]
(© IEEE 2007); (b) schematic and L-I characteristic for 650 nm wavelength AlGaInP/GaAs
ridge laser using impurity-induced QWI at facets [8] (© IEEE 2007); (c) schematic and
L-I characteristic of 404 nm wavelength InGaN/GaN ridge laser using nonpolar design [9]
(© JJAP 2007); (d) schematic and L-I characteristic for 1300 nm wavelength InGaAlAs/InP
MQW-DFB laser [10] (© IEEE 2006); (e) schematic and L-I characteristic of 1550 nm
wavelength InGaAsP/InP SIBH-MQW-DFB laser [11] (© IEEE 2007).
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fiber amplifiers that are very important in optical fiber communication systems.
Other important diode pumps include ones for pumping Nd-doped YAG, and these
typically are composed of AlInGaP with emission in the 808 nm range. These are
also formed on GaAs substrates.

An important limitation on the output power of such pump lasers is a catas-
trophic optical damage (COD) of the cleaved mirror facets due to nonradiative
recombination of carriers at surface related defects and the resulting optical
absorption and run-away heating. In the case of Fig. 1.19a, the COD is addressed
by creating a nonabsorbing region near the facet by locally increasing the
bandgap. The bandgap increase is accomplished by diffusing vacancies across the
quantum well in this region to intermix the SCH and QW materials—what we
have termed QWI above. The vacancy source results from the absorption of Ga
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ions by a special film deposited on the surface in this region. CW output powers
of >8 W were obtained with input currents of 10 A up to temperatures of 60◦C
for 100-μm-wide stripes.

Other approaches have been employed to limit COD. QWI can also be achieved
by diffusing impurities across the quantum-well active regions as well as vacancies.
Some companies have also been able to develop surface passivation treatments and
thin-film coatings that appear to limit COD and other forms of facet degradation
during aging and high-power operation.

Figure 1.19b gives an example of a relatively high power AlInGaP/GaAs
surface-ridge waveguide laser that emits at 650 nm. With the powers shown, it
can be used for high speed DVD writing as well as reading. For this application
the power out as well as the output beam shape need to be free from kinks
and glitches over a wide range of input currents. Diffraction angles parallel and
perpendicular to the substrate that differ at most by a factor of 2 are also desired.
These are accomplished by using a relatively narrow ridge width that ensures a
single lateral optical mode as well as a relatively circular output beam.

QWI was used to form a transparent window region near the facets to prevent
COD in this device as well. In this case the QWI was accomplished by diffusing Zn
from a thin film of ZnO deposited on the surface only within 10 μm of the cleaved
facet. The facets were also coated with low reflectivity (3%) and high reflectivity
(95%) coatings on the output and back facets, respectively.

Similar lasers, although with lower power requirements, are used in most DVD
players. Similar designs are also used in a wide variety of other “red laser” appli-
cations that range from supermarket scanners, to handheld pointers, to indicator
lines on carpenter’s tools.

Figure 1.19c shows results from an experimental GaN-based ridge wave guide
blue laser. In this case the device is a nonpolar InGaN/GaN design, which does not
have an AlGaN cladding. Unlike most of the early GaN laser work that used c-plane
(0001) structures, this one is grown on m-plane (11̄00) that avoids polarization
effects as well as increased problems with parasitic wave guides and threading
dislocations. This device emits at 404 nm; it has a threshold current density of
6.8 kA/cm2 and a threshold voltage of 5.6 V. Although significant improvements
in output power and efficiency are expected with this design, it still will serve as a
representative of an important class of lasers based on GaN and its related alloys:
AlGaInN.

The AlGaInN system can provide direct bandgaps from the infared (InN) to
the UV (AlN), but good lasers have only been made in the blue-green to the
near UV range. Nevertheless, this is a very important range for a wide variety of
applications. Blue and near UV diode lasers are of great interest for solid-state
lighting, high density optical data storage, projection displays, optical sensing,
and medical applications. “Blu-ray” Disc is an important commercial product at
this writing, but projection displays and solid-state lighting may have the largest
long-term impact.

Figures 1.19d and e illustrate fiber-optic communication sources, both based on
the InP materials system. The first (d) is an InGaAlAs/InP multiple-quantum-well
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(MQW) 1300-nm wavelength ridge-waveguide laser that uses a grating along its
length to select a single longitudinal output mode. As discussed in Chapter 3, this
distributed grating provides a distributed feedback or (DFB) mirror, so it is called
a DFB laser. The 1300-nm wavelength is the point of lowest dispersion in optical
fiber, and it is used to send high data rates over modest distances. Because it is not
used in long-haul networks, this wavelength tends to be limited to metropolitan,
local area, or on-campus networks.

As discussed previously, the InAlGaAs material system has most of the
quantum-well bandgap offset in the conduction band, so it is better at confining the
low-effective-mass electrons than the InGaAsP/InP system. In this example, this
material is selected to enable the lasers to operate to higher temperatures so that
thermoelectric coolers are not needed, and much lower cost, lower power packages
can be made. By making the cavity short (200 μm) the relaxation resonance was
also increased to >20 GHz even at 100◦C. The laser is designed to operate with
direct current modulation at a data rate of 10.7 Gb/s. The laser is never turned
completely off, as indicted in Fig. 1.19d, but the on/off ratio is kept to ∼7 dB.

Figure 1.19e illustrates a semi-insulating regrowth buried-heterostructure
(SIBH) laser formed with multiple quantum wells in the InGaAsP/InP system for
operation at 1550 nm, which is the wavelength of minimum loss in optical fiber.
It also is a DFB laser to ensure single-mode operation. Long-haul communication
systems desire single-mode sources at 1550 nm to maximize the distance possible
between amplifiers or repeater nodes. Because it is not the natural dispersion
minimum of optical fiber, this needs to be managed in some other manner. It is
also the wavelength region used for wavelength division multiplexed (WDM)
multichannel communication. Thus, 1550 nm also tends to be used in metro and
local area networks as these extend toward the edge.

Figure 1.20a illustrates results from a proton-implanted, gain-guided vertical-
cavity laser emitting at 850 nm. The active region uses GaAs quantum-wells, and
the epitaxial mirrors are composed of alternate quarter-wave layers of AlGaAs hav-
ing a low (∼15%) and high (∼85%) Al composition, respectively. About two dozen
periods are needed to provide >99.5% reflectivity as required to reach threshold in
practical environments given the very small gain length (typically, the thickness of
three quantum wells ∼8 nm each) in these devices. The proton implant is generally
concentrated midway between the top contact and the active region within the top,
p-type mirror stack. It is usually slightly larger in diameter than the emission win-
dow in the top contact. This positioning ensures a low overall resistance path from
the contact as well as a good aperturing of the current without damaging the carrier
lifetime in the active region. This latter point emphasizes that a proton implant is
not a carrier confinement approach, but rather just the opposite—it yields near zero
carrier lifetime, so allowing the proton implant to extend into the lateral extremes
of the active region would drain away carriers faster than simply allowing them to
laterally diffuse away.

The GaAs-based device of Fig. 1.20a was the earliest type of VCSEL to be
qualified for use in telecommunication systems and widely used with multimode
fiber in data communication (datacom) links. As multimode fiber has core diameters
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FIGURE 1.20: Practical VCSEL examples: (a) schematic and L-I characteristic for proton-
implanted 850 nm wavelength AlGaAs/GaAs laser with 15 μm contact window and 20 μm
diameter implant [12] (© IEE 1995); (b) schematic, L-I and temperature characteristics of
985 nm InGaAs/GaAs oxide-apertured VCSEL with an integrated backside microlens [13]
(© IEEE 2007); (c) schematic and L-I characteristic of GaInNAs/GaAs VCSEL emitting at
1262 nm [14] (© IEEE 2007); (d) schematic, L-I, and temperature characteristics of 980 nm
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tics for both 1300 and 1550 nm InGaAlAs/InP VCSELs incorporating one dielectric mirror
and a tunnel junction confinement structure [19] (© IEEE 2005).
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FIGURE 1.20: (Continued)

∼50–60 μm, VCSEL diameters of ∼20 μm with many lateral lasing modes are
typically used. “Gigabit Ethernet” and “Fiber-channel” are examples of IEEE link
standards that incorporate such VCSEL sources. Data rates in the gigabit per sec-
ond range and distances up to a few hundred meters are typically involved. Linear
arrays of such VCSELs together with fiber ribbon cable have also found applica-
tions in parallel data links, which can multiply the overall link capacity by 10 or
more times.

A key attribute of the datacom links incorporating such multimode VCSELs
and fiber is their low cost, given the relatively high level of performance. Unlike
edge-emitters, VCSELs can be manufactured and tested at wafer scale—no cleaves
or edges are necessary to evaluate them. Because of the large multimode fiber core
and the small, circular diffraction angle of the VCSEL emission, passive alignment
techniques are possible in the packaging of the VCSEL. Optical connectors can
also be simple. All of this enables low cost production.

Figure 1.20b shows a somewhat more complex VCSEL design that employs
an oxide aperture for lateral current and photon confinement. Illustrated is a
bottom-emitting device with an InGaAs MQW active region emitting at 980 nm,
GaAs/AlGaAs mirror stacks, and an integrated microlens. As shown, trenches
must be etched down to the AlAs oxidation layer just above the active to perform
the lateral oxidation after the epitaxial growth of the semiconductor layers. As
illustrated, oxide-apertured devices can easily be formed with smaller diameters
that support single-mode operation and very low threshold currents. The use of the
InGaAs strained quantum wells provides an emission at which the GaAs substrate
is transparent, and this enables bottom emission and flip-chip bonding for good
heat sinking and simple packaging, including the option of integrated, prealigned
microlenses on the backside of the substrate. The InGaAs also has better gain
properties for more efficient and higher modulation bandwidth operation. However,



1.8 PRACTICAL LASER EXAMPLES 37

for many datacom applications the standards have been adopted for 850 nm, so
many of these advantages go unrealized in systems.

The temperature characteristics shown in Fig. 1.20b also show another interest-
ing feature designed into most modern VCSELs. Because the cavity is so short and
the multilayer mirror reflectivity band is narrow, only a single axial mode can lase,
and this tunes with temperature at the rate of ∼0.1 nm/

◦C due to the change in the
index of refraction. Also, the gain has a maximum value near the energy separation
between the lowest quantum-well levels in the conduction and valence bands, but
this tunes in temperature at the rate of ∼0.5 nm/

◦C due to the change in bandgap
energy. Thus, there is a differential tuning of the gain and mode wavelength, or
explicitly, the peak gain will tune across and past the mode wavelength at a rate
of ∼0.4 nm/

◦C. So the trick is to deliberately misalign the peak gain at room
temperature and as the temperature rises, enable the gain to move into alignment
with and then past the mode. Of course, this results in a wide region of relative
insensitivity to temperature.

Figure 1.20c illustrates another oxide-confined GaAs-based VCSEL, but in this
case the MQW-active region is composed of GaInNAs, or a similar composition to
Fig. 1.20b with a few percent of nitrogen added. Somewhat counterintuitively, the
result is a significant increase in the emission wavelength toward 1300–1262 nm
in this case. Normally, one might expect that the addition of a smaller atom to
an alloy would reduce the wavelength, as in the case of GaN, for example. The
difference here is that the N is so different in atomic size that it doesn’t fit into
the GaAs lattice in a normal bonding configuration. So, in small percentages, it
creates a local deviation in the lattice potential, much like an impurity or a defect
might, but of course it has the right valence, so it is neither. But, it does have the
effect of pulling the conduction band down a bit resulting in the lower transition
energy. Another complementary effect is that the smaller size of the N adds tensile
strain, partially compensating the compressive strain of the In, and thus enabling
an increase in the In composition, and this also tends to increase the emission
wavelength.

The key reason for pursuing efforts with this material has been the ability to
make GaAs-based VCSELs with well-developed high index contrast AlGaAs/GaAs
mirror stacks and AlOx oxide confinement, but with wavelengths ∼1300 nm for
longer-reach datacom applications. However, there have also been problems asso-
ciated with reproducibility of the wavelength and gain properties of the GaInNAs
quantum wells. A critical annealing step generally has been found to be necessary
to bring out the optimal properties of the material, and transfer to a manufactur-
ing environment has not always been successful. Although good insensitivity to
temperature variations has been reported, this appears to be due to a large nonra-
diative component that is temperature insensitive. Thus, the efficiency has generally
not been comparable to other GaAs-based VCSELs, or even as good as the best
InP-based long wavelength VCSELs as discussed later. Nevertheless, the GaInNAs
approach may still be the most cost effective if high performance is not needed.

Figure 1.20d gives an example of a GaAs-based VCSEL with a quantum-dot
active region. Although many efforts with quantum-dot actives on GaAs have
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aimed to push the wavelength out to the 1300-nm range using increased strain
InAs dots, this example emits at 980 nm. It uses a growth procedure that avoids a
lateral interconnecting “wetting layer” common to most other quantum dot devices
that have shown relatively slow modulation responses. Tilted indium-rich columns
result from a multisubmonolayer growth procedure. In this case direct modulation
to 20 Gb/s at 85◦C was demonstrated for the 6-μm diameter device characterized
in the figure. In this case, over 10 mW of power is emitted at room temperature,
and the threshold current is again engineered to decrease with temperature due to
a deliberate gain-mode peak offset as discussed earlier.

Figure 1.20e introduces an InP-based VCSEL technology that incorporates an
etched-tunnel-junction mesa as the current and photon confinement element. Results
for both 1300- and 1550-nm emission are shown. InP-based VCSELs generally suf-
fer from at least three problems relative to their GaAs-based counterparts. First,
there are no well-developed lattice-matched mirrors that have high index contrast
and high thermal conductivity; second, there is no simple well-developed oxide
aperturing technology; third, the active materials tend to have somewhat lower
gain per unit current and to be more sensitive to temperature. The configuration of
Fig. 1.16e addresses most of these issues. However, a number of other alternative
fabrication technologies have also been explored over the years. These include (1)
wafer bonding GaAs-based mirrors onto an InP-base active region [16]; (2) use
of a very thick InGaAsP bottom (output) mirror stack together with a lattice mis-
matched (metamorphic) GaAs/AlAs mirror stack for a top mirror [17]; and (3) use
of lattice-matched high-index contrast GaAlAsSb mirror stacks in an all-epitaxial
InP-based structure [18]. After some development, none have been manufactured
in any volume. Of course, long-wavelength GaAs-based VCSELs have also been
researched using both GaInNAs and quantum-dots, as already mentioned.

In the case of Fig. 1.20e, three key layer structures are grown in sequence.
First the bottom semiconductor mirror stack, bottom n-type contact layer, active
region, a thin p-type layer, and the p+ − n+ tunnel junction are formed on the
InP substrate. The tunnel junction, which enables low-resistance n-type contacts
to the top as well as the bottom of the diode, is then etched away except where
the optical mode is to exist. In the second semiconductor growth, the n-type InP
spacer/top contact layer is grown over the tunnel junction mesa and the rest of the
p-type top surface. Note that no current will flow across the reverse biased n–p
junction except where the tunnel junction exists. Ohmic contacts are formed to the
InP spacer. Finally, the top amorphous-Si/Al2O3 dielectric mirror stack is grown.
Because the tunnel junction also adds optical length to the center of the cavity, it
also acts as a lensing element to confine to optical mode to this region. The thermal
impedance can be kept relatively low in this design if heat sinking is added to the
top InP layer because it has relatively good thermal conductivity. This can be
addressed by designing the device for bottom emission and flip-chipping it onto a
heat sink. There has been similar work that has emphasized this approach [20].

The applications for these long wavelength VCSELs are in single-mode fiber
data links with data rates ∼10 Gb/s (e.g., 10 Gigabit Ethernet or 10 GbE) and
distances extending to tens of kilometers. Parallel data links for applications like
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100 GbE are also being developed. Competition with simple edge-emitting solu-
tions such at those in Fig. 1.19d and 1.19e are key issues. The low-cost manufac-
turability of VCSELs remains one of the possible advantages, but as the VCSELs
become a little more complex this becomes a weaker argument.
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PROBLEMS

These problems draw on material from Appendices 1 through 3.

1. Define the necessary elements of a laser cavity.

2. A laser cavity is formed by two ideal mirrors with flat frequency response over
the 1.4–1.6 μm wavelength range, positioned 1 mm apart, by an ideal bandpass
filter centered at 1.55 μm and 4 nm wide, and by a gain region with a parabolic
function gain function g = −7.5 · 1012 cm−3(λ − 1.55 μm)2 + 104 cm−1. For
this simple cavity, referring to Fig. 1.1, determine the lasing wavelength of this
laser. Assume that most of the photons are propagating through free space.

3. List three advantages and three disadvantages diode lasers have relative to gas
or solid-state lasers.
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4. What are the most common applications of diode lasers? Can you think of any
other applications not mentioned in the text?

5. What is the difference between the energy levels in the solid state and diode
lasers?

6. List and explain all the basic electronic recombination/generation mechanisms.
Which one is required for lasers to operate?

7. Describe the main ways of nonradiative recommbination in semiconductor
lasers.

8. Explain how a double heterostructure works. Who are the Nobel prize winners
for this invention?

9. Discuss the differences in carrier transport and recombination in direct-bandgap
double heterostructure PN junctions relative to indirect-bandgap homojunction
PN junctions?

10. A blue diode laser cross section consists of a set of five 80-nm-wide InGaN
quantum wells with 12% In and 88% Ga, surrounded by six 80-nm-wide GaN
barriers, and clad by P and N type GaN.

(a) Determine the effective index of the fundamental transverse mode
of this waveguide. To do this, simplify the structure by calculating
an average optical index of refraction for the quantum well/barrier
region.

(b) Determine the rate of decay of the normalized transverse electric field U.

11. Give three differences between using a bulk active region and a quantum-well
active region in a diode laser.

12. What are the fundamental requirements for the different materials involved in
forming a complex separate-confinement heterostructure?

13. Why are III-V materials better than Si for LEDs and lasers?

14. What type of lasers is the GaAs/AlGaAs material system used for? How about
InP/InGaAsP?

15. What is band offset, and why is it important? How much of the band off-
set occurs in the conduction band for (1) GaAs based lasers (2) InP based
lasers?

16. An electron is trapped in a one-dimensional potential well 5 nm wide and
100 meV deep.

(a) How many bound energy states exist?

(b) What are the energy levels of the first three measured relative to the well
bottom?

(c) If the well energy depth were doubled, how many states would be confined?
(Assume the free electron mass.)



42 INGREDIENTS

17. Repeat Problem 16 for a 10-nm-wide GaAs well and AlGaAs barriers.

18. Ten potential wells that each have two bound states are brought together so
that their wavefunctions overlap slightly. How many bound energy states exist
in this system?

19. How can the temperature range of InGaAsP lasers be extended?

20. The Blu-ray DVD disc has a much higher capacity than the original DVD disc.
Explain how this was accomplished. How would you create an even higher
capacity optical disc?

21. List two major manufacturers of the MOCVD growth systems.

22. Redo Example 1.2 for an InP-based VCSEL using AlInGaAs/AlInAs DBR
mirror stacks. That is, determine the percentage of Al and In in the AlInAs
layers to lattice match to InP.

23. Plot the minimum bandgap versus lattice constant for InAlSb. The bowing
parameters for the direct, and the first indirect valley are 0.43 eV and 0 respec-
tively. At which composition and lattice constant does the indirect bandgap
equal direct bandgap?

24. A very long one-dimensional chain consists of atoms covalently bonded
together with a resulting center-to-center spacing of 0.3 nm. The band
structure of this system can be determined from the overlap of the individual
atomic wavefunctions. The coupling energy given by Eq. (A1.21) for a
particular atomic energy level, Ea , is 0.2 eV.

(a) Calculate the band structure over the first two Brillouin zones.

(b) Calculate the electron effective mass at the band extrema.

25. A light source emits a uniform intensity in the wavelength range 0.4 − 2.0 μm.
A polished wafer of GaAs with antireflection coatings on both surfaces is
placed between the source and an optical spectrum analyzer.

(a) Sketch the wavelength spectrum received.

(b) Which processes in Fig. 1.6 are significant in forming this spectrum?

26. The light source in Problem 1.25 is replaced by a GaAs laser emitting at
850 nm, and it is found that 99.5% of the incident light is absorbed in the
GaAs wafer. Now an Ar-ion laser emitting at 488 nm is trained to the same
place on the wafer.

(a) As the power of the Ar-ion laser is increased to 3 W, the absorption of
the GaAs laser beam is reduced to 50%. Assuming the heat is conducted
away, explain what might be happening.

(b) The power in the Ar-ion laser is further increased, and it is found that at
about 10 W the GaAs laser beam passes through the wafer unattenuated.
Again, neglecting heating effects, explain why it requires 10 W rather than
∼6 W to reach transparency.
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27. For good carrier confinement it has been found that the quasi-Fermi levels
should remain at least 5 kT below the top of a quantum well at operat-
ing temperature. In a particular GaAs quantum-well SCH laser, the operating
active region temperature is found to be 125◦C. If the quantum well is 80 Å
wide, how much Al should be in the separate confinement region to pro-
vide the desired 5 kT margin in the conduction band at a carrier density of
4 × 1018 cm−3?

28. (a) Plot the carrier density vs. the quasi-Fermi level for the conduction band
in bulk GaAs and InGaAsP (1.3 μm) at 300 K. Cover the carrier density
range from 1 × 1017 cm−3 to 1 × 1019 cm−3, and use a logarithmic scale
for the carrier density axis.

(b) With this result answer Problem 9 for a AlGaAs/GaAs bulk DH structure.

29. Calculate the density of states vs. energy for a “quantum wire” potential well in
which two dimensions are relatively small. That is, assume a large dimension
(
10 nm) in the z -direction and quasi-continuous state energies only for kz .

30. Calculate the density of states vs. momentum for a quantum well.

31. Derive Eq. (A3.3).

32. Photons are transversely confined in a simple three-layer waveguide in a
DH laser consisting of an InGaAsP active region 0.2 μm thick sandwiched
between InP cladding layers. The bandgap wavelength of the active region is
1.3 μm.

(a) How many transverse TE modes can exist in this slab waveguide?

(b) Plot the transverse electric field for the lowest-order TE mode.

(c) What is the energy density 0.5 μm above the active-cladding interface
relative to the peak value in the active region?

(d) What is the effective index of the guided mode?

(e) What is the transverse confinement factor?

33. Suppose the DH laser of Problem 1.32 is now used to form a BH laser with
an active region 2 μm wide and InP lateral cladding regions, as in Fig. 1.17.

(a) What is the effective index for the fundamental two-dimensionally guided
mode?

(b) How many lateral modes are possible?

(c) What is the lateral confinement factor for the fundamental mode?

34. VCSELs have been formed by etching 5 μm square pillars through the entire
laser structure, creating rather large index discontinuities at the lateral surfaces.
Assuming the axial propagation constant, β, is fixed at the same value for all
resonant modes, and that the lowest-order mode has a wavelength of 1.0 μm,
plot the mode spectrum including the first six lateral modes.

35. Derive Eq. (A3.14) and verify Eq. (A3.15).



44 INGREDIENTS

36. It has been proposed that if the lateral dimensions of VCSELs or in-plane
lasers become sufficiently small, the density of states for electrons and holes
can be modified by the lateral size effect. In VCSEL material with an 80 Å
thick GaAs quantum-well active region and high barriers, devices of various
lateral widths are formed. How narrow must the device be before the lateral
size effect shifts the lowest state energy up by 10 meV (about 1

2 kT at room
temperature)? Neglect any indirect surface-state pinning effect.



CHAPTER TWO

A Phenomenological Approach
to Diode Lasers

2.1 INTRODUCTION

Now that we have a basic understanding of what diode lasers are, what is
involved in their fabrication and operation, and what characteristics can generally
be expected, we are perhaps in a position to delve into the mechanics of how an
injected current actually results in an optical output. In this chapter we attempt
to develop an engineering toolbox of diode laser properties based largely on
phenomenological arguments. In the course of this development, we make heavy
reference to several appendices for a review of some of the underlying physics.

The chapter begins by developing a rate equation model for the flow of charge
into double-heterostructure active regions and its subsequent recombination. Some
of this electron–hole recombination generates photons by spontaneous emission.
This incoherent light is important in LEDs, and a section is devoted to deriving
the relevant equations governing LED operation.

Sections 2.4 through 2.6 provide a systematic derivation of the dc light-current
characteristics of diode lasers. First, the rate equation for photon generation and
loss in a laser cavity is developed. This shows that only a small portion of the
spontaneously generated light contributes to the lasing mode. Most of it comes from
the stimulated recombination of carriers. All of the carriers that are stimulated to
recombine by light in a certain mode contribute more photons to that same mode.
Thus, the stimulated carrier recombination/photon generation process is a gain

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
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process. The threshold gain for lasing is studied next, and it is found to be the
gain necessary to compensate for cavity losses. The current required to reach this
gain is called the threshold current, and it is shown to be the current necessary to
supply carriers for the unproductive nonradiative and spontaneous recombination
processes, which clamp at their threshold value as more current is applied. Above
threshold, all additional injected carriers recombining in the active region are shown
to contribute to photons in the lasing mode. A fraction escape through the mirrors;
others are absorbed by optical losses in the cavity.

The next section deals with the modulation of lasers. Here for the first time we
solve the rate equations for a modulated current. Under small-signal modulation, the
rate equations for carriers and photons are found to be analogous to the differential
equations that describe the current and voltage in an RLC circuit. Thus, the optical
modulation response is found to have a resonance and to fall off rapidly above this
frequency.

Finally, this chapter reviews techniques for characterizing real lasers. These
techniques can be used to extract the important device parameters used in the
theoretical derivations. They also provide practical terminal parameters that are
useful in the design of optoelectronic circuits.

2.2 CARRIER GENERATION AND RECOMBINATION IN ACTIVE
REGIONS

In Chapter 1, when we considered the current injected into the terminals of a
diode laser or LED, we suggested that it was desirable to have all the current
contribute to electrons and holes, which recombine in the active region. However,
in practice only a fraction, ηi , of the injected current, I , does contribute to such
carriers. In Fig. 2.1 we again illustrate the process of carrier injection into a double-
heterostructure active region using a somewhat more accurate sketch of the energy
gap versus depth into the substrate.

Because the definitions of the active region and the injection efficiency, ηi , are
so critical to further analysis, we highlight them here for easy reference.

np

Epitaxial growth

Holes

Electrons

p-contact n-substrate

EFc Ec
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FIGURE 2.1: Band diagram of forward biased double-heterostructure diode.
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Active region: the region where recombining carriers contribute to useful gain
and photon emission.

The active region is usually the lowest bandgap region within the depletion
region of a pin diode for efficient injection. However, it occasionally is convenient
to include some of the surrounding intermediate bandgap regions. Also in this
definition, useful is the operative word. There may be photon emission and even
gain at some undesired wavelength elsewhere in the device.

Injection efficiency, ηi : the fraction of terminal current that generates carriers
in the active region. It is important to realize that this definition includes all the
carriers that are injected into the active region, not just carriers that recombine
radiatively at the desired transition energy. This definition is oftentimes misstated
in the literature.

We also will specifically analyze active regions that are undoped or lightly doped,
so that under high injection levels relevant to LEDs and lasers, charge neutrality
dictates that the electron density equals the hole density (i.e., N = P in the active
region). Thus, we can greatly simplify our analysis by specifically tracking only
the electron density, N .

The carrier density in the active region is governed by a dynamic process. In fact,
we can compare the process of establishing a certain steady-state carrier density in
the active region to that of establishing a certain water level in a reservoir that is
being simultaneously filled and drained. This is shown schematically in Fig. 2.2.
As we proceed, the various filling (generation) and drain (recombination) terms
illustrated will be defined. The current leakage illustrated in Fig. 2.2 contributes
to reducing ηi and is created by possible shunt paths around the active region.
The carrier leakage, Rl , is due to carriers “splashing” out of the active region (by
thermionic emission or by lateral diffusion if no lateral confinement exists) before
recombining. Thus, this leakage contributes to a loss of carriers in the active region
that could otherwise be used to generate light.

I/qV

Rl

Nth

Current
leakage

Rnr Rsp

FIGURE 2.2: Reservoir with continuous supply and leakage as an analog to a double
heterostructure active region with current injection for carrier generation and radiative and
nonradiative recombination (LED or laser below threshold).
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For the DH active region, the injected current provides a generation term, and
various radiative and nonradiative recombination processes as well as carrier leak-
age provide recombination terms. Thus, we can write the rate equation,

dN

dt
= Ggen − Rrec , (2.1)

where Ggen is the rate of injected electrons and Rrec is the rate of recombining
electrons per unit volume in the active region. Because there are ηi I /q electrons
per second being injected into the active region,

Ggen = ηi I

qV
, (2.2)

where V is the volume of the active region. For example, if a current of I =
20 mA is flowing into the laser’s terminals, a fraction ηi = 80% of the carriers
are injected into the active region, and if the active volume is 100 μm3, then
Ggen = 1027 electrons/s-cm3. Or, 1018 cm−3 electrons are injected in 1 ns.

The recombination process is a bit more complicated because several mech-
anisms must be considered. As introduced in Fig. 1.6, there is a spontaneous
recombination rate, Rsp , and a nonradiative recombination rate, Rnr . And as depicted
in Fig. 2.2, a carrier leakage rate, Rl , must sometimes be included if the transverse
and/or lateral potential barriers are not sufficiently high (see Appendix 2 for a dis-
cussion of Rl ). Finally, under the right conditions, a net stimulated recombination,
Rst , including both stimulated absorption and emission, is important. Thus, we can
write

Rrec = Rsp + Rnr + Rl + Rst . (2.3)

The first three terms on the right refer to the natural or unstimulated carrier decay
processes. The fourth one, Rst , requires the presence of photons.

It is common to describe the natural decay processes by a carrier lifetime, τ . In
the absence of photons or a generation term, the rate equation for carrier decay is
just, dN /dt = −N /τ , where N /τ ≡ Rsp + Rnr + Rl , by comparison to Eq. (2.3).
This rate equation defines τ , and we can also think of its definition as the decay
constant in the solution to this rate equation for carrier decay,

N (t) = N (0)e−t/τ .

As mentioned in Chapter 1, this natural decay rate can be expressed in a power
series of the carrier density, N , because each of the terms depends on the existence
of carriers. Thus, we can rewrite Eq. (2.3) in several ways.

Rrec = Rsp + Rnr + Rl + Rst , (2.3a)

Rrec = N

τ
+ Rst , (2.3b)

Rrec = BN 2 + (AN + CN 3) + Rst , (2.3c)
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Whereas the grouping suggests in Eq. (2.3c), it has been found that Rsp ∼ BN 2

and Rnr + Rl ∼ (AN + CN 3). The coefficient B is called the bimolecular recom-
bination coefficient, and it has a magnitude, B ∼ 10−10 cm3/s for most AlGaAs
and InGaAsP alloys of interest. We also note that the carrier lifetime, τ , is not
independent of N in most circumstances.

Thus, so far we can write our carrier rate equation in several equivalent ways.
We shall deal with Rst a little later, but using Eq. (2.3b), our carrier rate equation
for the active region may be expressed as

dN

dt
= ηi I

qV
− N

τ
− Rst . (2.4)

In the absence of a large photon density, such as in a laser well below threshold
or in most LEDs, it can be shown that Rst can be neglected. Figure 2.2 illustrates
each of these terms in our reservoir analogy, explicitly showing “leaks” Rsp , Rnr ,
and Rl for N /τ .

2.3 SPONTANEOUS PHOTON GENERATION AND LEDS

Before proceeding to the consideration of lasers, where Rst will become a dominant
term above threshold, let us first try to gain some understanding of the situation
where the photon density is relatively low, such as in an LED where no feedback
is present to provide for the buildup of a large photon density. This case is actually
similar to a laser below threshold, in which the gain is insufficient to compensate
for cavity losses, and generated photons do not receive net amplification.

The spontaneous photon generation rate per unit volume is exactly equal to
the spontaneous electron recombination rate, Rsp , because by definition every time
an electron–hole pair recombines radiatively, a photon is generated. (Again, N
equals the density of electron–hole pairs as well as electrons for relatively light
doping). Under steady-state conditions (dN/dt = 0), the generation rate equals the
recombination rate (i.e., from Eqs. (2.2) and (2.3)), with Rst ≈ 0,

ηi I

qV
= Rsp + Rnr + Rl . (2.5)

The spontaneously generated optical power, Psp , is obtained by multiplying the
number of photons generated per unit time per unit volume, Rsp , by the energy
per photon, hν, and the volume of the active region, V . We could solve Eq. (2.5)
for Rsp , but because the exact dependence of Rnr + Rl on I is unknown, this leads
only to a parametric equation. The conventional approach is to bury this problem
by defining a radiative efficiency, ηr , where

ηr = Rsp

Rsp + Rnr + Rl
. (2.6)
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We must not forget that ηr usually depends on carrier density somewhat. Then,
from Eqs. (2.5) and (2.6),

Psp = hνVRsp = ηi ηr
hν

q
I . (2.7)

The product of ηi ηr is sometimes referred to as the LED internal efficiency. How-
ever, we shall not use this definition here because it can lead to serious confusion
when we move on to lasers. As we shall see, only ηi appears in the laser output
power, and we have called it alone the internal efficiency.

If we are interested in how much power the LED emits into some receiving
aperture, PLED, we must further multiply Psp by the net collection efficiency, ηc ,
experienced in transmitting photons out of the semiconductor and into this aperture.
Historically, this value was relatively low (<10%) for most LEDs, because the
light is emitted in all directions, and much of it is totally reflected at the semi-
conductor–air interface. However, with recent developments of LEDs for lighting
applications, novel structures and techniques have been developed to improve the
extraction efficiency, and efficiencies in the range of 70% have been achieved and
reported. Several LED cross sectional schematics are shown in Fig. 2.3.

In a conventional planar surface structure, as shown in Fig. 2.3a, much of the
light is reflected back toward the active region rather than being coupled out of
the semiconductor chip. This can lead to the regeneration of new carriers by
the reabsorption of this light and “photon recycling,” which can increase LED
efficiency.

The simplest way to increase light extraction efficiency is to roughen the semi-
conductor air interface, which will drastically reduce the amount of total internal
reflection back into the LED. This technique has become a common practice with
thin film LEDs. With the addition of external encapsulation, 80% efficiencies have
been reported [2].

Another commercially viable technique is use of shaped transparent substrates,
which allow that most generated light satisfy criteria for escape. A cross section
of one such structure, a truncated-inverted pyramid, is shown in Fig. 2.3b.

Light-emitting
layer

Light-emitting
layerLight-emitting layer

(b) (c)(a)

FIGURE 2.3: LED cross-sectional schematics for (a) a standard LED where only a small
portion of the generated light reaches a desired detector, (b) shaped transparent substrate
LED, and (c) diffraction grating LED.
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Figure 2.3c shows the latest approach, where the light propagation is controlled
and 2.3c extraction increased through use of multidirectional diffraction effect.
Introduction of this surface roughness reduces the amount of total internal reflec-
tion, and has allowed for well controlled, unencapsulated extraction efficiency
of 73% [3].

Going back to our LED analysis, the product of the three efficiencies (fraction
of carriers injected into the active region, fraction of these recombining radiatively,
and the fraction of those usefully coupled out) gives the external LED quantum
efficiency, ηex . That is,

PLED = ηcηi ηr
hν

q
I = ηex

hν

q
I . (2.8)

Thus, ignoring the slight dependence of ηex on I , we see that the power coupled
from an LED is directly proportional to the drive current. The external LED quan-
tum efficiency, ηex , is the number of photons coupled to the receiving aperture per
electron flowing into the LED.

The frequency response of the LED can also be derived from the carrier rate in
Eq. (2.4), with Rst ≈ 0. We shall use the theorem that the Fourier transform of the
impulse response in the time domain gives the frequency response. An impulse of
current is simply a quantity of charge, which will establish an initial condition of
N (t = 0+) = Ni . For t > 0, the rate equation can be written as

dN

dt
= −N

τ
= −AN − BN 2 − CN 3. (2.9)

With the polynomial expansion of the recombination rate, we are reminded that
the carrier lifetime, τ , is generally a function of the carrier density. If it were
independent of N , the solution would be a simple exponential decay, and the
frequency response would be analogous to that of a simple RC circuit in which the
3 dB cutoff frequency, ωc = 1/τ . For τ to be constant: (1) the cubic term must be
negligible and (2) either the linear term, AN, must dominate (not good, because this
represents nonradiative recombination) or the active region must be heavily doped,
such that the BN 2 term, which really equals BNP, can be written as (BPd )N . That
is, the p-type doping level, Pd , must be greater than the injection level, N , so that
Pd + P ≈ Pd . Under these conditions, then, the time response is just a simple
exponential decay given by Eq. (2.4) and the frequency response is a Lorentzian
function,

N (ω) = N (0)

1 + jωτ
, (2.10)

which drops to 0.707 N (0) at ωτ = 1. For Rsp ≈ (BPd )N , the power out, PLED,
which is proportional to Rsp , will also have the same frequency response. The
other cases are left as exercises for the reader, but it should be clear that the
cutoff frequency will be reduced if the carrier lifetime is increased.
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2.4 PHOTON GENERATION AND LOSS IN LASER CAVITIES

For the diode laser, we must now further investigate the nature of the net stimulated
recombination rate, Rst , in generating photons as well as the effect of the resonant
cavity in storing photons. In analogy with Section 2.2, we wish to construct a rate
equation for the photon density, Np , which includes the photon generation and
loss terms. We shall use the subscript p to indicate that variables are referring to
photons.

A main difference between the laser and LED, discussed in Section 2.3, is that
we only consider light emission into a single mode of the resonant cavity in the
laser. Because there are typically thousands of possible optical modes in a diode
laser cavity, only a small fraction of Rsp contributes to the photon generation rate
for a particular mode. Appendix 4 discusses the possible optical modes of a resonant
cavity using some of the results of Appendix 3. Note that the number of effective
modes in a small vertical-cavity laser can be much fewer, typically dozens rather
than thousands.

The main photon generation term above threshold (the regime of interest in
lasers) is Rst . Every time an electron–hole pair is stimulated to recombine, another
photon is generated. However, as indicated in Fig. 2.4, because the cavity volume
occupied by photons, Vp , is usually larger than the active region volume occupied
by electrons, V , the photon density generation rate will be [V /Vp]Rst not just Rst .

Mirror 1Mirror 2

In-plane laser

Cavity: Vp

Cavity: Vp

Light
outActive: N, Np, V 

x

z

VCSEL

Mirror 1

Mirror 2

y

z

Active: N, Np, V 

FIGURE 2.4: Schematics of in-plane and vertical-cavity lasers illustrating the active (cross-
hatched) and cavity (within dashed lines) volumes as well as the coordinate systems.
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This electron–photon overlap factor, V /Vp , is generally referred to as the con-
finement factor, �. Sometimes it is convenient to introduce an effective thickness,
width, and length that contains the photons, deff , weff , and L, respectively. That is,
Vp = deff weff L. Then, if the active region has dimensions, d , w, and La , the confine-
ment factor can be expressed as, � = �x�y�z , where �x = d/deff , �y = w/weff ,
and �z = La/L. Appendix 5 puts the derivation of � on a more rigorous foundation,
pointing out that �z is subject to an enhancement factor for La � λ. Photon loss
occurs within the cavity due to optical absorption and scattering out of the mode,
and it also occurs at the output coupling mirror, where a portion of the resonant
mode is usefully coupled to some output medium. These losses will be quantified in
the next section, but for now we can characterize the net loss by a photon (or cav-
ity) lifetime, τp , analogous to how we handled electron losses. A first version of the
photon density rate equation for a single optical mode in the active region takes the
form:

dNp

dt
= �Rst + �βspRsp − Np

τp
, (2.11)

where βsp is the spontaneous emission factor, defined as the percentage of the total
spontaneous emission coupled into the lasing mode. As indicated in Appendix 4,
βsp is just the reciprocal of the number of available optical modes in the bandwidth
of the spontaneous emission for uniform coupling to all modes. As also indicated
by Eq. (2.11), in the absence of generation terms, the photons decay exponentially
with a decay constant of τp . Again, this is really the definition of τp . That is, for
no sources the photon density decays as,

Np(t) = Np(0)e−t/τp . (2.12)

Equations (2.4) and (2.11) are two coupled equations that can be solved for the
steady-state and dynamic responses of a diode laser. However, in their present
form, several terms still need to be written explicitly in terms of N and Np before
such solutions are possible. First, we shall consider Rst .

Rst represents the photon-stimulated net electron–hole recombination that gen-
erates more photons. This is a gain process for photons. As illustrated in Fig. 1.6
and discussed more fully in Appendix 6, the net effect of the upward and down-
ward electronic transitions, corresponding to stimulated absorption and emission
of photons, respectively, are included. In Fig. 2.5 we show the growth of a photon
density from an incoming value of Np to an exiting value of Np + 	Np as it passes
through a small length, 	z , of active region. Without loss of generality, but for
simplicity, we assume full overlap between the active region and the photon field
(i.e., � = 1). As shown, we can also describe this growth in terms of an incremental
gain per unit length, g , by

Np + 	Np = Npeg	z . (2.13)
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LightgLightNp Np + ΔNp

Δz

Pump

FIGURE 2.5: Definition of gain in terms of the increase in photon number across a small
segment of gain material.

If 	z is sufficiently small, exp(g	z ) ≈ (1 + g	z ). Also, using the fact that 	z =
vg	t , where vg is the group velocity, we find that, 	Np = Npgvg	t . That is, the
generation term for dNp/dt is given by

(
dNp

dt

)
gen

= Rst = 	Np

	t
= vg gNp . (2.14)

Put another way, we simply define the incremental gain, g, as the exponential
growth rate with distance in the photon density (neglecting any losses) due to
stimulated recombination; that is,

Np(z ) = Np(0)egz . (2.15)

Then, substituting, z = vg t , and taking the time derivative we again get the same
result as Eq. (2.14), again assuming � = 1 for simplicity.

Thus, we can now rewrite the carrier and photon density rate equations for
values in the active region,

dN

dt
= ηi I

qV
− N

τ
− vg gNp , (2.16)

dNp

dt
= �vg gNp + �βspRsp − Np

τp
. (2.17)

Of course, we still have not made all the substitutions necessary to directly solve
the two equations simultaneously. In Appendix 6 it is suggested that the gain can
be expressed as a linear function of carrier density about some bias point, at least
under small-signal conditions.

However, a logarithmic function fits the gain better over a wider range of N ,
as we shall introduce in Section 2.6 and discuss in detail in Chapter 4. Of course,
we also know that N /τ can be replaced by the polynomial AN + BN 2 + CN 3,
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where the terms estimate defect, spontaneous (Rsp), and Auger recombination,
respectively. We also have the definitions of the constants ηi , �, and βsp , and in
the next section, we will derive the photon lifetime, τp , in terms of the physical
cavity losses. Nevertheless, we shall leave the rate equations in the general form
of Eqs. (2.16) and (2.17) for future reference.

2.5 THRESHOLD OR STEADY-STATE GAIN IN LASERS

In Section 2.4, we characterized the cavity loss by a phenomenological photon
decay constant or lifetime, τp , and one can express the gain necessary to overcome
losses, and thus reach threshold, from Eq. (2.17) by assuming steady-state con-
ditions (i.e., dNp/dt = 0), and solving for this steady-state or threshold gain, gth ,
where the generation term just equals the recombination term for photons. If we
assume that only a small fraction of the spontaneous emission is coupled into the
mode (i.e., βsp is quite small), then the second term can be neglected, and we are
left with the solution,

�gth = 1

vgτp
. (2.18)

The product, �gth , is referred to as the threshold modal gain because it now
represents the net gain required for the mode as a whole, and it is the mode
as a whole that experiences the cavity loss. Now in this section, we wish to
explicitly express τp in terms of the individual losses associated with optical prop-
agation along the cavity and the cavity mirrors. We shall also attempt to be a little
more rigorous with respect to the confinement factor, �, by introducing modal
averages.

As shown in Appendix 3 and discussed in Chapter 1, the optical energy of a
modern diode laser propagates in a dielectric waveguide mode, which is confined
both transversely and laterally as defined by a normalized transverse electric field
profile, U (x , y). In the axial direction this mode propagates as exp(−j β̃z ), where
β̃ is the complex propagation constant, which includes any loss or gain. Thus, the
time- and space-varying electric field can be written as

EEEE = êy E0U (x , y)ej (ωt−β̃z ), (2.19)

where êy is the unit vector indicating TE polarization and E0 is the magnitude of
the field. The complex propagation constant, β̃, includes the incremental transverse
modal gain, 〈g〉xy and internal modal loss, 〈αi 〉xy . That is,

β̃ = β + jβi = β + j

2
(〈g〉xy − 〈αi 〉xy ), (2.20)

where the real part of β̃;β = 2π n̄/λ, and n̄ is an effective index of refraction for the
mode, also defined in Appendix 3. As shown in Appendix 5, the transverse modal
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gain, 〈g〉xy , and loss, 〈αi 〉xy , are found from weighted averages of the gain and
loss, respectively, across the mode shape, U (x , y). Both are related to power; thus,
the factor of 1

2 in this equation for the amplitude propagation coefficient. From
Appendix 5, we can let 〈g〉xy = �xy g , where �xy is the transverse confinement
factor, if g(x , y) is constant across the active region and zero elsewhere, so that it
can be removed from the integral. This is generally valid for in-plane lasers, but not
as good for VCSELs. Also, for notational convenience, we shall let 〈αi 〉xy = αi . It
is perhaps worth reiteratering that the gain, g , can have both positive and negative
values as a function of pumping level, and it is due to the stimulated band-to-band
carrier transitions involved in Rst ; αi on the other hand, encompasses all other
“passive” scattering and absorptive losses the optical mode might experience that
are not included in Rst , and it has only a second-order dependence on carrier density
due to “free-carrier absorption” as the material becomes more conductive.

As illustrated in Fig. 2.6, most laser cavities can be divided into two general
sections: an active section of length La and a passive section of length Lp . Also,
g and αi will clearly be different in these two sections. In the passive section, by
definition g = 0, and αi can be given a second subscript to designate its location.
The propagating mode is reflected by end mirrors, which have amplitude reflection
coefficients of r1 and r2, respectively, to provide a resonant cavity. The amount
transmitted is potentially useful output.

For a mode of the laser to reach threshold, the gain in the active section
must be increased to the point where all the propagation and mirror losses are
compensated, so that the electric field exactly replicates itself after one round trip
in the cavity. Equivalently, we can unravel the round trip to lie along the z -axis
and require that E (z = 2L) = E (z = 0), provided we insert the mode reflection
coefficients at z = 0 and z = L. As a consequence of inserting these boundaries
into Eq. (2.19), we obtain

r1r2e−2j β̃ath La e−2j β̃pth Lp = 1. (2.21)

The subscript th denotes that this characteristic equation only defines the threshold
value of β̃. (In Chapter 3 we shall take a more basic approach to obtain this same

L

g

d

z

x

U (x, y)

LpLa

r2r1

FIGURE 2.6: Generic laser cavity cross-section showing active and passive sections (no
impedance discontinuity assumed) and the guided-mode profile.
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characteristic equation). Using Eq. (2.20), we can break the complex Eq. (2.21)
into two equations for its magnitude and phase. For the magnitude,

r1r2e(�xy gth−αia )La e−αip Lp = 1, (2.22)

where we have chosen reference planes to make the mirror reflectivities real.
Solving for �xy gthLa we obtain

�xy gthLa = αiaLa + αipLp + ln

(
1

R

)
, (2.23)

where the mean mirror intensity reflection coefficient, R = r1r2. For cleaved facet
lasers based upon GaAs or InP, R ∼ 0.32. Dividing Eq. (2.23) by the total cavity
length, L, we realize that �xy La/L ≈ �xy�z = � (exact for La � λ), and define
the average internal loss as

(αiaLa + αipLp)

L
= 〈αi 〉. (2.24)

We then have

〈gth〉 = �gth = 〈αi 〉 + 1

L
ln

(
1

R

)
. (2.25)

For convenience, the mirror loss term is sometimes abbreviated as αm ,

αm ≡ 1

L
ln

(
1

R

)
. (2.26)

Finally, from Eqs. (2.18) and (2.25), the photon decay lifetime is given by,

1

τp
= 1

τi
+ 1

τm
= vg (〈αi 〉 + αm). (2.27)

Thus, we can also write

�gth = 〈αi 〉 + αm = 1

vgτp
. (2.28)

As noted in Appendix 5, if the averaging is initially done over the whole volume,
the three-dimensional modal gain and loss used in Eqs. (2.25) and (2.28) are
obtained directly. However, this obscures the physics of the recirculating mode in
the cavity, so we have chosen to show the longitudinal weighting separately here.
As suggested earlier, the general 〈g〉th form is always valid, but the �gth form
only should be used for in-plane lasers, where the gain can be assumed to be
constant over the active volume. The limitation that La � λ for La/L = �z listed
earlier is also discussed in Appendix 5. As explained there, the axial averaging
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of gain and loss must also use a weighted average over the axial standing wave
pattern in the general case. In fact, for very short active regions (La � λ), such as
in many vertical-cavity lasers, it is possible for �z ≈ 2La/L, if the active segment
is placed at the peak of the electric-field standing wave (see Appendix 5).

It is most important to realize that Eqs. (2.25) and (2.28) give only the cavity
loss parameters necessary to calculate the threshold gain. That is, the calculation is
really a calculation of net cavity loss, and not a fundamental calculation of gain at
all. The equations have nothing to do with the stimulated emission physics, which
determines what the gain is for a given injection current. This physics is briefly
summarized in Appendix 6, and it will be the primary subject of Chapter 4. So
when gth appears in various equations in the the future, one should immediately
“see” net cavity loss, which just happens to be the value the gain needed to approach
lasing threshold.

For the phase part of Eq. (2.21), exp(2jβthaLa) exp(2jβthpLp) = 1, requires that
βthaLa + βthpLp = mπ , which gives a condition on the modal wavelength,

λth = 2

m
[n̄aLa + n̄pLp], (2.29)

where m is the longitudinal mode number. It should also be realized that n̄ varies
with wavelength (∂ n̄/∂λ, dispersion), and it generally is also dependent on the
carrier density (∂ n̄/∂N , plasma loading). Thus, when making computations, these
dependences must be included. That is, to determine n̄ at a wavelength λ = λ0 +
	λ and a carrier density, N = N0 + 	N , we use

n̄(λ, N ) = n̄(λ0, N0) + ∂ n̄

∂λ
	λ + ∂ n̄

∂N
	N . (2.30)

Typically, ∂ n̄/∂λ ∼ −1 μm−1, and ∂ n̄/∂N ≈ �xy∂nA/∂N ∼ −�xy 10−20 cm3,
where nA is the index in the active region. Rearranging Eq. (2.29) we take a total
derivative of both sides, assuming that 	N is constant,

d(mλ) = d(2[n̄aLa + n̄pLp]) => λ · dm + m · dλ = 2

(
∂ n̄a

∂λ
La + ∂ n̄p

∂λ
Lp

)
dλ.

(2.31)
Further manipulating this expression, noting that dm = ±1, and using Eq. (2.29)
to eliminate m , we can find the wavelength separation between two modes, m and
m + 1, to be

dλ = λ2

2(n̄gaLa + n̄gpLp)
, (2.32)

where the group effective index for the j th section n̄gj = n̄j − λ(∂ n̄/∂λ) = nj +
ω(∂n/∂ω). The group index in semiconductors is typically 20–30% larger than
the index of refraction, depending on the specific wavelength relative to the band
edge. From experiments, the values of n̄g for the active sections of various in-plane
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TABLE 2.1: Estimated Values
of Group Indices for Different
Wavelength Ranges, to be used
for Problems in this Textbook

λ (nm) n̄g

400 3
850–980 4.5
1300 4
1550 3.8

lasers have been estimated. A set of estimated group index values, for different laser
operating wavelength ranges, is given in Table 2.1.

Finally, it is important to note that the steady-state gain in a laser operating
above threshold must also equal its threshold value as given by Eq. (2.25). That
is, in a laser cavity,

g(I > Ith) = gth . (steady state) (2.33)

If the gain were higher than gth , then the field amplitude would continue to increase
without bound, and this clearly cannot exist in the steady state. Furthermore,
because the gain is monotonically related to the carrier density, this implies that
the carrier density must also clamp at its threshold value. That is,

N (I > Ith) = Nth . (steady state) (2.34)

In fact, what happens when the current is increased to a value above threshold is
that the carrier density and gain initially (on the order of a nanosecond) increase
to values above their threshold levels, and the photon density grows. But then,
the stimulated recombination term Rst also increases, reducing the carrier density
and gain until a new steady-state dynamic balance is struck where Eqs. (2.33)
and (2.34) are again satisfied. Put another way, the stimulated recombination term
in Eq. (2.15) uses up all additional carrier injection above threshold. In terms of
our reservoir analogy depicted in Fig. 2.2, the water level has reached the spillway
and any further increase in input goes over the spillway without increasing the
water depth. Of course, the spillway represents simulated recombination. Fig. 2.7
shows the analogy in this case.

Figure 2.8 summarizes this carrier clamping effect in a laser cavity. The physics
of the g versus N curve never changes. The feedback effect causes the carrier
density to clamp, in order to keep the gain at its threshold value.

Example 2.1 An active-passive cleaved laser chip, operating at 1.55 μm, consists
of a multiple quantum-well InP/InGaAsP active section, whose length is 500 μm,
and internal loss αia = 15 cm−1, and a passive section, whose length is 300 μm



60 A PHENOMENOLOGICAL APPROACH TO DIODE LASERS

and internal loss αip = 10 cm−1. The active region contains 4–3 nm wide strained
InGaAs quantum wells.

Problem: (1) Determine the threshold modal gain of this laser. (2) Determine the
cavity mode spacing for this laser.

Solution: To calculate the threshold modal gain, we will use the expression from
Eq. (2.25). For this, we need to determine the average loss of the cavity, 〈αi 〉, and
the mirror loss, αm . From Eq. (2.24),

〈αi 〉 = (αiaLa + αipLp)

La + Lp
= 15 · 10−4 · 500 + 10 · 10−4 · 300

(500 + 300)10−4 cm
= 13.125 cm−1.

From Eq. (2.26), using the fact that we are dealing with an InP based laser with
cleaved facets, where R ∼ 0.32,

αm = 1

La + Lp
ln

(
1

R

)
= 1

800 · 10−4 cm
ln

(
1

0.32

)
= 14.243 cm−1

Then, the threshold modal gain is given by Eq. (2.25),

�gth = 〈αi 〉 + αm = 27.368 cm−1

Cavity mode spacing can be determined from Eq. (2.32), using the fact that nga =
ngp = 3.8 for this InGaAsP based laser, and the lasing wavelength of 1.55 μm,

dλ = λ2

2(n̄gaLa + n̄gpLp)
= 1.552

2(3.8 · 500 + 3.8 · 300)
μm = 0.395 nm.

2.6 THRESHOLD CURRENT AND POWER OUT VERSUS CURRENT

2.6.1 Basic P–I Characteristics

Although the rate Eqs. (2.16) and (2.17) are valid both above and below threshold,
and they can be solved in parametric form, we shall piece together a below-
threshold LED characteristic with an above-threshold laser characteristic to con-
struct the power out versus current in for a diode laser with useful analytic expres-
sions. The LED part is already largely complete with Eq. (2.8). Thus, we shall here
concentrate on the above-threshold laser part. The first step is to use the below-
threshold steady-state carrier rate equation, Eq. (2.5) almost at threshold. That is,

ηi Ith

qV
= (Rsp + Rnr + Rl )th = Nth

τ
. (2.35)

Then, recognizing that (Rsp + Rnr + Rl ) = AN + BN 2 + CN 3 depends monoton-
ically on N , we observe from Eq. (2.34) that above threshold (Rsp + Rnr + Rl )
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FIGURE 2.7: Reservoir analogy above threshold where water level has risen to the spillway
so that an increased input results in an increased output (Rst ) but no increase in carrier density
(water level). The flows Rnr and Rsp do not change above threshold.

N

I

Nth

Ith

Ntr

Γg

N

Γgth

Nth

a

FIGURE 2.8: Gain versus carrier density and carrier density versus input current. The carrier
density clamps at threshold causing the gain to clamp also.



62 A PHENOMENOLOGICAL APPROACH TO DIODE LASERS

will also clamp at its threshold value, given by Eq. (2.35). Thus, we can
substitute Eq. (2.35) into the carrier rate equation, Eq. (2.16), to obtain a new
above-threshold carrier rate equation,

dN

dt
= ηi

(I − Ith)

qV
− vg gNp , (I > Ith) (2.36)

where we have assumed ηi is not a function of current above threshold. From
Eq. (2.36) we can now calculate a steady-state photon density above threshold
where g = gth . That is,

Np = ηi (I − Ith)

qvg gthV
. (steady state) (2.37)

Now with some relatively straightforward substitutions, we can calculate the
power out, because it must be proportional to Np . To obtain the power out, we first
construct the stored optical energy in the cavity, Eos , by multiplying the photon
density, Np , by the energy per photon, hν, and the cavity volume, Vp . That is,
Eos = NphνVp . Then, we multiply this by the energy loss rate through the mirrors,
vgαm = 1/τm , to get the optical power output from the mirrors,

P0 = vgαmNphνVp . (2.38)

Substituting from Eqs. (2.37) and (2.28), and using � = V /Vp , in Eq. (2.38),

P0 = ηi

(
αm

〈αi 〉 + αm

)
hν

q
(I − Ith). (I > Ith) (2.39)

Now, by defining

ηd = ηi αm

〈αi 〉 + αm
, (2.40)

we can simplify Eq. (2.39) to be

P0 = ηd
hν

q
(I − Ith). (I > Ith) (2.41)

Equation (2.41) represents the total power out of both mirrors. If the mirrors have
equal reflectivity, then exactly half will be emitted out of each. If one is totally
reflecting, then all will be emitted out the other. On the other hand, if the mirrors
have partial but unequal reflectivity, the fraction emitted from each is a nontrivial
function, which we shall derive in Chapter 3. Equation (2.41) also shows that the
power out above threshold is a linear function of the current above threshold.
This is true regardless of our assumptions about the form of the gain–current
relationship or the nature of the nonradiative recombination mechanisms. The
assumptions necessary for this P–I linearity are that the gain–current relationship,
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FIGURE 2.9: Illustration of output power versus current for a diode laser. Below threshold
only spontaneous emission is important; above threshold the stimulated emission power
increases while the spontaneous emission is clamped at its threshold value.

the internal efficiency, the confinement factor, and the cavity losses remain
constant. As shown in Appendix 5, by confinement factor, we really mean that
the modal gain must remain constant.

To determine what we should call ηd , we can compare the calculated result
of Eq. (2.41) to a measurement. Postulating that it might be related to a quantum
efficiency, we calculate a differential quantum efficiency, defined as the number
of photons out per electron in from a measured P–I characteristic. As shown in
Fig. 2.9, the differential quantum efficiency would be found by measuring the slope
[	P0/	I ] in watts/amp above threshold (including output from both ends) and then
multiplying this number by [q/hν] in Coulombs/joule to get an empirical number
of photons per electron equal to [	P0/	I ][q/hν]. Now, if we take the derivative
with respect to current of Eq. (2.41), and solve for ηd , we get the same result. This
shows that ηd is indeed the differential quantum efficiency. To repeat then,

ηd =
[ q

hν

] dP0

dI
. (I > Ith) (2.42)

The region in Fig. 2.9 below threshold (I < Ith) can be approximated by
neglecting the stimulated emission term in Eq. (2.17) and solving for Np , again
under steady-state conditions. In this case we find that

Np = �βspRspτp . (I < Ith) (2.43)

Using Eqs. (2.43), (2.25), (2.6), and (2.5) in Eq. (2.38), we get the spontaneous
emission into the laser mode as

P0(I < Ith) = ηrηi

(
αm

〈αi 〉 + αm

)
hν

q
βspI . (2.44)
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Comparing this to the LED expression of Eq. (2.8) shows that ηc =
αmβsp/(〈αi 〉 + αm) as might have been expected.

At threshold the spontaneous emission clamps as the carrier density clamps
because Rsp depends on N . Thus, as the current is increased above threshold, the
spontaneous emission noise remains constant at the value of Eq. (2.44) with I = Ith ,
while the coherent stimulated emission power grows according to Eq. (2.39). As
we shall find in Chapter 5, this results in a gradual reduction in the linewidth of
the output wavelength as the power is increased.

2.6.2 Gain Models and Their Use in Designing Lasers

Equation (2.41) gives the output power in terms of the additional current applied
above threshold. The proportionality factors are constants involving the cavity
losses, the lasing wavelength, and the internal efficiency. To design lasers for min-
imum current at a given output power, we also need an analytic expression for the
threshold current. So far, we have introduced the threshold modal gain dependence
in terms of the cavity losses, Eq. (2.28), and we have suggested that the gain can be
related to the carrier density by a logarithmic (Chapter 4) relationship. The thresh-
old current is also related to the threshold carrier density via the recombination
rates, which can be expressed as a polynomial in N (e.g., Eq. (2.35)).

In Chapter 4 it will be shown that the gain versus carrier density can be well
approximated by a simple three-parameter logarithmic formula.

g = g ′
0N ln

N + Ns

Ntr + Ns
. (2.45)

In this approximation, g ′
0N is an empirical gain coefficient, Ntr is the transparency

carrier density, and Ns is a shift to force the natural logarithm to be finite at
N = 0 such that the gain equals the unpumped absorption due to the band-to-band
transitions. However, if we restrict our attention to positive gains, g ≥ 0, Eq. (2.45)
can be further approximated by the simple two-parameter expression,

g = g0N ln
N

Ntr
, (g ≥ 0) (2.46)

provided that we use a new gain coefficient g0N . In this case the differential gain,
∂g/∂N ≡ a , which will show up in a number of important relationships, is given by

∂g

∂N
≡ a = g0N

N
. (2.47)

Of course, in a laser above threshold, N = Nth . Generally, Ntr and ∂g/∂N will
be quite different for bulk, quantum-well, and strained-layer quantum-well active
regions. The value of this parameter is the basis for many of the arguments for and
against certain of these structures. Figure 2.10 illustrates schematically the modal
gain versus carrier density with some of the relevant parameters labeled. The value
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FIGURE 2.10: Schematic illustration of modal gain versus injected carrier density with
values labeled from the two-parameter logarithmic fit of Eq. (2.46).

for differential gain a is determined by the slope of the tangent to the gain curve
at the threshold point, Fig. 2.10. As with any other system, local gain–carrier
relationship can be linearized at point a .

Fitting Eq. (2.46) to numerical gain plots to be found in Chapter 4, a
strained 80 Å InGaAs/GaAs quantum well yields g0N ∼ 2100 cm−1 and
Ntr ∼ 1.8 × 1018 cm−3; and an 80 Å GaAs quantum well gives g0N ∼ 2400 cm−1

and Ntr ∼ 2.6 × 1018 cm−3. For InP substrate cases, a strained 30 Å InGaAs/InP
well gives g0N ∼ 4000 cm−1 and Ntr ∼ 3.3 × 1018 cm−3; and an unstrained 60 Å
InGaAs quantum well gives g0N ∼ 1800 cm−1 and Ntr ∼ 2.2 × 1018 cm−3.

Now we can combine Eqs. (2.28) and (2.46) to get the threshold carrier density,

Nth = Ntr egth/g0N = Ntr e(〈αi 〉+αm )/�g0N. (2.48)

Using the polynomial fit for the recombination rates in Eq. (2.35), and recognizing
that for the best laser material the recombination at threshold is dominated by
spontaneous recombination, we have, Ith

∼= BN 2
thqV /ηi . Thus,

Ith
∼= qVBN 2

tr

ηi
e2(〈αi 〉+αm )/�g0N, (2.49)

where for most III–Vs of interest the bimolecular recombination coefficient, B ∼
10−10 cm3/s.

Equations (2.41) and (2.49) can now be used for a closed-form expression of
output power versus applied current. However, because we are usually trying to
minimize the current needed for a given required power from one mirror, P01, we
solve for I .

I ∼= qP01(〈αi 〉 + αm)

F1ηi hναm
+ qVBN 2

tr

ηi
e2(〈αi 〉+αm )/�g0N , (2.50)
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where the first term is the additional current required above threshold to obtain
power P01 from Eq. (2.41), and the second term is the threshold current, or
Eq. (2.49). The factor F1 is the fraction of the total output power coming out of
mirror 1. An exact analytic formula for it will be derived in Chapter 3, but clearly,
it is one-half for equal mirrors and unity if mirror 2 has a reflectivity of one.

Equations (2.49) and (2.50) give reasonable accuracy in simple analytic expres-
sions, which correctly show that it is always desirable to reduce the transparency
value and increase the differential gain of the active material. Both points argue in
favor of using quantum-well, especially strained-layer quantum-well, active regions.
Relative to the cavity design, the equations also indicate that it is desirable to reduce
the cavity loss (〈αi 〉 + αm) and volume, V , subject to retaining a reasonably large
confinement factor, �. Thus, the merits of using vertical-cavity surface emitters or
short-cavity in-plane lasers with coated facets are also suggested.

Figure 2.11 plots Eq. (2.50) for a typical set of assumed parameters to quantify
the relationship between mirror reflectivity and cavity volume for a specific set of
parameters. Note that for any given values of internal loss and power out there
is a trough in required drive current that slopes monotonically downward as R
approaches unity and L tends to zero. In practice, this R = 1, L = 0 minimum can-
not be approached too closely because high current densities lead to device heating,
and the deleterious effects of heating on the device parameters are not included
here. In fact, the trade-off between the desire to minimize device volume and the
need to maintain reasonable current densities and thermal impedances generally
forces laser designs to be considerably larger than the plots in Fig. 2.11 tend to
suggest. For higher powers out or internal losses, the bottom of the current trough
moves to smaller Ls and Rs . Figure 2.11b isolates two specific lengths from part
(a) and adds other power levels to illustrate this point. Further discussion of opti-
mum laser design is left until Chapter 8 and Appendix 17. Due to the exponential
dependence on gth/g0N in Eqs. (2.49) and (2.50), it may be beneficial to use more
than one quantum well to increase � in a quantum-well laser. This dependence is
a result of the saturation of the gain as the carrier density is increased to nearly
fill the lowest set of states, as discussed in Appendix 6 and Chapter 4. Thus, by
distributing the carriers over Nw wells, the gain within each well is reduced by
less than Nw times, but the modal gain is still multiplied by nearly Nw times this
value. For such multiple quantum-well (MQW) lasers Eqs. (2.49) and (2.50) are
still valid but one must be sure to multiply the single-well confinement factor, �1,
and volume, V1, by the number of wells, Nw. That is, for an MQW laser, from
Eq. (2.49) or the second term in Eq. (2.50), one can explicitly write

IthMQW
∼= qNwV1BN 2

tr

ηi
e2(〈αi 〉+αm )/Nw�1g0N. (2.51)

Here, we have assumed a separate confinement waveguide, so that the optical mode
does not change significantly as more wells are added. Also, the number of wells
is limited to the number that can be placed near the maximum of the optical mode.
The optimum number of wells is the number that minimizes Eq. (2.51), neglecting
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FIGURE 2.11: (a) Three-dimensional plot of current required for 10 mW of power
out for lasers of variable length, L, and mean mirror reflectivity, R. Other parame-
ters are: w = 2.0 μm; d = 10 μm; 〈αi 〉 = 20 cm−1; �g0 = 50 cm−1; F1 = 0.5; Ntr = 2 ×
1018 cm−3; ηi = 1; �xy = 0.033; �z = 1. (b) I versus R for two lengths from (a) with
two additional power levels shown. (c) Comparison of small in-plane laser and VCSEL.
�xy = 1; �z = 0.06 for VCSEL. Active area (A = 20 μm2) is the same in both. The VCSEL
uses three quantum wells rather than one, tripling the active volume. This reduces the value
of the optimum R for the VCSEL and broadens the current minimum. However, the VCSEL
minimum current is nearly the same as the in-plane laser here, because three wells are used.
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FIGURE 2.12: Example plots of modal gain versus current density for increasing numbers
of quantum wells in an SCH-MQW laser. For the calculations, we assumed a quantum well
active material used in Examples 2.2 and 2.4, and that the active region was offset relative
to a 300 nm thick 1.4Q waveguide. Confinement factor � was computed using numerical
mode solving.

nonradiative recombination. With the increased confinement factor we also see that
higher powers can be obtained efficiently without moving too far up the gain curve.
Perhaps a more instructive way of visualizing the optimal design of MQW lasers
is by way of the graphical example in Fig. 2.12, which gives a family of modal
gain versus current density plots as the number of quantum wells is increased.
From this for a given threshold modal gain (net modal loss), one can determine
the minimum current (and number of quantum wells) needed to reach threshold.
Sometimes one might also wish to have a large differential gain, a , or have some
margin for operation at higher temperatures, so moving to the next higher curve
than this minimum might be more desirable.

Example 2.2 The active material from Example 2.1 is used to fabricate a 500-
μm-long and 50-μm-wide broad area laser. The material gain for the quantum
wells can be approximated using Eq. (2.46), with g0N = 1207.29 cm−1 and Ntr =
1.2284 · 1018 cm−3. The transverse confinement factor �1 is 1% per well, and
ηi = 80%.

Problem: (1) Calculate the threshold modal gain for this laser. (2) Determine the
threshold current for this laser. (3) Determine the threshold current for a laser of
the same dimensions, but with 7 quantum wells, assuming that the internal modal
loss αia remains the same.

Solution: To calculate the threshold current, we first need to calculate the
threshold carrier density using the Eq. (2.48). Because we are dealing with a
long wavelength InP/InGaAsP material system, both spontaneous, Eq. (2.51), and



2.6 THRESHOLD CURRENT AND POWER OUT VERSUS CURRENT 69

nonradiative, Eq. (2.52) threshold current components need to be included. To
compute the threshold carrier density, we need to determine the threshold modal
gain of this all–active laser,

�gth = 〈αia〉 + 1

L
ln

(
1

R

)
= 37.79 cm−1.

The transverse confinement factor is determined by the number of quantum wells,

� = Nw · �1 = 0.04.

Using Eq. (2.48), threshold carrier density is

Nth = Ntr e
gth
g0N = Ntr e

37.79
0.04·1207.29 = 2.6865 · 1018 cm−3.

Now we can compute the threshold current, using the volume of the active region
V = L · W · Nw · d = 500 · 50 · 4 · 0.003 · 10−12 cm−3,

Ith = qVNth

ηi τ
∼= qV

ηi
(BN 2

th + CN 3
th) = 47.94 mA

where B = 0.3 · 10−10 cm3/s and C = 3 · 10−29 cm6/s. If we now have a laser
with 7 quantum wells, the confinement factor will be changed,

�2 = Nw · �1 = 0.07.

leading to a changed threshold gain gth2 = 539.84 cm−1, threshold carrier density
Nth2 = 1.9211 · 1018 cm−3, volume V = 500 · 50 · 7 · 0.003 · 10−12 cm−3, and the
threshold current of

Ith = qV

ηi
(BN 2

th + CN 3
th) = 34.00 mA.

In the plots of Fig. 2.12 it is assumed that as more identical quantum wells are
added within the separate-confinement-heterostructure (SCH) region, the injected
current is distributed equally across the wells; thus, for example, it requires twice as
much current density to reach transparency for two wells as for one. For only a few
wells it can also be assumed, as mentioned earlier, that the confinement factor will
increase linearly as the number of wells increase. In short, to a good approximation,
successive curves can be generated by simply multiplying both coordinate values
by Nw, although in Fig. 2.12 an actual numerical calculation was performed.

If nonradiative recombination is important at threshold, an additional nonra-
diative threshold current component must be added as outlined earlier. For the
long-wavelength InGaAsP/InP materials, nonradiative recombination is known to
be very important. In fact, were it not for such recombination, the threshold cur-
rent densities of lasers using such materials would be lower than those using GaAs
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quantum wells, as indicated by the gain parameters listed after Eq. (2.46). If such
higher-order nonradiative carrier recombination is important at threshold, one must
add another component to the threshold current due to the CN 3

th term in the recom-
bination rate. Then, Eqs. (2.49) and (2.50) should be increased by

Inrth = qVCN 3
tr

ηi
e3(〈αi 〉+αm )/�g0 , (2.52)

where for 1.3 μm InGaAsP material, the Auger coefficient, C ∼ 3 × 10−29 cm6/s,
and for 1.55 μm material it is about two or three times larger. The cubic depen-
dence on Nth places more importance on reducing the threshold carrier density in
this material system. In fact, this additive Auger term dominates Eq. (2.49) for
carrier densities above Nth ∼ 3 × 1018 or 1.5 × 1018 cm−3 at 1.3 and 1.55 μm,
respectively. This fact focuses more attention on reducing cavity losses, (〈αi 〉 +
αm), and maintaining a large confinement factor, �. With the use of strained-
layer InGaAs/InGaAsP or InGaAs/InGaAlAs quantum wells on InP, a considerable
improvement is possible because all the parameters affecting Nth move in the right
direction. In fact, the Auger coefficient, C , may also be reduced due to the splitting
of the valence bands.

2.7 RELAXATION RESONANCE AND FREQUENCY RESPONSE

Chapter 5 will discuss dynamic effects in some detail. Here, we wish to use
Eqs. (2.16) and (2.17) to briefly outline the calculation of relaxation resonance fre-
quency and its relationship to laser modulation bandwidth. As shown in Chapter 5,
because of gain compression with increasing photon density and possible trans-
port effects, the calculations are a bit oversimplified, particularly with respect to
quantum-well structures. However, these simple equations do seem to work well
for standard DH structures, and the method of attack for calculating resonance fre-
quency is also instructive for the more complex calculations to follow in Chapter 5.

Consider the application of an above-threshold DC current, I0, superimposed
with a small AC current, I1, to a diode laser. Then, under steady-state conditions
the laser’s carrier density and photon density would respond similarly, with some
possible harmonics of the drive frequency, ω, that we shall ignore. Using complex
frequency domain notation,

I = I0 + I1ejωt , (2.47a)

N = N0 + N1ejωt , (2.47b)

Np = Np0 + Np1ejωt . (2.47c)

Before applying these to Eqs. (2.16) and (2.17), we first rewrite the rate
equations using g = a	N for the gain. This is valid because small-signal
conditions are assumed, and the gain can be well approximated by a linear
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deviation from its steady-state value, gth , over some small range of carrier
densities, �N , provided the local slope, a = ∂g/∂N , at the bias point N0 is
used. We also assume the DC current is sufficiently far above threshold that the
spontaneous emission can be neglected. That is,

dN

dt
= ηi I

qV
− N

τ
− vg (gth + a�N )Np , (2.48)

dNp

dt
= �vg (gth + a�N )Np − Np

τp
. (2.49)

Now, after plugging in Eq. (2.47) for I, N, and Np , we note that �N ≡ N1 exp(jωt)
and recognize that the DC components satisfy the steady-state versions of
Eqs. (2.48) and (2.49) (i.e., with d/dt → 0); and they can be grouped together
and set to zero. Next, we recognize that the steady-state gains, gth , can be replaced
by [�vgτp]−1 according to Eq. (2.28). Finally, we delete the second-harmonic
terms that involve ej 2ωt and divide out an ejωt common factor. Then,

jωN1 = ηi I1

qV
− N1

τ
− Np1

�τp
− vg aN1Np0, (2.50)

jωNp1 = �vg aN1Np0. (2.51)

With the preceding manipulations we have generated frequency domain equations
that can easily be solved for the transfer function Np1(ω)/I1(ω). First, solving
for N1 in Eq. (2.51), we have N1 = jωNp1/�vg aNp0. Then eliminating N1 from
Eq. (2.50) and using Pac = vgαmNp1hνVp , we obtain

Pac(ω)

I1(ω)
= ηi hν

q

vgαm(vg aNp0)

vg aNp0/τp − ω2 + jω[vg aNp0 + 1/τ ]
. (2.52)

Now we observe that the first term in the denominator is the square of a natural
resonance frequency, so we define,

ω2
R ≡ vg aNp0

τp
. (2.53)

Using Eqs. (2.28) and (2.40), the transfer function can be written in a more
normalized form:

Pac(ω)

I1(ω)
= ηd hν/q

1 − (ω/ωR)2 + j (ω/ωR)[ωRτp + 1/ωRτ ]
. (2.54)

For sufficiently low modulation frequencies, the denominator reduces to one and
Eq. (2.54) reduces to the AC equivalent of Eq. (2.41). For higher modulation
frequencies, the 1 − (ω/ωR)2 term in the denominator creates a strong resonance
in the response. Figure 2.13 illustrates the frequency dependence for a wide range
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FIGURE 2.13: Frequency response of an idealized diode laser for several different out-
put powers. The active region is characterized by: hν = 1.5 eV, a = 5 × 10−16 cm2, τ =
3 × 10−9 s, ηi = 86.7%, and vg = 3 × 1010/4 cm/s. The laser cavity is characterized by:
τp = 2 × 10−12 s (with αm = 60 cm−1 and αi = 5 cm−1), ηd = 80%, and Vp = 5 μm ×
0.25 μm × 200 μm. The 20 log [Pac(ω)/Pac(0)] is used because photodetection generates
an electrical current in direct proportion to the optical power. Thus, for a power ratio in the
electrical circuit, this current must be squared.

of output powers. Note that the resonance is damped at low and high output
powers. This occurs because the imaginary damping term in Eq. (2.54) depends on
both ωR and 1/ωR . In Chapter 5, we will find that inclusion of gain compression
and transport effects creates significantly more damping than predicted here.
In fact, on real laser devices the resonance is typically limited to 5–10 dB (as
opposed to the peak ∼25 dB suggested in Fig. 2.13).

Beyond the strong resonance, the transfer characteristics degrade significantly.
Thus, effective modulation of the output power can only be achieved over a mod-
ulation bandwidth of ∼ωR . When the damping is small, the electrical 3 dB down
frequency (i.e., the frequency that reduces the received electrical power to one-
half its DC value) is given by ω3 dB =

√
1 + √

2ωR . Expanding Eq. (2.53) using
Eqs. (2.28), (2.38), and (2.40), we can express this result in terms of the output
power:

f3 dB ≈ 1.55

2π

[
�vg a

hνV

ηi

ηd

]1/2 √
P0. (small damping) (2.55)

The modulation bandwidth of the laser can be steadily enhanced by increasing
the output power. However, increased damping of the resonance at high powers,
thermal limitations, and high power mirror facet damage set practical limits on the
maximum average operating power we can use.

Because thermal limits are usually associated with the drive current, it is also
convenient to express ωR in terms of current. Using Eq. (2.37) for Np0, with gth
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given by Eq. (2.28), Eq. (2.53) becomes

ωR =
[
�vg a

qV
ηi (I − Ith)

]1/2

. (2.56)

In this form we observe that it is desirable to enhance the differential gain, min-
imize the volume of the mode (�/V = 1/Vp), and maximize the current relative
to threshold for maximum bandwidth. If we want to keep the overall drive cur-
rent low, then we should also try to minimize the threshold current, perhaps by
increasing the facet reflectivity. If, however, we are more concerned about keeping
the photon density low (for example, to reduce the risk of facet damage), then
from Eq. (2.52) we should try to decrease the cavity lifetime instead, perhaps by
decreasing the facet reflectivity. Thus, the optimum cavity design for a high-speed
laser depends on what constraints we place on the device operation. In Chapter 5
we will find that at very high powers, the maximum bandwidth actually becomes
independent of ωR and is more fundamentally related to the damping factor (the
K -factor), which is affected by gain compression and transport effects.

Example 2.3 A cleaved facet, active 3-μm-wide and 500-μm-long ridge laser
is created from the laser structure from Example 2.1. This ridge laser is biased
30 mA above threshold and directly modulated by applying a small signal sine
wave current to its active section.

Problem: Determine the resonance peak frequency fR = ωR
2π

of this laser, assuming
injection efficiency ηi of 80%, and assuming no change in the internal losses.

Solution: To calculate the resonance frequency, we will use the Eq. (2.56). There-
fore, we need to compute the differential gain a at threshold, since the carrier
density is clamped at the threshold carrier density. Thus, we first need to deter-
mine the threshold carrier density. Because the internal losses and the laser length
are unchanged, the threshold modal gain for this laser is the same as that for the
laser in Example 2.2, �gth = 37.79 cm−1, leading to the same threshold carrier
density as calculated in Example 2.2,

Nth = Ntr e
gth
g0N = Ntr e

37.79
0.04·1207.29 = 2.6865 · 1018 cm−3.

Differential gain a can be computed using expression Eq. (2.46),

a = ∂g

∂N
|N =Nth = g0N

Nth
= 1207.29 cm−1

2.6865 · 1018 cm−3
= 4.49 · 10−16 cm2.

The resonance frequency is given by fR = ωR
2π

, where ωR is defined in Eq. (2.56),

fR = 1

2π

[
�vg a

qV
ηi (I − Ith)

]1/2

=
[
�1vg a

qV1
ηi (I − Ith)

]1/2

.
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V1 is the volume of a single quantum well, V1 = 3 · 500 · 0.003 · 10−12 cm−3 =
4.5 · 10−12 cm−3, and the group velocity for InGaAsP laser is vg = c

3.8 = 0.7894 ·
1010 cm/s. Therefore, the resonance frequency is

fR = 1

2π

[
0.01 · 0.7894 · 1010 · 4.49 · 10−16 cm2

1.6 · 10−19 · 4.5 · 10−12
0.8(0.3)

1

s2

]1/2

= 5.47 GHz.

To gain a somewhat more intuitive understanding of the natural resonant behav-
ior that results between the carrier-photon coupling described by the coupled rate
equations, we consider only the third term on the right side of Eq. (2.50), for the
small-signal carrier density, N1, together with Eq. (2.51) for the small-signal pho-
ton density, Np1. This is approximately valid, because the carrier density is almost
clamped, Np1 � N1, so the other terms in Eq. (2.50) are much smaller. If we view
the left-hand sides of these two equations as time derivatives, then we observe from
Eq. (2.51) that as N1 increases and becomes positive, Np1 increases in time due to
increased gain in the laser. However, from the third term in Eq. (2.50), once Np1

becomes positive, it serves to decrease N1 through increased stimulated emission.
As N1 decreases and becomes negative, Np1 begins to fall, and once it becomes
negative, it again produces an increase in N1. At this point, the cycle repeats itself.
This phenomenon produces a natural resonance in the laser cavity which shows
up as a ringing in the output power of the laser in response to sudden changes in
the input current. The natural frequency of oscillation associated with this mutual
dependence between N1 and Np1 can be found by multiplying Eqs. (2.50) and (2.51)
together, again ignoring all but the third term on the right-hand side of the first
equation, we again obtain ωR , given by Eq. (2.53), and commonly referred to as
the relaxation resonance frequency (where relaxation refers to an attempt by the
photons and carriers to relax to their steady-state values). It is directly propor-
tional to the square root of the differential gain and average photon density in the
cavity (output power) and inversely proportional to the square root of the pho-
ton lifetime in the cavity. The relaxation resonance of the laser cavity is much
like the natural oscillation of an LC circuit. However, the additional terms present
in Eq. (2.50) lead to more of an RLC circuit behavior, dampening the resonant
response.

2.8 CHARACTERIZING REAL DIODE LASERS

In this section we wish to review some of the common measurements that are
made on diode lasers. We shall emphasize those that can be used to extract internal
parameters that we have used in the rest of this chapter. More complex characteri-
zation techniques will be delayed until after the discussion of dynamic effects and
the introduction of more complex cavity geometries.
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2.8.1 Internal Parameters for In-Plane Lasers: 〈αi〉, ηi , and g versus J

Perhaps the most fundamental characteristic of a diode laser is the P –I characteris-
tic as has been illustrated in Fig. 2.9. From a measured P –I characteristic one can
immediately determine the experimental threshold current, Ith , from the intercept
of the above-threshold curve with the abscissa. The differential quantum efficiency,
ηd , can be calculated from Eq. (2.41), provided the wavelength is known. Usually
the mean mirror reflectivity, R = r1r2, can be calculated with good accuracy, and
the length, L, can be measured. Thus, the mirror loss, αm ≡ (1/L) ln(1/R) can be
calculated. However, the net internal optical loss 〈αi 〉 and quantum efficiency, ηi ,
cannot be determined from a single device.

To determine these important internal parameters, one commonly uses two or
more lasers of different length fabricated from the same material with identical mir-
rors. This is relatively straightforward for in-plane lasers because the length can
be varied at the final cleaving step. From Eq. (2.40) it can be seen that by mea-
suring the differential efficiency of two such lasers, one is left with two equations
containing two unknowns, 〈αi 〉 and ηi . That is,

ηd = ηi ln
( 1

R

)
L〈αi 〉 + ln

( 1
R

) ,

and

η′
d = ηi ln

( 1
R

)
L′〈αi 〉 + ln

( 1
R

) , (2.57)

where L and L′ are the lengths of the two different lasers. Solving, we find

〈αi 〉 = η′
d − ηd

Lηd − L′η′
d

ln

(
1

R

)
,

and

ηi = ηdη′
d

L − L′

Lηd − L′η′
d

. (2.58)

If indeed one can make two identical lasers except for their lengths, then Eqs. (2.58)
will give the desired internal parameters. However, experimental data usually have
some uncertainty which limits the utility of these expressions. For more reliability,
it is generally better to plot a number of data points on a graph and determine the
unknowns by fitting a curve to the data. In the present case it is most convenient
to plot the reciprocal of the measured differential efficiencies versus L. Then a
straight line through the data has a slope and intercept from which 〈αi 〉 and ηi can
be determined. More specifically,

1

ηd
= 〈αi 〉

ηi ln(1/R)
L + 1

ηi
. (2.59)

Thus, the intercept gives ηi , and this can be used in the slope to get 〈αi 〉.
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FIGURE 2.14: Plot of experimental reciprocal external differential efficiencies versus laser
cavity length for 50 μm wide In0.2Ga0.8As GRINSCH quantum well lasers. For both single-
quantum-well (SQW) and double-quantum-well (DQW) cases, the In0.2Ga0.8As well(s) was
80 Å wide. For the DQW a 12 nm GaAs separation barrier was used, and in both cases
40 nm of GaAs was used on each side of the well(s). On each side of this active region, the
barrier stepped to Al0.2Ga0.8As for 8 nm and then tapered to Al0.8Ga0.2As over 80 nm to
form the graded-index GRINSCH structure [1]. From these data the SQW had αi = 3.2 cm−1

and ηi = 89.6%; and the DQW had αi = 2.6 cm−1 and ηi = 98.6%.

Figure 2.14 shows such a plot for some data taken from broad-area in-plane
InGaAs/GaAs quantum-well lasers. Single (SQW) and double (DQW) quantum-
well cases are included [1].

For shorter cavity lengths, the data in Fig. 2.14 will fall above the line indicated.
This data was ignored when determining the line fit because it represents a region
where higher-order effects result in an incomplete clamping of the carrier density
above threshold. The result is an apparent decrease in ηi (see Appendix 2 for
details). If one assumes that the net internal loss does not change in this process,
it is possible to estimate the decrease in ηi by repeated use of Eq. (2.59) or 2.35
for this high-gain points.

In the process of taking data, one can also generate a table of threshold cur-
rent densities in the active region, Jth = (ηi Ith/wL) versus L. These are usually
taken from broad-area devices so that lateral current and carrier leakage can be
neglected. From Eq. (2.25) we also see that corresponding threshold modal gains
�gth can be calculated for each length once the internal loss is found. Thus, it is
possible to construct the modal gain versus current density characteristic for the
laser from these threshold values. This characteristic can usually be fitted well to
an exponential, two parameter (Jtr and g0) curve,

J = Jtr e
g
g0 . (2.60)
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FIGURE 2.15: Experimentally determined gain versus current density for an InGaAs/GaAs
quantum well laser described in Fig. 2.14 [1]. For the ordinate the modal gain �g is divided
by the confinement factor for one well �w to give the material gain g times the number of
wells, Nw . The solid curves are from a calculation based on the theory to be developed in
Chapter 4.

Because the confinement factor, �, can usually be calculated as discussed in
Appendix 5, one can ultimately determine the basic material gain versus current
density characteristic for the active material. Figure 2.15 gives the result for the
example in Fig. 2.14.

Example 2.4 To characterize the active material from Example 2.1, a 50-μm-
wide and 500-μm-long broad area laser is cleaved from the wafer. Its pulsed
threshold current is 47.94 mA and differential efficiency from both facets 48.24%.
This laser is then re-cleaved into two 250-μm-long lasers, having pulsed threshold
currents of 59.44 mA and differential efficiencies of 60.19%.

Problem: (1) What is the injection efficiency ηi ? (2) What is the average internal
modal loss? (3) Determine Jtr and g0 in the gain vs current density characteristic

for each quantum well, assuming J = Jtr e
g
g0 .

Solution: To calculate the injection efficiency ηi and the internal modal loss 〈αi 〉,
we will use the Eq. (2.58). Once the modal loss is known, and knowing the thresh-
old current densities in the active region, we can construct the modal gain �g
versus current J density curve. Because the confinement factor is known, we can
determine the basic material gain g versus current density J characteristic for this
active material using the Eq. (2.60). From Eq. (2.58),

〈αi 〉 = η′
d − ηd

Lηd − L′η′
d

ln

(
1

R

)
= (0.6019 − 0.4824) ln

( 1
0.32

)
0.05 · 0.4824 − 0.025 · 0.6019

) = 15 cm−1
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and

ηi = ηdη′
d

L − L′

Lηd − L′η′
d

= 0.6019 · 0.4824
0.025 cm−1

0.0091
= 0.80.

For the gain versus current density characteristic, we utilize two data points from
two different laser lengths:

Jth1 = ηi Ith1

w · L1
= 0.8 · 47.94 mA

500 · 50 · 10−8 cm2
= 153.41 A/cm2

Jth2 = ηi Ith2

w · L2
= 0.8 · 59.44 mA

250 · 50 · 10−8 cm2
= 380.42 A/cm2.

Threshold modal gain �gth1 for the 500-μm cavity was calculated in Example 2.2
to be 37.79 cm−1. Similarly, for the 250-μm-long cavity, the threshold modal gain
is �gth1 = 60.58 cm−1, where � = 0.04, as discussed in Example 2.2. Finally,

g0 = gth1 − gth2

ln Jth1
Jth2

= 944.71 − 1514.43 cm−1

ln 153.41
380.42

= 627 cm−1

Jtr = Jth1

exp gth1
g0

= 153.41 A/cm2

exp 944.71
627

= 34 A/cm2.

2.8.2 Internal Parameters for VCSELs: ηi and g versus J, 〈αi〉, and αm

In vertical-cavity lasers the preceding procedure is a little difficult to carry out
because the cavity length is set by the crystal growth. Multiple growths may result
in other changes in the material besides the cavity length. Therefore, it has been pro-
posed that the desired information can be determined by making in-plane cleaved
lasers fabricated from the vertical-cavity laser material. However, a somewhat dif-
ferent approach is followed. Clearly, the internal loss determined for the in-plane
laser will not be the same as for the VCSEL because the optical mode travels
through a different cross section of materials. Nevertheless, if the electrical pump-
ing current follows the same path and the threshold current densities covered in
the in-plane diagnostic lasers includes the VCSEL values, the measured internal
quantum efficiency should be the same.

The most valuable piece of information provided by the diagnostic lasers is the
gain versus current density characteristic. Combining this characteristic and the
internal quantum efficiency from the in-plane lasers together with the measured
threshold current density and differential quantum efficiency from the VCSEL, we
now have enough information to unambiguously determine the VCSEL internal
loss and mirror loss (and thus, reflectivity). That is, Eqs. (2.40) and (2.25) can be
solved for 〈αi 〉 and αm because �gth , ηd , and ηi are known. The results are

αm = �gth
ηd

ηi
(2.61)
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and

〈αi 〉 = �gth

[
1 − ηd

ηi

]
(2.62)

As before, the confinement factors for both the in-plane diagnostic lasers and the
VCSELs must be calculated.

2.8.3 Efficiency and Heat Flow

Just as the differential efficiency is important in determining the electrical to optical
modulation efficiency, the overall net power conversion efficiency is also impor-
tant in determining the achievable optical power out as well as the circuit heating
and system power requirements. This so-called wall-plug efficiency is simply the
optical power out relative to the electrical power in, η = P0/Pin . The optical
power out is given by Eq. (2.39), and the electrical power in is the product of
the drive current and the total voltage across the diode’s terminals. We can express
this as

Pin = I 2Rs + IVd + IVs , (2.63)

where Rs is the series resistance, Vs is a current-independent series voltage, and
Vd is the ideal diode voltage, which is equal to the quasi-Fermi level separation.
This voltage is clamped at its threshold value above threshold.

The power dissipated in the laser is

PD = Pin − P0 = Pin [1 − η], (2.64)

and the temperature rise is

	T = PD ZT , (2.65)

where ZT is the thermal impedance. Analytic expressions for ZT , which are approx-
imately valid for several practical cases of interest, exist. Three are illustrated in
Fig. 2.16. For a heat sink plane positioned much closer than the lateral dimensions

A
h

(a)

l

w

h

2ws

(b)

s

(c)

FIGURE 2.16: Schematics of heat flow geometries relevant to lasers: (a) planar or one-
dimensional flow for a heat sink relatively near the heat source, (b) a line source on a thick
substrate, and (c) a disk source on a half-space.
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of the regions generating the heat (Fig. 2.16a), a one-dimensional heat flow can be
assumed. In this case,

ZT = h

ξA
, (1-D flow) (2.66)

where ξ is the thermal conductivity of the material separating the source of
area A a distance h from the ideal sink. For GaAs and AlAs, ξ ∼ 0.45 and
0.9 W/cm-◦C. For Alx Ga1−x As, alloy scattering reduces ξ to a minimum of
0.11 W/cm-◦C at x ≈ 0.5. For InP and InGaAsP, the values are ξ ∼ 0.68 and
0.06 W/cm-◦C.

For a linear stripe heat source of length l and width w on a thick substrate (thick-
ness h), which is somewhat wider (width 2 ws ) than this thickness (Fig. 2.16b), a
quasi two-dimensional heat flow results. Then,

ZT ≈ ln(4h/w)

πξ l
. (line : w � h < ws) (2.67)

A narrow stripe in-plane laser mounted active region up on a relatively thick sub-
strate approximates this case. For a disk heat source of diameter s on a half-space
(Fig. 2.16c), a three-dimensional flow into the half-space can be assumed. Then,

ZT = 1

2ξs
. (small disk) (2.68)

This is approximately valid for a small-diameter VCSEL mounted on the top side
of a relatively thick substrate.

2.8.4 Temperature Dependence of Drive Current

The required drive current for a given power out of a laser is given by Eq. (2.50),
in which the first and second terms give the needed current above threshold and
the threshold current, respectively. In this equation it is assumed that the recombi-
nation below threshold is dominated by spontaneous emission events. If significant
nonradiative recombination exists, an additional threshold term, such as Eq. (2.52),
must be added. For both in-plane and vertical cavity lasers these expressions are
functions of temperature. Generally, more current is required both for threshold
and the increment above threshold as the temperature is increased, and we can
estimate the nature of this dependence by exploring the temperature dependence
of each of the factors in the terms of Eqs. (2.50) and (2.52).

However, for VCSELs as well as single axial-mode in-plane lasers, the situa-
tion is complicated by the integrated mode selection filter (e.g., Bragg mirrors),
which can force the lasing mode to be well off the wavelength where the gain
is a maximum. Thus, such lasers can be designed to have anomolous temperature
behavior because the wavelength of the cavity mode and the gain peak shift at
different rates versus temperature. In fact, by deliberately misaligning the mode
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from the gain peak at room temperature, it is even possible to make the threshold
go down with increasing temperature as the gain moves into alignment with the
mode [4]. In this section, we will not consider these relative mode–gain alignment
issues. Rather, we will assume that a spectrum of modes exist, as in a simple
in-plane laser, so that lasing always can occur at the gain peak. Thus, we again
can focus only on the temperature dependence of the various factors in Eqs. (2.50)
and (2.52).

For the threshold current in Eq. (2.49), three factors generally have a significant
temperature dependence: Ntr , g0, and 〈αi 〉. From the gain calculations of Chapter 4,
it may be shown that over some range of temperatures, Ntr ∝ T , g0 ∝ 1/T , and
〈αi 〉 ∝ T . The transparency carrier density is increased and the gain parameter
is reduced because injected carriers spread over a wider range in energy with
higher temperatures. The increased internal loss results from the required higher
carrier densities for threshold. From Eq. (2.49), we conclude that both the gain and
the internal loss variations result in an exponential temperature dependence of the
threshold current, whereas the linear dependence of the transparency carrier density
is not significant over small temperature ranges. Additional threshold components
such as Eq. (2.52) will introduce further temperature dependencies. For example,
in Chapter 4 and Appendix 2 it is shown that C ∝ exp(γC T ) and Rl ∝ exp(γl T ).
Thus, Auger recombination and carrier leakage both contribute additional exponen-
tial increases in the threshold current. These observations suggest that the threshold
current can be approximately modeled by

Ith = I0eT/T0 , (2.69)

where T0 is some overall characteristic temperature, and both temperatures are given
in degrees Kelvin, K. Note that small values of T0 indicate a larger dependence
on temperature (since dIth/dT = Ith/T0). It should also be noted that any minor
temperature dependence of other parameters can easily fit into this model over
some limited temperature range. For example, the internal efficiency can decrease
at higher temperatures due to increased leakage currents and/or higher-order effects
discussed in Appendix 2. This decrease in ηi will show up as a reduction of T0

over a limited temperature range, regardless of the exact dependence of ηi on
temperature.

For good near-infrared (∼850 nm) GaAs/AlGaAs DH lasers, observed val-
ues of T0 tend to be greater than 120 K near room temperature. For quantum-
well GaAs/AlGaAs the values are somewhat higher (∼150 − 180 K), and for
strained-layer InGaAs/AlGaAs quantum wells, T0 ≥ 200 K have been observed.
For 1.3 − 1.55 μm InGaAsP/InP DH and quantum-well lasers the characteristic
temperature is generally quite a bit lower as expected. Measured values tend to
fall in the 50–70 K range, due to Auger recombination as well as possible car-
rier leakage and intervalence band absorption effects. Thus, the threshold tends
to change significantly between room temperature and 100◦C, usually resulting in
relatively poor performance at the higher temperatures, and generally requiring the
use of thermoelectric coolers. Shorter wavelength (600–800 nm) AlGaAs/GaAs
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and AlInGaP/GaAs lasers also tend to have a smaller T0 than the near-infrared
variety, presumably due to increased carrier leakage.

The above-threshold current required to obtain a desired output power is also
temperature dependent, although the dependence is usually smaller than for the
threshold current. This dependence results from a reduction in the differential
quantum efficiency. As suggested by the constituent factors in the first term in
Eq. (2.50), an increase in 〈αi 〉 as well as a drop in ηi are usually the cause of the
increase in I − Ith . In analogy with Eq. (2.69), we can write

I − Ith = Ip0e
T/Tη

, (2.70)

where Tη is the characteristic temperature for the above-threshold current increment.
Tη is generally two or three times larger than T0, as might be expected from the
above discussion. That is, T0 includes several effects in addition to those in Tη.

In practice one is typically more interested in the relative changes in threshold
current and differential efficiency as the temperature varies rather than the absolute
values as given in Eqs (2.69) and (2.70), so more useful expressions tend to be
the ratios of currents and differential efficiencies at two different temperatures,
T1 and T2:

Ith1

Ith2
= e(T1−T2)/T0 (2.71)

ηd1

ηd2
= e−(T1−T2)/Tη . (2.72)

Example 2.5 Another batch of lasers similar to those from Example 2.3 is
made, but this time, the laser contacts exhibit large series resistance, and thus lead
to significant amount of heating under CW operation. Consider a 250-μm-long, 3-
μm-wide all-active ridge laser, which can be modeled by a 50 � series resistance
and an ideal diode with voltage Vd = 0.88V. The InP substrate is 100 μm thick and
500 μm wide, and it is bonded to a good heat sink. The characteristic temperature
for threshold current is T0 = 25 K and that for differential efficiency is Tη = 110 K.
Pulsed threshold current is 15 mA, and differential efficiency out of both ends
48.24%.

Problem: (1) What is the thermal impedance (2) What is the new CW threshold
current (3) At a bias of 50 mA, what is the power out and the temperature rise of
the active region?

Solution: Thermal impedance can be calculated using Eq. (2.67),

ZT = ln(4h/w)

πξ l
= ln 4·100

3

π · 0.6 · 25010−4
= 103.78◦ C/W

To find the new threshold current, we will need to iterate, given that the temperature
increase depends on the new threshold current, which in turn is determined by
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the temperature increase. At threshold, the output power from the laser can be
neglected; therefore, the dissipated power is equal to the input power,

PD = Pin = I 2
th · Rs + I · Vd ,

where Vd is the ideal diode voltage and is approximately 0.88 V for InGaAsP/InP.
Assuming that the threshold current increase due to heating is 1 mA, Ith = 16 mA,
the dissipated power and temperature increase are

PD = (0.016)2 · 50 + (0.016)(0.88) mW = 26.88 mW

	T = Pd ZT = 0.02688 · 103.78◦C = 2.79◦C.

To check, we plug in the value for 	T to calculate the threshold current based on
known T0 = 25 K,

I ′
th(	T = 2.79◦C) = 15 mA · exp

2.79

25
= 16.77 mA.

Thus, we conclude that we have underestimated the heating effects, and we use I ′
th

to calculate the dissipated power and repeat the process. After a couple of iterations,
we end up with the final value for Ith ,

Ith = 16.9 mA.

To calculate the output power for the bias current of I = 50 mA, we do the fol-
lowing: assuming that the output power is negligible, we calculate the dissipated
power, the temperature increase, and then the increase in the threshold temperature
and the decrease in the differential efficiency. At that point, we can compute the
output power. To iterate, we reduce the dissipated power by the output power value
and repeat the process. After a couple of steps, the process converges.

PD � Pin = (0.05)2 · 50 + (0.05)(0.88) mW = 169.00 mW

	T = PD ZT = 0.169 · 103.78◦C = 17.54◦C

The threshold current and the differential efficiency with this much temperature
increase are given by

I ′
th = 15 mA · exp

17.54

25
= 30.25 mA

η′
d = 0.4824 · exp

−17.54

110
= 0.4113.

The output power is given by

Po = hν

q
η′

d (I − Ith
′) = 0.8 · 0.4113(50 − 30.25) mW = 6.49 mW.
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Reducing the dissipated power by Po yields 	T = 16.87◦C and Po = 6.80 mW.
Repeating the process yields the final values of

	T = 16.83◦C

Po = 6.82 mW.

The L-I characteristic of this laser is illustrated in Fig. 2.17.

2.8.5 Derivative Analysis

Real diode lasers do not always have perfectly linear P –I characteristics above
threshold, and they have parasitic series resistance as well as a possible series volt-
age as outlined in Eq. (2.63) above. Derivatives of the P –I and V –I characteristics
can be useful in sorting out these nonidealities. The dP/dI characteristic in an ideal
laser would only provide a good measure of the threshold current and a slope to
determine ηd above threshold. However, actual P –I characteristics can have kinks,
and they tend to be nonlinear. The kinks can indicate a switching between lateral
or axial modes or an additional parasitic mirror in the device. These are obviously
emphasized in a derivative curve. Premature saturation of the output power may
indicate the existence of current leakage paths that “turn-on” at higher current lev-
els or excessive heating of the gain material. The derivative curve gives a good
quantitative measure of these symptoms. Figure 2.18(a) gives example plots of
P –I and dP/dI for an in-plane laser.

In addition to the V –I characteristic, it is common to plot IdV/dI versus I .
This latter characteristic gives a sensitive measure of the series resistance, and it
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is particularly useful in identifying shunt current paths. Because the voltage across
the junction clamps at threshold with the carrier density, a kink in the curve occurs
at that point. Figure 2.18b shows example plots of both V and IdV/dI versus I .
The information contained in the plot can be derived by considering an equivalent
circuit with a parasitic resistance in series with an ideal heterojunction diode. The
diode V − I is described by

I = I0[eqVd /nkT − 1]. (2.73)

Taking the derivative of the terminal voltage, V = Vd + IR, and solving for dVd/dI
from Eq. (2.73), we obtain for I � I0 but below threshold,

I
dV

dI
= nkT

q
+ IR. (2.74)

Above-threshold Vd is constant, so

I
dV

dI
= IR. (2.75)
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for the same device [6].

Thus, we see that the slope above and below threshold should be R, but there is a
positive offset of nkT/q below threshold, which provides a kink of this magnitude
at threshold. Now if a shunt resistance is added to the equivalent circuit, it turns
out that an additional term must be added to Eq. (2.74). This provides a peak in
the I (dV/dI ) characteristic below threshold. For common DH structures the diode
ideality factor n ∼ 2.

Figure 2.19 gives plots analogous to Fig. 2.18 for an InGaAs/GaAs VCSEL.
Here, significant local heating causes the P –I curve to roll over at relatively low
powers. This results in a negative dP/dI beyond this point. In addition, significant
series resistance makes it difficult to discern the nkT/q kink in the IdV/dI charac-
teristic at threshold. Thus, the derivative analysis is not always very effective for
VCSELs.
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PROBLEMS

These problems draw on material from Appendices 4 through 6.

1. In a diode laser, the terminal current is I , the current bypassing the active
region is Ib , the current due to carriers leaking out of the active region before
they recombine is Il , the current contributing to nonradiative recombination in
the active region is Inr , the current contributing to spontaneous emission in the
active region is Isp , the currents contributing to spontaneous emission and non-
radiative recombination outside the active region are I ′

sp and I ′
nr , respectively,

and the current contributing to stimulated emission in the active region is Ist .
(a) What is the injection efficiency?

(b) If the measured external differential efficiency above threshold is ηd ,
what is the ratio of the mirror loss to the total cavity loss?

(c) For below-threshold operation, what is the radiative efficiency?

2. A reservoir of area A is filled at a rate of Rf (in ft3/min.) and simultaneously
drained from two pipes that have flow rates that depend on the height of
water, h . The drain rates are, Rd1 = C1h and Rd2 = C2h2, respectively.
(a) Write a rate equation for the water height.

(b) What is the steady-state water height?

(c) If A = 100 ft2, Rf = 10 ft3/ min, and C1 ≈ 0, what is C2 for a steady-state
depth of 5 ft?

3. What is the approximate intrinsic cutoff frequency of an LED with a p-type
active region doping of 6.3 × 1018 cm−3?

4. The relative increase in photons in passing through a piece of GaAs is found
to be [1/Np][dNp/dt] = 1013 s−1. What is the material gain in cm−1?

5. A 1.3 μm wavelength InGaAsP/InP diode laser cavity is found to have an
optical loss rate of 4 × 1012/s.
(a) What is the photon lifetime?

(b) What is the threshold modal gain?

6. In a cleaved-facet 1.55 μm InGaAsP/InP multiple quantum-well laser 400 μm
in length, it is known that the injection efficiency and losses are 80% and
10 cm−1, respectively.
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(a) What is the threshold modal gain?

(b) What is the differential efficiency?

(c) What is the axial mode spacing?

7. A cleaved-facet, DH GaAs laser has an active layer thickness of 0.1 μm, a
length of 300 μm, and a threshold current density of 1 kA/cm2. Assume unity
injection efficiency, an internal loss of 10 cm−1, a confinement factor of 0.1,
and only radiative recombination.

(a) What is the threshold carrier density in the active region?

(b) What is the power out of one cleaved facet per micrometer of width at
a current density of 2 kA/cm2?

(c) What are the photon and carrier densities at 2 kA/cm2?

8. In the device of Problem 2.7, gain transparency (g = 0) is found to occur
at 0.5 kA/cm2 and the transverse confinement factor is 0.15. What is the
relaxation resonance frequency at 2 kA/cm2?

9. Two broad-area DH 1.3 μm InGaAsP/InP lasers are cleaved from the same
material. One is 200 μm long and the other is 400 μm long. The threshold
current densities are found to be 3 kA/cm2 and 2 kA/cm2, respectively, and
the differential efficiencies including both ends are measured to be 60% and
50%, respectively.

(a) What are the injection quantum efficiency and internal loss for this
material?

(b) For a ±1% error in each of the measured differential efficiencies, what
are the errors in the calculated internal loss and quantum efficiency?

10. For the material of Problem 2.9, the relaxation resonance frequency for the
200-μm laser biased at twice threshold is found to be 3 GHz. What is the
resonance frequency for the 400-μm device also biased at twice threshold?

11. A VCSEL is formed with multilayer AlGaAs mirrors and a 3-quantum-well
GaAs active region. Current is injected through the mirrors. At a terminal
current density of 1 kA/cm2 the active region provides 1% of one-pass gain
for the propagating axial mode. The injection efficiency is assumed to be 80%,
and the average internal loss is 25 cm−1. The effective cavity length is 1.5 μm.

(a) What mean mirror reflectivity is necessary for the device to reach
threshold at 1 kA/cm2?

(b) For this case, plot the output power density versus terminal current density.

(c) If we assume the gain is linear with carrier density, and that only spon-
taneous recombination is important below threshold, plot the threshold
current density versus mean mirror reflectivity for 0.98 < R < 1.0. On
the opposite axis label the differential efficiency at each 0.005 reflectivity
increment.
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12. With the VCSEL material of Problem 2.11, etched square mesas are now
formed measuring s on each side. Assuming a spontaneous bandwidth of
30 nm, an axial confinement factor of 2 La/L, lateral confinement factors
of unity, and that the approximations of Appendix 4 are valid, plot the
spontaneous emission factor versus s .

13. Again with the VCSEL material of Problem 2.11, square mesas are formed
measuring s on each side by etching down to the active region, as illustrated
in Fig. 1.15. The GaAs substrate may be assumed to be thick and wide. If we
assume a threshold current density of 1 kA/cm2 independent of area, a series
voltage of 1 V, and a series resistance that is inversely proportional to device
area, Rs = 20 k�-μm2/s2.

(a) Plot the temperature at the base of the mesa (active region location)
versus s for a current of twice threshold. Cover 1 < s < 20 μm.

(b) Assuming a differential efficiency of 50%, plot the power out and required
current versus s for the conditions of (a).

14. An MQW-SCH InGaAsP/InP laser wafer with emission wavelength near
1.55 μm has been grown and characterized with broad area chips. Alternate
active and passive regions are included. The active region contains 6–7 nm
thick unstrained quaternary quantum wells (with lowest conduction and valence
band quantum state energies spaced by 0.8 eV) separated by 5–8 nm qua-
ternary barriers (having photoluminescense emission at 1.3 μm), all centered
within a 1.3 μm-Q SCH waveguide, which all measures 350 nm in total thick-
ness; the passive region does not have quantum wells, but is all 1.3 μm-Q mate-
rial, again 350 nm thick. We can neglect optical reflections between the active
and passive waveguides. A calculation indicates that the transverse confinement
factor in the active is � = 0.08. Measurements on three different broad-area,
cleaved-facet chips show that the modal losses in the active and passive
sections are 15 cm−1 and 5 cm−1, respectively, and that the injection efficiency
to the active is 70%. A material gain curve is also derived for the quantum
wells. Fitting to an expression of the form g = g0J ln(J /Jtr ), it is found that
g0J = 600 cm−1, and Jtr = 100 A/cm2 per well. It is also found that the recom-
bination rate for nominal threshold gains is composed of a mix of radiative and
Auger recombination, such that the carrier density varies approximately as J 0.4.

We create three cleaved facet, 3-μm-wide ridge lasers from this material
(lateral current and carrier spreading as well as any additional scattering
losses can be neglected): the first is an active–passive laser with active and
passive sections each 500 μm long; the second is an all active laser 500 μm
in length; the third is another all active laser 250 μm in length. Measured
small-signal frequency response of the 500–500 μm active–passive laser
gives a resonance peak at 5 GHz, for a bias current 30 mA above threshold.
Neglecting heating effects:

(a) What are the differential efficiencies (considering the emission from both
ends) of each of the three lasers?
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(b) What are the threshold currents of each of the three lasers?

(c) What is the differential gain, dg/dN , for this laser above threshold?

(d) What is the approximate threshold carrier density?

(e) What is the transparency carrier density? (Assume a logarithmic g versus
N dependence)

(f) What are the expected relaxation resonance frequencies for the 500-μm
and 250-μm all-active devices at 30 mA above their threshold currents?

15. We now make another batch of similar lasers from the same material
as in Problem 2.15, but this time we mess up the contacting procedure
such that the lasers have a relatively large series resistance, and thus, a
significant amount of heating under continuous wave operation. Consider
the 250-μm-long, 3-μm-wide, all-active device, which can be modeled by a
50 � series resistance and an ideal diode with an ideality factor of 3. The
InP substrate is 90 μm thick and 500 μm wide; it is bonded to a good heat
sink. The characteristic temperature for threshold current is T0 = 55 K, and
the characteristic temperatur for differential efficiency is Tη = 110 K.
(a) What is the thermal impedance of this laser?

(b) What is the new CW threshold current?

(c) At a bias of 50 mA, what is the power out and the temperature rise at the
active region?

(d) Plot the output power and temperature rise versus CW current up to
100 mA. Compare to the pulsed output power on the same plot.

16. In a 1.55 μm InGaAsP/InP BH laser, the active region is 0.2 μm thick, 3 μm
wide and 300 μm long. The injection efficiency is 70%. In addition, there is a
400-μm-long passive waveguide channel with the same lateral and transverse
dimensions butted to the end of the active region. The transverse and lateral
confinement factors are 0.2 and 0.8, respectively. Cleaved mirrors form a 700-
μm-long cavity, and other internal reflections can be neglected. The material
losses are 80 cm−1, 20 cm−1, and 5 cm−1 in the active, passive, and cladding
regions, respectively. The gain versus carrier density characteristic for the
active material is linear with a transparency carrier density of 2 × 1018 cm−3

and a differential gain of 5 × 10−16 cm2. Assume a spontaneous emission band-
width of 100 nm. At transparency the Auger recombination rate equals the
spontaneous recombination rate, and other nonradiative terms can be neglected.
(a) Plot the P –I characteristic, labeling the threshold current, the spontaneous

emission power into the mode at threshold, and the differential efficiency
above threshold.

(b) Plot the small-signal frequency response for a bias current of twice
threshold.

17. Using Eq. (A6.25) calculate the gain 50 meV above the band edge in GaAs
as a function of (f2 − f1). (Assume τ 21

sp = 0.3 ns, and consider only the
heavy-hole band.)



CHAPTER THREE

Mirrors and Resonators for
Diode Lasers

3.1 INTRODUCTION

The analysis in Chapter 2 formally assumed a simple two-mirror Fabry–Perot cav-
ity for the axial photon confinement and some waveguide for the lateral and the
transverse confinement. However, modern diode lasers use a variety of cavity struc-
tures, and the axial dimension is of great importance for their design. Therefore, in
this chapter, we shall focus on axial confinement, which is generally provided by
a slightly more complex mirror structure for feedback to form the desired resonant
cavity. Together with the material from Chapter 1 and Appendix 3 on the trans-
verse and lateral guiding mechanisms and structures, this chapter will form a full
tool set for understanding of modern diode lasers. To illustrate the importance of
the axial confinement, it is worth mentioning that in gas and solid-state lasers, the
entire cavity may be defined by the axial mirrors because in many cases no lateral
guiding structure is employed. By using proper axial cavity design, which includes
some mode-selective filtering characteristics, we can produce single-mode as well
as tunable single-mode diode lasers that are of great practical interest.

In this chapter, we first develop a scattering matrix formalism so the various
structures can be analyzed rigorously and easily. The use of the associated trans-
mission matrices reduces the analysis of axial structures with numerous impedance
discontinuities to a mathematical exercise in matrix multiplication.

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
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Based on the scattering matrix formalism, we then successively explore sev-
eral different axial geometries for diode lasers. Three- and four-mirror cavities are
treated first. The mathematical condensation of the additional cavities and mir-
rors into a single effective complex mirror allows many of the basic formulae for
Fabry–Perot lasers to be used. Because the mirror loss varies with wavelength,
the loss of a single axial mode can be less than others. Thus, lasing in a single
axial mode is possible. Also, if the phase in various laser sections can be changed
independently, a tuning of the laser’s wavelength can result.

Subsequently, we introduce the concept of Bragg grating mirrors. These mirrors
are of interest for both in-plane and vertical-cavity lasers and form the basis for dis-
tributed Bragg reflector lasers. They consist of a series of relatively small impedance
discontinuities along the axial propagation direction, phased so that the reflections
add constructively at some (Bragg) frequency. Thus, the grating mirrors can pro-
vide a high level of net reflection when only small impedance differences exist, and
because these gratings may be many wavelengths in length, the desired phasing can
only occur over a narrow band of wavelengths to provide single-frequency opera-
tion. If substituted for a discrete mirror of a diode laser, a distributed Bragg reflector
(DBR) laser results. In such cases the net complex grating reflection can replace
the discrete mirror reflectivity in the Fabry–Perot formulae of Chapter 2. Multiple
section DBR lasers have emerged as the most practical for wide wavelength tunabil-
ity and have been successfully commercialized and deployed in modern fiber-optic
networks. In the final part of this section, we deal with the spectral purity of axial
mode selection that is possible with the aforementioned compound cavity lasers.
The mode suppression ratio (MSR) is the ratio of the power out of the primary
mode to the next largest mode. Experiments have shown that an MSR of at least
30 dB is necessary for single-frequency system applications.

Finally, in the last section, we consider gratings with gain. Lasers made with
such gratings are called distributed feedback (DFB) lasers. They can be simpler to
fabricate than DBRs because no transitions from active to passive regions are neces-
sary, but their analysis is a little more complex. Fortunately, the transmission matrix
formalism still works for complex propagation constants, so the threshold gains and
wavelengths can still be obtained numerically. Because of their relative fabrication
simplicity, DFB lasers have emerged as commercially the best choice for single-
frequency operation. DFB lasers achieve high mode suppression ratios, and we
investigate the influence of different DFB design parameters on their MSR. Wave-
length tuning in DFBs is possible, but the range is limited as compared to the DBR.

3.2 SCATTERING THEORY

When working with complex laser cavities it is convenient to work with normalized
amplitudes, aj , which have a magnitude equal to the square root of the power flow
and a phase equal to a selected observable such as the electric field. If we choose
to reference the phase to the electric field, which we have written as

EEEE (x , y , z , t) = êE0U (x , y)ej (ωt−β̃z ), (3.1)
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we can define

aj = E0√
2ηj

e−j β̃z , (3.2)

where ηj = 377 �/n̄j is the mode impedance (the ratio of the transverse electric to
transverse magnetic field magnitudes of the mode). Thus, provided

∫ |U |2 dx dy =
1, we see that aj a∗

j = P+
j , the power flowing in the positive z -direction in the mode.

At some waveguide reference plane, in general, there are incident and reflected
powers. We characterize the incident waves (or inputs) by a normalized amplitude,
aj , and the reflected waves (or outputs) by a normalized amplitude, bj , where the
j ’s refer to the reference plane or port in question. Thus, at port j , the net power
flowing into the port is

Pj = aj a
∗
j − bj b

∗
j . (3.3)

Note that the impedance can be different at each port, but the definitions are
unchanged. This is one of the most important features of the normalized amplitudes.
Figure 3.1 shows a multiport scattering junction with inputs and outputs at each
port for reference.

If the outputs can be linearly related to the inputs, a matrix formalism can be
developed to express the outputs as a weighted combination of the inputs:

bi =
∑

j

Sij aj , (3.4)

•

•

•a1

b1

a2
b2

S

a3

b3

an bn

FIGURE 3.1: Generic scattering junction illustrating the inputs, aj , and outputs, bj , for the
various ports.
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where the Sij are called the scattering coefficients. Note from Eq. (3.4) that to
determine a particular Sij , all inputs except aj must be set to zero. That is,

Sij = bi

aj

∣∣∣∣
ak =0,k �=j

. (3.5)

This is equivalent to terminating all ports in their characteristic impedance to pre-
vent reflections back into the network.

More generally, b = Sa, where a and b are column vectors and S is a matrix.
For example, for a two-port scattering junction, such as a partially transmissive
mirror, we have

[
b1

b2

]
=

[
S11 S12

S21 S22

] [
a1

a2

]
. (3.6)

The scattering coefficients are particularly useful because they have direct phys-
ical significance. All represent the ratio of a normalized output amplitude to a
normalized input amplitude. The diagonal elements of the matrix are the respec-
tive complex amplitude reflection coefficients. For example in the two-port, we
have previously referred to S11 and S22 as simply r1 and r2. The power reflection
coefficients in this case are |S11|2 and |S22|2, respectively. The off-diagonal terms
represent the complex (amplitude and phase) output at one port due to the input at
another. Thus, they are really transfer functions. In all cases the magnitude squared
of a scattering coefficient, |Sij |2, represents the fraction of power appearing at the
port i due to the power entering port j .

Scattering matrices may have a number of interesting properties if the networks
they describe satisfy certain criteria. For example, the scattering matrix of a linear
reciprocal system is symmetric. That is for a two-port, S12 = S21. For a lossless
two-port, power conservation yields |S11|2 + |S21|2 = 1, and |S22|2 + |S12|2 = 1.
Also, the scattering matrix of a lossless system is unitary.

Another important matrix that relates the normalized amplitudes is the transmis-
sion matrix. The transmission matrix expresses the inputs and outputs at a given
port in terms of those at the others. In the case of a two-port, it is used most often
to cascade networks together because simple matrix multiplication can be used (as
we will see in a moment). Referring to Fig. 3.2a, the transmission matrix of a
two-port is defined as

[
A1

B1

]
=

[
T11 T12

T21 T22

] [
A2

B2

]
, (3.7)

where instead of using the input and output amplitudes, ai and bi , defined earlier,
we have chosen to denote right or forward-going waves as Ai , and left or backward-
going waves as Bi . From Fig. 3.2a, the correspondence between the T-matrix and
S-matrix amplitudes is as follows: A1 = a1, B1 = b1, A2 = b2, and B2 = a2. This
change of notation is convenient when cascading two-port networks in a serial
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(b)(a)

T′

B2

A2

B1 B2B1

A1 A2A1

B′2B′1

A′2A′1

T T

FIGURE 3.2: (a) Single two-port network. (b) Two networks cascaded together.

chain. For example, in Fig. 3.2b, port #1 of the second is connected to port #2 of
the first. By equating A2 = A′

1 and B2 = B ′
1, we can relate the fields on the left

side of the overall structure, A1 and B1, to the fields on the right side, A′
2 and B ′

2,
as follows:

[
A1

B1

]
=

[
T11 T12

T21 T22

] [
A2

B2

]
=

[
T11 T12

T21 T22

] [
T ′

11 T ′
12

T ′
21 T ′

22

] [
A′

2

B ′
2

]
. (3.8)

This process can be continued to obtain the net transmission matrix of arbitrarily
complex multisection waveguide devices. The T-matrix can be obtained directly
from the S-matrix using the following:

T11 = 1

S21
, T12 = −S22

S21
,

T21 = S11

S21
, T22 = −S11S22 − S12S21

S21
.

(3.9)

Definitions and relations between the S- and T-matrices are summarized in
Table 3.1.

As mentioned earlier, various network properties allow us to specify relation-
ships between the matrix coefficients, allowing us to reduce the total number of
independent parameters. For example, the normalized fields of a system that satisfy
Maxwell’s equations with scalar ε and μ are known to obey reciprocity, which sim-
ply put, means that the scattering matrix is equal to its transpose, or that S12 = S21.

In addition to being reciprocal (a property of any linear network), the network
might also be lossless. If this is the case, then other simplifying relations can
be derived. For example, it can be shown that T12 = T ∗

21 and T22 = T ∗
11, which

simplifies the determination of the T-matrix significantly. Table 3.2 summarizes
these relations for various network properties.

3.3 S AND T MATRICES FOR SOME COMMON ELEMENTS

The utility of the S- and T-matrices should become clearer as we consider a few
common “scattering junctions.” As we shall see, these form the basis of many more
complex waveguide networks encountered in diode lasers. The further development
of these matrices for more complex photonic integrated circuits, such as ones
including directional couplers, will be left to a later chapter.
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TABLE 3.1: Relations Between Scattering and Transmission Matrices

Scattering Matrix Transmission Matrix

Definition Definition

b2

a2

a1

b1

A2

B2

A1

B1

[
b1

b2

]
=

[
S11 S12

S21 S22

] [
a1

a2

] [
A1

B1

]
=

[
T11 T12

T21 T22

] [
A2

B2

]

b1 = S11a1 + S12a2 A1 = T11A2 + T12B2

b2 = S21a1 + S22a2 B1 = T21A2 + T22B2

Relation to r and t Relation to r and t

r12 = b1

a1

∣∣∣∣
a2=0

= S11 r12 = B1

A1

∣∣∣∣
B2=0

= T21

T11

t12 = b2

a1

∣∣∣∣
a2=0

= S21 t12 = A2

A1

∣∣∣∣
B2=0

= 1

T11

r21 = b2

a2

∣∣∣∣
a1=0

= S22 r21 = A2

B2

∣∣∣∣
A1=0

= −T12

T11

t21 = b1

a2

∣∣∣∣
a1=0

= S12 t21 = B1

B2

∣∣∣∣
A1=0

= det T
T11

S =
[

r12 t21

t12 r21

]
T = 1

t12

[
1 −r21

r12 t12t21 − r12r21

]

det S = S11S22 − S12S21 = r12r21 − t12t21 det T = T11T22 − T12T21 = t21/t12

Relation to T-Matrix Relation to S-Matrix

S = 1

T11

[
T21 det T

1 −T12

]
T = 1

S21

[
1 −S22

S11 −det S

]

3.3.1 The Dielectric Interface

Figure 3.3 illustrates the normalized amplitudes at a dielectric interface. The media
are characterized by indices of refraction n1 and n2.

In any such problem, one has the freedom to select reference planes for each
port. The phase of the scattering coefficients will clearly depend on the location of
such planes. Some feel that it is important to make such an asymmetric problem
have a symmetric scattering matrix by carefully selecting the reference planes, so
that S will satisfy certain mathematical niceties. However, we believe that tends to
create confusion, and it certainly obscures the physics of the problem. Thus, we
shall always attempt to select “natural” reference planes at physical boundaries.

In the present case we select both reference planes at the physical interface
between the two dielectrics, so that the scattering junction has zero length. Using
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TABLE 3.2: Network Properties and Their Consequences on the Matrix Coefficients

Reciprocal Network (valid for normalized fields with and without loss)

St = S → S12 = S21

det T = 1

S =
[

S11 S21

S21 S22

]
= 1

T11

[
T21 1

1 −T12

]

T =
[

T11 T12

T21 (T12T21 + 1)/T11

]
= 1

S21

[
1 −S22

S11 S 2
21 − S11S22

]

Lossless Reciprocal Network

|S11|2 + |S21|2 = 1 |T21|2 + 1 = |T11|2
S∗

t S = 1 → |S12|2 + |S22|2 = 1 → 1 + |T12|2 = |T11|2
S ∗

11S12 + S ∗
21S22 = 0 T ∗

21 − T12 = 0

S =
[

S11 S21

S21 −S ∗
11(S21/S ∗

21)

]
= 1

T11

[
T21 1

1 −T ∗
21

]

T =
[

T11 T ∗
21

T21 T ∗
11

]
=

[
1/S21 S ∗

11/S ∗
21

S11/S21 1/S ∗
21

]

Lossless Reciprocal Network with r and t Phase Shifts of 0 or π

S22 = −S11

S11 = S ∗
11

S21 = S ∗
21

→ det S = −1

T22 = T11, T12 = T21

S =
[

S11 S21

S21 −S11

]
= 1

T11

[
T21 1

1 −T21

]

T =
[

T11 T21

T21 T11

]
= 1

S21

[
1 S11

S11 1

]

Eq. (3.5), this leads to

S11 = b1

a1

∣∣∣∣
a2=0

= −r1 = n1 − n2

n1 + n2
, (3.10)

where for the last equality, we have assumed normally incident plane waves. This
is approximately true for weakly guided dielectric waveguide modes, but n1 and
n2 should be replaced by the effective indices of the modes, n̄1 and n̄2. Note that
we have chosen to label the reflection from the n1 side −r1 rather than +r1 in
Fig. 3.3. The reason is for compatibility with other calculations in this book. Also,
if n2 > n1, r1 would be a positive real number.
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−r1

n1

a1

b1

r1

a2

b2

n2

FIGURE 3.3: Interface between two dielectrics illustrating reference planes at interface for
both ports.

Similarly, for the second port

S22 = b2

a2

∣∣∣∣
a1=0

= r2 = −(−r1), (3.11)

and

S12 = S21 = t =
√

1 − r2
1 , (3.12)

where we have used power conservation for Eq. (3.12). This is clearly valid
for plane waves because there can be no loss in zero length, but for waveg-
uide modes, power conservation also implies that the transverse mode profiles
are equal. (If the waveguide modes do not match, there can be scattering loss. This
will be taken up in a later chapter.) For the normally incident plane wave case,
t = 2(n1n2)

1/2/(n1 + n2).
Thus, the complete scattering matrix for the dielectric interface can be written

as

S =
[−r1 t

t r1

]
, (3.13)

where again, the sign of r1 follows the convention in Fig. 3.3. The corresponding
T-matrix is

T = 1

t

[
1 −r1

−r1 1

]
. (3.14)

3.3.2 Transmission Line with No Discontinuities

Figure 3.4 shows a network that is a length of waveguide, L, in which there are
no discontinuities. In fact, this network consists only of two reference planes on a
waveguide. Thus, the problem is to find how to relate variables from one reference
plane to another where there are no scattering junctions in between.
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b1(L) = a2

a1(L) = b2

b1(0)

0 L
z

a1(0)

FIGURE 3.4: Transmission line section of length L.

In such cases it is common to express the normalized amplitudes as a function of
distance as defined by Eq. (3.2). Thus, if the origin is put at port #1, then b2 = a1(L)

and a2 = b1(L), as indicated in Fig. 3.4. Because there is no coupling between the
waves propagating in the forward and backward directions, S11 = S22 = 0. From
Eq. (3.2), we have a1(z ) = a1(0)e−j β̃z and b1(z ) = b1(0)ej β̃z , for the forward and
backward modes. Thus,

b2 = a1(L) = a1(0)e−j β̃L = a1e−j β̃L, (3.15)

and

a2 = b1(L) = b1(0)ej β̃L = b1ej β̃L.

Forming S12 and S21, we find that

S12 = S21 = e−j β̃L. (3.16)

This is a very important result because it verifies that a propagation delay is the
same for both forward and backward waves. In other words, the waveguide modes
do not know how you have chosen the coordinate system. Mode propagation a
distance L in any direction results in a phase shift of −βL and a growth rate βi L
for that mode, assuming that β̃ = β + jβi as in Eq. (2.20). The scattering matrix
is summarized as

S =
[

0 e−j β̃L

e−j β̃L 0

]
. (3.17)

The corresponding T-matrix found using Eq. (3.9) is given by

T =
[

ej β̃L 0
0 e−j β̃L

]
. (3.18)
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TABLE 3.3: Summary of S- and T-matrices for Simple ‘‘Building-Block’’ Components

Scattering Matrix Structure Transmission Matrix

[
r12 t12

t12 −r12

]

r12

21

t12

1

t12

[
1 r12

r12 1

]

r21 = −r12 t21 = t12 r2
12 + t2

12 = 1

[
0 e−jφ

e−jφ 0

]
L

2 22 [
ejφ 0

0 e−jφ

]

φ = β̃2L

[
r12 t12e−jφ

t12e−jφ −r12e−j 2φ

]

r12

L

2 21

t12

1

t12

[
ejφ r12e−jφ

r12ejφ e−jφ

]

r2
12 + t2

12 = 1

The basic component matrices are summarized in Table 3.3. For the T-matrix,
lossless mirrors have been assumed in the first and third cases. To include the
possibility of a lossy mirror, T22 for these two cases should be multiplied by
r2

12 + t2
12. An advantage of the T-matrices is that more complicated structures can

be constructed simply by matrix multiplying together the basic components shown
in the table. For example, the third matrix in the list is easily constructed by matrix
multiplying the first by the second.

3.3.3 Dielectric Segment and the Fabry–Perot Etalon

Figure 3.5 shows a dielectric block of length L and index n2. To the left is a region
of index, n1, and to the right is a region of index n3. We shall use r1 and t1 for the
left interface and r2 and t2 for the right interface viewed from the central medium.
(Thus, choosing the reference planes at the physical interfaces and assuming that
n2 > n1, r1 would be a positive real number.) Such a structure is known as a
Fabry–Perot etalon.

As indicated in the diagram, we can look at this problem as three scattering
networks cascaded—two dielectric interfaces and one transmission line. Thus, the
problem could be solved by multiplying the T-matrices. This is to be shown in
one of the problems at the end of the chapter. Here, however, we would like
to demonstrate how to solve the system of normalized amplitudes to obtain the
S-matrix directly. As we shall see as this chapter proceeds, once we have the S-
and T-matrices of such a dielectric segment, most multisection diode laser problems
can be solved by their repetitive use.
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r2

n3n1

a1

b1 a′1

n2

r1

a2

b2

L

b′1 a′2

b′2

FIGURE 3.5: Dielectric block of length L.

Referring to Fig. 3.5 where primes are used for internal variables, and initially
assuming that a2 = 0, we can write the following relationships for the outputs, bj :

b1 = −a1r1 + a ′
1t1,

b ′
1 = a1t1 + a ′

1r1,

b2 = a ′
2t2,

b ′
2 = a ′

2r2.

Also, we can express

a ′
1 = b ′

2e−j β̃L,
a ′

2 = b ′
1e−j β̃L.

(3.19)

Solving this system of equations for S11 = b1/a1 and S21 = b2/a1 (because a2 = 0),
we obtain

S11 = −r1 + t2
1 r2e−2j β̃L

1 − r1r2e−2j β̃L
, (3.20)

S21 = t1t2e−j β̃L

1 − r1r2e−2j β̃L
. (3.21)

Similarly, with a1 = 0,

S22 = −r2 + t2
2 r1e−2j β̃L

1 − r1r2e−2j β̃L
, (3.22)

S12 = S21. (3.23)
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The common factor of 1 − r1r2e−2j β̃L gives rise to the characteristic resonances
and antiresonances associated with Fabry–Perot etalons.

The corresponding T-matrix for the Fabry–Perot etalon can be obtained in a
number of ways: (1) we can use the S-matrix coefficients and apply Eq. (3.9);
(2) we can multiply the third and first matrices in Table 3.3, using the appropriate
refractive indices; or (3) we can solve for the relevant ratios, T11 = a1/b2 and
T21 = b1/b2, (with a2 = 0); T12 = −T11b2/a2 and T22 = b1/a2 − T21b2/a2, (with
a1 = 0). With a2 = 0,

T11 = 1

t1t2
[ej β̃L − r1r2e−j β̃L], (3.24)

T21 = − 1

t1t2
[r1ej β̃L − r2e−j β̃L]. (3.25)

Similarly, with a1 = 0,

T12 = − 1

t1t2
[r1e−j β̃L − r2ej β̃L]. (3.26)

T22 = 1

t1t2
[e−j β̃L − r1r2ej β̃L], (3.27)

For the latter three T -parameters we have assumed lossless interfaces, t2
1 = 1 − r2

1
and t2

2 = 1 − r2
2 , to simplify the expressions. For the S -parameters, Eqs. (3.20)

to (3.23), the reflection and transmission at each mirror has been left in general
form. Thus, these apply to any Fabry–Perot etalon of length L. For example, the
dielectric interfaces could include loss, or they could be coated to enhance the
reflectivities, r1 and r2, to values greater than that indicated by Eq. (3.10).

The absolute squares of S11 and S21 give the amount of power reflected by and
transmitted through the Fabry–Perot etalon as a function of the wavelength of the
incident field. Using Eqs. (3.20) and (3.21), and assuming t2

i = 1 − r2
i , we obtain

|S11|2 = (r1 − r2e2βi L)2 + 4R sin2 βL

(1 − R)2 + 4R sin2 βL
→ 4R sin2 βL

(1 − R)2 + 4R sin2 βL
,

|S21|2 = (1 − r2
1 )(1 − r2

2 )e2βi L

(1 − R)2 + 4R sin2 βL
→ (1 − R)2

(1 − R)2 + 4R sin2 βL
,

where R = r1r2e2βi L and β̃ = β + jβi . The arrows indicate the special case of a
symmetric (r1 = r2), lossless (βi = 0) Fabry–Perot cavity. Note that without loss,
|S11|2 + |S21|2 = 1, as required by power conservation. Figure 3.6 plots both the
magnitude and phase of S11 and S21 vs. 2βL using three different reflectivities.
The periodic maxima in the transmission spectrum of S21 go to unity for this
symmetric, lossless case, and become extremely sharp at high values of r . These
maxima occur at the axial resonances or modes of the Fabry–Perot cavity where
e−2jβL = |r1r2|/r1r2 = 1. By power conservation, the minima of the net reflection,
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FIGURE 3.6: Magnitude and phase of the reflection (S11) and transmission (S21) coefficients
of a Fabry–Perot etalon as a function of the cavity round-trip phase relative to an integer
multiple of 2π (in the lower-right plot, the phase is relative to an even multiple of 2π ).
Three mirror reflectivities are plotted assuming r = r1 = r2 and zero loss (a cleaved-facet
cavity corresponds to r = 0.565).

S11, go to zero at the resonances in this case. If the cavity has loss, the maxima of
S21 cannot reach unity. Of course, if the cavity has gain as in a laser, the maxima
can be larger than unity. In the lossy case, it is also worth noting that S11 can still
be adjusted to zero by reducing the reflectivity of the input mirror to be lower than
the output mirror such that r1 = r2e−αL. This is equivalent to setting the first term
equal to the second in Eq. (3.20) on resonance. This asymmetric Fabry–Perot is
useful in efficient optical modulators and detectors.

Example 3.1 A dielectric transmission line with an air interface is shown in
Fig. 3.7.

Problem: Write the T-matrix parameters for this two port.

Solution: To illustrate the usefulness of T-matrix formalism, we will solve this
problem by multiplying the T-matrices corresponding to the building blocks of
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this structure. For the dielectric transmission line, the T-matrix is given by

T1 =
[

ejφ1 0
0 e−jφ1

]
,

where φ1 = β1L1. For the dielectric/air interface, we have

T2 = 1

t12

[
1 −r12

−r12 1

]
,

where −r12 = n1−n2
n1+n2

, and r2
12 + t2

12 = 1. Finally, the air segment can be described
by the same matrix as the one for the dielectric segment, T3 = T1, except that
φ2 = β1L1 in this case.

To get the full T-matrix of the system, we need to multiply through the matrices
corresponding to the individual segments,

T = T1 · T2 · T3 =
[

ejφ1 0
0 e−jφ1

]
· 1

t12

[
1 −r12

−r12 1

]
·
[

ejφ2 0
0 e−jφ2

]

= 1

t12

[
ej (φ1+φ2) −r12ej (φ1−φ2)

−r12ej (φ2−φ1) e−j (φ1+φ2)

]
.

The T-matrix can be converted to an S-matrix using the relationships between
corresponding elements described in Table 3.2. This exercise will be useful when
we start dealing with periodic grating sections and DFB lasers later in this Chapter.

3.3.4 S-Parameter Computation Using Mason’s Rule

While S- and T-matrices work really well for performing the numerical analysis
of complex dielectric structures, for cases where an analytic solution is prefered,
in place of matrix multiplication, it is generally easier to apply a technique from
control systems engineering, Mason’s rule [2], which allows for relatively simple
reduction of signal-flow graphs to single transfer functions relating the output of a

L1 L2

n1 n2

FIGURE 3.7: Dielectric transmission line with air interface, used in Example 3.1.
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a1 b2

e−jbL˜

e−jbL˜

FIGURE 3.8: The signal flow graph for a Fabry–Perot segment.

system to its input. In particular, looking at the S-matrix formalism, Mason’s rule
will allow us to directly obtain the expressions for each of the S-parameters.

Mason’s rule states that the transfer function of a system is given by

H =
∑

k Tk 
k



, (3.28)

where k is the number of forward paths for the signal, Tk is the k th forward path
gain, 
 = 1-

∑
loop gains + ∑

nontouching loop gains taken two at a time −∑
nontouching loop gains taken three at a time +∑

nontouching loop gains taken
four at a time . . ., and 
k is formed by eliminating from 
 those loop gains that
touch the k th forward path.

To illustrate the use and effectivness of Mason’s rule, we will apply it to the
example of a Fabry–Perot segment that was just analyzed in the previous section.
The signal flow graph for S21 of a Fabry–Perot segment is shown in Figure 3.8.
In this simple case, we only have one closed loop—therefore,


 = 1 − r1r2e−2j β̃L.

We also have only one forward path, therefore,

T1 = t1t2e−j β̃L, and 
1 = 1.

Therefore,

H = S21 = t1t2e−j β̃L

1 − r1r2e−2j β̃L
,

which is the same result we’ve obtained previously, Eq. (3.21). Although this result
is relatively straightforward, the true utility of Mason’s rule is when the system
becomes somewhat more complex, as we shall encounter in future examples, in
Chapters 6 and 8.

3.3.5 Fabry–Perot Laser

In Chapter 2 we analyzed the use of a Fabry–Perot cavity to form a diode laser.
Based on an intuitive argument, we labeled threshold as the point where the net
round-trip gain equaled the net round-trip loss for an axial mode. We now can
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argue this point more rigorously using the S -parameters. For lasing we must have
coherent light being emitted for no optical inputs. Thus, the threshold for lasing
must correspond to a pole of the S -parameters, which give the ratio of outputs
over inputs. Referring to Eqs. (3.20) to (3.23), we observe that all the S -parameters
have a factor [1 − r1r2e−2j β̃L] in the denominator of one term. Setting this factor
to zero gives the needed pole. This definition of threshold is therefore equivalent
to Eq. (2.21).

For lossless mirrors the differential efficiency is given by Eq. (2.40), and the
power out is given by Eq. (2.41). However, we have not solved for the relative
power out of each end of the laser. We now can determine the ratio of the powers
out of each end, P01/P02, because it equals |b1/b2|2. Looking at Fig. 3.5 with
a1 = a2 = 0, we can see that b1 = a ′

1t1, b2 = a ′
2t2, and a ′

1 = a ′
2r2e−j β̃L. For a mode

above threshold, Im{β̃} = (�xy gth − αi )/2. Thus,

P01

P02
=

∣∣∣∣b1

b2

∣∣∣∣
2

= t2
1

t2
2

r2
2 e(�xy gth−αi )L. (3.29)

But, exp(�xy gth − αi )L = 1/(r1r2) from Eq. (2.22). Therefore,

P01

P02
= t2

1 r2

t2
2 r1

. (3.30)

The more general result for more complex cavities can be obtained directly from
either the T-matrix or S-matrix coefficients using P01/P02 = |T21|2 = |S11/S21|2
evaluated at threshold.

Now if the mirrors are lossy, such that r2
j + t2

j �=1, we are more interested in the
fraction, F1, of power delivered from end 1, P01, relative to the total coupled out
of the cavity by the mirrors, Pm . This is because it is F1 that must multiply the
differential quantum efficiency and power expressions of Chapter 2, which assumed
that all mirror loss was delivered to the outside. Referring again to Fig. 3.5 with
a1 = a2 = 0, we construct the desired ratio, F1 = P01/Pm = |b1|2/[|a ′

1|2(1 − r2
1 ) +

|a ′
2|2(1 − r2

2 )], which gives

F1 = t2
1

(1 − r2
1 ) + r1

r2
(1 − r2

2 )
. (3.31)

Therefore, using Eq. (2.40), the differential quantum efficiencies for light delivered
out of end 1 and end 2 of the general Fabry–Perot laser are

ηd1 = F1ηi
αm

〈αi 〉 + αm
,

and

ηd2 = F2ηi
αm

〈αi 〉 + αm
, (3.32)
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where F1 is given by Eq. (3.31) and F2 is found by switching subscripts in F1.
From the above, and Eq. (2.41) the power out of the j th port is

P0j = ηdj
hν

q
(I − Ith). (3.33)

For a symmetrical laser cavity with r1 = r2 = r and t1 = t2 = t , the fractions reduce
to

F1 = F2 = 1

2

t2

1 − r2
. (3.34)

Therefore, any loss occurring at the mirrors (other than what is coupled as useful
output) is taken into account through F1 and F2.

3.4 THREE- AND FOUR-MIRROR LASER CAVITIES

Many modern diode laser configurations have at least one additional discontinuity
within their cavities. In Fig. 2.6 and the associated derivations, we neglected any
reflection from the interface between the active and passive sections. Here we
shall discuss first one and then two discontinuities within the laser. The additional
discontinuities may be within the semiconductor material or one may be at the
semiconductor—air interface in an external cavity configuration.

3.4.1 Three-Mirror Lasers

Figure 3.9 gives a schematic of a three-mirror laser. The transmission coeffi-
cient across the interface, t2, includes any scattering or coupling loss, so r2

2 +
t2
2 �= 1, in general. Generally, our analysis will hold for active–active as well as

active–passive devices, but the results presented are only meaningful if the first
cavity (labeled active) is the dominant cavity, which provides most of the gain.

Also shown in Fig. 3.9 is an equivalent two-mirror cavity, which replaces the
passive section by an effective mirror with reflectivity, reff . This substitution is valid
for steady-state analyses, but it will not necessarily properly model the compound
cavity for dynamic operation. The value of reff was derived earlier, because it is
really S11 for the passive section as viewed from the active section.

Using the reference planes and mirror reflectivities defined in Fig. 3.9 and
Eq. (3.20), we find that

reff = r2 + t2
2 r3e−2j β̃p Lp

1 + r2r3e−2j β̃p Lp
. (3.35)

The complete characteristic equation for a three-mirror laser may be constructed by
replacing r2 by reff in Eq. (2.21) (or by solving for the poles of an active-cavity S -
parameter with this substitution). However, this leads to a fairly complex equation.
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FIGURE 3.9: External cavity laser and equivalent cavity with effective mirror to model the
external section.

We can obtain most of the information we want by using the equivalent cavity in
Fig. 3.9 and carrying reff along in the threshold calculation. This results in only
a slight modification to the threshold gain expression of Eq. (2.25). That is, the
threshold gain of our three-mirror laser can be written as

�gth = 〈αi 〉a + 1

La
ln

[
1

r1|reff |
]

, (3.36)

where � and 〈αi 〉a average over the active section of the cavity only (any
losses encountered in the passive section are contained in reff ). To complete the
model, we need to specify the threshold condition for the round-trip phase. With
reff = |reff |ejφeff and r1 positive and real, the round-trip phase must satisfy
e−2jβa La ejφeff = 1, which translates into 2βaLa − φeff = 2πm . Taking derivatives
of all variables dependent on frequency, we obtain

dβaLa − 1
2 dφeff = π dm. (3.37)

The spacing between adjacent modes is found by setting dm = 1 and solving for
dβa :

dβa = π

La − 1
2 dφeff /dβa

. (3.38)

In this expression, the cavity length that defines the mode spacing includes the
active section length plus an additional factor dependent on how the effective mirror
phase changes with frequency, motivating us to consider the second quantity as
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an effective length. However, because φeff explicitly depends on βp , not βa , we
choose to define the effective length as

Leff = −1

2

dφeff

dβp
. (3.39)

The mode spacing can be defined in terms of wavelength, dβa = −dλ(2π/λ2)n̄ga ; or
in terms of frequency, dβa = dν(2π/c)n̄ga , where n̄g = n̄ − λ∂ n̄/∂λ. Furthermore,
it follows that dβp/dβa = n̄gp/n̄ga . Using these expressions in Eq. (3.38), the mode
spacing in either wavelength or frequency becomes

dλ = λ2

2(n̄gaLa + n̄gpLeff )
or dν = c

2(n̄gaLa + n̄gpLeff )
. (3.40)

If no reflection exists at the active–passive interface (r2 = 0) and r3 is positive and
real, then φeff = −2βpLp , and Leff = Lp , reducing Eq. (3.40) to Eq. (2.29) given
earlier. For the more general Fabry–Perot etalon, the slope of the phase will be
dependent on whether we are near a resonance or an antiresonance of the etalon (as
shown earlier in Fig. 3.6). Thus, Leff can be larger or smaller than Lp . However, if
the phase varies rapidly and nonlinearly within the range of one mode spacing (for
example, near the Fabry–Perot resonances (βL = mπ) in Fig. 3.6), then Eq. (3.40)
will most likely not be very accurate because this derivation assumes that φeff varies
linearly over at least one mode spacing.

The differential quantum efficiency and power out of end 1 are given by
Eqs. (3.32) and (3.33), respectively, using Eq. (3.31). The second mirror reflectiv-
ity, r2, in these single-section laser expressions should be replaced by reff wherever
it shows up, and the mirror loss, αm , is given by the second term in Eq. (3.36).

Figure 3.6 gives plots of the magnitude of reff in the special case where r2 = −r3

and loss can be neglected. As can be seen, the magnitude of the reflectivity of this
mirror can vary significantly, and this will provide a filtering effect on the cavity
modes. As indicated by Eq. (3.36), the modes with the lowest loss or highest
mirror reflectivity will tend to lase first. Thus, such a second section or etalon
can be used to filter out unwanted modes. However, a point often confused is that
the maxima of reff always occur at the antiresonances of the etalon. Thus, in the
three-mirror configuration, having a high-Q external cavity actually leads to worse
mode selectivity because the maxima become very flat in this case. In fact, there
is an optimum value of net external cavity loss that provides the largest curvature
at the maxima of reff . Figure 3.6 is actually not a very practical case because there
is usually some loss both in traversing the passive cavity and in coupling back
into the active section, and generally r2 �= r3. Thus, the minima do not tend to be
as deep, and the maxima have more shape. This is one case in nature where loss
seems to help.

External cavities are not very useful for axial mode selection in the VCSEL
case because their short cavities together with the finite gain bandwidth usually
provides single-axial mode operation. Here lateral modes are the larger problem.
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However, for in-plane lasers ≥100 μm in length, several axial modes will exist
near the gain maximum, and the loss modulation caused by the external cavity is
useful for axial mode selection.

The length of the external cavity (etalon) determines how modes will be selected.
Ideally, the periodic loss modulation will combine with the gain roll-off to provide a
single net gain maximum where the nearest axial mode will be selected. Figure 3.10
illustrates the three cases where the relative length, Lp/La is (a) 	1, (b) ∼1 (but
�=1), and (c) �1.

Here we show the variations of αm , from Eq. (3.36), and a generic net gain
curve, (�xy g − αi ) vs. wavelength along with indications of the mode locations.
(Note that the maxima in reff correspond to minima in αm .) The active cavity length
and the width of the gain peak are held constant for all three cases. When the gain
reaches the loss at some point, the mode at that wavelength reaches threshold.
Also, we know that once one mode reaches threshold, the gain becomes clamped,
and if the loss margin (the loss minus the gain) is large enough, the other modes
are suppressed.

If the external cavity is somewhat shorter than the active section, as in case (a),
the modes of the active cavity will be more closely spaced than the minima in αm .
In this case a single loss minimum can effectively select a single axial mode of
the active cavity, if αm varies enough. That is, the period of the loss modulation
cannot be so large that the minimum of αm is as wide as the gain peak, or no
additional filtering will be provided. On the other hand, it must be large enough
so that the next minima of αm fall sufficiently far off the gain peak. (If too close,
these secondary minima may select unwanted repeat modes.)

If the lengths are comparable as in Fig. 3.10b, the resonances of both cavities are
spaced by about the same amount, and the active cavity modes will slowly slide
across the minima of αm providing an action similar to a vernier scale. Again,
relatively good mode suppression is possible if the beat period is not too large or
too small. In the third case, Fig. 3.10c, good mode suppression is generally not
possible unless the external cavity mirror itself is a filter. In fact, a grating mirror
is sometimes used to provide for single-frequency operation of the laser with a
long external cavity.

One of the uses of a two-section (three-mirror) laser is to provide a tunable
single-frequency source. The repeat modes can make this somewhat problematic,
but the tuning mechanism is still worth reviewing. If the passive section shown
in Fig. 3.9 is formed of electro-optic material, it would be possible to change its
index and the round-trip phase, −βpLp , by applying an electric field across the
material. Then, according to Eq. (3.35), the reff and αm characteristics would tune
in wavelength. This would cause a successive selection of different axial modes, as
can be envisioned from Fig. 3.10. Moreover, because the phase of reff also varies
across each period, some continuous tuning of the cavity mode is possible prior to
the shift to a new mode. Perhaps one of the key reasons to have the tunability is
to provide an active mechanism to optimally align the loss minimum with an axial
mode for best spurious mode suppression.
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FIGURE 3.10: Schematic illustration of net propagation gain, �xy g − αi , and the net mirror
loss, αm , as a function of wavelength for external cavities with length (a) shorter, (b) about
the same, and (c) longer than the active section.

3.4.2 Four-Mirror Lasers

If the reff characteristic could be flipped over so that its maxima (αm minima)
also occurred at the resonances of the external cavity, the filtering action would be
much better. As stated earlier this is not possible in a three-mirror cavity, but with
a four-mirror cavity it is. However, the relative positions of the reflectors must
provide the desired phasing. The best known example of a four-mirror laser is
the coupled-cavity laser, which incorporates a narrow space to separate two active
sections. This same effect can also be achieved by using coatings on the facet of
the active section in an external-cavity laser.

To model the four-mirror laser, we replace the interface between the active
and passive sections in Fig. 3.9 by another section, which can be fully described
by another complex scattering matrix. (Again, this analysis also holds for the
active–active situation, in which the highest gain cavity is referred to as the active
cavity.) Physically, this interface section might be another dielectric region with
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FIGURE 3.11: Generic four-mirror or three-section laser and equivalent mirror representa-
tion.

an index different from either the active or passive sections. Figure 3.11 shows the
model and a possible implementation.

For this case we only need to modify the expression for reff slightly. Replacing
r2, −r2, t2, and t2 with the more general terms, Ss11, Ss22, Ss21, and Ss12, respectively,
in Eq. (3.35), we obtain

reff = Ss11 + Ss21Ss12r3e−2j β̃p Lp

1 − Ss22r3e−2j β̃p Lp
, (3.41)

or rearranging,

reff = Ss11

[
1 + σR′

1 − R′

]
, (3.42)

where R′ = Ss22r3e−2j β̃p Lp , and σ = (Ss21Ss12/Ss11Ss22).
Equation (3.42) shows that for resonance R′ is real and positive. Thus, for the

second term to add to the first for a maximum in reff , the ratio σ must also be
real and positive. As can be verified by reference to Eqs. (3.20) to (3.23), this
occurs when the space is a multiple of a half-wavelength wide, if its index is
either lower or higher than both end cavities (e.g., a simple air gap between two
semiconductors). Other situations will be left as exercises for the reader, but it
should be clear that the phase of this gap factor, σ , will determine whether the
maxima of reff will occur at passive cavity resonances (∠σ = 0), or antiresonances
(∠σ = π), as in Fig. 3.6. In the case of the three-mirror cavity, the phase of the
gap factor is always π .
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For the optimum case of ∠σ = 0 the minima in αm are sharpest and the mode
selection best. Also, if the index can be adjusted in the second cavity, the resulting
tunability is somewhat improved. In particular, because the phase of reff varies
most rapidly near the resonance of the second cavity, this optimum case leads to
better continuous tunability.

3.5 GRATINGS

3.5.1 Introduction

Many important diode lasers use gratings or distributed Bragg reflectors (DBRs)
for one or both cavity mirrors. With in-plane lasers the reason is to use their
frequency selectivity for single-axial mode operation, and with vertical-cavity lasers
the reason is to obtain a very high value of reflectivity. Gratings consist of a periodic
array of index (sometimes gain) variations. At the Bragg frequency, the period of
the grating is half of the average optical wavelength in the medium. Significant
reflections can also occur at harmonics of this frequency. In the vertical-cavity
case, quarter-wavelength-thick layers of two different index materials are alternated
during growth. In the in-plane case, corrugations are typically etched on the surface
of the waveguide, and these are refilled with a different index material during a
second growth. Figure 3.12 illustrates the two cases. As indicated, the in-plane case
usually has many more grating periods than the VCSEL.

In either case, the concept of the grating is that many small reflections can
add up to a large net reflection. At the Bragg frequency the reflections from each
discontinuity add up exactly in phase. For the rectangular gratings shown, there
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FIGURE 3.12: (a) Schematic of a DBR mirror for a vertical-cavity laser. (b) Schematic of
a DBR mirror for an in-plane laser.
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are two discontinuities per period, each of reflectivity r . Thus, the net reflection
from m grating periods is rg ∼ 2mr when the net reflection is weak, so that each
discontinuity sees nearly the same incident field. For a significant reflection the
field will fall off into the grating, and the problem becomes more difficult. As the
frequency is deviated from the Bragg condition, the reflections from discontinuities
further into the grating return with progressively larger phase mismatch. This causes
a roll-off in the net reflection, which occurs more rapidly in longer gratings.

Example 3.2

Problem: For a grating from Figure 3.12 (a), calculate the contributions to the
reflected electric field at the Bragg wavelength λ0, from the first two interfaces.
Assume that there are no losses in the grating, that the reflection amplitude r 	 1,
and that L1 = λ0/4n̄1 and L2 = λ0/4n̄2.

Solution: Assuming that electric field E is incident to the grating, the electric field
contribution from the first two interfaces is given by the Eq. (3.20), modified for
the different reflection sign convention used in Figure 3.12,

ER = E

(
r + t2(−re−2j β̃L)

1 − r2e−2j β̃L

)
≈ E

(
r − t2re−2j (2π n̄1/λ0)·(λ0/4n̄1)

)

= E
(
r − t2rejπ ) = E

(
r + t2r

)
.

The first term in the expression represents the reflection from the first interface,
and the second term is the contribution from the second interface. We can conclude
that the phase term of the round trip accross the half period of the grating will
cancel out the π phase change due to the reflection from a higher index material.
For the subsequent interface, the reflection sign will be positive again, and so will
the phase component because the new round-trip phase component will be equal
to ej 2π . Therefore, as expected, all the reflections from each interface will add in
phase, and the final reflection from the grating will be a sum of interface reflections.

Because the dielectric interfaces extend uniformly across the mode in the
vertical-cavity case, the results from Section 3.3.3 apply directly. That is, we
can obtain the net grating reflectivity, rg , exactly by cascading the T-matrices,
Eqs. (3.24) to (3.27). For the in-plane case, we must assume some effective
reflectivity at each discontinuity to use these results. This is indicated by the inset
in Fig. 3.12b. For the rectangular gratings shown, this effective modal reflectivity
at each discontinuity can be estimated by using the effective indices in each
waveguide segment in Eq. (3.10). That is, if n̄1 and n̄2 are the effective indices in
waveguide segments 1 and 2 of width d1 and d2, respectively, the reflectivity in
going from segment 2 to segment 1 is approximately

r̄ ≈ n̄2 − n̄1

n̄2 + n̄1
. (3.43)
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The effective indices can be calculated following the procedure outlined in
Appendix 3. The approximation is necessary because the transverse grating mode
will be different from (actually something in between) the modes in uniform
waveguides of width d1 or d2. The approximation is best for small impedance
discontinuities. The reflectivity in going from segment 1 to segment 2 is −r̄ by
symmetry. As we shall discuss more in Chapter 6, for grating profiles other than
rectangular, the effective reflectivity at each segment interface can be found by mul-
tiplying Eq. (3.43) by the relative Fourier coefficients for the harmonic of interest.

3.5.2 Transmission Matrix Theory of Gratings

Figure 3.13 shows how the periodic gratings of Fig. 3.12 can be represented using
T-matrices. If the output fields are known, the input fields (and hence the reflec-
tivity, rg = Bm/Am ) can be determined by matrix multiplying the individual com-
ponents of the grating, starting from the output and proceeding to the input. Now,
for the simple uniform gratings depicted in Fig. 3.12, in which only two indices
are involved, the matrix multiplication to obtain rg can be simplified by realizing
that each period is the same. (However, we may need to use a different T-matrix
for the output segment.)

To determine the T-matrix for a single period, we must matrix multiply four sim-
ple T-matrices together. Starting at the reference plane and moving in the positive
z -direction in Fig. 3.12, we encounter (1) a 2–1 dielectric interface, (2) a propaga-
tion delay of length L1, (3) a 1–2 dielectric interface, and (4) a propagation delay of
length L2. At this point another 2–1 interface is encountered, marking the beginning
the next period. The results of multiplying the first three of these matrices together
has already been derived in Eqs. (3.24) to (3.27). To apply those equations to
Fig. 3.12 we need to change notation slightly by setting r1 = r2 ≡ −r , t1 = t2 ≡ t
and L = L1. Now, the associative property is maintained under matrix multiplica-
tion implying that T1T2T3T4 = (T1T2T3)T4. Thus, by multiplying the composite
of three matrices by the fourth propagation delay matrix defined in Eq. (3.18), we
obtain the single period T-matrix.

Alternatively, we can group the T-matrices as follows: (T1T2)(T3T4), and
identify each group as being equivalent to the third structure listed in Table 3.3.

B2 B1 B0

A0A2 A1

2m

• • •

Tg

Bm

Am

OutputInput

T2 T1Tm

1

FIGURE 3.13: Cascaded scattering junctions characterized by transmission matrices. The
net transmission matrix of the cascade is Tg .
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Multiplying two such matrices (using the appropriate refractive indices) also gives
us the single period T-matrix. Either way, the general forms, and corresponding
forms for a lossless DBR at the Bragg frequency (right of arrow), become

T11 = 1

t2
[ejφ+ − r2e−jφ−] → −1 + r2

t2
,

T21 = r

t2
[ejφ+ − e−jφ−] → −2r

t2
,

T12 = r

t2
[e−jφ+ − ejφ−] → −2r

t2
,

T22 = 1

t2
[e−jφ+ − r2ejφ−] → −1 + r2

t2
,

(3.44)

where φ± ≡ β̃1L1 ± β̃2L2, which becomes either π or 0 at the Bragg condition.
For convenience, we define an average complex propagation constant of one grat-
ing period: β̃� ≡ β̃1L1 + β̃2L2, where β̃ = β − jα/2. Setting � = L1 + L2, L1 =
λ0/4n1, and L2 = λ0/4n2 (where λ0 is the Bragg wavelength), we find that

β = β1/n1 + β2/n2

1/n1 + 1/n2
(3.45)

α = α1/n1 + α2/n2

1/n1 + 1/n2
(3.46)

In the first line, β is defined as the average propagation constant of the grating,
β = 2π/λ0n̄ . In the second line, α is the average loss of the grating.

At the Bragg frequency, the phase delay of each layer is β1L1 = β2L2 = π/2,
and β0� = β1L1 + β2L2 = π . Defining a detuning parameter,

δ ≡ β − β0, (3.47)

the phase terms with no loss become simply

φ+ = π + δ�, φ− = 0. (3.48)

The detuning parameter can alternatively be expressed as δ� = π(ν − ν0)/ν0. The
arrows in Eq. (3.44) indicate this no loss case at the Bragg frequency (δ → 0).

For a cascade of m such matrices for the m grating segments of length �, we
have

Tg =
[

T11 T12

T21 T22

]m

, (3.49)

which can be simplified using a mathematical identity derived in Appendix 7. The
only restriction for the form used here is that the system must be reciprocal such
that T11T22 − T12T21 = 1. In other words, transmission through the dielectric stack



3.5 GRATINGS 117

must be equivalent for light incident from either side of the stack. For all T-matrices
we have discussed so far, this condition is satisfied even with loss or gain in the
layers. Using the additional subscript g for the T -parameters of the entire grating,
and assuming reciprocity, we can write

Tg11 = (1 + jmeff 
) cosh mξ ,

Tg21 = T21

T11
meff (1 + j
) cosh mξ ,

Tg12 = T12

T22
meff (1 − j
) cosh mξ ,

Tg22 = (1 − jmeff 
) cosh mξ ,

(3.50)

where

± ξ = ln{ 1
2 [T11 + T22] ±

√
1
4 [T11 + T22]2 − 1},


 = j
T22 − T11

T22 + T11
,

meff = tanh mξ

tanh ξ
. (3.51)

The equation ± ξ = ln{±} implies that the negative root {−} = 1/{+} or {−}{+} =
1, which is easily verified. As will be discussed later, the three parameters, ξ , 
,
and meff , all have a physical significance and are important in the analysis of
dielectric stacks.

The first parameter is the discrete propagation constant, ξ . Its value is very
dependent on the wavelength of the incident light and is in general complex. It
represents a discrete propagation constant because the fields (Aj , Bj ) shown in
Fig. 3.13 are multiplied by e±ξ upon passing to the next period. (As shown more
exactly in Appendix 7, the fields when decomposed into the two eigenvectors of
the matrix are multiplied by the eigenvalues e+ξ and e−ξ upon passing to the next
period.) For example, if ξ is purely imaginary at some wavelength, the incident
field will only encounter a phase shift of mξ upon passing through m periods,
suffering no attentuation and hence, providing perfect transmission through the
stack. Wavelength regimens for which this occurs are referred to as passbands
of the dielectric stack. If ξ is purely real at some wavelength, the field will be
attenuated by e±mξ as it propagates through m periods, which can lead to very low
transmission and hence, high reflection. These wavelength regimens are referred
to as stopbands of the dielectric stack. Using Eq. (3.44) at the Bragg frequency, it
is shown below that ξ ≈ jπ + 2r , revealing that the field experiences a π phase
shift through each period and is attenuated by e−2r . If r is high enough, and
enough periods are used, the attentuation can be very high, leading to extremely
low transmission and extremely high reflection of the field.
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The second parameter is defined as the generalized detuning parameter, 
,
and is a measure of how far away we are from the Bragg condition. For small
reflectivities, using Eq. (3.44) together with Eq. (3.48), we find 
 ≈ tan δ� ≈ δ�.
At the Bragg condition, T11 = T22 in a lossless dielectric stack, and 
 = 0 exactly,
from its definition in Eq. (3.51).

The third parameter defines the effective number of periods, meff , seen by the
incident field. For very weak attenuation (Re{ξ} 	 1), and a small number of
periods, the tanh functions reduce to their arguments and meff = m . For large atten-
uation, meff as a function of m saturates at a value of meff = 1/ tanh ξ , which when
multiplied by �, determines the penetration depth of the field into the dielectric
stack to be discussed later.

Example 3.3

Problem: Determine the values for the discrete propagation constant ξ , the
generalized detuning parameter 
, and the effective number of periods meff in a
special case of when the wavelength satisfies the Bragg condition, and there is no
loss or gain.

Solution: From Eq. (3.44), we observe that at the Bragg frequency, T11 = T22 and
T21 = T12. The reciprocity condition for this case reduces to T 2

11 − T 2
21 = 1. Using

these relations in the first equation of (3.49), we obtain e±ξ = T11 ± T21, which
allows us to set tanh ξ = T21/T11. The three parameters defined in Eq. (3.51) then
reduce to

ξ = jπ + ln(−T11 − T21),


 = 0,

meff = T11

T21
tanh[m ln(−T11 − T21)]. (3.52)

In the first equality, the identity: ln(−1) = jπ , was used to introduce a minus sign
into the argument of the ln function. Inserting Eq. (3.44), we have

Re{ξ} = ln

(
1 + r

1 − r

)
≈ 2r ,

meff = 1 + r2

2r
tanh

[
m ln

(
1 + r

1 − r

)]
≈ 1

2r
tanh(2mr), (3.53)

where the latter relations are obtained by neglecting second- and higher-order terms
in r (in the ln function expansion, the second-order terms actually cancel making
it an excellent approximation). Thus, at the Bragg wavelength, the attenuating
portion of the discrete propagation constant is roughly equal to the sum of the
reflectivities encountered within one period, as one might intuitively expect. The
effective number of periods is also inversely related to 2r . In other words, as
r increases, fewer and fewer periods are effectively seen by the field, which also
agrees with intuition. Note that as m increases toward infinity, meff saturates at 1/2r .
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The reflectivity of the overall stack in the general case is given by rg = Sg11 =
Tg21/Tg11. With Eq. (3.50), the reflectivity becomes

rg = T21

T11
meff

1 + j


1 + jmeff 

. (3.54)

At the Bragg frequency, with no loss or gain, the second term disappears using
Eq. (3.52), and the reflectivity reduces to

rg = tanh

[
m ln

(
1 + r

1 − r

)]
≈ tanh(2mr) ≡ r ′

g , (
 = 0, αg = 0, g = 0)

(3.55)
where the approximation is good to second order in r , and r ′

g is defined as the
lossless value of rg . Expressing r in terms of the refractive indices, the reflectivity
at the Bragg frequency, for a grating with no loss or gain, can also be written as

rg = r ′
g = 1 − (n1/n2)

2m

1 + (n1/n2)2m
. (
 = 0, αg = 0, g = 0) (3.56)

It is shown in Appendix 7 that Eq. (3.56) can more generally be applied to dielectric
stacks with different values of index (for example, at the input or output of the
stack) by replacing (n1/n2)

2m with the product of the low-to-high index ratios of
every interface in the stack.

In addition, it will be shown in the next section how the lossless grating reflection
value r ′

g can be used to model gratings with some loss.
Figure 3.14 shows example plots of the magnitude and phase of rg from

Eq. (3.54) for several values of 2mr. For low reflection magnitudes it approaches
a sin(δLg )/(δLg ) function, whereas for high reflection magnitudes, the top flattens
out (saturating at a value of unity) and the stopband broadens. In the phase
spectrum, increasing 2mr has the effect of suppressing the phase slope over the
range of the stopband. We also see that the phase jumps by π every time the
reflectivity passes through a null. A phasor diagram of the reflectivity would reveal
that as δLg approaches a zero crossing, the reflectivity phasor aligns itself with
the negative real axis, shrinks to zero, and then increases again, pointing along
the positive real axis. For the low reflection magnitudes, the full width at half
maximum of the reflection peak can be obtained by setting sin(δLg )/(δLg ) = 1

2
because as δ → 0, sin(0)/0 → 1. Solving for δLg which corresponds to the full
width at half maximum, we have that δLg = 1.88, yielding the spectral width of
the peak at half maximum as


λ = λ2

2n̄g Lg

3.76

π
. (3.57)

In the low reflection limit the peak net reflection should intuitively approach
2mr, since there are two discontinuities per grating period, and multiple reflections
should be negligible. Also from Fourier transform theory, the net reflection from
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FIGURE 3.14: (a) Magnitude and (b) phase of the grating reflection coefficient versus the
normalized frequency deviation from the Bragg condition for different values of the reflection
parameter, κLg ≡ 2mr . For small r and large m , the reflection spectrum plotted above is
only dependent on the product 2mr. However, for larger values of r and/or smaller values
of m , there is some dependence on the individual values of r and m . For example, r = 0.01
and m = 100 would be roughly equivalent to r = 0.1 and m = 10. However, some changes
in the spectrum would occur with r = 0.2 and m = 5, even though the 2mr product is
equivalent in all three cases. The above plots use r = 0.1, 0.025, 0.01 with m = 20 for all
cases. In the phase plot, the 2mr = 1 case is very similar to the 0.4 case and hence is not
plotted. Here δ ≡ β − β0 where β is the average propagation constant of the grating.

m elements, equally spaced by half a wavelength, and each causing a reflection of
2r , should produce the following spectral response:

|rg | ≈ 2mr
sin(δLg )

δLg
, (mr < 0.2) (3.58)
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where δ is the deviation of the average propagation constant from the Bragg fre-
quency. The qualifier reminds us that Eq. (3.58) is only valid in the weak reflection
limit. Practical lasers usually require mirror power reflectivities of greater than 15%
where multiple reflections cannot be ignored. Thus, Eq. (3.58) is of limited utility
for diode laser work unless a relatively low reflectivity mirror is desired.

Historically, researchers working with long grating reflectors in in-plane lasers
have chosen to use a different dimensionless parameter to quantify the net grating
reflection rather than 2mr, which is the reflection per grating segment, 2r , times the
number of segments, m . The parameter of choice is the reflection per unit length,
κ , times the grating length, Lg . Thus, for the square wave grating, we see that the
coupling constant, κ , is given by

κLg ≡ 2mr = m
n̄

n̄
= Lg

�

(

n̄

n̄

)
, (3.59)

where 
n̄ ≡ |n̄2 − n̄1| and n̄ ≡ (n̄2 + n̄1)/2. For small index differences, � =
(λ0/4)(1/n̄1 + 1/n̄2) ≈ λ0/2n̄ which gives κ = 2
n̄/λ0. Later in Chapter 6 when
we introduce coupled mode theory, we shall see that this form also naturally results
(however, for the sinusoidal gratings analyzed there, κ is reduced by π/4). There-
fore, the approximation for the grating reflection in Eq. (3.55) can also be written
as, rg ≈ tanh(κLg ). However, for very short gratings, such as in VCSELs, our
original 2mr form seems more natural.

3.5.3 Effective Mirror Model for Gratings

From Fig. 3.14 we note that the phase varies relatively linearly near the reflection
maximum. Such a reflection can be well approximated by a discrete mirror reflec-
tion, |r ′

g |, but placed a distance Leff away as shown in Fig. 3.15. For a lossless
grating, |r ′

g | is equal to the magnitude of the grating’s reflection |rg |.
From Eq. (3.15) and the associated discussion in Section 3.3.2, we know that

the incident and reflected wave amplitudes each experience a phase shift of −βLeff

in traversing the distance to the effective mirror and back. Thus, knowing that the
reflection phase is zero at the Bragg frequency, we can express rg as

rg ≈ |r ′
g |e−2j (β−β0)Leff . (|δLg | 	 π) (3.60)

A small propagation loss can be approximately calculated using effective mirror
approximation by replacing β by its complex form β̃, in Eq. (3.60). This results in

|rg | = |r ′
g |e−αi Leff . (3.61)

This perturbation technique is not valid for significant levels of loss or gain,
because if such levels exist, the rate of decay of energy into the grating will be
significantly affected. In this case, rg should be recalculated using the transmission
matrix method incorporating complex propagation constants, β̃, throughout. But, for
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FIGURE 3.15: Definition of an effective mirror for a grating reflector.

many practical cases of interest we find that it is possible to model the grating near
its reflection maximum by using the effective mirror concept, for which we need
only know (1) the lossless reflection magnitude at the Bragg frequency, |rg |max;
(2) the effective mirror location, given by Leff ; and (3) the propagation loss over
the entire grating length, given by αi in the grating.1 Expanding the true DBR
reflection phase in a Taylor series about the Bragg frequency: jφ ≈ jφ0 + j (β −
β0)(∂φ/∂β) + · · ·, and equating the linear (β − β0) coefficient with the exponent
in Eq. (3.60), we find that the effective length is given by

Leff = −1

2

∂φ

∂β
, (3.62)

which is the same result we found earlier in Eq. (3.39) by different means. From
Fig. 3.14b, it is clear that as 2mr increases, Leff decreases over the range of the
stopband. Using Eqs. (3.54) and (3.44), it can be shown (after a bit of math) that
if third- and higher-order terms in r are neglected, the effective length becomes

Leff = 1

2κ
tanh(κLg ), (|δLg | 	 π) (3.63)

1If the propagation loss is not distributed evenly throughout the grating (as is often the case with VCSEL
mirrors), we must use an effective propagation loss:

αi ,eff = 1

Leff

∫ Lg

0
αi (z )

−z/Leff
e (1 ± cos 2βz ) dz .

The upper (lower) sign in the standing wave term is for a DBR with 0 (π) reflection phase at the Bragg
wavelength. For a constant loss, αi (z ) = αi0, and the equation reduces to αi ,eff = αi0 for Lg � Leff �
λ/4πn .
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where κLg ≡ 2mr as given by Eq. (3.59); the exact expression for Leff is given
in Appendix 7. For weakly reflecting gratings (tanh κLg → κLg ), the effective
mirror plane is at the center of the grating, and for strongly reflecting gratings
(tanh κLg → 1), Leff → �/(4r) ≈ λ0/4
n̄ .

Although Leff was defined to give the proper mirror phase and, thus, can be
used to locate cavity modes, it also gives the approximate optical energy penetration
depth into the grating mirror. As mentioned earlier, meff gives the effective number
of periods seen by the incident field. The optical power is the square of the field;
thus its exponential decay constant is twice that of the electric field, and hence
the optical power penetrates half as far into the mirror. Therefore, the energy
penetration depth is given by Lpen = �meff /2 (see Appendix 7 for more details).
Substituting Eq. (3.53) for meff and setting 2r = κ�, this definition reduces to the
one given in Eq. (3.63) and hence Lpen ≈ Leff . Therefore, the total energy stored
in the mirror is approximately equal to the energy density at its input multiplied
by Leff .

In the general case, rg = Tg21/Tg11 = Bm/Am |(B0=0) (or in terms of the
S-parameters, rg = Sg11 = bm/am |(a0=0)), which can be calculated numerically
by performing the operations indicated in Fig. 3.13. The numerical procedure
proceeds from the output of the grating backwards, after first assuming some value
for A0, such as unity. The intermediate Aj ’s and Bj ’s are evaluated by matrix
multiplication moving to the left toward the beginning of the grating. Using this
technique each segment in principle could be different, and the loss or gain can
be naturally included in the Tij ’s, by using the appropriate complex propagation
constants in Eqs. (3.24) to (3.27).

3.6 LASERS BASED ON DBR MIRRORS

3.6.1 Introduction

A distributed Bragg reflector (DBR) laser can be formed by replacing one or both
of the discrete laser mirrors with a passive grating reflector. Figure 3.16 shows
schematics of both in-plane and VCSEL configurations with one or two grating
mirrors. By definition, the grating reflectors are formed along a passive waveguide
section, so one of the issues is how to make the transition between the active and
passive waveguides without introducing an unwanted discontinuity. This is of little
concern in the VCSEL case because the axial direction is the growth direction, and
switching materials is always done several times during growth. Thus, forming the
mirrors only requires growing more uniform layers. However, for coherence along
the axial direction, these layers must be very accurately controlled in thickness.

In the in-plane laser case making a DBR laser is relatively complex because
a lot of structure must be created along the surface of the wafer. This generally
includes a joint between the active and passive regions as well as grating patterning
and regrowth. For this reason in-plane DBR lasers are only formed when their
unique properties are required. Besides the single-frequency property provided by
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FIGURE 3.16: (a) Vertical-cavity surface-emitting laser schematic illustrating various
lengths and reference planes. (b) In-plane laser schematic illustrating various lengths and
reference planes.

the frequency-selective grating mirrors, these attributes can include wide tunability,
if the effective index is varied electro-optically in the several sections by separate
electrodes.

3.6.2 Threshold Gain and Power Out

The threshold gain of a DBR laser is the same as we have already calculated
elsewhere, but we must interpret the parameters properly and consistently. This
interpretation, however, can vary depending on how we choose to model the DBR.
If we treat the grating reflector as a separate element characterized by reflection and
transmission scattering parameters, Case (a), we logically choose the cavity length
to be La + Lp . However, if we use the effective mirror model outlined in Fig. 3.16,
Case (b), we would choose the cavity length to be LDBR and include the grating
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passive losses in the penetration depth, Leff , rather than the reflection coefficient.
Fortunately, these approaches lead to the same result near the Bragg frequency,
provided the losses are not too large. In practice we find that the approximate
Case (b) is most useful for design where a minimum of computation is desired. Of
course, Case (a) is more exact for detailed analysis.

With reference to the single grating mirror configuration in Fig. 3.16, the thresh-
old gain given by Eq. (2.25) becomes

Case (a)

�gth = 〈αi 〉 + 1

La + Lp
ln

[
1

r1|rg |
]

, (3.64)

where � and 〈αi 〉 average over the active and passive sections of the cavity only
(any losses encountered in the DBR section are contained in |rg |, the magnitude
of the DBR reflectivity given by Eq. (3.54)). Using the effective mirror model,

Case (b)

�gth = 〈αi 〉 + 1

LDBR
ln

[
1

r1|r ′
g |

]
, (3.65)

where � and 〈αi 〉 average over the entire effective cavity length, LDBR = La +
Lp + Leff , and losses encountered in the DBR section are treated as propagation
losses in Leff . The prime on rg denotes the use of its lossless value. In either case,
the mode spacing is determined using Eq. (3.40) with the optical length set equal
to n̄gaLa + n̄gpLp + n̄gDBRLeff .

For VCSELs, the confinement factor � must generally be calculated by
Eq. (5.10). Even for uniform gain within the active region Eq. (5.14) must be
used for �z . If two grating mirrors are used in a DBR laser, r1 in Eq. (3.64) must
be replaced by |rg1| for the other grating reflection, and the mode spacing needs
to include the effective lengths of both DBRs.

Because the distributed mirrors are lossy in general, we must use Eqs. (3.32)
and (3.33) for the differential quantum efficiency and the power out, respectively.
However, we need to use the proper value for αm , and we must replace r2 and t2
by the relevant grating S -parameters. Again, we have different expressions to be
consistent with the two different models considered. That is, with a single Bragg
mirror at end 2 and a discrete mirror at end 1 of the laser, Eq. (3.64) gives

Case (a)

αm = 1

La + Lp
ln

[
1

r1|rg |
]

, (3.66)

and for the effective mirror model,

Case (b)

αm = 1

LDBR
ln

[
1

r1|r ′
g |

]
.
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For the fractional power out of each end in Case (a), we plug the grating S -
parameters into Eq. (3.31). Setting r2 = Sg11 ≡ rg and t2 = Sg21 ≡ tg , we obtain

Case (a)

F1 = t2
1

(1 − r2
1 ) + r1

|rg | (1 − |rg |2) ,

and

F2 = |tg |2
(1 − |rg |2) + |rg |

r1
(1 − r2

1 )
. (3.67)

For the effective mirror model,

Case (b)

F1 = t2
1

(1 − r2
1 ) + r1

|r ′
g | (1 − |r ′

g |2) ,

and

F2 = |t ′
g |2

(1 − |r ′
g |2) + |r ′

g |
r1

(1 − r2
1 )

.

In this case, rg is replaced by its lossless value r ′
g , and |tg |2 is replaced by the

power transmission exclusively through the effective mirror, |t ′
g |2, which is found

by setting e−αi Leff |t ′
g |2 = |Sg21|2.

For both Case (a) and (b), it is useful to determine |Sg21|2 for a lossy DBR. It
can be shown using Eqs. (3.44) to (3.51) for a small uniform loss, αi , at the Bragg
condition that 
 ≈ −jαi �/2 and

|Sg21|2 = 1/|Tg11|2 ≈ (1 − |r ′
g |2)e−2αi Leff . (3.68)

Hence, we reach the unintuitive conclusion that the transmitted power is ∝ e−2αi Leff

just like the reflected power. As a result, the transmission through the effective
mirror becomes

|t ′
g |2 = (1 − |r ′

g |2)e−αi Leff , (3.69)

which unfortunately does not correspond to the lossless transmission through the
DBR (as one might have hoped).

With Eq. (3.68), we can show that the ratio of powers out of the two ends,
F1/F2, is preserved in Case (a) and (b). Furthermore, we can show that F1 and
F2 are both larger in Case (b). This increase in F1 and F2 compensates for the
smaller mirror loss of Case (b), such that ηd is also approximately preserved in
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Case (a) and (b) (the effective mirror model does tend to overestimate ηd , but not
significantly for αi Leff < 0.1, or for larger losses if the grating reflectivity is high).

For a second general lossy mirror at end 1, for example, another grating, its
S -parameters should also be used for r1 and t1 in Eqs (3.66) and (3.67). In Case
(b), the same additional substitutions are made. Finally, as mentioned earlier, the
power out of each end can be obtained from Eq. (3.33).

3.6.3 Mode Selection in DBR-Based Lasers

Figure 3.17 illustrates two plots similar to those shown in Fig. 3.10 for the DBR
case. One is for cavity lengths common to in-plane lasers, the other is for VCSELs.

0
Mode
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VCSEL

am(  )

am(  )
Γg − ai

Γg − ai

Γg − ai

am(  )

Γg − ai

   −  B

0Mode
locations

am(  )

   −  B

FIGURE 3.17: Schematic illustration of how a single axial mode is selected in an in-plane
or vertical-cavity DBR laser. The VCSEL wavelength axis covers a five times larger range
(i.e., the gain curve has the same width in both plots).
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As compared to the coupled-cavity cases, the key difference with grating mirrors
is that there is only a single loss minimum.

For in-plane lasers, the relatively rapid roll-up in αm leads to good loss margins
at the adjacent axial mode wavelength. As indicated in Fig. 3.17, the net loss margin
at the adjacent axial mode is the sum of the roll-off in the net modal gain, 
�g ,
and the roll-up of the mirror loss, 
αm . In a later section, we shall show that this
net loss can be used to derive an expression for the steady-state mode suppression
ratio (MSR), which predicts how much unwanted modes are suppressed.

In the VCSEL case, both the mode spacing and the width of the loss minimum
are much larger because the lengths of the cavity and grating, respectively, are much
shorter. Thus, if we scale the wavelength axis to make them look comparable to
the in-plane case, the primary effect is to make the gain look much more narrow
relative to the mode spacing and mirror loss width. In fact, the roll-off in gain
tends to be more important than the roll-up in loss for the VCSEL. That is, the
primary cause of single-axial mode operation is just the short cavity.

3.6.4 VCSEL Design

As indicated in Chapter 1 both mirrors are DBRs in a typical VCSEL, unlike
the simple schematic of Fig. 3.16. Also the cavity might include some different
bandgap layers for current and optical confinement as well as possible intracavity
electrical connections. In addition, the DBR mirrors may be more complex than a
simple stack of two different index layers as suggested by Fig. 3.12a. Some layers
may have a different index or thickness, and the interfaces may have a graded
composition (and thus index) to facilitate better current conduction. In this section
we shall include some of these aspects in an effort to focus on the design of real
VCSEL structures. Of course, as in the rest of this chapter, the focus will remain
on the axial cavity design.

As for other lasers the power out of one side of a VCSEL is given by Eq. (3.33).
But for VCSELs it is sometimes useful to multiply the numerator and denominator
of the conventional expression for differential efficiency by the DBR effective
cavity length, LDBR , to obtain for side j,

ηdj = Fj ηi
Tm

Ai + Tm
, (3.70)

where Tm = ln(1/R) and Ai = 〈αi 〉LDBR . Because the gain length is small in
VCSELs, the mean mirror reflectance R must be high, typically >99%, as was
shown in the design curves of Fig. 2.11c. Therefore, Tm is a good approximation
to the mean mirror power transmission in the absence of losses, and Ai is a very
good approximation to the one-pass power losses, including those of the mirrors.
That is, Case (b) is already being implied. Similarly, the one-pass threshold modal
gain can be expressed as,

Gth = �gthLDBR = Ai + Tm . (3.71)
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FIGURE 3.18: Plots of mirror reflectance, R, and Tm = ln(1/R) for GaAs/AlGaAs mirrors
(n = 3.52 and n = 2.95, respectively) and InP/InGaAsP lattice matched mirrors (n = 3.17
and n = 3.40, respectively).

Figure 3.18 gives plots of Tm vs. the number of mirror periods for some typical
VCSEL mirror materials. As indicated, the AlGaAs system can provide a power
reflectance >0.999 or Tm < 10−3 with fewer than two dozen periods, but for the
quaternary materials lattice-matched to InP, many more periods are necessary, and
this is generally not seen as feasible. So, in this system at least one of the mirrors
is usually formed by nonepitaxial mirrors. The exception to this has been the
AlGaAsSb/InP system, which can provide nearly the same index discontinuity as
in AlGaAs/GaAs [1], but it has not been very popular because it is difficult to grow
by MOCVD.

In cases where the mirrors may contain a number of different layers, we can use
the results of Appendix 7, Eq. (A7.43), to calculate the mirror amplitude reflectivity
at the Bragg wavelength. It is repeated here for convenience,

|rg | = 1 − b

1 + b
,

where

b =
2m∏
0

[
n1i

n2i

]
, (3.72)
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FIGURE 3.19: Examples of a VCSEL cavity showing the |E |2-field standing wave pattern
together with the index of refraction of the various layers within the cavity: (left) entire
cavity (right) expanded view of region near active. Lateral definition provided by proton
implantation, as shown in Figure 1.18 (a). 3–8 nm thick In0.2Ga0.8As/GaAs quantum wells
with a gain maximum at 980 nm, a cavity spacer of Al0.2GaAs and uniform DBRs beyond
composed of Al0.9Ga0.1As/GaAs are assumed.

and n1i is the low index and n2i is the high index of any layer pair. Also, nonabrupt
interfaces can be included, if we express the low and high index factors as devi-
ations from the average of the minimum and maximum index levels and then
multiply this deviation by the appropriate change in Fourier coefficient for that
new grating period shape. That is, in Eq. (3.72) use

n1i = n̄i − χi 
ni /2,

n2i = n̄i + χi 
ni /2, (3.73)

where n̄i is the average of, and 
ni is difference between, the maximum and
minimum index values, and χi = 1 for abrupt interfaces, π/4 for sinusoidal grat-
ings, 2/π for triangular sawtooth gratings, and generally, (sin x/x) for trapezoidal
gratings, with x = 0 for abrupt varying to x = π/2 for sawtooth [3].

An extremely important factor in the success of VCSELs is the enhancement in
the confinement factor that results from placing the gain layers only at the maxima
of the cavity’s |E |2-field standing wave. As derived in Appendix 5, Eq. (A5.14),
this can provide up to a factor of 2 enhancement over a simple fill-factor, and it is
this enhancement factor that enables modern VCSELs to function as well as they
do. In fact, it is easy to show that without this factor, most commercial VCSELs
would not even reach threshold. Thus, from Appendix 5, we explicitly write the
confinement factor as

� = �xy
La

LDBR

[
1 + cos 2βzs

sin βLa

βLa

]
, (3.74)

where �xy is the lateral confinement factor, La/LDBR is the axial fill-factor, and the
bracket is the enhancement factor in which zs is the shift between the active layer
center and the standing-wave peak.
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FIGURE 3.20: Examples of VCSEL cavities designed for oxide apertures, showing |E |2-
field standing wave patterns and refractive indices of various layers within the cavity: (top)
Full cavity and cavity expanded view of device designed for top and bottom contacts. P-
doped mirror contrast is reduced by reducing Al content and doping is increased in upper
portion to reduce series resistance. (bottom left) Expanded view of n intra-cavity contacted
structure—typically grown on semi-insulating substrate for low parasitic capacitance high-
speed operation. (bottom right) Expanded view of dual intra-cavity contacted structure that
enables simple two layer mirror design that avoids complex bandgap engineering as illus-
trated in Figure 3.21.

Figures 3.19 and 3.20 illustrate a number of possible VCSEL cavity
designs. Figure 3.19 represents a basic one-wavelength cavity design typical
for proton implanted devices. In Fig. 3.20, the layer structures for three
different oxide-apertured VCSEL designs are illustrated—one with both top
and bottom contacts, one with a single intracavity contact layer, and one with
two intra-cavity contracts. The oxide aperture is used for current and photon
confinement, as discussed in Chapter 1. Again, the most important feature of
a VCSEL design is the placement of the quantum-well gain layers on a peak
of the |E |2-field standing-wave, as seen in Figures 3.19 and 3.20. The cavity
spacing, La + Lp , between common mirror reference planes is indicated in
Fig. 3.19. This when added to the effective penetration length into both mirrors,
Leff 1 + Leff 2, gives LDBR . As can be seen the addition of only a single layer can
make a significant difference in the total effective cavity length, LDBR , and thus,
also in quantities like the VCSEL confinement factor or relaxation resonance
frequency.
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Example 3.4 A 980-nm bottom-emitting VCSEL needs to be designed. The aver-
age internal losses and the injection efficiency are 20 cm−1 and 0.9, respectively.
The mirrors are composed of quarter wave stacks of AlAs/GaAs. The top mirror
needs to have a power reflection of 99.6% including air interface, and the bottom
(output) mirror needs to have a power reflection of 98.4%. The cavity between
the DBR mirrors has to be one optical wavelength measured in the material, and
it consists of 3 InGaAs quantum wells, each 8 nm thick, separated by 2–8 nm
thick GaAs barriers, and clad on each side by another 8-nm-thick layer of GaAs.
The rest of the cavity consists of an AlGaAs spacer with 20% of Al. The mirrors
begin with an AlAs quarter-wave layer next to the cavity. The quantum wells are
centered between the mirrors for best confinement factor.

Problem: (a) Determine the thickness of the two AlGaAs spacer layers (b) Deter-
mine the number of the AlAs/GaAs periods in the top and bottom DBR mirrors
(c) What is the differential efficiency measured out of the bottom (output) DBR
mirror?

Solution: A schematic of this type of cavity is shown in Fig. 3.19. From the
statement of the problem, we know that the cavity length is equal to one optical
wavelength in the material, �ni li = λ. From Table 1.1, we have nAlAs = 2.95,
nGaAs = 3.52, nAlGaAs(0.2) = 3.39 and nInGaAs = 3.60. Therefore,

3(3.60)8 nm + 4(3.52)8 nm + 2(3.39)s = 980 nm => s = 115.2 nm

Both mirrors start with an AlGaAs/AlAs interface. For the bottom mirror, the mirror
ends with the semiconductor substrate interface. The number of mirror periods, m ,
relates to the number of reflection pairs because there are two reflections per each
grating period, from two interfaces. Because, per Fig. 3.19, the periodic mirror
section begins with an AlAs/GaAs layer and ends with an AlAs/GaAs interface,
there has to be an odd number of half periods in the mirror, and m will be a half
integer. Using Eq. (3.72), we have

rgb =
1 −

(
n1
n2

)2m · n1
n3

1 +
(

n1
n2

)2m · n1
n3

=>

(
n1

n2

)2m

= 1 − rgb

(1 + rgb) · n1
n3

,

where n1 = nAlAs, n2 = nGaAs and n3 = nAlGaAs(0.2), and the n1/n3 term is due to
the first reflection interface. From here, we can calculate, m , as

m =
ln

(
1−rgb

(1+rgb )· n1
n3

)

2 ln n1
n2

=
ln

(
1−√

0.984
(1+√

0.984)·0.870

)
2 ln

( 2.95
3.52

) = 15.21

The closest half integer is m = 15.5. With that selection, we need to recalculate
the total bottom mirror reflectance,
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rgb = 1 − ( 2.95
3.52

)31 · 2.95
3.39

1 + ( 2.95
3.52

)31 · 2.95
3.39

= 0.993.

For the top mirror, we apply the same procedure, except that this time we have
an air interface at the end. The parity of the number of half periods of the top
mirror will depend on which layer is the last mirror layer grown. If we assume that
the top mirror ends on a GaAs layer, we will have an odd number of half periods
of the mirror,

rgt =
1 −

(
n1
n2

)2m
n1
n3

1
n2

1 +
(

n1
n2

)2m
n1
n3

1
n2

=> m =
ln 1−rgt

1+rgt

n2·n3
n1

2 ln n1
n2

.

Plugging in the parameter values, we have

m =
ln

(
1−√

0.996
1+√

0.996
3.52·3.39

2.95

)
2 ln 2.95

3.52

= 15.6.

Because m must be a half-integer, we need to select either 15.5 or 16.5. As we are
designing a bottom emitter, we will select m = 16.5. With that selection, we need
to recalculate the total top mirror reflectance,

rgt = 1 − ( 2.95
3.52

)33 2.95
3.39·3.52

1 + ( 2.95
3.39·3.52

)33 2.95
3.39·3.52

= 0.9985.

To compute the differential efficiency through the bottom mirror, given by
Eq. (3.70), because we already know the injection efficiency, the internal loss,
and the mirror loss, we need to determine the fraction of the output power F2, and
for it, we need to know the effective mirror length Leff . Leff can be calculated using
the approximation of Eq. (3.63) for a strongly reflecting grating,

Leff = λ0

4
n̄
= 980 nm

4 · 0.57
= 429.8 nm.

To compute the power fraction emitted from the bottom mirror, F2, we need to
express the grating’s lossless transmission coefficient |t ′

g | from the lossless reflec-
tion coefficient |r ′

g |, using Eqs. (3.67) and (3.68),

F2 = (1 − |r ′
gb |2)e−αi Leff

(1 − |r ′
gb |2) + |r ′

gb |
|r ′

gt | (1 − |r ′
gb |2)

= = (1 − 0.9932)e−0.00086

(1 − 0.9932) + 0.993
0.9985 (1 − 0.99852)

= 0.823.
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Differential efficiency through the back mirror can be calculated using Ai =
αi · LDBR , where LDBR = Lc + 2Leff = 1146 nm. From Eq. (3.70),

ηd = F2ηi
Tm

Tm + Ai
= 0.349 · 0.9

ln 1√
0.9985·0.993

1146 · 10−8 · 20 + ln 1√
0.9985·0.993

= 0.703.

Figure 3.21 illustrates the results of grading the material composition (Al-
fraction) and modulating the doping (Na − Nd ) within a period of a p-doped DBR
VCSEL mirror to reduce series resistance. Also indicated is the relative position of
the |E |2-field standing wave and the resulting hole concentration. A bi-parabolic
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FIGURE 3.21: Illustration of bandgap engineering in a VCSEL DBR mirror—grading of
composition and doping to reduce series resistance while avoiding large increases in optical
losses or reduction in reflection.
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compositional grade is used near the standing-wave peak, and a uni-parabolic
grade is used near the null. As the internal loss is greatly increased by a large hole
concentration, one aspect of the design is to provide for a relatively flat valence
band for good conduction without placing a large free hole concentration near
the optical standing wave maximum. Of course, the enhancement factor is also
important in this loss analysis, but here we seek to place the lossy regions where
the enhancement factor is close to zero. The compositional grading does reduce
the reflection per period slightly, but for the compositional, thus index, grading
illustrated here, the reduction is only about 6%, and this can be approximately
compensated by adding one extra mirror period in a typical design.

3.6.5 In-Plane DBR Lasers and Tunability

The potential tunability of in-plane DBR lasers is one of the main reasons they are
of great importance. As indicated in Fig. 3.16, there are usually three sections to a
DBR, one active, one passive, and one passive grating. For the in-plane DBR it is
convenient to place three separate control electrodes over these regions as shown in
Fig. 3.22. One section provides gain, one allows independent mode phase control,
and one can shift the mode-selective grating filter, respectively. By applying a
control current or voltage to the grating section, its index, n̄DBR , changes, causing a
change in the optical length of each grating period n̄DBR� and its center wavelength
λg . Because the optical length of a single grating period is defined in relationship
to the Bragg wavelength as n̄DBR� = λg/2, the center wavelength of the grating
moves according to


λg

λg
= 
n̄DBR

n̄DBR
. (3.75)

Alternate axial modes can be selected as the mirror loss curve, αm(λ), moves
relative to the gain and modes. This is referred to as mode hop tuning. Also, the
modes will move slightly in wavelength because part of the net cavity length (Leff )

is in the grating.
By applying a current or voltage to the phase control electrode, the index of the

passive cavity section, n̄p , changes, shifting the axial modes of the cavity. Thus, by
applying a combination of control signals to the grating and phase control sections,
a broad range of wavelengths are accessible. Because the carrier density is clamped
in the active region, changes in current there only have a second-order effect on
its index, n̄a , and only small changes in mode wavelength result. We can see more
explicitly how the continuous mode shift occurs by solving for the relative shift,

λm/λm , from Eq. (2.29):


λm

λm
= 
n̄aLa + 
n̄pLp + 
n̄DBRLeff

n̄gaLa + n̄gpLp + n̄gDBRLeff
. (3.76)

The “g” subscript in the denominator indicates that the group indices must be
used here for the same reasons they appear in prior equations where changes in
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FIGURE 3.22: Illustration of a tunable single-frequency three-section DBR laser. The laser
consists of a gain section, phase section, and DBR mirror section.

the wavelength are involved. From Eq. (2.30), we can see how the indices are
shifted by carrier injection. For example, with a transverse confinement factor,
�xy = 10%, the effective index shifts by 
n̄/n̄ ≈ −0.1% for 
N = 1018 cm−3.
This can occur in the phase control and grating regions above threshold. Because
these lengths typically account for about half of LDBR in an in-plane laser, the
wavelength would be continuously tuned by ∼0.05%, or ∼8 nm at 1.55 μm. The
injected carrier density in the passive regions can be calculated from Eq. (2.16)
with g = 0 and dN /dt = 0. Thus, the effective index change in the j th section can
be written as


n̄j = ∂ n̄

∂N

ηi τ Ij

qVj
, (3.77)

where [∂ n̄/∂N ] ≈ −�xy 10−20 cm3.
A reverse bias voltage can also change the index of refraction via linear and

quadratic electro-optic effects. Effective index shifts of ∼0.1% are possible, but this
is a little lower than possible with high injection currents. However, this reverse
biased effect can have a much faster response time than current injection because
the carrier lifetime limits changes in the carrier density to a few hundred megahertz,
similar to LEDs. Also, current injection leads to local heating, which can change
the index with time constants in the tens of microseconds range. Reverse bias also
is more practical in the multisection VCSEL case.

More complex structures than the basic three-section DBR are possible, and
some of these will be discussed in Chapter 8 on photonic integrated circuits.

Example 3.5 An InGaAsP/InP tunable 1.55 μm DBR laser, as illustrated in
Figure 3.22, is constructed. The length of the gain, phase and DBR sections are
300 μm, 100 μm, and 100 μm, respectively. Average transverse-lateral internal
losses in the gain and phase sections are 15 cm−1 and 5 cm−1, respectively, and
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the injection efficiency is 0.8. The DBR power reflectivity is |rg |2 = 0.2, and its
power transmission is |tg |2 = 0.7. The other end is a simple cleaved facet. Assume
the modal index of n̄ = 3.4 for the entire structure.

Problem: (1) Determine the differential efficiencies out both ends. (2) Determine
the mode spacing, neglecting the change in DBR penetration depth with wave-
length. (3) If the modal index of the DBR section is tuned by 0.01, by how much
is the new lasing mode shifted from the original lasing wavelength?

Solution: Because the DBR laser in this problem is described using reflection
and transmission scattering parameters, we will use Case (a) from Section 3.6.3 to
solve it. To determine the differential efficiencies from both ends, we first need to
calculate the fractions of the power coming out of both ends, F1 and F2. Assuming
the cleaved facet introduces no losses, |t1|2 = 1 − |r1|2 = 0.68. From Eq. (3.67),

F1 = t2
1

(1 − r2
1 ) + r1

|rg | (1 − |rg |2) = 0.68

0.68 +
√

0.32
0.2 (1 − 0.2)

= 0.4019

F2 = t2
g

(1 − r2
g ) + |rg |

r1
(1 − |r1|2)

= 0.7

(1 − 0.2) +
√

0.2
0.32 (1 − .32)

= 0.5233

The mirror loss is given by Eq. (3.66),

αm = 1

La + Lp
ln

[
1

r1|rg |
]

= 1

0.04 cm
ln

1√
0.32 · 0.2

= 34.36 cm−1

Average internal loss, 〈αi 〉 is given by

〈αi 〉a+p = 〈αia〉La + 〈αip〉Lp

La + Lp
= 300 · 15 cm−1 + 100 · 5 cm−1

400
= 12.5 cm−1

Differential efficiencies are now given from Eq. (3.32),

ηd1 = F1ηi
αm

〈αi 〉a+p + αm
= 0.4019

34.36

34.36 + 12.5
0.8 = 0.236

ηd2 = F2ηi
αm

〈αi 〉a+p + αm
= 0.5233

34.36

34.36 + 12.5
0.8 = 0.307

To calculate the mode spacing, we need to take into account the effective length
of the DBR mirror. The mode spacing is given by Eq. (3.40), and for a weakly
reflecting grating, we assume Leff ≈ 1

2 LDBR = 50 μm.

dλ = λ2

2(n̄gaLa + n̄gpLp + n̄gpLeff )
= (1550 nm)2

2(3.8)(300 + 100 + 50 um)
= 0.702 nm.
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When the DBR mirror section is tuned, two effects come into play, as shown in
Fig. 3.23. First, the grating Bragg wavelength will change, due to the changed
grating index. Then, the cavity mode comb position will change as well because
the effective optical cavity length is now different. For the modal index change
of 
n̄DBR , the center wavelength of the grating moves in direct proportion to the
index according to Eq. (3.75),


λg = λg

n̄DBR

n̄DBR
= 1550

0.01

3.4
nm = 4.56 nm.

At the same time, the cavity modes will shift, and we can use Eq. (3.76) to deter-
mine the amount of shift,


λm = 
n̄DBRLeff λm

n̄gaLa + n̄gpLp + n̄gDBRLeff
= 0.01 · 50 μm · 1550 nm

2(3.8)(300 + 100 + 50 μm)

= 0.227 nm

Finally, the new lasing mode will be the cavity mode that is the closest to the new
Bragg wavelength. To compute it, we need to compute by how many cavity modes
the Bragg wavelength shifted.


λlasing = 
λm +
[

λg − 
λm

δλ

]
δλ = 0.227 nm + 6 · 0.702 nm = 4.439 nm.
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FIGURE 3.23: Illustration of mode tuning in a single-frequency three-section DBR laser.
Dashed curves and lines apply after index is increased in the mirror. Two tuning effects can
be observed: (1) DBR Bragg wavelength tuning, due to mirror index change and (2) cavity
mode comb shift, due to its penetration into the DBR with an increased index.
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3.6.6 Mode Suppression Ratio in DBR Laser

A primary reason that people are interested in DBR, coupled-cavity, and DFB
lasers (covered later in this chapter) is their potential for single-frequency operation.
However, in this context, we must realize that “single-frequency” is a relative term.
The measure of single-frequency purity, the mode suppression ratio (MSR), is thus
discussed in this section. Mode suppression ratio is simply the ratio of the output
power in the primary laser mode to that in the next strongest mode from one end
of the laser:

MSR = P(λ0)

P(λ1)
, (3.78)

where we have dropped the subscripts from the output power as given by Eq. (3.33)
and labeled the primary mode as the one at λ0. More fundamentally, the output
power from one end of the laser at the nth mode is given by Eq. (2.38) multiplied
by the fraction out one end, F1(λn) as given by Eq. (3.31). That is,

P(λn) = F1(λn)vgαm(λn)Np(λn)hνVp . (3.79)

From Eq. (2.17) we can express the steady-state (dP/dt = 0) photon density as

Np(λn) = �βspRsp(λn)

1/τp(λn) − �vg g(λn)
. (3.80)

Note that in Chapter 2, we used Eq. (2.16) to solve for Np in terms of the terminal
current, but here we are interested in expressing it for the various modes in terms
of the net gain margin, the denominator of Eq. (3.80). In this form we can see
how the noise injected into a particular mode, �βspRsp(λn), is amplified to a large
steady-state value as the denominator approaches zero. (But it never actually goes
to zero for any finite power out.)

Now, we can plug Eq. (3.80) into Eq. (3.79) and form the ratio given in
Eq. (3.78) for the desired pair of modes. That is,

MSR = F1(λ0)αm(λ0)[αi + αm(λ1) − �g(λ1)]

F1(λ1)αm(λ1)[αi + αm(λ0) − �g(λ0)]
, (3.81)

where we have assumed that the spontaneous emission is coupled equally into
both modes, and that the modes are similar in frequency, volume, and velocity. We
have also used Eq. (2.28) for the cavity lifetime (i.e., 1/τp(λn) = vg (αi + αm)).
Before trying to simplify this any further, we wish to review a generic schematic
of loss and gain vs. wavelength shown in Fig. 3.24, similar to Figs. 3.10, 3.17, and
indirectly 3.18 for different types of lasers.

By reference to the Figure 3.24, we can simplify Eq. (3.81) by calling the
denominator bracket, which is the separation between the mirror loss and the net
modal gain for the main mode, δG = αm(λ0) − [�g(λ0) − αi ], the loss margin,
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FIGURE 3.24: Definition of gain and loss margins for use in MSR calculations.


α = αm(λ1) − αm(λ0), and the modal gain margin, 
g = �g(λ0) − �g(λ1). In
one special case, if the back mirror provides the frequency-dependent loss, then the
fraction of light coupled out of the front mirror will be reduced as the mirror loss
is increased. As a result, the coupling fraction ratio out of the front mirror times
the mirror loss ratio is ∼1. We are then left with the simple result

MSR ≈ 
α + 
g

δG
+ 1. (3.82)

More commonly, the MSR is expressed in terms of decibels (dB) of optical power:

MSR(dB) ≈ 10 log10

[

α + 
g

δG
+ 1

]
. (3.83)

However, most generally, one cannot make the last assumption regarding the back
mirror, which tends to apply mainly to DBR lasers, and we then must include the
prefactors in front of the brackets in Eq. (3.81).

If the spectrum is observed by direct detection, the photodiode current is directly
proportional to the optical power, whereas the electrical power is proportional to its
square. Thus, if electrical power is displayed in decibels on a spectrum analyzer,
the observed MSR will appear twice as large as (3.83) would predict.

The value of δG can be calculated in terms of cavity parameters and the drive
current by combining a number of existing equations. First, we solve Eqs. (3.79)
and (3.80) for δG at λ0,

δG = F1αmhνVp�βspRsp

P01
. (3.84)
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Then, using Eqs. (2.5) and (2.6) for Rsp , and Eqs. (3.31) to (3.33) for P01, we get
an expression valid for I > Ith ,

δG = (αi + αm)βspηr
Ith

(I − Ith)
, (3.85)

and the spontaneous emission factor, βsp , is given by Eq. (A4.10). For typical
values of the parameters δG ∼ 10−3Ith/(I − Ith) cm−1.

Even though we have developed the mode suppression ratio calculation formal-
ism for DBR lasers, it can be applied to other types of single-mode lasers as well.
An example of MSR calculation is thus given at the end of the next section about
DFB lasers.

3.7 DFB LASERS

3.7.1 Introduction

A distributed feedback laser (DFB) also uses grating mirrors, but gain is included
in the gratings. Thus, it is possible to make a laser from a single grating, although it
is usually desirable to have at least a fraction of a wavelength shift near the center
to facilitate lasing at the Bragg frequency. Historically, the DFB laser preceded the
DBR, primarily because of its simplicity and relative ease of fabrication; that is,
no active-passive transitions are necessary. Fig. 3.25 gives a schematic of in-plane
versions. Vertical cavity versions are also possible, but there is no advantage over
the DBR, and the fabrication is not any easier.

The basic characteristic equation can be cast in the same form as for other lasers
(i.e., Eq. (2.21)), but the gain is now in the complex mirror reflectivities, r1 and
r2. Also, to avoid the troublesome active–passive transitions, there is no passive
cavity (Lp = 0), and the additional active cavity length (La) is typically only a
fraction of a wavelength. The complex mirror reflectivities are given by Eq. (3.54)
if antireflection (AR) coatings are used at the ends. If no AR coatings are used,
one more T-matrix must be multiplied by that of Eq. (3.49) before calculating the
grating’s S11.

For no shift in the gratings, the cavity can be taken to be anywhere within
the DFB because all periods look the same. The active length is then a
quarter-wavelength long because we have chosen mirror reference planes to fall
at a downstep in index looking both to the left and right. (As discussed earlier,
this yields a zero grating reflection phase at the Bragg frequency.) Thus, at the
Bragg frequency, we can see that this DFB is antiresonant. Because the cavity
is so short, we can neglect any phase change in it over the reflection band of the
mirrors. Thus, inserting La = λ/4n̄ in Eq. (2.21) and assuming uniform pumping,
the threshold condition becomes,

rg1(β̃th)rg2(β̃th) = −1. (unshifted) (3.86)
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FIGURE 3.25: Standard and quarter-wave shifted DFB lasers. The entire length of a DFB
laser is filled with active material embossed with a grating.

Because there is no solution at the Bragg frequency, the wavelength must be
scanned for each gain until Eq. (3.86) is satisfied.

The exception to this case is the gain-coupled DFB, in which the deviations
in refractive index are purely imaginary, as for the case of added gain or loss.
For example, the grating could consist of alternate sections of index n1 and index
n2 = n1 + jni ; (by definition, ni = gλ/(4π) for added gain). Then, the reflection
at each discontinuity, r = jni /(2n1), and the net grating reflection, rg , at the Bragg
frequency would be purely imaginary (reflection phase of π/2) for the selected ref-
erence planes indicated in Fig. 3.12. Thus, the fundamental solutions to Eq. (3.86)
do occur at the Bragg frequency in this case.

If we again consider only real index perturbations and the cavity is half a
wavelength long, we can see that the device is resonant at the Bragg frequency
where the reflection phase is zero. Actually, as can be seen in Fig. 3.25, a half-
wavelength mirror spacing corresponds to a quarter-wave shift between the two
gratings. Thus, this configuration is usually referred to as a quarter-wave-shifted
DFB. In this case we use La = λ/2n̄ in Eq. (2.21), and the threshold condition for
uniform pumping becomes

rg1(β̃th)rg2(β̃th) = 1. (quarter-wave-shifted) (3.87)

The threshold gain and wavelength solutions to the quarter-wave shifted case are a
little easier because we know they occur near the Bragg condition. In both cases,
if the pumping is different on the two sides of the cavity, the complex propagation
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constants, β̃th , will be different in each grating section. In such cases, there will be
pairs of threshold gains (one in each section) that satisfy the threshold condition.

For the unshifted DFB, it should be realized that two modes equally spaced on
each side of the Bragg wavelength reach threshold simultaneously, if there exist
no additional perturbing reflections, such as from uncoated cleaves at the end. This
is illustrated in Fig. 3.26a. This simplest of DFBs must rely on such additional
reflections to destroy the unwanted degeneracy. In practice, at least one cleaved
mirror will do the job if the gratings are not too strong (κLg ≤ 1) so the net
reflection phase from one end is shifted from that of the grating alone. However,
there is still a yield problem because the reflection from the cleave will have a
random relative phase, but optimally it should be in quadrature to shift the net
phase from that laser end by the maximum amount. One more T-matrix must
be multiplied by that of Eq. (3.49) to obtain the net grating S11 in this case, as
mentioned earlier.

3.7.2 Calculation of the Threshold Gains and Wavelengths

The threshold gain and wavelength can also be calculated by observing the net
transfer function, S21(ω) = 1/T11(ω), through the DFB laser (or any other laser)
as the gain is increased, rather than solving Eq. (3.86) or Eq. (3.87). The poles
of one of the S -parameters (or zeros of the Tg11 parameter) for the entire system
give another form of the characteristic equation. From Eq. (3.50), the characteristic
equation of a DFB with AR coated facets can be written as

meff 
 = j , (3.88)

where the effective number of mirror periods, meff , and the detuning parameter, 
,
are defined in Eq. (3.51).

In a numerical calculation, as the gain is increased, the transmission spectrum
(S21) of the device under study will develop a strong maximum. The gain required
for this maximum to reach some large value and its wavelength are the desired
threshold values. This technique is particularly useful to determine the threshold
gain margin for spurious modes because even after one mode reaches threshold, the
gain can still be increased to look for the next mode to blow up at another wave-
length. Figure 3.26 shows example S21 spectra together with normalized threshold
gains and wavelengths of the first few modes and for several κLg values for both
the standard (a) and quarter-wave-shifted (b) DFB cases. AR coatings are assumed
to avoid any additive end reflections.

Figure 3.27 explores the ranges of DFB behavior between the standard and
the quarter-wave-shifted designs. Parts (a) and (b) look at the case of gradually
introducing the extra length, 
La in the center of the cavity to transition from a
standard to a quarter-wave-shifted design as suggested by the inset, while part (c)
introduces a fixed quarter-wave-shift from one end and moves it to the center of the
DFB grating. Part (a) is really just the locus of points between the end points given
by data in Fig. 3.26 for κLg = 1 for the standard and quarter-wave-shifted extremes.
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FIGURE 3.26: Example S21 spectra and normalized plots of threshold modal gain and
threshold wavelength for different modes of (a) standard and (b) quarter-wave shifted DFB
lasers. S21 spectra shown for κLg = 1 at a gain just below threshold; plots summarize
analogous threshold points for this lowest order and some higher order modes with κLg (≡
2mr) ranging from 0.5 to 4 in 0.5 increments. Here δ = β − β0, where β is the average
propagation constant of the grating.
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(a) DFB with AR coating and cleaved facet, f = 90°

(b) DFB with AR/HR coatings, f = 90°
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FIGURE 3.28: Example S21 spectra and normalized plots of threshold modal gain and
threshold wavelength for different modes of a standard DFB laser with one end AR-coated
and the other end either (a) a simple cleave, R = 0.32, or (b) HR-coated with R = 0.9.
S21 spectra shown for κLg = 1 at a gain just below threshold; plots summarize analogous
threshold points for this lowest order and some higher-order modes with κLg (≡ 2mr) ranging
from 0.5 to 4 in 0.5 increments. The additive end reflections are optimally placed to provide
orthogonally phased reflections (as illustrated by the inset).
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To calculate example side-mode suppression ratios and differential efficiencies, for
parts (b) and (c), it was necessary to assume some cavity parameters as listed in
the caption. As can be seen from Fig. 3.27b, a physical shift (or other equivalent
phase shift) of somewhat less than 1/10 of a quarter wavelength in the medium is
sufficient to break the modal degeneracy and provide good single-mode operation
with high side-mode suppression ratio, so the amount of this shift is not so critical.
Figure 3.27c deals with the influence of the relative position of the quarter-wave
shift inside a laser cavity. It shows that shift needs to be relatively close to the center
of the device for good modal purity. In addition, if we are trying to optimize the
cavity design to increase the output power from one end of the cavity, Fig. 3.27c
shows that only marginal improvement in efficiency can be gained by moving the
shift toward the output side.

Figure 3.28 gives S21 spectra and normalized threshold modal gains vs. wave-
lengths for the cases of standard DFB lasers with one end AR-coated, but the
other having an additive reflection, either from (a) a simple cleave, R = 0.32,
or (b) from an HR-coating, R = 0.9. In these cases, the reflections are assumed
to have phases orthogonal to those of the gratings to provide maximal pertur-
bation of the resultant. Figure 3.29 gives the side-mode-suppression-ratio, nor-
malized modal gains of the first two modes, and the differential efficiency from
the AR-coated end for both cases as the location, and therefore phase, as the
reflection is shifted relative to the grating. As can be seen, when the additive
reflection is either exactly in-phase or out-of-phase with the grating reflection,
the laser still behaves as a standard DFB with two degenerate modes. On the
other hand, when the end reflection has a somewhat different reflection phase
from the grating, it provides a net reflection vector that shifts the mode from
the point of this degeneracy, so that reasonable SMSR can be obtained. How-
ever, again we note that the SMSR is good over a relatively wide range of cleave
phases.

The corrugations of the grating can also cause significant periodic loss and
gain variations. That is, r1 (and κ) may be complex (have a nonzero phase
angle) even with the reference planes chosen earlier, which makes r1 real for real
index variations. In the extreme of pure gain modulation and no index variation,
Eqs. (3.43) through (3.54) show that rg would have an angle of φ = π/4 at
the Bragg wavelength. Thus, as already discussed, the unshifted DFB laser
characterized by Eq. (3.86) provides a mode at the Bragg wavelength of the
gratings. It performs as the quarter-wave-shifted DFB with real index variations.
For these reasons and other potential benefits of this gain-coupled DFB, there has
been continued active research in this direction.

Example 3.6 An InGaAsP/InP 1550 nm quarter-wave-shifted multiple quan-
tum well buried-heterostructure DFB laser was fabricated from a structure whose
confinement factor is � = 0.06. The injection efficiency for this structure was deter-
mined to be ηi = 75%, and the internal loss αia = 10 cm−1. The grating coupling
constant is κ = 20 cm−1, the average effective index of the waveguide is 3.21, and
the laser length is 500 μm. The laser facets are AR coated.
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Problem: (1) Determine the threshold modal gain of this laser. (2) Determine the
differential efficiency for this laser. (3) Determine the lasing wavelength of this
laser. (4) Determine the threshold modal gain, differential efficiency and the lasing
wavelength for an HR-AR standard DFB laser with the same parameters, assuming
optimal HR mirror phase.

Solution: To solve this problem, we need to use Figure 3.26b, which provides us
with the normalized solutions for the quarter-wave-shifted DFB mirror loss versus
wavelength detuning, in function of the grating length and coupling coefficient.
From the problem formulation, κLg = 500 · 20 · 10−4 = 1.0. Using the chart for
κLg = 1.0,

A = (�gth − 〈αi 〉)Lg = 3.1 => �gth = 3.1

Lg
+ 〈αi 〉

= 3.1

500 · 10−4
cm−1 + 10 cm−1 = 72 cm−1.

For a DFB laser, the differential efficiency is given by

ηd = ηi
A

�gthLg
= 0.75

3.1

72 · 0.05
= 0.646,

where half of the power would be emitted from each end of the grating, yielding
a single-sided differential efficiency of ηd = 0.323. In a quarter-wave-shifted DFB
laser, the detuning of the lasing wavelength from the Bragg wavelength is zero (as
seen from the chart in Figure 3.26b), so the lasing wavelength is 1550 nm.

For the HR-AR coated DFB laser, we now need to use the chart from Fig. 3.28b.
We follow the same procedure. Using the chart for κLg = 1.0,

A = (�gth − 〈αi 〉) Lg = 1.2 => �gth = 1.2

Lg
+ 〈αi 〉

= 1.2

500 · 10−4
cm−1 + 10 cm−1 = 34 cm−1.

ηd = ηi
A

�gthLg
= 0.75

1.2

34 · 0.05
= 0.529,

where in this case, nearly all the power is coming out of the AR-coated facet.
Using the normalized plot of threshold modal gain and wavelength from

Fig. 3.28, the normalized detuning for the lasing mode is δLg = 0.35, therefore
the lasing wavelength is

β = 2π

λ
n̄ = 2π

λ0
n̄ + δLg

Lg
=> λ = 2π n̄

2π
λ0

n̄ + δLg
Lg

= 2π

0.013 + 0.0000007
nm = 1551.087 nm.
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FIGURE 3.29: Characteristics of standard DFB lasers with one end AR-coated and the other
end having an additive reflection as the location of this additive reflection is shifted. Case (a)
a simple cleave, R = 0.32, and (b) HR-coated with R = 0.9. Plots of side-mode-suppression
ratio (SMSR), normalized modal gains for the first two modes, and differential efficiency
out of the AR-coated end. Assumed cavity parameters are: αi = 10 cm−1, ηi = 0.75, βsp =
1.25 · 10−5 and ηr = 0.8 (per Eq. (3.77)), I = 4Ith .

3.7.3 On Mode Suppression in DFB Lasers

Mode suppression ratio of DFB lasers can be very large, as has been discussed
and shown in the previous parts of this section. To calculate it, we utilize the same
definition, based on Eq. (3.81),

MSR = F1(λ0)αm(λ0)[αi + αm(λ1) − �g(λ1)]

F1(λ1)αm(λ1)[αi + αm(λ0) − �g(λ0)]
, (3.89)
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However, for the case of a DFB laser, we again need to recall that αm ≡ �gth − αi

and use the values either determined from the normalized modal gain versus detun-
ing charts in the last section or calculated accordingly. Therefore, the following
expression is more useful for the case of DFB lasers (expressing the SMSR in dB),

MSR = 10 log
F1(λ0)αm(λ0)

F1(λ1)αm(λ1)

[

α

δG
+ 1

]
.

Figures 3.27, 3.28, and 3.29 illustrate SMSR values for various DFB laser types,
with certain typical values of cavity parameters.

Example 3.7 Two DFB lasers from Example 3.6, quarter-wave-shifted and stan-
dard HR-AR-coated, are operating at four times their respective threshold currents.
Assume the values of βsp = 1.25 · 10−5 and ηr = 0.8.

Problem: Determine the side mode suppression ratio for both laser types.

Solution: To determine the side mode suppression ratio, we need to calculate the
differences between modal gains and mirror losses for the two adjacent DFB modes
and use the following equation (which neglects the gain change 
g), between the
two modes,

MSR = 10 log
F1(λ0)αm(λ0)

F1(λ1)αm(λ1)

[

α

δG
+ 1

]

In the case of a quarter-wave-shifted DFB laser, exactly half of the output power
will come out of each facet, and this will not be wavelength dependent. Therefore,
F1(λ0) = F1(λ1) = 0.5. From Fig. 3.26b, for the mode +1 and κLg = 1.0, the
normalized mirror loss is

A+1 = (�gth − 〈αi 〉)Lg = 4.4.

From Example 3.4, we have the value for this same parameter for the fundamental
mode, A0 = 3.1.

We compute δG for the fundamental mode, using Eq. (3.85),

δG = (αi + αm)βspηr
Ith

(I − Ith)
=

(
10 + 3.1

500 · 10−4

)
cm−1 10−5 Ith

4Ith − Ith

= 72 · 10−5 · 1

3
cm−1 = 24 · 10−5 cm−1.

Finally, the MSR is given by

MSR = 10 log
1 · A0/Lg

1 · A1/Lg

⎡
⎣

A1−A0
Lg

δG
+ 1

⎤
⎦ = 10 log

3.1

4.4

[
26

24 · 10−5
+ 1

]

= 48.82 dB.
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We note that this is a very large value. For the HR-AR-coated laser, we can assume
that all the output power will be coming out of one facet, and that there is no
wavelength dependence in this behavior. Therefore, F1(λ0) = F1(λ1) = 1.0. From
Fig. 3.28b, and Example 3.4, we have A+1 = (�gth − 〈αi 〉)Lg = 1.8 and A0 = 1.2.
This yields a δG of

δG = (αi + αm)βspηr
Ith

(I − Ith)
= (10 + 1.2

500 · 10−4
) cm−1 10−5 Ith

4Ith − Ith

= 34 · 10−5 · 1

3
cm−1 = 11.33 · 10−5 cm−1.

Therefore, the MSR can be calculated as

MSR = 10 log
1 · A0/Lg

1 · A1/Lg

⎡
⎣

A1−A0
Lg

δG
+ 1

⎤
⎦ = 10 log

1.2

1.8

[
12

11.33 · 10−5
+ 1

]

= 48.49 dB.
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PROBLEMS

These problems include material from Appendix 7.

1. (a) Write the S- and T-matrices between two ports bounding a section of
transmission line and a dielectric interface as shown in Fig. 3.30.
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1

Lt Ld

nt nd

2

FIGURE 3.30: Two-port scattering junction consisting of a section of transmission line and
a section of dielectric.

(b) For nt = 1, nd = 3.5, Lt = 10 μm, and Ld = 5 μm, plot S11 and S21 vs.
wavelength for 900 < λ < 1000 nm.

2. Verify Eqs. (3.24) to (3.27) by solving for the appropriate ratios of scattering
amplitudes with the appropriate boundary conditions.

3. Verify Eq. (3.31) by showing that F1 + F2 = 1 and that F1/F2 = P01/P02.

4. Write the characteristic equation for a three-mirror laser using only its mirror
reflectivities and dimensions (i.e., no reff in the answer).

5. Plot the effective mirror reflectivity, reff , vs. wavelength near 1.3 μm over two
full cycles of oscillation for an external cavity laser of the form illustrated in
Fig. 3.9. Assume the external cavity medium has an index of 1.6, a loss of
5 cm−1, a length Lp = 200 μm, and that the mirrors, r3 = −0.9, r2 = 0.5, t2 =
0.3 (mode mismatch loss).

6. In Problem 5, if we tune the index of the external cavity by 1%, by how many
nanometers do the maxima of reff shift?

7. In a four-mirror coupled-cavity laser, it is desired to have the maxima of reff

be narrower in wavelength than the minima for best mode selectivity.
A device is fabricated by etching a deep and narrow groove across 1.55 μm

InGaAsP/InP DH material to form two active sections. Assume the minimum
accurately controlled groove width is 1.2 μm.

(a) Find the minimum groove width to accomplish the desired goal.

(b) Assuming a diffraction power loss of 50% per pass in coupling from one
section to the other, what are the values of Ss11, R′, σ , and reff in Eq. (3.42)
for this case?

(c) Plot reff vs. wavelength over two periods for this case.

8. Using Mason’s rule, confirm the expression for reff for a complex 3 mirror
cavity, as shown in Eq. (3.35).

9. Verify Eq. (3.44).



PROBLEMS 153

10. Show that Eq. (3.54) reduces to Eq. (3.58) in the low reflection limit.

11. A VCSEL mirror consists of three grating periods backed by a metallic reflec-
tor. The position of the metallic reflector is adjusted so that its reflection adds
in-phase with the grating’s. Assume the amplitude reflection at each disconti-
nuity of the grating is 0.1, and the metallic layer has an amplitude reflection
of 0.95.

(a) What is the net amplitude reflectivity at the Bragg frequency?

(b) What is the effective penetration depth measured in wavelengths? Be sure
to define a reference plane.

12. An In0.2 Ga0.8As/AlGaAs VCSEL as in Fig. 3.16 has the following parameters:
La = 0.02 μm GaAs DH active region placed at standing wave peak. Lp +
La = 1 wavelength in the medium.
Two DBR mirrors: AlAs/GaAs quarter-wave stacks 18 periods each; top (rear)
mirror metalized to give a net mirror reflectivity of 99.9%.

Average internal loss, 〈αi 〉 = 20 cm−1. Lasing wavelength 980 nm.

(a) What is the bottom (front) mirror reflectivity?

(b) What is the effective penetration depth into each mirror?

(c) What is the threshold modal gain?

(d) What is the differential efficiency, assuming ηi = 100%?

13. Consider the bottom (front) DBR mirror of Problem 12.

(a) Plot its power reflectivity vs. wavelength relative to the Bragg value. Show
two minima on each side of the central maximum.

(b) Plot ln(1/R) for this grating vs. wavelength.

14. A tunable three-section DBR as in Fig. 3.22 is constructed to operate near
1.55 μm from InGaAsP/InP materials. Above threshold, the wavelength is
tuned by changing the effective indices in the phase and DBR passive sections
by injecting current. For no current injection, the operating wavelength is
1.57 μm, the effective index in all sections is 3.4, ∂ n̄/∂N = 10−21 cm3, ηi =
70%, and the carrier lifetime is independent of carrier density and equals 3 ns
in all sections. The waveguide cross section in all regions is 0.2 × 3 μm; the
gain, phase shift, and grating regions are each 200 μm long; and the grating
has a reflectivity per unit length of 100 cm−1. The other mirror is a cleaved
facet. Plot the wavelength vs. current to the grating:

(a) Assume no current is applied to the phase shift region and show at least
three axial mode jumps.

(b) Repeat for a phase shift current sufficient to maintain operation at the
grating’s Bragg wavelength.

(c) In (b) also plot the required phase shift current on the opposite axis. Stop
plots when any current reaches 50 mA.
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15. A 1.55 μm InGaAsP DBR laser consists of an active section 500 μm long but-
ted to a passive grating section 500 μm long. The coupling constant–length
product, κLg = 1 for the grating. The active section is terminated with a
cleaved facet on the opposite end. The active section injection efficiency is
70%, and the average internal modal losses are 20 cm−1 throughout both
sections.

(a) What is the effective DBR mirror length?

(b) What are ηd1 and ηd2?

16. A quarter-wave shifted DFB laser has an internal quantum efficiency of 60%,
a modal loss of 10 cm−1, AR coated facets, Lg = 500 μm, κLg = 1, ηr = 1.

(a) What is the threshold modal gain?

(b) For operation at twice threshold with βsp = 10−4, what is the MSR?

(c) What is the differential efficiency from each end?

(d) What κLg gives the best MSR, and what is it?

17. The same material and structure from Example 3.5 has been used to produce
500 μm long standard DFB lasers. Calculate the threshold modal gain for:

(a) The standard laser whose one facet has been AR coated, and the other
facet is a cleaved facet with 90◦ out-of-phase additive reflection.

(b) The standard laser whose one facet has been AR coated, and the other
facet has been HR coated, with 90◦ out of phase additive reflection.

18. Standard DFBs with internal modal losses of 10 cm−1 and various κLg ’s are
fabricated with one end AR coated and one end cleaved. Assume that the
cleave provides a reflection in quadrature with that of the grating and that the
output is from the AR coated end. Use Lg = 500 μm and other parameters
from Problem 16.

(a) What κLg gives the best MSR, and what is ηd1 in this case?

(b) What κLg gives the worst MSR, and what is ηd1 in this case?

19. Two different types of DFB lasers are fabricated from the same 1.55-μm
wavelength wafer that contains uniform grating and 2-μm-wide buried het-
erostructure lateral waveguides. The first are standard AR-coated DFB lasers,
with 500-μm cavity length. The threshold current on these is measured to be
30 mA, and the differential efficiency, considering both ends, is found to be
0.5. As expected, two degenerate axial modes are observed.

The second type of laser is formed by cleaving out 250-μm-long devices
from the same wafer, and then applying AR coatings to only one end. In
this case. the spectra of some devices show marginal MSRs, while others
show relatively good MSRs. The devices with the best MSRs are measured,
and these provide threshold currents of 30 mA and differential efficiencies,
considering both ends, of 0.6. From other measurements, we have determined
that the threshold modal gain of these shorter lasers is twice that of the longer
lasers.
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(a) What is the injection efficiency for these lasers?

(b) What is the average internal loss?

20. For DFB lasers from the previous example,

(a) What is the grating coupling coefficient κ?

(b) Assuming a gain characteristic of the form �g = �g0 ln(J /Jtr ), what are
the values of �g0 and Jtr ?

(c) What MSR would be expected in the better 250-μm devices, if operated
at twice the threhold, and assuming βspηr = 10−5?

21. For a 1/8 wavelength shifted DFB laser, with parameters listed in the caption of
Fig. 3.27, what is the threshold modal gain and the differential efficiency? How
do these compare to the values obtained for a quarter-wave-shifted version of
this laser?



CHAPTER FOUR

Gain and Current Relations

4.1 INTRODUCTION

In Chapter 1, various transitions responsible for the generation and recombination
of carriers within the semiconductor were introduced. In Chapter 2, the rates at
which these transitions occur were shown to provide the fundamental description
of LED and laser operation through the development of the rate equations. The
optical gain, for example, was defined in terms of the difference between the
stimulated emission and absorption rates. Radiative efficiency was defined in terms
of the spontaneous and nonradiative recombination rates. Simple relationships
between these rates and the carrier density were assumed in Chapter 2 to
provide a feel for how semiconductor lasers generally behave. In the present
chapter, we would like to delve a little deeper into the fundamentals of these
transitions.

We will first develop a quantitative description of radiative transitions, from
which we will be able to determine both the optical gain and the corresponding
radiative current density as a function of injection level. Then, we will consider
nonradiative transitions and see how they compare to the radiative transition rates
in different material systems. Finally we will provide a set of example gain cal-
culations for common materials to quantify the various relationships between the
gain, carrier density, and current density.

In Appendix 6, an alternative description of radiative transitions traditionally
applied to discrete energy level lasers is adapted for use in semiconductors. The
reader is encouraged to examine this appendix, for not only does the analysis bridge
the gap between Einstein’s approach and the treatment provided here, but it is also
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hoped that by covering the same material from a different perspective, the reader
will gain a deeper understanding of radiative processes in semiconductors.

More in-depth discussions of many of the relations used in this chapter can be
found in Appendices 8 through 11. These discussions are presented at a higher
level and are not required for the basic understanding of material presented in this
chapter. In brief, the envelope function approximation and the calculation of the
valence subband structure in quantum wells with and without strain can be found
in Appendix 8. Fermi’s Golden Rule, a key relation for estimating gain in semi-
conductors, is derived from first principles in Appendix 9. The resulting transition
matrix element and polarization-dependent effects related to it are considered in
Appendix 10. Finally, the effects of strain on the bandgap of semiconductors are
discussed in Appendix 11. The latter part of Appendix 8 and Appendix 11 are
recommended reading for anyone particularly interested in strained materials.

4.2 RADIATIVE TRANSITIONS

4.2.1 Basic Definitions and Fundamental Relationships

In Chapter 1, different types of transitions were discussed in reference to Fig. 1.6.
Here we would like to concentrate on the radiative transitions. Specifically, there
are three types of radiative transitions between the conduction and valence bands
that are important in modern semiconductor lasers. These band-to-band radiative
transitions are sketched in Fig. 4.1.

In the first diagram, the energy of the photon is transferred to an electron, ele-
vating it from some state 1 in the valence band to some state 2 in the conduction
band. Such stimulated absorption events generate new carriers and are also respon-
sible for the disappearance of photons. In the second diagram, the incoming photon
stimulates the electron to liberate energy in the form of a new photon, lowering it
from state 2 in the conduction band to state 1 in the valence band. Such stimulated
emission events provide a recombination path for carriers and are more importantly
the source of new photons. The third diagram is really no different from the second
diagram except that the field that stimulates the electron to emit a photon and make
a downward transition is not a real field, but a vacuum-field (as it is commonly
referred to in the quantum world). Because vacuum-field-induced transitions can
occur with no classical field stimulation, we refer to them as spontaneous emission

R12 R21 ′Rsp

Ec

E
v

Ec

E
v

Ec

E
v

v-f v-f
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2
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FIGURE 4.1: Band-to-band radiative transitions: stimulated absorption, stimulated emission,
and spontaneous emission. (All rates are defined per unit volume.)
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events. In the absence of classical fields, spontaneous emission serves as one of the
dominant recombination paths of carriers in direct bandgap semiconductors, and is
by far the most common source of photons provided by nature.

The rates at which the three radiative processes in Fig. 4.1 occur depend on a
number of factors. Two primary factors are the density of photons and the density of
available state pairs. As we will find later, the dependence on the photon density
enters through the local electric field strength, |E |2. Thus, R12, R21 ∝ |E |2 and
R′

sp ∝ |E v−f |2, where |E v−f |2 is the vacuum-field strength. We will have more to
say about vacuum-fields and how to evaluate |E v−f |2 in Section 4.4.

The dependence of the transition rates on the density of available state
pairs can be broken down into two components: one that is strictly material
dependent, and the other that depends on the injection levels. The first component
is the density of total state pairs, which is found by taking the appropriate average
between the density of states in the conduction and valence bands. This reduced
density of states function, ρr , is introduced in Appendix 6 for the case of parabolic
bands, and it will be derived in general a little later in this chapter. The second
component is the fraction of state pairs available to participate in the transition, as
also introduced in Appendix 6. For upward transitions, this fraction is maximized
when all carriers are placed in the valence band. For downward transitions,
this fraction is maximized when all carriers are placed in the conduction band.
The former population of carriers occurs naturally, whereas the latter inverted
population can only be achieved by providing energy, which pumps the carriers
into the conduction band (for example, by current injection into the center of a pn
junction). The fraction of available state pairs will be quantified later.

Now let’s consider the electromagnetic field a little more carefully. First of all, it
is important to appreciate that downward transitions not only create a new photon,
but they also a new photon into the same optical mode as the stimulating photon
(whether it is a real or vacuum-field photon). For this reason, it is important to
distinguish photons in one optical mode from photons in another (see Appendices 3
and 4 for a discussion of optical modes). By associating |E |2 with the field strength
of one optical mode, we can interpret the transition rates in Fig. 4.1 as single-mode
transition rates (in fact, the prime on R′

sp is used to distinguish this single-mode
spontaneous emission rate from the total band-to-band spontaneous emission
rate, Rsp). The total transition rates are then found by summing over all optical
modes.

Another interesting feature of downward transitions is that in addition to appear-
ing in the same optical mode, the newly created photon also contributes to the
existing field constructively due to the harmonic nature of the perturbation. This
feature allows the optical mode to build up a very coherent field. Unfortunately, the
vacuum-field phase is not correlated with the phase of the real fields in the optical
mode. As a result, new photons introduced into the mode through spontaneous emis-
sion have random phases relative to the coherent fields created through stimulated
emission. And although the number of photons introduced into the mode through
spontaneous emission can be made small relative to the photons introduced through
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FIGURE 4.2: State pairs which interact with photons at E21. Energy and momentum con-
servation reduce the set of state pairs to the annulus shown in the plot of energy versus
momentum in two dimensions. The occupation probabilities, f1 and f2, reduce this set even
further.

stimulated emission, they can never be removed completely, implying that perfect
coherence in a laser can never be achieved. Chapter 5 considers the implications
of spontaneous emission as a phase noise source in more detail.

So far we have not specified the electron states 1 and 2 in any detail. As will
be shown next, photons with energy hν induce upward and downward transitions
only between those electron state pairs that conserve both energy and momentum
in the course of the transition. In other words, we must have E2 − E1 = E21 = hν
and k2 = k1. These conservation laws reduce the interaction to a very particular
region of the E − k diagram of the semiconductor, as illustrated in Fig. 4.2
for two dimensions of k -space. Furthermore, within this region only vertical
transitions are allowed.

Now electrons typically only spend about 0.1 ps in any given state due to col-
lisions with phonons and other electrons. As a result, their energy is uncertain,
making the annulus shown in Fig. 4.2 appear fuzzy. To properly account for this,
the total transition rates should include an integration over the energy uncertainty.
In Appendix 6, this integration is included right from the start. However, because
the integral tends to clutter the math, we will defer this procedure to the very end,
where a more thorough discussion will be included.

Another restriction we must consider is that transitions occur only between
filled initial states and empty final states, as outlined in Appendix 6. Figure 4.2
illustrates the fraction of state pairs that satisfy this criterion for both upward and
downward transitions. Writing out the Fermi factors explicitly, the three radiative
transition rates become

R12 = Rr · f1(1 − f2),

R21 = Rr · f2(1 − f1), (4.1)

R′
sp = Rv−f

r · f2(1 − f1).
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In these equations, Rr represents the radiative transition rate that would exist if
all state pairs were available to participate in the transition. For the spontaneous
emission rate, we must use Rv−f

r = Rr with |E |2 → |E v−f |2. We will derive an
explicit expression for Rr later, but from the preceding discussions we already
know that Rr is proportional to the field strength and the reduced density of states
function.

Because R21 and R12 are competing effects in that one generates new photons
and the other takes them away, we would also like to know the net generation rate
of photons in the semiconductor, or

Rst ≡ R21 − R12 = Rr · (f2 − f1). (4.2)

We will show in Section 4.3 as we have by a more phenomenological route in
Chapter 2, that the net stimulated emission rate, Rst , is directly proportional to the
optical gain in the material.

The occupation probabilities in Eqs. (4.1) and (4.2) can usually be described
using Fermi statistics even under nonequilibrium conditions by using a separate
Fermi level for the conduction and valence bands:

f1 = 1

e(E1−EFv)/kT + 1
and f2 = 1

e(E2−EFc )/kT + 1
, (4.3)

where EFc and EFv are the conduction and valence band quasi-Fermi levels. Under
nonequilibrium forward bias conditions, EFc and EFv are separated by slightly less
than the applied voltage to the junction.

Simple relations between the transition rates are easily derived by substituting
Eq. (4.3) for the occupation probabilities:

R21

R12
= f2(1 − f1)

f1(1 − f2)
= e(�EF −E21)/kT , (4.4)

R′
sp

Rst
= |E v−f |2

|E |2
f2(1 − f1)

f2 − f1
= |E v−f |2

|E |2
1

1 − e(E21−�EF )/kT
. (4.5)

The first ratio Eq. (4.4) reveals that the stimulated emission rate will be larger than
the absorption rate only when

EFc − EFv ≡ �EF > E21. (4.6)

Stated another way, the net stimulated emission rate (and hence the optical gain)
will become positive only when the quasi-Fermi level separation is greater than
the photon energy of interest. And because the photon energy must at the very
least be equal to the bandgap energy, we conclude that to achieve gain in the
semiconductor, we must have

�EF > Eg . (4.7)
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This condition demands that the voltage across a pn junction must be greater than
the bandgap to achieve gain in the active region.

The second ratio Eq. (4.5) reveals a fundamental relationship between the
single-mode spontaneous emission rate and the net stimulated emission rate. This
relation will be developed further in Section 4.4. We will find there that the ratio of
field strengths is just equal to the reciprocal of the number of photons in the optical
mode.

4.2.2 Fundamental Description of the Radiative Transition Rate

To fully quantify all three radiative transition rates, we need only evaluate the
one transition rate, Rr , appearing in Eq. (4.1). The treatment in Appendix 6 also
concludes that Einstein’s stimulated rate constant, B21, is all that is necessary to
determine the three radiative transition rates. However, Einstein’s approach does not
provide a means of determining B21 in semiconductors. Fortunately, the transition
rate, Rr can be estimated using a relation known as Fermi’s Golden Rule, derived
in Appendix 9. To evaluate Fermi’s Golden Rule, we need to provide an accurate
description of the interaction that occurs between the electron in the crystal and
the electromagnetic field.

To describe the electron fully we must provide a model for the electron’s wave-
function in both states 1 and 2. To be rigorous, ψ1 and ψ2 must be found by solving
the Schrödinger equation with the appropriate crystal potential. Such an exact solu-
tion, however, would be difficult to find and inconvenient to work with. Fortunately,
a useful approximation can be made that decomposes the crystal potential into
(1) a complex atomic-scale potential that is periodic with the crystal lattice, and
(2) a macroscopic potential that follows the spatial dependence of the conduction
or valence band edge (created by either doping or material composition varia-
tions) as illustrated in Fig. 4.3. Appendix 8 shows that the corresponding electron
wavefunctions can then be written as the product of two functions:

ψ1 = F1(r) · uv(r) and ψ2 = F2(r) · uc(r). (4.8)

The envelope function, F (r), is a slowly varying function satisfying Schrödinger’s
equation using the macroscopic potential and an appropriate effective mass. The
Bloch function, u(r), is a complex periodic function that satisfies Schrödinger’s
equation using the atomic-scale potential. Each energy band in the crystal has
its own Bloch function. Fortunately, one never really needs to determine u(r)
precisely. Only the symmetry properties of these functions are necessary for most
calculations, as discussed in Appendix 8. Thus we can concentrate our attention
on the simpler envelope function.

In uniformly doped bulk material, the flat energy bands imply a constant macro-
scopic potential that leads to simple plane wave solutions for the envelope functions.
In a quantum-well potential, plane wave solutions exist along directions within the
plane of the well. However, along the confinement direction, F (r) takes on either
a cosine or sine wave distribution inside the well and decays exponentially outside
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FIGURE 4.3: Illustration of a quantum-well potential and the corresponding lowest energy
electron wavefunction.

the well. The bulk, quantum-well, and (by extension) quantum-wire and quantum
dot envelope functions therefore take the following form:

F (r) = e−j k·r/
√

V , (bulk) (4.9)

F (r) = F (z ) · e−j k·r||/
√

A, (quantum well) (4.10)

F (r) = F (x , y) · e−jkz z /
√

L, (quantum wire) (4.11)

F (r) = F (x , y , z ), (quantum dot) (4.12)

where V (A, L) is the volume (area, length) of the crystal, and appears for
normalization purposes. For the quantum well, the position vector r|| is parallel
to the quantum-well plane, and F (z ) is the simple one-dimensional solution to
the quantum-well potential considered in Appendix 1. For the quantum wire, the
length of the wire runs along z , and F (x , y) is the two-dimensional solution within
the quantization plane. For the quantum dot, F (x , y , z ) is the 3-D wavefunction of
the box, and we assume the states of individual boxes do not interact significantly.
The quantum-well electron wavefunction illustrating both envelope and Bloch
function components is superimposed over the crystal potential in Fig. 4.3.
Because we often need only the envelope function of the electron for many
calculations, it is common to associate F (r) with the complete wavefunction of
the electron, ψ . This association is oftentimes harmless; however, in the present
case it is necessary to emphasize that it represents only the slowly varying
envelope of the complete electron wavefunction.

With the electron wavefunctions defined, we can move on to describing the
interaction between the electron and the electromagnetic wave. The wave’s
interaction with the electron enters into Schrödinger’s equation through the vector
potential:

A(r, t) = êRe{A (r)ejωt } = ê 1
2 [A (r)ejωt + A ∗(r)e−jωt ], (4.13)
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where ê is the unit polarization vector in the direction of A, and ω(�ω) is the angular
frequency (energy) of the photon. The vector potential is related to the electric field
via EEEE = −∂A/∂t . The kinetic energy term of Schrödinger’s equation describing
the electron in the crystal (given by Eq. (A8.1)) is now modified by the substitution

p2 → (p + qA)2 ≈ p2 + 2qA · p, (4.14)

where q is the magnitude of the electron charge. This modification accounts for
the electromagnetic field’s ability to accelerate and/or decelerate charged particles
(and hence modify the electron’s kinetic energy). In expanding the square, we can
neglect the squared vector potential term because it does not affect our final results
(orthogonality of the wavefunctions ensures us that the operator A2 does not
perturb the system, assuming we can neglect the spatial variation of A within one
unit cell of the crystal). Substituting Eq. (4.13) into (A8.1), we can write the new
Hamiltonian as

H = H0 + [H ′(r)ejωt + h.c.], H ′(r) = q

2m0
A (r)ê · p. (4.15)

The h.c. stands for Hermitian conjugate and simply means that we take the
complex conjugate of all terms except the Hermitian momentum operator p. The
term in brackets can be viewed as a time-dependent perturbation to the original
Hamiltonian, H0. This perturbation term is the driving force for transitions
between the conduction and valence bands.

By studying the time evolution of some electron wavefunction initially in a
valence band state, for example, as it makes an upward transition to the conduction
band in the presence of the time-harmonic perturbation, it is possible to determine
the rate at which such transitions will occur. This procedure is carried out in
Appendix 9. The resulting transition rate per unit volume of active material is
given (in units of s−1 cm−3) by

Rr = 2π

�
|H ′

21|2ρf (E21)|E21=�ω, (4.16)

H ′
21 ≡ 〈ψ2|H ′(r)|ψ1〉 =

∫
V

ψ∗
2 H ′(r)ψ1d3r. (4.17)

Equation (4.16) is known as Fermi’s Golden Rule. It reveals that the number
of transitions per unit active volume; V , occurring per second, is dependent on
(1) the density of final states, ρf (E21), (in units of energy−1 cm−3) available to the
electron, and (2) the spatial overlap of the initial and final electron wavefunctions
with the harmonic perturbation defined in Eq. (4.14) – the integral being defined
as H ′

21 (in units of energy). It is important to appreciate that the field will only
invoke a response from electrons that exist in states that have possible final states
separated by E21 ≈ �ω. That is, the two electron states must be in resonance with
the oscillating field. As a result, ρf (E21) and H ′

21 in Eq. (4.15) must be evaluated at
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E21 = �ω. This resonance condition derived in Appendix 9 is a statement of energy
conservation.

Using Eq. (4.15), the job of determining Rr is reduced to providing explicit
relations for both the density of final states and the overlap integral (or matrix
element as it is commonly called). The next two subsections tackle this chore.

4.2.3 Transition Matrix Element

The matrix element |H ′
21|2 determines the strength of interaction between two

states. This interaction can be strong, negligible, or identically zero, all depend-
ing on the wavefunctions describing the two electron states. For example, in a
quantum well only transitions between subbands with the same quantum number
are allowed ; all others are forbidden. The wavefunction overlap also leads to the
k-selection rule, which dictates that transitions between plane wave states are for-
bidden unless the k -vectors of the two states are equal (the two electron states
must propagate along the same direction). In addition to these considerations, the
interaction strength can also depend on the polarization of the incident light, if
the material has some preferential axis of symmetry. For example, the interaction
strength between conduction and heavy-hole states in a quantum well is much
stronger for electric fields in the plane of the well than perpendicular to the well.

To derive an expression for |H ′
21|2, we insert the definition of H ′(r) in Eq. (4.15)

into the definition of |H ′
21|2 given by Eq. (4.17). We can reduce Eq. (4.17) by

expressing the electron and hole wavefunctions in terms of the envelope/Bloch
function formalism using Eq. (4.8). Because the momentum operator when oper-
ating on a product can be written as pAB = BpA + ApB , the overlap integral can
be expressed as the sum of two terms

H ′
21 = q

2m0

∫
v

F ∗
2 u∗

c (A (r)ê · p)F1uvd3r

= q

2m0

[∫
v

u∗
c uvF ∗

2 (A (r)ê · p)F1d3r +
∫

v

[F ∗
2 A (r)F1]u∗

c ê · puvd3r
]

. (4.18)

In transitions from the conduction band to the valence band, the first integral within
the brackets vanishes1 due to the orthogonality condition expressed in Eq. (A16.5)
and due to the fact that the other terms in the integrand are, to a good approximation,
constant in any one unit cell. To evaluate the second integral, we break up the
integration over the crystal volume into a sum of integrations over each unit cell.
The terms collected in brackets in the second integral can again be taken as constant
over the dimensions of a unit cell, and we can write

H ′
21 = q

2m0

∑
j

[F ∗
2 A (r)F1]r = rj

∫
unit cell

u∗
c ê · puvd3r, (4.19)

1For transitions within the same energy band, the Bloch function overlap is equal to unity and the first
integral may or may not be zero, depending on the envelope function overlap.
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where j sums over all units cells in the crystal, and rj is a position vector to the
j th cell. Because the Bloch functions, u , repeat themselves in each unit cell, the
integral can be pulled out of the summation to obtain

H ′
21 = q

2m0

[
1

Vuc

∫
unit cell

u∗
c ê · puvd3r

] ∑
j

[F ∗
2 A (r)F1]r = rj Vuc

= q

2m0
〈uc |ê · p|uv〉

∫
V

F ∗
2 A (r)F1d3r, (4.20)

where, by assuming the volume of a unit cell to be very small, we have converted
the summation back into an integral. We have also used Dirac notation to express
the Bloch function overlap integral.

The envelope function overlap integral in Eq. (4.20) can be further simplified
by recognizing that the spatial variation of A (r) is typically much slower than that
of the envelope functions allowing us to pull it out of the integration. Assuming
A (r) to be a plane wave of the form A0e−j k·r, and ignoring the spatial dependence
(i.e., the exponential term), we obtain

∫
V

F ∗
2 A (r)F1d3r ≈ A0

∫
V

F ∗
2 F1d3r ≡ A0〈F2|F1〉. (4.21)

We will consider this integral in more detail a little later in Eqs. (4.23)
through (4.25). Substituting Eq. (4.21) into Eq. (4.20), we finally obtain

|H ′
21|2 =

(
qA0

2m0

)2

|MT |2, where |MT |2 ≡ |〈uc |ê · p|uv〉|2|〈F2|F1〉|2. (4.22)

The prefactor in the first equality comes directly from the perturbation
Hamiltonian Eq. (4.15). The second term, |MT |2, is referred to as the transition
matrix element and is given special attention in Appendix 10. The first component,
|〈uc |ê · p|uv〉|2, contains the polarization dependence of the interaction, which will
depend on the particular symmetries of the conduction and valence band Bloch
functions. Aside from the polarization dependence (which can be a function of
photon energy), we can consider this momentum matrix element to be a constant,
|M |2, for a given material.

As shown in Appendix 8, the constant |M |2 can be determined experimentally.
Table 4.1 tabulates the most accurately reported values for several important mate-
rials systems. (Note that 2|M |2/m0 has units of energy.) Appendix 10 shows how
|MT |2 can be expressed in terms of |M |2. This involves expanding the dot product
as well as considering the overlap of the envelope functions in |MT |2 given by
Eq. (4.22). Table 4.2 summarizes the results for bulk and quantum-well materi-
als for either transverse electric (TE: electric field in the quantum-well plane) or
transverse magnetic (TM: electric field perpendicular to quantum-well plane) polar-
izations. Due to band mixing effects, the values for quantum wells shown are only
valid for small transverse k -vectors, kt . A full dependence of the |MT |2/|M |2 as kt
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TABLE 4.1: Magnitude of |M|2 for Various Material Systems

Material system
2|M |2

m0
(in eV) Reference

GaAs 28.8 ± 0.15 [1,2]
Alx Ga1−x As(x < 0.3) 29.83 ± 2.85x [3]
Inx Ga1−x As 28.8 − 6.6x [1,2]
InP 19.7 ± 0.6 [1,2]
In1−x Gax Asy P1−y (x = 0.47y) 19.7 + 5.6y [2,4]
GaN 14.0 [13]
InN 14.6 [13]
AlN 14.5 [13]
In0.24Ga0.76N 0.274 [14]
In0.15Ga0.85N 0.823 [14]

TABLE 4.2: Magnitude of |MT |2/|M|2 for Different Transitions and Polarizations

Bulk Quantum-well (kt ∼ 0)

Polarization C–HH C–LH C–HH C–LH

TE 1/3 1/3 1/2 1/6
TM 1/3 1/3 0 2/3

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.02 0.04

In-Plane k vector (1/Å)

T
ra

ns
iti

on
 s

tr
en

gt
h

0.06 0.08

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.02 0.04

In-Plane k vector (1/Å)

T
ra

ns
iti

on
 s

tr
en

gt
h

0.06 0.08

TE

TM

C1-HH1

TE

TM C1-LH1

FIGURE 4.4: Relative transition strengths for both TE and TM light polarization for the two
lowest subband transitions in an unstrained GaAs/Al0.2Ga0.8As 80 Å QW. The dashed curves
represent what one would calculate assuming parabolic subbands. The transition strength as
plotted here is defined as |MT |2/|M |2 (bulk value is 1/3).

is varied is given in Figs. 4.4 and 4.5, for a GaAs/AlGaAs and InGaAs/InGaAsP
quantum well, respectively. Figure 4.6 shows the dependence of |MT |2| as kt is
varied for InGaN and AlGaN quantum wells.

In addition to creating a polarization sensitivity, the transition matrix element
also restricts the types of states that can interact. For transitions between two



168 GAIN AND CURRENT RELATIONS
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FIGURE 4.5: Relative transition strengths for both TE and TM light polarization for the
transitions in an unstrained In0.53Ga0.47As/InGaAsP 60 Å QW. The dashed curves represent
the TM transitions and the solid curves TE. The transition strength as plotted here is defined
as |MT |2/|M |2 (bulk value is 1/3). ((© John Wiley and Sons, [15].)
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FIGURE 4.6: (a) Normalized y-polarized optical matrix elements and (b) average hole
effective masses as functions of crystal orientation of WZ In0.15Ga0.85N/GaN QWs (30 Å).
For comparison, results (dashed line) of GaN/Al0.2Ga0.8N QW structure are also plotted.
Reprinted by permission from Jpn. J. Appl. Phys. [16].

plane wave states in a “bulk” active medium (i.e., V → ∞), we can use Eq. (4.9)
to set

〈F2|F1〉 = 1

V

∫
V

ej k2·re−j k1·rd3r = δk1,k2 , (4.23)
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where the Kronecker delta, δk1,k2 , is zero unless k2 = k1, in which case it equals
one. This spatial phase-matching condition, known as the k-selection rule, is a
statement of momentum conservation. Thus, only states propagating along the
same direction in the crystal can interact. If the spatial dependence of the field
were not ignored in deriving Eq. (4.22), then an additional plane wave term,
e−j k·r, would appear in Eq. (4.23), and the k-selection rule for upward transitions
would become: k2 = k1 + κ. However, the wavevector of the field, κ, is typically
orders of magnitude smaller than the electron wavevector and can usually be
ignored (justifying our earlier simplifying step in Eq. (4.21)).

In a quantum well, the envelope functions are given by Eq. (4.10). Transitions
between two such quantum-well states are governed by the following overlap:

〈F2|F1〉 = 1

A

∫
V

F ∗
2 (z )ej k2·r||F1(z )e−j k1·r||d3r

=
∫

z
F ∗

2 (z )F1(z ) dz . (with k2 = k1) (4.24)

Thus, we can assume k-selection in the plane of the quantum well, but we still need
to evaluate |〈F2|F1〉2 perpendicular to the plane, where again F2 and F1 are simply
the particle-in-a-box envelope functions found for the quantized energy levels of
the quantum well in both conduction and valence bands.

Due to orthogonality between the quantum-well wavefunction solutions, the
overlap integral in Eq. (4.24) reduces to the following rule for subband transitions:

|〈F2|F1〉|2 ≈ δnc ,nv . (4.25)

This means that transitions can only occur between quantum-well subbands that
have the same quantum number, nc = nv . These are referred to as allowed transi-
tions. Transitions between subbands with dissimilar quantum numbers are forbidden
transitions. Both are illustrated in Fig. 4.7. The allowed transitions are usually
referred to as the n = 1 transition, the n = 2 transition, etc. The “nearly equal to”
sign is used in Eq. (4.25) because the different effective mass and barrier height in
the conduction and valence bands means that the wavefunctions of the two bands
are not completely orthogonal to each other. Nevertheless, allowed transition over-
laps are usually (but not always) close to unity (0.9–1), and forbidden transition
overlaps are usually very small (0 – 0.1).

These considerations can be extended to quantum wires, which have potential
barriers in two dimensions. For example, in a quantum wire, F2 and F1 are functions
of both quantized directions, such that |〈F2|F1〉|2 represents an integration over the
“quantization plane” (see Eq. (4.12)). In this case, k-selection is obeyed only along
the length of the wire.

In heavily doped materials, electron states that are bound to charged donors
or acceptors can exist. If the concentrations are high enough, it is conceivable
that many transitions near the band edge will be either band-to-bound or
bound-to-bound transitions. In these cases, the k-selection rule cannot be assumed
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nv = 1

nc = 1

2

2

3

Allowed Forbidden

|〈F2 | F1〉|2 ≈ 1 |〈F2 | F1〉|2 ≈ 0

FIGURE 4.7: Allowed and forbidden transitions in a quantum well. The most important
“n = 1” transition is highlighted in bold.

in any direction and |〈F2|F1〉|2 must be evaluated explicitly for the envelope
functions that correspond to these bound states. In early treatments [5], such
band-to-bound transitions were given considerable attention. However, these
analyses were provided when most active regions were heavily doped. More
recently, heavily doped active regions have faded in popularity in favor of
undoped quantum-well active regions (or sometimes modulation doped quantum
wells, where the doping ions are physically separated from the quantum wells). As
a result, most current semiconductor lasers operate on the physics of band-to-band
transitions. The rest of this chapter will concentrate on transitions occurring
between plane wave states such that the k-selection rule can be assumed.

With |H ′
21|2 given by Eq. (4.22) and the k-selection rule established, we now

need to define the final density of states more carefully.

4.2.4 Reduced Density of States

The derivation of Fermi’s Golden Rule in Appendix 9 assumes the electron initially
occupies a single state, which makes a transition to one of a large number of final
states. In a semiconductor, both final and initial states of the electron are immersed
within a large number of nearby states, as illustrated in Fig. 4.8. For this case, the
final density of states appearing in Eq. (4.16) should actually be interpreted as
the density of transition pairs per unit transition energy, δE21. This density of
transition pairs is referred to as the reduced density of states function, ρr (E21).
One specific form for ρr (E21) is derived in Appendix 6; however, here we would
like to determine the general form.

If we assume the k-selection rule applies, then only states with identical
k -vectors can form a transition pair, and only vertical transitions in k -space can
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dE21
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FIGURE 4.8: Relationship between the energy ranges in the conduction and valence bands
for a given dk in k -space, assuming k-selection applies.

occur. Because of this restriction, the number of transition pairs within δk is equal
to the number of states in either the conduction or valence band, and ρrδE21 =
ρcδE2 = ρvδE1. This allows us to set δE2 = (ρr/ρc)δE21 and δE1 = (ρr/ρv)δE21.
Summing these relations and setting δE21 = δE2 + δE1, we immediately
obtain

1

ρr
= 1

ρc
+ 1

ρv

. (4.26)

This is the more general form for the final density of states to be used in Fermi’s
Golden Rule. Note that as ρv → ∞, we have ρr → ρc . This is the case we solved in
Appendix 9, with ρc interpreted as the final density of states. For a finite density of
states in the valence band, such as ρv = ρc , ρr is reduced from ρc to ρc/2 (hence the
name reduced density of states). In typical semiconductors, ρv ≥ 5ρc , or (5/6)ρc ≤
ρr ≤ ρc . Thus, ρr is generally very close to ρc . However, in strained materi-
als, ρv can be reduced significantly, as shown in Appendix 8, bringing ρr closer
to ρc/2.

For general use, it turns out that Eq. (4.26) is not that practical. An alternate
definition of ρr (E21) can be found by relating it to the density of states in k -space.
From Fig. 4.8, we can set ρr (E21)δE21 = ρ(k)δk . Rearranging, we find

1

ρr (E21)
= 1

ρ(k)

dE21(k)

dk
= 1

ρ(k)

[
dE2(k)

dk
− dE1(k)

dk

]
. (4.27)

This definition allows ρr (E21) to be evaluated at any given point in k -space once
the derivatives of the electron and hole energies with respect to k are known at that
point. This definition is especially useful when E2(k) and E1(k) are not parabolic
functions (see Figs. A8.4 and A8.6 for examples of nonparabolic subbands in
QWs). The density of states in k -space, ρ(k), for various dimensional structures is
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TABLE 4.3: Density of States for Bulk (3D),
Quantum Well (2D), Quantum Wire (1D) and
Quantum Dot (0D) Structures (Including Spin)

Dimension ρ(k) ρ(E )

3
k2

π2

√
E

2π2

[
2m

�2

]3/2

2
k

πdz

m

π�2dz

1
2

πdx dy

ρ(k)√
E

[
2m

�2

]1/2

0 − 2δ(E − E0)

summarized in Table 4.3. (Note that the z -direction is taken as the narrow dimen-
sion of the quantum well, and the axis of the quantum wire to be consistent with
Appendices 8 and 10.)

If both bands involved in the transition are parabolic, an even more straightfor-
ward definition of ρr (E21) can be used. We can generally state that the transition
energy is equal to the bandgap energy Eg = Ec − Ev plus the kinetic energies of
the electron and hole. If the electrons and holes follow parabolic dispersion curves,
we have

E21 = Eg + �
2k2

2mc
+ �

2k2

2mv

= Eg + �
2k2

2mr
, where

1

mr
≡ 1

mc
+ 1

mv

. (4.28)

In other words, the dispersion of E21 with k also follows a parabolic curve with a
curvature characterized by a reduced mass, mr . As a result, the density of transition
states along E21 is entirely analogous to the density of states function in either the
conduction or valence band, with the following associations:

ρr (E21) ↔ ρc(E2), ρv(E1)

E21 − Eg ↔ E2 − Ec , Ev − E1 (parabolic bands) (4.29)

mr ↔ mc , mv

The derivation of ρr (E21) provided in Appendix 6 for bulk material confirms
these associations. More generally, the density of states per unit energy given in
Appendix 1 and summarized in Table 4.3 for various dimensional structures can
be applied directly to ρr (E21) using Eqs. (4.29) and (4.28) as long as the energy
bands are parabolic.

Finally, to evaluate the Fermi occupation probabilities in Eq. (4.3), we need
the individual electron and hole energies. With parabolic bands and assuming
k-selection, the individual electron and hole energies in terms of the transition
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energy can be found using Eq. (4.28):

E2 = Ec + (E21 − Eg )
mr

mc
, E1 = Ev − (E21 − Eg )

mr

mv

. (4.30)

When the bands are not parabolic, we must in general use E2(k) and E1(k) evalu-
ated at the k -vector, which yields the desired transition energy, E21.

Example 4.1 In a semiconductor optical amplifier, the TE and the TM mode gains
are found to be the same for a particular wavelength of incident light with sufficient
current applied. Consider only the C-HH1 transition in an 8-nm-wide unstrained
GaAs quantum well, surrounded by the 20% Al-AlGaAs barriers, having the lowest
transition wavelength of 840 nm.

Problem: What in-plane k-vector and wavelength would satisfy the equal TE and
TM gain condition?

Solution: To solve this problem, we need to utilize the material from Appendix 10,
and we need to recall that the polarization dependence in the gain of the quantum
wells comes from the matrix element MT . From Fig. 4.4, which applies for this
material system, at the bottom of the first subband, for kt = 0, all of the gain
is going to the TE polarized photons. If we can tailor the value of the in-plane
k-vector kt , we can achieve the conditions under which the values of the matrix
elements for TE and TM polarization will be the same. This condition is fulfilled
for kt = 0.03 Å−1, in which case

∣∣∣∣MT

M

∣∣∣∣
2

TE
=

∣∣∣∣MT

M

∣∣∣∣
2

TM
= 0.27.

The transition energy is equal to the bandgap energy, plus kinetic energies of
electrons and holes, as expressed by Eq. (4.28). Therefore,

�Et = �
2k2

t

2mc
+ �

2k2
t

2mv

= �
2k2

t

2mr
.

Using the values from Table 1.1, we can compute the reduced mass as mr =
mc mv

mc + mv
= 0.067· 0.38

0.067 + 0.38 m0 = 0.057 · m0. From there, �Et = 5.98 · 10−2 eV. Finally,
the wavelength can be obtained from the relationship

�λ

λ
= −�E

Eg
,

where Eg corresponds to the transition wavelength of λ = 840 nm. From here, we
have

�λ = − λ

E
�E = − 840 nm

1.24/0.840 eV
· 5.98 · 10−2 eV = 34 nm,

and λ = 840 − 34 nm = 806 nm.
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4.2.5 Correspondence with Einstein’s Stimulated Rate Constant

Einstein’s original description of radiative transitions outlined in Appendix 6
defines the downward transition rate in terms of a stimulated rate constant, B21,
weighted by the radiation spectral density, W (ν), and the differential number
of state pairs available for downward transitions, dN2. This rate constant can be
related to Rr , allowing us to quantify B21 using Fermi’s Golden Rule.

Assuming the lineshape broadening function to be a delta function, the stimu-
lated emission rate in Eq. (A14.11) becomes dR21 = B21 W (ν)dN2. This differen-
tial transition rate must still be integrated over all transition pairs affected by W (ν).
Using Eq. (A14.8) for dN2, setting W (ν) → hνNpδ(ν − ν0), and integrating over
the transition energy, the stimulated emission rate becomes

R21 = B21 · hν0Nphρr f2(1 − f1). (4.31)

Comparing this to Eq. (4.1), we conclude that

B21 = Rr

hν0Nphρr
= 1

hν0Np

|H ′
21|2
�2

. (4.32)

The second equality uses Fermi’s Golden Rule (4.16) to expand Rr . With this and
Eq. (4.37) defined later, B21 and all relations dependent on B21 in Appendix 6 can
be quantified.

4.3 OPTICAL GAIN

4.3.1 General Expression for Gain

The explicit relation between the net stimulated emission rate and the optical gain
was derived in Chapter 2. For reference, we repeat that derivation here in a slightly
different way. As discussed in Chapter 2, we can define the material gain per unit
length as the proportional growth of the photon density as it propagates along
some direction in the crystal. This definition can be related to the transition rates
as follows:

g = 1

Np

dNp

dz
= 1

vg Np

dNp

dt
= 1

vg Np
(R21 − R12). (4.33)

The second equality uses the group velocity, vg , to transform the spatial growth
rate to the growth rate in time. The growth rate in time is then linked to the net
generation rate of photons per unit volume. Finally, using Eq. (4.2) we obtain

g = Rst

vg Np
= Rr

vg Np
(f2 − f1). (4.34)
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Using Fermi’s Golden Rule (4.16) for Rr , we have

g21 = 2π

�

|H ′
21|2

vg Np
ρr (E21) · (f2 − f1). (4.35)

The electromagnetic perturbation is proportional to the field strength. Thus, to
evaluate the ratio, |H ′

21|2/Np , we need to relate the field strength to the pho-
ton density. The energy density in terms of the photon density is �ωNp . The
energy density in terms of the electric field strength is 1

2 n2ε0|E |2. If the material
is dispersive, this becomes 1

2 nngε0|E |2. The electric field is related to the vector
potential through a time derivative. For time-harmonic fields, we can set |E |2 =
ω2|A |2. By equating the two versions of the energy density, we obtain the desired
relation:

1
2 nngε0 ω2|A0|2 = �ωNp → |A0|2 = 2�

nngε0 ω
Np . (4.36)

Using this relation and the definition of the matrix element Eq. (4.22), we
can set2

|H ′
21|2

Np
= 1

Np

(
qA0

2m0

)2

|MT |2 = q2
�

2nngε0m2
0 ω

|MT |2. (4.37)

The material gain per unit length Eq. (4.35) then becomes

g21 = gmax(E21) · (f2 − f1)

where

gmax(E21) = πq2
�

nε0 cm2
0

1

hν21
|MT (E21)|2ρr (E21). (4.38)

The maximum gain, gmax, is a property of the material, whereas the Fermi factor,
f2 − f1, is dependent on the injection level. Per example, in GaAs 80–100 Å
quantum wells, the maximum gain of each subband transition is gmax ∼ 104 cm−1

(or 1 μm−1).

2The transition matrix element in the expression for gain is occasionally written instead as the dipole
moment matrix element, q2|x |2, where |x |2 = |〈uc |ê · x|uv〉|2|〈F2|F1〉|2, and x is the position operator.
The relationship between the two is given by q2|MT |2 = m2

0 ω2q2|x |2. Thus, Eq. (4.37) can alternatively
be written as

|H ′
21|2

Np
= �ω

2nngε0
q2|x |2.

This ratio can then be used to define the gain using Eq. (4.35); however, we will not make use of this
alternate expression for gain in this chapter.
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Gain in Reduced Dimensionality Structures In reduced-dimensional structures
such as a quantum well, ρr corresponds to the reduced density of states between
two quantized subbands. The total gain at E21 is found by summing over all possible
subband pairs:

g21 =
∑
nc

∑
nv

gsub
21 (nc , nv). (quantum well) (4.39)

The double sum indicates that all subband combinations should be considered.
In practice however, the selection rules arising from the envelope function overlap
expressed in Eq. (4.25) and illustrated in Fig. 4.7 suggest that the gain from nc = nv

subband pairs will dominate the gain spectrum. In particular, the n = 1 gain is
usually the largest, and hence most important, transition in quantum-well lasers.
We will use the following example to demonstrate this point as well as to highlight
many other basic considerations involved with determining the gain for a given
injection level in a quantum well.

Example 4.2 An optical probe beam is transmitted through an AR-coated GaAs
epi-wafer normal to the surface to measure the absorption properties of an active
region that lies in the plane of the wafer. The active region contains a single strained
InGaAs quantum well, 8 nm in thickness within a GaAs/AlGaAs waveguide, with
the confinement factor of 0.015. The probe beam has a wavelength of 970 nm,
and the lowest energy level in the quantum well provides an absorption edge at
980 nm. It is determined that the one-pass absorption of the probe beam through the
unpumped quantum well is 1.5%. Also, the threshold modal gain of a 3-μm-wide,
500-μm-long ridge laser made in this material is 29.8 cm−1.

Problem: (1) What is the maximum material gain at 970 nm for a very strongly
pumped active region? (2) What is the Fermi function difference (f2 − f1) at the
lasing threshold?

Solution: From the transmission measurements, we have that the single pass
absorption is 1.5%. That is,

Pout

Pin
= e−gmaxd ,

where d is the thickness of the well. From here, the maximum gain is

gmax = 0.015

8 · 10−7
cm−1 = 1.875 · 104 cm−1.

To calculate the Fermi function difference (f2 − f1), we utilize the relationship for
gain, Eq. (4.38),

g = gmax (f2 − f1).
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Therefore, we need to calculate the threshold gain, which can be obtained from the
parameters given in the problem,

gth = �gth

�
= 29.8

0.015
= 1986.67 cm−1.

Finally,

(f2 − f1) = gth

gmax
= 1986.67

18750
= 0.106.

The left side of Fig. 4.9 illustrates the lowest two energy subbands of a quantum
well in both conduction and valence bands (neglecting the light-hole subbands and
assuming parabolic subbands for simplicity). Under strong forward-bias conditions,
the equilibrium Fermi level is separated into two quasi-Fermi levels, one for all
conduction subbands and one for all valence subbands (the quasi-Fermi functions
are indicated by the dashed curves). The separation of the quasi-Fermi levels is con-
strained by the requirement that charge neutrality be maintained within the quantum
well (if there were a charge imbalance, band-bending would occur in the diode junc-
tion in such a way as to neutralize the imbalance). Thus, we must have N (EFc) =
P(EFv) in the quantum well (see Eq. (A14.20) for a more explicit version of this
relation). Because the valence band typically has many more states per unit energy,
the valence quasi-Fermi function does not have to penetrate nearly as deeply as

E(k) r(E)

Ec2

Ec1

Ev1

Ev2

EFc

EFv

f1

f2
n = 1

+
n = 2

n = 1
gain

C subbands

V subbands

fu
ll
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pt

y

EF (equilibrium)

nv = 1

nv = 2

nc = 2

nc = 1

FIGURE 4.9: QW subbands and corresponding density of states illustrating the relationships
between the carrier populations, the quasi-Fermi levels, and the gain at the subband edges.
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the conduction quasi-Fermi function to obtain the same overall carrier density. As
a result, the quasi-Fermi levels separate asymmetrically as indicated in the figure.

The right side of Fig. 4.9 shows the constant density of states functions of
each subband, which when added together produce a staircase density of states
in each band. When ρ(E ) is multiplied by the fraction of filled (empty) states in
the band, we obtain the electron (hole) distribution as a function of energy (the
contributions from the n = 1 and n = 2 subbands are indicated separately in the
figure). The shaded area under the carrier distribution curves then yields the total
carrier density. Because charge neutrality requires that N = P , we conclude that
the total shaded area must be the same in the conduction and valence bands for
any injection level. Thus, the quasi-Fermi levels must always adjust themselves
to ensure that this requirement is met (with the larger step heights in the valence
band, this again explains why the valence quasi-Fermi function does not have to
penetrate as deeply).

With the relationship between the quasi-Fermi levels and the carrier density
qualitatively defined, we can now proceed to analyze the gain of the quantum
well. Many optical properties of the quantum well depicted in Fig. 4.9 can be
qualitatively determined by simple inspection. For example, from Eq. (4.6) we
immediately know that at the injection level indicated, the quantum well provides
gain at the lowest subband edge, simply because EFc − EFv > Ec1 − Ev1. Thus,
despite the fact that the electron density at Ev1 is slightly larger than the electron
density at Ec1, a population inversion at the band edge has in fact been achieved.
This is because a “population inversion” requires f2 > f1, not ρc f2 > ρvf1 (as the
name might lead one to conclude). Furthermore, the fact that we have gain at the
band edge even though EFv > Ev1 reinforces the concept that it is the relative
difference and not the absolute positions of EFc and EFv that determines the gain
(i.e., it is not a requirement to have both EFc > Ec1 and EFv < Ev1 to achieve gain).

We can take the analysis a step further by using Eq. (4.38) to estimate the gain
at the band edge. Evaluating terms at the appropriate energies, we find the band
edge gain to be gmax1(Eg1) · (f2(Ec1) − f1(Ev1)), where gmax1 uses the envelope
function overlap and reduced density of states between the two n = 1 subbands.
Estimating from the figure that f2(Ec1) − f1(Ev1) ≈ 0.8 − 0.6 = 0.2, we conclude
that the band edge gain is roughly 20% of its maximum possible value. If we
assume gmax1(Eg1) ∼ 104 cm−1 (a typical number), then the band edge gain in the
figure is roughly 2000 cm−1.

As we move to higher photon energies, the population inversion clearly declines,
implying that the gain from n = 1 transitions is largest at the band edge. However,
at high enough photon energies a second population of carriers starts contributing
to the transition process. In principle, this added supply of carriers starts con-
tributing to the transition process. In principle, this added supply of carriers could
increase the gain significantly. However in this case, at photon energies close
to the second subband edge, we know the quantum well is absorbing because
EFc − EFv < Ec2 − Ev2. The absorption comes from two contributions: the car-
rier populations in the n = 1 subbands and the carrier populations in the n = 2
subbands, as the summation in Eq. (4.39) implies. Estimating from the figure
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that f2(Ec2) − f1(Ev2) ≈ 0.3 − 0.8 = −0.5, we find that the absorption from the
n = 2 subband transitions is 0.5gmax2(Eg2). For the n = 1 subband transitions, it’s
a little trickier because the Fermi energies must be estimated for electrons and
holes separated by Eg2 in the n = 1 subbands. Using Eq. (4.30), we must eval-
uate f2[Ec1 + (Eg2 − Eg1)(mr/mc)] − f1[Ev1 − (Eg2 − Eg1)(mr/mv)], which from
the figure is approximately ≈ 0.2 − 0.7 = −0.5. The overall absorption at the sec-
ond subband edge is therefore 0.5(gmax1(Eg2) + gmax2(Eg2)) (cross-population tran-
sitions such as gmax12 and gmax21 also exist but as mentioned earlier, their contribu-
tions are typically small). So we find that the absorption at Eg2 has not yet been con-
verted into gain but has at least been reduced to half its maximum absorption value
with the application of a forward bias. To achieve gain at the n = 2 subband edge,
the forward bias must be increased to the point where EFc − EFv > Eg2. To surpass
the n = 1 subband edge gain, the forward bias must be even stronger such that

(gmax1(Eg2) + gmax2(Eg2))(f2(Ec2) − f1(Ev2)) > (gmax1(Eg1)f2(Ec1) − f1(Ev1)).

So for all but very strong forward-bias conditions, the n = 1 gain dominates.

Quantum Dots To apply the gain theory to quantum dots, we need to take into
account their special physical and quantum properties. If we assume that we have a
uniform distribution of quantum dots, as shown in Fig. 4.10, 1 dot will occupy a unit
volume equal to V = Lx Ly Lz . Each dot occupies a volume equal to Vdot = dx dy dz

inside this unit volume. The three-dimensional dot density is then given by

ρ3D
dot = 1

V
= 1

Lx Ly Lz

The conduction band energy is given by

E = Ec0 + �
2π2

2m∗

[(
nx

dx

)2

+
(

ny

dy

)2

+
(

nz

dz

)2
]

. (4.40)

Ly

dy

dx

dz Lz
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FIGURE 4.10: Quantum dots and their geometric parameters.
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where Ec0 is the energy of the conduction band edge. The electron density can be
determined from the quantum dot density, and the probability of occupation for
each of the dot’s states, defined by Fermi’s distribution,

N = 2

V

∑
nx ,ny ,nz

fc(E ). (4.41)

Exactly analoguous equation and relationships hold for the holes in the valence
band. Using Eq. (4.35), and accounting for the fact that only discrete transitions
between states with identical quantum numbers can occur, similarly to the
quantum-well case discussed, the expression for the gain spectrum of the quantum
dots is given by

g21 =
∑

c

∑
v

2π

�

|H ′
21|2

vg Np
2 · ρ3D

dot · (f2 − f1). (4.42)

Using the substitution from Eq. (4.37), we can write the gain in the form

g21 = gmax(E21) · (f2 − f1), (4.43)

where gmax is given by

gmax =
∑

ncx ,ncy ,ncz

∑
nvx ,nvy ,nvz

πq2
�

nε0cm2
0

1

hν21
· 2

V
|〈uc |ê · p|uv〉|2

× δ(E2(ncx ,ncy ,ncz ) − E1(nvx ,nvy ,nvz ) − E21). (4.44)

Here, we have written the value of the transition matrix element |MT | explicitly.
If we define E21(nx , ny , nz ) = E2(ncx , ncy , ncz ) − E1(nvx , nvy , nvz ), we can further
simplify Eq. (4.43), to give

gmax =
∑

nx ,ny ,nz

πq2
�

nε0cm2
0

1

hν21

· 2

V
|〈uc |ê · p|uv〉|2δ(E21(nx , ny , nz ) − E21)). (4.45)

As further discussed in the next section, lineshape broadening has significant
influence on the final gain spectrum, which is particularly true for quantum dots,
where the delta function in the gain expression will be replaced by a lineshape
function. In particular, inhomogenous broadening, to be discussed in the next
section, tends to be a particularly large factor in quantum dots formed by most
experimental growth technologies.

To summarize, by invoking charge neutrality to link both quasi-Fermi levels
to a given carrier density, evaluating the quasi-Fermi functions at the appropriate
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energies, and summing over all subband transition pairs, we can determine the gain
at any given photon energy relative to the maximum value. In Section 4.3.3, we
will return to a more general discussion of the gain spectrum and its properties in
bulk and quantum-well materials.

4.3.2 Lineshape Broadening

Equation A6.24 in Appendix 6 expresses the gain in terms of B21. Replacing B21

with Eq. (4.32) and using Eq. (4.37), we find that Eq. (A6.24) is indeed equivalent
to Eq. (4.33) derived here. However, the gain more generally defined in Eq. (A6.23)
has an additional integration which takes into account the energy uncertainty of the
electron states. This energy broadening of electron states ultimately limits the reso-
lution of features we can observe in the gain spectrum and is therefore particularly
important to consider in reduced dimensional structures where the reduced density
of states function contains very sharp features. To recover Eq. (A6.23) from
Eq. (4.38), we need to consider how the broadening of electron states affects the
gain.

Figure 4.11 reveals that when the energy states are broadened, many different
transition pairs contribute to gain at a particular photon energy. These transition
pairs are primarily clustered within the energy uncertainty width of the lineshape
function describing the probable energy distribution of each transition pair. To
determine the total gain at hν0, we must integrate g21 over all transition energies

E′2
E2

hv0

Ev

Ec

E′′2

E1

E′1
E′′1

FIGURE 4.11: Three (of many) transition pairs that contribute to gain at hν0.
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weighted by the appropriate lineshape function, L (hν0 − E21).3 The gain including
lineshape broadening therefore takes the form:

g(hν0) =
∫

g21L (hν0 − E21)dE21. (4.46)

In Eq. (4.38), hν21 should be set equal to hν0, whereas all other terms dependent
on E21 should be considered variables of the integration. This expression for the
gain now agrees with Eq. (A6.23) derived in Appendix 6.

The specific form for the lineshape function to be used in Eq. (4.46) can
be determined by attempting to study the time evolution of an electron state,
taking into account its interaction with phonons and other electrons. In a first-
order approximation, we might assume that the probability of finding the electron
in a given state decays exponentially, as we found for the electron’s interac-
tion with photons in Appendix 9. This simplistic time dependence when Fourier
transformed to the energy domain immediately leads to a Lorentzian lineshape
function:

L (E − E21) = 1

π

�/τin

(�/τin)2 + (E − E21)2
. (4.47)

The intraband relaxation time, τin , is the time constant associated with the exponen-
tial decay of the electron. The energy full-width is related to τin via �E21 = 2�/τin

(compare Eq. (4.36) to Eq. (A6.27)).4 Early investigations, which attempted curve
fits of gain and spontaneous emission spectra to measurements in bulk material,
lead to values of τin ≈ 0.1 ps [7]. However, the gain and emission spectra did not
match very well, particularly on the low-energy side of the spectrum near the band
edge, where the details of the lineshape function are most apparent. Thus, other
more sophisticated theoretical methods of determining the lineshape function have
since been employed.

Using a quantum mechanical density matrix approach, Yamanishi and Lee [8]
have suggested that the electron state decays initially as a Gaussian but then takes
on exponential behavior for larger times. This leads to less energy in the tails of the
lineshape function than the Lorentzian function, which is more in line with experi-
mental observations. Asada [9] has also performed a detailed analysis of intraband

3This lineshape function is actually a combination of the individual electron and hole lineshapes com-
prising the transition pair:

L (hν0 − E21) =
∫

L2(E − E2)L1((E − hν0) − E1) dE .

4In Appendix 9, it is shown that if a state decays exponentially with a time constant, τ(= 1/ W ), then
the energy uncertainty of the state is �EFWHM = �/τ . The combined energy uncertainty of states 1 and
2 is �E21 = �(1/τ2 + 1/τ1). With τin defined as the average time constant: 1/τin = 1

2 (1/τ2 + 1/τ1),
we end up with �E21 = 2�/τin .
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scattering in quantum wells, arriving at an asymmetrical lineshape function, which
falls off much faster than a Lorentzian on the low-energy side of the transition, sim-
ilar to the findings of Yamanishi and Lee. Kucharska and Robbins [10] have kept
with a Lorentzian lineshape, but have theoretically derived an energy-dependent
lifetime, arguing that the scattering rate out of a state is dependent on where the
state is in the band, and on how full the band is.

In an attempt to keep the lineshape function as simple as possible while
maintaining some degree of accuracy, Chinn et al. [11] approximated the numerical
lineshape function derived by Yamanishi and Lee with a simple curve fit that
describes the time dependence of the electron state. This time dependence is
given by

e−l(t),

where

log10 l(t[ps]) = 2 + 1.5 log10 t − 0.5
√

(2 + log10 t)2 + 0.36. (4.48)

For long times, l(t) → t , reproducing the exponential decay. For short times,
l(t) → t2 implying that the state initially decays as a Gaussian. The most efficient
way to make use of the Chinn lineshape function is to inverse fast Fourier
transform (inverse FFT) the gain spectrum, multiply it by Eq. (4.48), and FFT
back to the energy domain. This proves to be the fastest method of evaluating the
convolution contained in Eq. (4.46). We will make use of this simplified Chinn
lineshape function in later calculations.

Some example lineshape functions are shown in Fig. 4.12. The Chinn lineshape
has less energy in the tails than the Lorentzian lineshape. However, the Gaussian
lineshape, which has been included for comparison, has significantly less energy
in the tails than either of the other two. The effects of convolving these lineshapes
with a typical quantum-well gain spectrum are shown in the lower part of
Fig. 4.12. The dramatic smoothing of the sharp features of the gain spectrum can
reduce the peak gain substantially. However at higher gains, the reduction is not
as significant. Note that due to the energy in the tails, the Lorentzian lineshape
function creates absorption of almost 100 cm−1 below the band edge. The other
two lineshapes do not suffer this problem. Of the three, the Chinn lineshape
is perhaps closest to representing the actual complex lineshape function of the
semiconductor. However, in reality the lineshape function is a complex function
of both transition energy and injection level.

For quantum dots, lineshape broadening will change the delta function into the
appropriate lineshape. To account for this, the new expression for maximum gain
gmax of quantum dots becomes

gmax =
∑

nx ,ny ,nz

πq2
�

nε0cm2
0

1

hν21
· 2

V
|〈uc |ê · p|uv〉|2L (E21(nx , ny , nz ) − E21)). (4.49)
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FIGURE 4.12: Comparison of various lineshape functions and the resulting convolved gain
spectra.

Another contribution to the lineshape broadening comes from the effect of
physical dimension variation in the epitaxial structure, leading to the effect of
inhomogenous broadening. Thickness variations in quantum wells will always exist
but can generally be controlled and neglected. However, in self-formed quantum
dots, the variations in physical size of the quantum dots are inevitable, and they
must be accounted for in the final expression for gain. This variation in size leads
to the variation in energies of the dot states, as can be seen from Eq. (4.40). This
type of broadening can also be modeled by introducing another broadening factor
into the gain expression, this time with a Gaussian distribution,

BI (E ) = 1√
2πσ

e−(E−E21(nx ,ny ,nz )). (4.50)
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To add this additional broadening parameter into the expression for quantum dot
gain, we need to integrate over energy,

g21 = πq2
�

nε0cm2
0

1

hν21

∑
nx ,ny ,nz

∫ ∞

0

2

V
|〈uc |ê · p|uv〉|2L (E − E21)BI (E )(f2 − f1)dE .

(4.51)

4.3.3 General Features of the Gain Spectrum

From the general gain Eq. (4.38), it is clear that the gain/absorption spectrum is
bounded to a maximum value of |gmax|. With no carrier injection, the material is
strongly absorbing with an absorption spectrum equal to −gmax(E21). With carrier
injection, we can invert the carrier population near the band edge and change the
Fermi factor, f2 − f1, from −1 toward +1, converting the absorption into gain. As
considered earlier in relation to Fig. 4.9, the carrier inversion is highly concentrated
near the band edge. Therefore, as the photon energy increases away from the band
edge, f2 − f1 must steadily reduce back to −1, and the gain spectrum must reduce
back to the unpumped absorption spectrum. This conversion of absorption into gain
is depicted in Fig. 4.13 for both bulk and quantum-well material.

In both bulk and quantum-well cases, the material is transparent below the
bandgap. Just above the bandgap, a region of positive gain exists. Beyond this,
the material becomes strongly absorbing. The crossing point from positive gain to
absorption occurs when f2 = f1 and was considered earlier in discussions related
to Eqs. (4.4) through (4.7). There it was found that the stimulated emission and
absorption rates exactly cancel (making the material transparent) when hν = �EF .
Thus the region of positive gain extends, between the bandgap and the quasi-Fermi
level separation:

Eg < hν < �EF . (positive gain) (4.52)
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FIGURE 4.13: Gain spectra in bulk and quantum-well materials. The thin smoothed curves
indicate the effect of lineshape broadening.
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In other words, gain is achieved in the material only when the carrier injection is
high enough to create a quasi-Fermi-level separation exceeding the bandgap—or
the separation between the lowest allowed quantum states in the case of quantum
wells. Also, the larger the quasi-Fermi-level separation we can create, the wider
the gain bandwidth we can achieve in the material.

The shape of the bounding limits in Fig. 4.13 representing gmax and −gmax is
primarily governed by the reduced density of states function5 from Eq. (4.38).
Hence in bulk material, gmax follows a square root dependence, while in quantum-
well material, gmax follows a steplike dependence where each step corresponds to
the addition of a new subband transition pair. As a result, the bulk gain spectrum is
quite smooth, whereas the quantum-well gain spectrum is rather jagged. However in
the latter case, lineshape broadening tends to smooth out the discontinuous features
into rounded “bumps,” one for each subband transition pair.

In bulk material, the peak of the gain spectrum increases and shifts to higher
photon energies with increasing �EF . In contrast, the peak of the quantum-well
gain spectrum remains fixed at the n = 1 gain peak near the band edge under most
conditions. With increased carrier injection, the n = 1 gain saturates at gmax1 as the
states in the first subband reach complete inversion, while the n = 2 gain continues
to increase to a value twice as high as the n = 1 gain (twice as high because it
contains contributions from both n = 1 and n = 2 subband transition pairs). Thus,
under very high carrier injection, the overall peak gain can jump to the n = 2 gain
peak as discussed in relation to Fig. 4.9. Experiments on quantum-well lasers do
in fact show a discrete jump in the lasing wavelength from the n = 1 to the n = 2
peak as the cavity length is reduced (i.e., as the threshold gain is increased).

In drawing the quantum-well gain spectrum in Fig. 4.13, a few features have
been idealized. First of all, an additional set of steps spaced differently from
the ones shown should be included to account for both conduction-to-heavy hole
(C – HH) and conduction-to-light hole (C – LH) subband transitions. In other words,
there should be an n = 1 step for both types of transitions, etc. In practice, for the
more common situation where the electric field lies in the plane of the quantum
well, the matrix element for C – HH transitions is three times larger than the matrix
element for C – LH transitions, implying that the steps related to C – LH transitions
are much smaller and not as important. We have also neglected steps due to forbid-
den transitions. Inclusion of these transitions introduces small peaks in between the
major peaks due to the small but finite overlap of forbidden transitions. However,
in practice such small peaks are not usually observed.

Another simplification we have made in Fig. 4.13 is that all steps comprising
gmax have been drawn with equal height. In actuality, the overlap integral defining
the matrix element is typically smaller for higher subband transitions, implying
that the n = 1 step height is usually the largest (sometimes by as much as a factor

5There are other energy-dependent terms comprising gmax(E ). For example, the 1/�ω dependence
modifies the shape of gmax(E ) slightly, but not noticeably. In reduced-dimensional structures, the matrix
element also has an energy dependence; however, we will ignore this dependence for the present
discussion.
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of 2, depending on the barrier height). Finally, we have completely neglected the
energy dependence of the matrix element. This energy dependence is illustrated
in Appendix 10. Generally for polarizations of interest, the matrix element is a
maximum at the band edge and decays to less than half of its peak value at
higher energies. Thus, the flat plateaus in between the steps of gmax should actually
slope toward zero, modifying the gain spectrum accordingly (the 1/�ω dependence
will also contribute to this sloping toward zero). Gain calculations using practical
material systems presented at the end of this chapter will reveal these more subtle
features in the spectrum.

4.3.4 Many-Body Effects

The preceding theory of gain involving Fermi’s Golden Rule considers each
electron in isolation as it interacts with the electromagnetic field. In other words,
we have used a single-particle theory to obtain the gain spectrum. In reality,
there is a large density of both electrons and holes present in our system. The
mutual interactions between these particles are generally referred to as many-body
effects. We have already considered one consequence of such many-body effects
in our discussion of lineshape broadening, which is related to collisions between
particles and/or phonons in the crystal. In addition to this important effect, there
are two other significant consequences of many-body effects: exciton states and
bandgap shrinkage. Exciton states exist primarily at low carrier densities and
low temperatures, whereas bandgap shrinkage becomes noticeable at high carrier
densities.

Under conditions of low carrier density and low temperature, it is possible
for an electron and hole to orbit each other for an extended period of time (in
analogy with a hydrogen atom), forming what is referred to as an exciton pair.
Such exciton pairs have a binding energy associated with them that is equal to the
energy required to separate the electron and hole. As a result, electrons that are
elevated from the valence band to one of these exciton states will absorb radiation
at energies equal to the bandgap less the binding energy (the bandgap will appear
to be red-shifted). More significantly however, the overlap integral (and hence the
matrix element) of these two-particle states can be quite large. As a result, band-
to-exciton transitions tend to dominate the absorption spectrum. However, exciton
states are limited to states near k = 0, and hence band-to-exciton transitions are
clustered at the band edge (or subband edge). The overall effect is the appearance
of very strong absorption peaks near the subband edges in quantum-well material,
and near the band edge in bulk material.

Exciton absorption peaks are clearly visible in quantum wells at room tem-
perature, as seen in Fig. 4.14 for a typical GaAs QW. The first two steps in the
“staircase” absorption spectrum predicted from the density of states (see Fig. 4.13)
can be seen, with each step contributing about 104 cm−1 absorption. However, the
exciton peaks riding on top of the steps, particularly the n = 1 peaks, dominate the
absorption spectrum. Each observed exciton peak corresponds to one of the sub-
band transitions illustrated earlier in Fig. 4.7. The allowed transitions (nc = nv) are
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temperature.

clearly dominant; however, traces of absorption can also be seen from forbidden
transitions (nc �= nv).

In quantum dot structures, excitonic recombination processes are exclusively
observed because electron and hole wavefunctions are tightly confined within the
same small volume. Besides simple two particle excitons, higher complexes such
as trions, bi-excitons and multiexitons are found and can be observed in cathodo-
luminescence studies. Different exciton peaks from a single InAs quantum dot in
the GaAs matrix are shown in Fig. 4.15.

At room temperature, exciton absorption peaks are not nearly as dramatic in
bulk material. The reason is that reduced-dimensional structures confine and hold
the electron and hole more closely together, producing a higher binding energy.
However, the larger QW binding energy is still only on the order of a few meV.
Hence exciton states even in QW material are somewhat “fragile,” and collisions
with phonons and carriers can easily break the exciton apart. For this reason, exciton
absorption peaks are strongest and sharpest at low temperatures and low carrier
densities. As the temperature and/or carrier density increases, the exciton lifetime
diminishes and the exciton absorption peak broadens. Eventually at high enough
temperatures and/or carrier densities, the exciton peak disappears altogether. At
carrier densities required to achieve gain in the material, exciton states completely
vanish, and the absorption/emission spectrum becomes dominated by band-to-band
transitions. Thus, excitons have little effect on the gain spectrum of the material.

The second many-body effect occurs at high carrier densities, where the charges
actually screen out the atomic attractive forces. With a weaker effective atomic
potential, the single-atom electron wavefunctions of interest become less localized
and the nearest-neighbor electron overlap becomes higher. From discussions in
Appendix 1, the larger overlap increases the width of the energy bands (�E is
larger in Fig. A1.7), reducing the gap between bands. Although this description
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is only qualitative, it does reveal that the bandgap should shrink with increasing
carrier density.

It can also be argued theoretically that the bandgap shrinkage is inversely related
to the average spacing between carriers, or �EG ∝ −1/rs (the closer the carriers
are, the more their own Coulomb potentials screen out the atomic potential). In
bulk material, the average volume occupied by one carrier is inversely related
to the carrier density, and hence V ∝ 1/N ∝ r3

s . As a result, we conclude that
�EG ∝ −N 1/3 [5]. In a quantum well, the average area occupied by one carrier in
the quantum-well plane is inversely related to the sheet density, or A ∝ 1/N ∝ r2

s .
So in a quantum well, we might expect that �EG ∝ −N 1/2 [12]. However, taking
into account the finite thickness of the quantum well in determining the electron
Coulomb potential, the theoretical power dependence on carrier density has been
estimated at closer to the one-third power law [17].

Experimental measurements of the power dependence of the bandgap shrinkage
on carrier density yield numbers between 0.32 and 0.38 [5, 12, 17] for both bulk
and quantum-well material. As for the absolute shift, at a density of 1018 cm−3 in
bulk or 1012 cm−2 in a quantum well, the bandgap is reduced by anywhere from 22
to 32 meV, assuming N = P (for measurements on p-doped material, the shift has
been doubled assuming electrons would contribute equally to the shift in a laser
where N = P ). In light of the spread in measured data, it is common practice to
simply assume the bandgap shrinks with the one-third power of carrier density in
both bulk and quantum-well material, or

�Eg = −cN 1/3, (4.53)
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where N can be either the two- or three-dimensional carrier density. A common
value used for the bandgap shrinkage constant in bulk material (assuming N = P ),
which also falls within the measured range for quantum well material, is

c ≈ 32 meV/(1018 cm−3)1/3, (bulk GaAs) (4.54)

c ≈ 32 meV/(1012 cm−2)1/3. (GaAs/AlGaAs QW) (4.55)

c ≈ 20 − 25 meV/(1012 cm−2)1/3. (InGaAs/InP QW) (4.56)

c ≈ 10 − 20 meV/(1012 cm−2)1/3. (AlGaAs/GaAs QW) (4.57)

c ≈ 2.1 meV/(108 cm−2)1/3. (GaN QW) (4.58)

Equations (4.54) to (4.58) are not entirely accurate because there is some exper-
imental uncertainty in both the one-third power law and the value of c. However,
they do provide a simple and reasonable estimate of the extent of bandgap shrink-
age. Less data exist for other material systems, so it is common to assume the same
values in the InGaAsP system as for the GaAs/AlGaAs system.

The net effect of bandgap shrinkage is that as carrier density increases, the entire
gain spectrum redshifts by a noticeable amount. In principle, the shift is accom-
panied by a slight distortion (i.e., reshaping and enhancement) of the spectrum.
However, to first order we can neglect the distortion and simply assume that high
carrier densities produce a rigid shift of the entire gain spectrum to longer wave-
lengths. This phenomenon is observable in quantum-well lasers where the high
threshold carrier density shifts the lasing wavelength beyond the known band edge
wavelength of the quantum well. Bandgap shrinkage is a particularly important
factor in situations where there is some critical alignment between a desired cavity
mode of the laser and the gain spectrum (as in a short-cavity VCSEL, for example).

4.3.5 Polarization and Piezoelectricity

For certain crystal lattice types, with particular symmetry properties and the type of
bonds between atoms, large built-in electric fields are possible along certain crystal
directions. This phenomenon, called piezoelectricity, occurs in the Group III
nitrides arranged in the wurzite type crystal structures. III nitride wurzite crystals
have a unique structure where different atom species alternate between different
atomic planes, thus forming fixed charge densities at the interfaces. Spontaneous
polarization, caused by atomic bond assymetry between the nearest neighbors,
occurs along the growth direction of a III nitride wurtzite crystal, dictated by the
substrate (this growth direction is called c axis). In addition, strain induced in these
types of crystals creates a separate piezoelectric polarization field along the same
axis.

For electronic devices, this polarization is largely seen as beneficial, as it gives
rise to 2-D sheet concentrations at interfaces an order of magnitude higher than in
other III-V systems. For LEDs and lasers (an example of a GaN barrier and InGaN
quantum-well structure was shown in Fig. 1.19), the fixed sheet charges at the
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(a) with the piezoelectric field under the influence of screening by either photoexcited carriers
or other free carriers in the system, and (b) the original piezoelectric field in the absence
of carrier screening (or after long delay times in the case of time resolved luminescence
experiments). Reprinted by permission from Applied Physics Letters [35].

heterointerfaces cause large electric fields normal to the QW plane (1–2 MV/cm).
These internal polarization-related electric fields cause the bands to tilt and the
bandgap to redshift through the quantum confined Stark effect (discussed in Chapter
8), causing spatial separation of electron and hole wave functions, as illustrated in
Fig. 4.16. This spatial separation, in turn, reduces the overlap between the electron
and hole wavefunctions, and thus probability of radiative recombination, reduc-
ing the efficiency in nitride LEDs and laser diodes. The energy band diagram
of a GaN/AlGaN quantum-well sample, shown in Fig. 4.16 shows (a) the band
diagram and the piezoelectric field under the influence of screening of other free
carriers in the system (as in forward bias), and (b) the band diagram under the
original piezoelectric field. The challenges associated with polar heterostructures
in the nitrides can be significantly reduced by growth in semipolar orientations
and avoided entirely through material growth in nonpolar orientations (m-plane).
Both polar and nonpolar GaN heterostructures are an area of active research, in
particular with regard to obtaining large area, high quality growth substrates that
would yield economic LED and LD devices with higher performance.
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4.4 SPONTANEOUS EMISSION

4.4.1 Single-Mode Spontaneous Emission Rate

As we inject a high enough carrier density to achieve gain in the material,
we also inevitably increase the spontaneous emission rate. The spontaneous
emission rate is important to consider because for every spontaneous photon
emitted, a new carrier must be injected into the active region, as discussed in
Chapter 2. In short-wavelength materials, this carrier recombination mechanism
represents the largest component of the current we must inject into the active
region.

To determine the spontaneous emission rate per unit active volume into one
optical mode, R′

sp , we return to Eq. (4.5), which relates the single-mode spontaneous
and stimulated emission rates:

R′
sp = |E v−f |2

|E |2 nspRst . (4.59)

The first term replaces the field strength with the vacuum-field strength of the mode,
|E v−f |2. The second term adjusts the Fermi factor. The last term, Rst , can be related
to the gain through Eq. (4.33). The population inversion factor, nsp , discussed in
Appendix 6 is defined as

nsp ≡ f2(1 − f1)

f2 − f1
= 1

1 − e(E21−�EF )/kT
. (4.60)

Its value is typically between 1 and 2 at gain thresholds commonly encountered
in lasers. Figure 4.17 displays the dependence of nsp on gain for various active
materials.

To evaluate |E v−f |2, we turn to a quantum mechanical description of the optical
mode. Without going into the details, it can be shown that an optical mode can
be described quantum mechanically using the mathematical formalism developed
for harmonic oscillators. One of the basic properties of harmonic oscillators is
that the probability of elevating the state n to n + 1 (via the creation operator) is
proportional to n + 1. In describing the optical mode, n refers to the number of
photons in the mode. Thus, the probability of adding a new photon to the mode is
proportional to the number of photons in the mode plus one—as if an imaginary
photon were present in the mode. In terms of transition rates, it is the field
strength of this imaginary photon that induces “spontaneous” downward transition
events. Thus, the vacuum-field strength of the mode is equivalent to the field
strength generated by one photon in the mode: |E v−f |2 = |E1|2. This conclusion is
consistent with Einstein’s approach, which establishes that the equivalent spectral
density inducing spontaneous emission is equal to one photon per optical mode (see
Appendix 6).
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QW. InP based: compressively strained InGaAs/InP 30 Å QW and unstrained InGaAs/InP
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We can express the classical field strength as: |E |2 = NpVp |E1|2, where Vp is
the mode volume (i.e., NpVp is the number of photons in the mode). Thus, in
Eq. (4.59) we can set

|E v−f |2 = |E1|2, (4.61)

|E |2 = NpVp |E1|2.

Then using Eq. (4.34) to set Rst = vg gNp , Eq. (4.59) becomes

R′
sp = vg gnsp

Vp
= �vg gnsp

V
. (4.62)

Setting 1/Vp = �/V in the second equality, we conclude that the spontaneous
emission rate into the mode is fundamentally related to the modal gain.

4.4.2 Total Spontaneous Emission Rate

To find the total amount of spontaneous emission occurring in the active region,
we must sum the single-mode rate Eq. (4.44) over all optical modes. Let’s denote
the total spontaneous emission occurring within the energy range dhν, as R21

sp , dhν,
where R21

sp represents the total spontaneous emission rate per unit energy per unit
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active volume. Equating this with a sum over modes near hν21 within dhν, we have

R21
sp dhν =

∑
modes
indhν

R′
sp = nsp

∑
modes
indhν

vg g21

Vp
. (4.63)

Because nsp only depends on hν, it has been pulled out of the sum and evaluated
at hν21. However, the remaining three terms depend on the specifics of each mode
(either through modal dispersion, polarization dependence, or mode volume). If we
define average values for the three terms, the sum reduces to

∑
modes

vg g21

Vp
= v̄g ḡ21

V̄p
Nmodes , (4.64)

where Nmodes is the number of modes within dhν. Defining individual average
values for each term is justified as long as the variations of each term in the sum
are not correlated, and there is no reason to believe otherwise.

Considering that the average is over modes going in all directions, it is probably
safe to say that the average group velocity, v̄g , is somewhere close to the material
group velocity of the active region, vg . The dependence of the quantum-well gain is
through the polarization state of the mode (in bulk material there is no dependence
and ḡ21 = g21). Assuming the polarization states are isotropically distributed over
the two in-plane TE and one perpendicular TM polarizations, the average material
gain in a quantum well becomes

ḡ21 = 1
3 [2gTE

21 + gTM
21 ]. (4.65)

To handle 1/V̄p (or equivalently, the average confinement factor, �̄), we need
to evaluate Nmodes . In large cavities, Nmodes is most easily found using the mode
density concept. If we assume the cavity is a large rectangular metal box of vol-
ume, Vbox , the density of optical modes per unit frequency per unit volume can
be derived. The procedure is outlined in Appendix 4, and the result is given by
Eq. (A4.5). We repeat it here for reference:

ρ0(ν) dν = 8π

c3
n2ngν2 dν. (4.66)

The density of modes per unit energy is equal to ρ0(ν)dv/dE = ρ0(ν)/h . With
this definition, the total number of modes within dhν becomes

Nmodes = ρ0(ν)/h · Vbox dhν. (4.67)

Inserting this into Eq. (4.64), we are left with the volume ratio Vbox /V̄p . If the laser
cavity were a large metal box, then the mode volume would be equivalent to the
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volume of the box (aside from standing wave effects, which should average out
over the spontaneous emission bandwidth), and we could simply set

Vbox /V̄p = 1. (4.68)

Of course, laser cavities are typically much more complex than a simple metal box,
and Vp is potentially different for every optical mode. Thus, there is no guarantee
that Eq. (4.50) holds in real laser cavities, or that we can even define a mode
density as given in Eq. (4.66).

Fortunately, if the cavity is much larger than the wavelength of bandgap radia-
tion in the active region, or more specifically if Vcav � λ3, it turns out that a more
rigorous treatment usually averages out to the simple metal box treatment (espe-
cially when the emission bandwidth is large relative to resonances in the cavity).
To get a feel for the numbers, a typical 0.2 × 4 × 200 μm3 GaAs in-plane laser has
Vcav ∼ 10, 000λ3. Thus, the simple metal box assumption contained in Eqs. (4.66)
through (4.68) is expected to work well in this case.

In a VCSEL, the simple box assumption is more questionable. However, the
volume of a typical GaAs VCSEL with dimensions of 1 × 10 × 10 μm3, is smaller
than a typical in-plane laser by only a factor of two, and Vcav ∼ 5000λ3. Thus,
for VCSELs of this size, the simple box assumption should still hold. However,
when the lateral dimensions of the VCSEL are reduced below 1 μm, significant
deviations from the simple box assumption are expected to occur. Under these
circumstances, the mode density concept must be abandoned and more sophisticated
mode-counting techniques must be used to estimate the total spontaneous emission
rate. In addition to mode counting, the average value for 1/V̄p (or equivalently
�̄) is also required. Numerous researchers interested in microcavity lasers have
investigated such numerical exercises for a number of cavity geometries [18, 19].

Combining Eqs. (4.63) through (4.68) assuming the simple box assumption
holds, the total spontaneous emission rate per unit energy per unit active volume
(in units of s−1 cm−3 eV−1) becomes

R21
sp = 1

h
ρ0(ν21) · vg nsp ḡ21. (4.69)

This result is identical to Eq. (A6.32) derived in Appendix 6, with the exception
that the gain here is more correctly defined as an average over all polarizations.
Using the explicit expression for gain Eq. (4.33) and mode density Eq. (4.48), the
general expression for spontaneous emission becomes

R21
sp = 4nπq2

ε0h2c3m2
0

hν21|M̄T (E21)|2ρr (E21) · f2(1 − f1), (4.70)

where

|M̄T (E21)|2 = 1

3

∑
all three

polarizations

|MT (E21)|2.
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The transition matrix element is the only factor dependent on polarization in the
expression for gain. This is why the averaging over polarizations only needs to
include |MT |2.

The actual spontaneous emission spectrum will be affected by lineshape broaden-
ing in the same way the gain is affected. In analogy with Eq. (4.46), the spontaneous
emission spectrum taking lineshape broadening into account is related to R21

sp
through the following:

Rhν
sp (hν) =

∫
R21

sp L (hν − E21)dE21. (4.71)

The spectrum is generally peaked just above the bandgap energy because the elec-
trons and holes are concentrated at the band edges. The spectrum gradually decays
to zero at higher energies. To determine the total emission rate, we must integrate
over all photon energies. However, in practice integrating over a limited range near
the bandgap energy is usually sufficient to account for all of the spontaneous emis-
sion. It is shown in Appendix 6 that the integration over Rhν

sp (hν) is essentially the
same as integrating over the simpler R21

sp . Thus, the total band-to-band spontaneous
emission rate is given by

Rsp =
∫

R21
sp dE21 = ηi ηr

I

qV
. (4.72)

The second equality allows us to determine the radiative component of the current
(excluding stimulated emission) required by the active region to obtain a given
gain. Example calculations in different material systems will be given later in this
chapter.

Example 4.3 For the ridge lasers from Example 4.2, we would like to know
the ratio of the spontaneous emission power to the output power at 40 mA bias.
Assume that the value of the population inversion factor nsp = 1.5.

Problem: (1) Calculate the spontaneous emission power into the mode above
threshold. (2) Calculate the optical mode density for this laser. (3) What is the total
spontaneous emission power within a 1 nm bandwidth near the lasing wavelength?

Solution: The spontaneous emission power into a mode can be calculated from the
known spontaneous emission rate, active region confinement factor �, and photon
energy. The spontaneous emission rate into a mode is given by Eq. (4.62). From
here, we have

Psp = R′
sp · (hν) · V = �gthvg nsp

V
· (hν) · V

= (29.8 cm−1)

(
3

4.5
· 1010 cm

s

)
(1.5)

(
1.24 eV

0.97

)
(1.6 · 10−19)

J

eV
= 61.0 nW.
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To determine the total spontaneous emission power in a given wavelength range,
we need know the total spontaneous emission rate over all modes that exist in that
wavelength range, as well as the photon energy and the active region volume.

The total spontaneous emission per unit energy and per unit volume is given by
Eq. (4.69) as R21

sp = 1
h ρ0(ν21) · vg nsp ḡ21. To compute it, we need to compute the

mode density ρ0 and the average gain ḡ21. From Appendix 4, the expression for
the density of optical modes is given by Eq. (A4.5),

ρ0(ν) = 8π

c3
n2ngν2 =>

1

h
ρ0(ν) = 8π

(3 · 1010 cm/s)3

(3.6)2(4.5)
( 1.24 eVμm

0.97 μm

)2

(
6.626·10−34Js
1.6·10−19J/eV

)3

= 1.25 · 1015 eV−1 cm−3.

The average gain is given by

ḡ21 = 1

3
(2gTE

21 + gTM
21 ) = 2

3
gTE

21 = 2

3
1986.67 cm−1 = 1324 cm−1,

because the material has been optimized for TE polarization gain only, as shown
in Figure 4.4. Now, we can calculate the total spontaneous emission rate per unit
volume as

R21
sp =

(
1

h
ρ0(ν21)

)
· (vg )(nsp)(ḡ21)

= (1.25 · 1015 eV−1 cm−3)

(
3

4.5
· 1010 cm

s

)
(1.5)(1324 cm−1)

= 1.65 · 1028 eV−1 cm−3s−1.

To calculate the total power in the 1-nm bandwidth, we need to convert the band-
width into energy and calculate the active region volume,

�E = �λ
dE

dλ
= �λ

(
− Ep

λp

)
= 1 nm

(
− 1.24 eVμm

(0.97 μm)2

)
= 1.32 · 10−3 eV

Va = w · d · L = (3 μm)(8 nm)(500 μm) = 12000 · 10−15 cm3.

Finally, the total spontaneous power emitted in the 1-nm wavelength range
around the lasing wavelength is

Psptotal = R21
sp · �E · hν · Va

= (1.65 · 1028 eV−1 cm−3s−1)(1.32 · 10−3 eV)

(
1.24 eVμm

0.97 μm

)

× (12000 · 10−15 cm3) = 41.87 μW.
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4.4.3 Spontaneous Emission Factor

With the preceding description of spontaneous emission, we can derive a simple
expression for the spontaneous emission factor used in the rate equations to
express the fraction of total spontaneous emission that enters the mode of interest.
Using Eq. (4.62) for the emission rate into one mode and Eq. (4.72) for the total
emission rate, we have

βsp ≡ R′
sp

Rsp
= �vg gnsp

ηi ηr I /q
, (4.73)

where I as used here does not include stimulated emission current.
With Eq. (4.73), parameters readily accessible experimentally can be used to

estimate βsp . For example, assume we have a laser with a threshold current of
10 mA, a modal threshold gain of 50 cm−1, and an internal efficiency of 75%.
If nonradiative recombination is minimal, then ηr ≈ 1. If we assume the group
index is ∼4 and the population inversion factor is ∼1.5, we quickly find βsp ≈
1.2 × 10−5, typical of experimental values measured with in-plane lasers. To get
a better estimate of βsp , we need to determine c/vg , nsp , and ηr more accurately.
However, c/vg is almost always in the range of 4–5, nsp is usually between 1.25
and 1.75 for gains commonly required in lasers, and ηr is typically between 50%
and 80%, implying that simple estimates of c/vg , ηsp , and ηr will get us within a
factor of 2 of the correct value of βsp .

In a typical VCSEL, the percent gain per pass is in the range of 0.5%–1% and
the cavity length is ∼1 μm. This gives a modal gain of 50–100 cm−1. Radiative
threshold currents are in the range of 0.5–2.0 mA for 10 μm diameter devices.
If we assume a 1 mA radiative threshold current and 100 cm−1 threshold modal
gain, we find βsp ≈ 1.8 × 10−4 (assuming again that c/vg and nsp are equal to 4
and 1.5). This is about an order of magnitude higher than βsp observed in typical
in-plane lasers. The main difference lies in the reduction of the threshold current,
which is in turn predominantly due to the reduction in active-region volume
possible with VCSEL structures.

Equation (4.73) also reveals that βsp is not a constant, but is dependent on
the injection level. As the injection level increases, the spontaneous emission into
one mode saturates at a maximum value just as the gain saturates at gmax. Mean-
while the current and total spontaneous emission rate continue to increase as the
spectrum broadens to include more modes in the emission process. The net effect
is that βsp decreases with increasing injection level. In rate equation analyses, βsp

is often approximated as a constant (see Chapters 2 and 5). This is justified for
near- and above-threshold analyses, as long as the value assumed for βsp is the
actual value that would exist near the threshold injection level.

4.4.4 Purcell Effect

As the cavity dimensions become small, the optical mode density departs from its
simple bulk form, just as in the case of quantum wells and dots for the electronic
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density of states. As spontaneous emission can only be made into allowed modes,
which are now limited for a very small cavity, the spontaneous emission factor
into each of these increases accordingly. Thus, the rate of spontaneous recombina-
tion can be modified by placing the active material inside a resonant cavity. This
effect was first described by Purcell in 1946. For this effect to be noticeable, the
linewidth of a spontaneous transition between two states has to be equal or smaller
in value to the linewidth of a resonant cavity mode. In this case, the spontaneous
emission derived from a bulk photon mode density will be enhanced by the Purcell
enhancement factor,

Fp = 3

4π2

(
λc

n

)3 Q

V
,

where Q is the cavity quality factor, defined as the ratio of the stored and dis-
sipated energy in an optical cavity, V is the volume of the cavity, and λc/n is
the wavelength in the medium. The magnitude of this effect will be dominated
by the quality factor Q and volume V—the smaller the volume, and the stronger
the cavity, the larger the effect. The factor can be both less and higher than unity.
The Purcell effect has been experimentally studied using single quantum dot type
structures. It is very important in the work with microcavities, which can be used
for quantum encryption and optical logic elements, to name a couple applications.

4.5 NONRADIATIVE TRANSITIONS

With radiative processes defined, we now need to consider nonradiative transi-
tions to determine their relative importance in the overall carrier recombination
process. Three common types of nonradiative transitions are depicted in Fig. 4.18.
These processes were briefly discussed in Chapter 1 in reference to Fig. 1.6. In the
following sections we will provide a more detailed description of each process.

4.5.1 Defect and Impurity Recombination

The first type of nonradiative transition appearing in Fig. 4.18 depicts an energy
level in the middle of the gap, which serves to trap an electron from the conduction
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FIGURE 4.18: Various types of nonradiative recombination paths.
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band temporarily before releasing it to the valence band. Energy levels of this sort
can arise from a variety of causes. Defects in the lattice structure are one source.
For example, a void at an atomic site or an extra atom lodged in between the lattice
structure can produce insufficient or extra orbitals, which leads to a mismatch in
the covalent bonding pattern. Such localized dangling bonds give rise to discrete
energy levels, which can possibly appear in the middle of the bandgap. Another
common source of midgap energy levels are impurities. Just as dopants create
impurity levels, near the band edge, other types of atoms can create impurity levels,
which are closer to the middle of the gap. Oxygen, for example, is a particularly
insidious impurity because it is an abundant element and is known to create large
recombination rates in aluminum-containing compounds.

The defect or impurity recombination rate, Rdefect , or Rd for short, was first
analyzed four decades ago in a classic paper by Shockley and Read [20]. Hall
simultaneously arrived at a similar result [21]. Thus it is known as the Shockley–
Read–Hall recombination theory. The theory begins by writing down the four
possible transition rates into and out of the trap (up and down from the conduction
band, and up and down to the valence band). Setting the rates equal in thermal
equilibrium to determine relationships between the up and down rates (similar to
the derivation of radiative transition rates in Appendix 6), an expression for the
nonequilibrium recombination rate can be derived. Within the Boltzmann nonde-
generate carrier density regime discussed in Appendix 2, the defect recombination
rate takes the form

Rd = NP − N 2
i

(N ∗ + N )τh + (P∗ + P)τe
, (4.74)

where Ni is the intrinsic carrier concentration, τe is the time required to capture
an electron from the conduction band assuming all traps are empty, and τh is
the time required to capture a hole from the valence band assuming all traps are
full. As might be expected, the capture rate is proportional to the density of traps,
1/τe,h ∝ Nt , such that the higher the trap density, the shorter the capture times.
N ∗ and P∗ appearing in the denominator are the electron and hole densities that
would exist if the Fermi level were aligned with the energy level of the trap. The
important point here is that if the trap level is close to either band edge, then either
N ∗ or P∗ will become large, substantially reducing the recombination rate. Thus,
the most effective recombination centers are those with energy levels close to the
middle of the gap, so-called deep-level traps. Great care must be taken to avoid
introducing such deep-level impurities (such as oxygen) into the crystal lattice.

It is apparent that Eq. (4.74) has a nontrivial dependence on both electron and
hole densities. However, for laser applications we are primarily interested in the
high-level injection regime where P = N � Ni , N ∗, P∗. Under these conditions,
Eq. (4.74) simplifies to

Rd = N

τh + τe
. (high-level injection) (4.75)
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Thus, defect or impurity recombination follows a linear dependence on carrier den-
sity in the active region of lasers, and we can define the defect component of the lin-
ear recombination constant as: Ad = 1/(τh + τe), using the notation of Chapter 2.

In the low-level injection limit, the form of the recombination rate changes. If
we have deep-level traps, then N ∗ and P∗ are negligible (N ∗ ≈ P∗ ≈ Ni ), and they
can be removed from Eq. (4.74). With N = N0 + δN and P = P0 + δN (assum-
ing equal numbers of excess electrons and holes) and assuming δN is small, the
recombination rate becomes

Rd = δN
N0 + P0

N0τh + P0τe
. (low-level injection) (4.76)

The recombination rate is again linear in the excess carrier density; however, the
rate depends on whether the material is doped n-type or p-type. For n-type material,
Ad = 1/τh (it is limited by the capture of holes), and for p-type material Ad =
1/τe (it is limited by the capture of electrons). Thus, while the defect or impurity
recombination rate is linear with the excess carrier density at either low or high
injection levels, the lifetime does increase from either τh or τe to τh + τe as the
carrier density is increased.

Recombination via defects and impurities is primarily a problem for excess
minority carriers or carriers injected into a region under nonequilibrium conditions.
Majority carrier current flow in heavily doped materials is relatively unaffected by
defects and impurities (aside from the possibility that defects and impurities can
affect the ionization of doping species, which can affect the doping efficiency).
In other words, material that contains a very high density of defects or impurities
may not be a good choice for a laser’s active region, but it still may carry majority
carrier current just fine if doped heavily enough.

With modern MBE and MOCVD growth technologies, the crystal quality of
semiconductor devices is such that the defect density and the density of impurity
atoms are at most 1016 cm−3, and are more often below 1015 cm−3. With such
low trap densities, the defect and impurity recombination rates are negligible in
typical laser applications. However, there are instances where such recombination
can become large and problematic.

In the early stages of MBE growth technology (in the late 1970s), it was a com-
mon belief that growth temperatures should be kept below 580◦C to retain good
surface morphology. However, a puzzling concern among researchers was that
GaAs/AlGaAs lasers grown by MBE invariably had much higher threshold cur-
rent densities than equivalent structures grown by LPE. Finally, Tsang et al. [22]
found that increasing the growth temperature to 650◦C led to dramatic reductions in
the threshold current density, lower than the best LPE material. Their explanation
was that impurities (perhaps oxygen) were being incorporated into the AlGaAs
cladding layers at densities high enough to significantly increase the threshold
current density. At the higher growth temperatures, the incorporation of impu-
rities was minimized, and dramatic improvements in the threshold current were
observed. More recently, the purity of aluminum sources used in MBE systems
has significantly improved, allowing the growth temperature to be reduced back
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down to 600–620◦C. However, unusually high threshold current densities in just-
grown lasers, which normally would yield low thresholds, can often indicate that
the MBE or MOCVD machine is introducing unwanted impurities, either through
a leak in the system or corrupted material sources.

An example of where defect recombination is important is in the aging of lasers.
As lasers are used, they inevitably go through dramatic thermal variations. Such
repeated thermal cycles can cause stress to the crystal. This stress can cause small
defects within the crystal lattice to spread and grow large, just as a small crack
in the windshield of your car can propagate across your entire field of view. A
particularly interesting example of this is the emergence of dark-line defects, which
tend to appear after lasers have been in use for thousands of hours. Such defects
show up as dark lines when viewed from the surface due to the absence of carriers
and hence spontaneous emission in regions where the “cracks” propagate. If the
original quality of the crystal is high, such dark-line defects can be minimized.
However, if they do become large with age, the threshold current of the laser will
suffer over time, and eventually the laser will die.

Another common example of where defect recombination can become important
is in the area of strained-layer research. This research is interested in growing
epitaxial layers of materials that have a different “native” lattice constant than the
substrate material. In a lattice-mismatched growth, the epitaxial layer will attempt
to deform to the substrate lattice structure. However, as the layer becomes thicker,
atomic forces building up within the epitaxial lattice structure will at some critical
thickness break discontinuously with the deformed lattice and begin to force the
lattice back to its native form. Strained layers with thickness below the critical
thickness can be of very high quality (and are indeed superior in many respects
to their unstrainted counterparts). However, strained layers with thicknesses much
greater than the critical thickness will inevitably be laden with severe lattice defects.

As the strained layer is grown thicker still, the lattice defects unfortunately
tend to propagate along the growth direction. As a result, thick strained layers
have very high defect recombination rates and are unusable for any type of
carrier injection applications such as lasers. However, techniques do exist that can
block defect propagation, allowing the upper portion of a thick epitaxial layer to
provide a high-quality lattice structure with low defect densities and hence
low defect recombination rates. For example, good-quality epitaxially grown
GaAs/AlGaAs lasers have been successfully grown on silicon substrates using
such techniques, even though the lattice constants of the two semiconductors are
very different. Furthermore, high doping of the defect-laden transition region can
allow high currents to pass across the interface, allowing for the integration and
interconnection of silicon circuits with GaAs lasers.

4.5.2 Surface and Interface Recombination

The second type of nonradiative transition in Fig. 4.18 depicts electrons recom-
bining via surface states of the crystal. The two-step recombination mechanism is
analogous to the defect and impurity recombination mechanism. However, in this
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case the number of traps is characterized by a two-dimensional sheet density at
an exposed surface of the crystal or at an interface between two materials. These
surface states primarily arise from the termination of the lattice, which inevitably
leaves a few unmatched bonds on one side of every exposed unit cell. Such dangling
bonds occur in very high densities, forming a miniband as opposed to individual
energy levels, as depicted in the figure. Surface recombination is most damaging
when the exposed surface-to-volume ratio is large—in other words, when the device
size is reduced. Interface recombination is damaging when the interface quality is
poor. With modern growth technologies, interface recombination is minimal in
common materials, but can be very detrimental in more experimental materials
research efforts. In addition, devices that make use of regrowth technology (i.e.,
devices that are put back into the growth chamber after etching or some other pro-
cessing step is performed) can suffer from poor interfaces and hence high interface
recombination.

The description of surface recombination is accomplished via the Shockley–
Read–Hall theory in analogous manner to defect and impurity recombination theory.
However, instead of defining a capture time, τ , of carriers distributed throughout a
volume of material, we define a capture rate of carriers located within some capture
length of the surface: Lc/τ . A larger capture length allows surface states to capture
more carriers per unit time and hence leads to a higher capture rate. Because of the
units, this capture rate is referred to as a velocity. The association with velocity does
have a physical significance. For example, if the capture velocity of the trap is larger
than the average thermal velocity of the carriers, then the capture rate will be limited
by the thermal velocity. This maximum arrival rate of carriers at the surface sets
an upper limit on the capture velocity of somewhere near 107 cm/s. In most semi-
conductors, the capture velocity is at least an order of magnitude smaller than this.

Redefining the electron and hole capture times as capture velocities (i.e., setting
τe → 1/ve and τh → 1/vh ), the analogous version of Eq. (4.74), neglecting N ∗
and P∗, for surface recombination becomes6

Rsr = as

V
· NP − N 2

i

N /vh + P/ve
. (4.77)

The first term effectively distributes the exposed surface area, as , over the volume of
the active region, V , because we have defined Rsr as the rate per unit active volume,
not rate per unit surface area. This geometrical factor is shown in Fig. 4.19 for two
common laser geometries. As can be seen, as/V makes surface recombination
important when the pillar diameter or stripe width is small.

Under high-level injection in the active region, P = N � Ni , and Eq. (4.77)
reduces to

Rsr = as

V
vs N (high-level injection) (4.78)

6A more rigorous version of Eq. (4.77) would integrate over all surface states within the miniband, with
possibly energy-dependent capture velocities. However, for our purposes, we will assume a discrete
energy level for the surface states.
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with
1

vs
= 1

vh
+ 1

ve
. (4.79)

The linear relationship to the carrier density allows us to define the surface recom-
bination component of the linear recombination constant as Asr = (as/V )vs . The
surface recombination velocity, vs , which controls the surface recombination rate,
is seen to be an average of the individual electron and hole capture velocities. The
use of inverse velocities in Eq. (4.61) reflects the fact that if, for example, the
electron capture velocity is very high, then surface recombination will be limited
by the capture rate of holes and vs ≈ vh .

Using Eq. (4.60), the surface recombination current and current density in the
laser can be written as

Isr = qasvs N and Jsr = qvs N
(as

V
d
)

. (4.80)

To estimate Isr , it is important to realize that we need to know the carrier density
which exists at the surface. As a first-order, upper-bound estimate of Isr or Jsr , we
can naively use the carrier density in the center of the active region (which can
be roughly estimated from the threshold gain, if we know the gain as a function
carrier density). However, in reality the heavy recombination at the surface will
deplete the surface carrier density to some level that balances the recombination
rate with the gradient-driven lateral diffusion current directed from the center to
the surface of the active region (see Problem 6 for more details). To determine this
carrier density requires solving the carrier diffusion equation.7

7Such a procedure can take on various degrees of complexity. The simplest approach is to assume an
ambipolar diffusion coefficient representing the effective diffusion of both electrons and holes (which
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Under low-level injection conditions, the surface recombination rate changes just
as Eqs. (4.57) and (4.58) are different. For laser applications we are not particularly
interested in this case. However, experimental measurements of the surface recom-
bination velocity are often made under such conditions. Using Eq. (4.78) to define
vs , we find that Equation 4.59 evaluated under small carrier density perturbations
away from the equilibrium values, N0 and P0, gives

vs ≡ V

as
· Rsr

δN
= N0 + P0

N0/vh + P0/ve
. (low-level injection) (4.81)

If the surface recombination velocity is measured under low-level injection con-
ditions, then the measured value will be dependent on the doping present. For
n-type material, vs = vh (it is limited by the capture rate of holes), and for p-type
material, vs = ve (it is limited by the capture rate of electrons). Eq. (4.81) also
assumes that δN = δP , which may not necessarily be true, yielding still different
values for vs . The most reliable values for vs relevant for laser applications must
be made under strong high-level injection conditions. For example, measuring the
threshold current dependence on the laser geometry is the most direct method.
However, geometry-dependent optical losses, which change the threshold gain, can
skew these results as well.

Surface recombination tends to be much more of a problem in the short-
wavelength GaAs system than in the long-wavelength InGaAsP system. This is
because vs is two orders of magnitude larger in GaAs. Values measured under
low-level injection conditions on GaAs and GaAs/AlGaAs quantum wells give [24]

vs ≈ 4 − 6 × 105 cm/s. (GaAs, bulk and QW) (4.82)

In n-type GaAs, values closer to 2−3 × 106 cm/s have been reported [25],
suggesting that vh is greater than ve by close to an order of magnitude.
Measurements on strained InGaAs/GaAs quantum-well lasers show a reasonable
improvement over GaAs [26]:

vs ≈ 1 − 2 × 105 cm/s. (InGaAs/GaAs, QW) (4.83)

In InGaAsP materials, surface recombination tends to be lower. Measured values
on InP give [27]

vs ≤ 104 cm/s. (InP, bulk) (4.84)

within the model sets the carrier densities equal). The recombination then follows Eq. (4.60) using the
surface recombination velocity given in Eq. (4.61), and a single carrier diffusion equation can be used.
A more extensive model would allow the electron and hole densities to be different, each with their
own diffusion constant. The recombination rate at the surface for both electrons and holes would then
take on the form Eq. (4.59), where the individual electron and hole capture velocities must be known
or fitted. The solution would then have to satisfy the drift-diffusion equations for electrons and holes.
To be complete, the drift-diffusion equations must then be coupled with Poisson’s equation taking into
account the charge distribution of the surface states [23].
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For quaternary InGaAsP, such low values are also expected. For GaN, a measured
value is

vs = 5 × 104 cm/s. (GaN, bulk) (4.85)

Example 4.4 Etched air post VCSELs have been fabricated in two different mate-
rials: one on a GaAs substrate lasing at 850 nm, the other on InP lasing at 1550
nm. Both have diameters of 3 μm. The GaAs device’s active region consists of 3–8
nm wide quantum wells; the InP device has an active region consisting of 5–6 nm
unstrained quantum wells—both characterized by the parameters in the Tables 4.4
and 4.5. The etch has proceeded through the active regions of both devices, result-
ing in surface recombination velocities of 5 · 105 and 5 · 103cm/s, respectively, for
GaAs and InP devices. VCSEL mirrors are constructed in such a way that the
one-pass threshold gain of the active regions in both cases is 1%, including the
enhancement factor of 1.8.

Problem: What are the surface recombination currents for the two cases assuming
uniform carrier distributions?

Solution: From the definition of the one pass threshold gain, we can calculate the
material threshold gain,

Gth = 0.01 = � · gth · L = �xy · �enh · gth · La .

For the GaAs VCSEL, we have

gth = Gth

�xy�enh · La
= 0.01

(1)(1.8)(24 · 10−7 cm)
= 2315 cm−1.

Now, using the relationship between material gain and carrier density, from
Table 4.4, we have that

NGaAs = Ntr · e
gth
g0 = 2.6 · 10−18 cm−3 · e

2315
2400 = 6.82 · 1018 cm−3.

Finally, from the definition of the surface recombination current, we obtain

ISR = (1.6·10−19C)(24·π ·3·10−7·10−4 cm2)

× (5·105 cm/s)(6.82·1018 cm−3) = 1.23 mA.

Similarly, for InP, we get

gth = 1852 cm−1; NInP = 6.15 · 1018 cm−3;

and

ISR = (1.6·10−19 C)(30·π ·3·10−7·10−4 cm2)

× (5·103 cm/s)(6.15·1018 cm−3) = 13.9 μA.
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In GaAs/AlGaAs and InGaAs/GaAs lasers, surface recombination can be quite
severe for small devices. To get a feeling for how small, Fig. 4.20 plots the threshold
current density of a typical InGaAs QW VCSEL and an in-plane laser for different
values of vs (using the gain as a function of carrier density and current density given
later in the chapter). At vs = 1 × 105 cm/s, the VCSEL threshold current density
doubles from ∼500 A/cm2 to ∼1000 A/cm2 when the pillar diameter is reduced
to 10 μm. This characteristic is common for InGaAs QW VCSELs. If we were
to use GaAs QWs with vs perhaps equal to 5 × 105 cm/s, the threshold current
density would double at 50 μm! In long wavelength materials, vs ≤ 104 cm/s and
pillar diameters could be reduced to 1 μm before the threshold current density
would double. Similarly for the in-plane laser, problems become severe for stripe
widths less than 10 μm using InGaAs QWs (with vs = 1 × 105 cm/s). However, it
is important to realize that these estimates assume the carrier profile is flat across
the active region. A more realistic carrier profile will produce threshold current
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FIGURE 4.20: Threshold current density versus lateral device dimensions for different
surface recombination velocities (assuming Dnp = ∞). Both lasers use In0.2Ga0.8As/GaAs
80 Å QWs and have a 1500 cm−1 threshold material gain (Tables 4.4 and 4.5 are used to
obtain Nth = 3.62 × 1018 cm−3 and Jth = 166.4A/cm2 per QW). The length of the in-plane
laser is assumed to be 250 μm.
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densities somewhat lower than indicated, particularly at the smaller dimensions
(see Problem 7 and Example 4.5).

Because there is much interest in reducing the active volume well below the
limits imposed in Fig. 4.20, much attention has focused on ways to reduce or
eliminate surface recombination. One obvious method would be to define the stripe
or pillar without etching through the active region. However, one must now contend
with lateral outdiffusion of carriers at the stripe or pillar edges. In Problem 7, it is
shown that the ambipolar diffusion of carriers out of the active region is equivalent
to a surface recombination velocity of magnitude

vsD ≡ Dnp

Lnp
=

√
Dnp

τnp
= 1 × 105 cm/s ·

[
Dnp

20 cm2/s

2 μm

Lnp

]
(4.86)

Dnp and Lnp are the ambipolar diffusion constant and related diffusion length, and
τnp is the average carrier lifetime. The last equality evaluates vsD for common
values, revealing that carrier outdiffusion “velocities” and surface recombination
velocities are unfortunately of similar magnitude. To minimize carrier outdiffusion,
we must bury the active region in a higher-bandgap material that provides a lateral
potential barrier to carriers. However, such regrowth technologies, although popular
and effective in long-wavelength systems, have remained problematic in AlGaAs-
containing compounds.

Example 4.5 The surface recombination velocity can be estimated using the sim-
ple “broad-area” (i.e., infinite stripe width) threshold carrier density; however, in
reality, the carrier density profile will vary over the cross section of the active
region, particularly when the active width is narrow. In this problem, the effects of
a finite diffusion constant for carriers in the active region will be examined. Assume
that the carrier densities in the active region are high enough that any differences
in the diffusion profiles of electrons and holes will set up an electric field that
will pull the two densities to nearly the same profile. In this ambipolar diffusion
limit, the hole diffusion rate is enhanced by a factor of ∼2 by the forward pull of
the electrons, and the electron diffusion rate is limited to approximately twice the
normal hole diffusion rate by the backward pull of the holes. The overall effect
is that we can assume the electron and hole densities are equal everywhere in the
active region and are characterized by a single ambipolar diffusion constant, Dnp .
The lateral profile of carriers is then governed by the simple diffusion equation:

Dnp
d2N (x)

dx2
= − I (x)

qV
+ N (x)

τnp
. (4.87)

The carrier lifetime is in general a function of N ; however, to obtain analytic
solutions, we can evaluate the lifetime at the broad-area threshold value, τnp |th =
qLz Nth/Jth . The problem we wish to solve is the carrier density profile across the
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width of the active region in the in-plane laser depicted in Fig. 4.19. For this case,
we can define two distance regions: one beneath the contact within w where we
assume a uniform current injection profile, and the region outside w where there
is no current injection. Mathematically, with x = 0 defined as the center of the
stripe, we have I (x) = I0 for x < w/2, and I (x) = 0 for x > w/2. In fabricating
the laser we can either leave the active region in place outside the stripe, or we
can remove it by etching through the active region outside the contact area. The
first case leads to carrier outdiffusion, whereas the second case leads to surface
recombination. We would like to compare these two cases.

Problem: (1) With the active region in place away from the contact, carriers are
free to diffuse outside the stripe width. Solve for the concentration of the carriers
N (x ) in and out of the stripe assuming the carrier density and its derivative (i.e., the
diffusion current) are constant across the x = w/2 boundary. Solve for the carrier
profile in this case. (2) With the active region etched away, the carriers recombine
at the surface, solve for the concentration of the carriers N (x ) under the stripe
assuming the diffusion current (defined by the slope of the carrier density) is equal
to the surface recombination current, DnpdN /dx = −vs N , at the x = w/2 bound-
ary. Place your result in terms of the diffusion equivalent surface recombination
velocity, vsD = √

Dnp/τnp . Solve for the carrier profile in this case.

Solution: From the carrier diffusion equation, (4.111), we can express the carrier
concentration as

d2N (x)

dx2
− N (x)

Dnpτnp
= − I (x)

qVDnp
. (4.88)

If we define x = 0 as the lateral center of the laser stripe, we then have that

I (x) =
{

I0 |x | ≤ ∣∣W
2

∣∣
0 |x | >

∣∣W
2

∣∣. (4.89)

If we define L = √
Dnpτnp and G = I (x)

qVDnp
, then the carrier diffusion equation can

be rewritten as

d2N (x)

dx2
− N (x)

L2
= −G .

This is a special simplified form of the second order linear partial differential
equation, whose solutions can be expressed analytically.

For |x | <
∣∣W

2

∣∣, within the stripe width, the carrier diffusion equation has a solu-
tion of

N (x) = A cosh
(x

L

)
+ GL2

because the solution needs to be symmetric about x = 0, due to the statement of
the problem. A will be determined by matching the boundary conditions.
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For |x | >
∣∣W

2

∣∣, withing the stripe width, the carrier diffusion equation has a
solution of

N (x) = Be
−|x |

L ,

where B will be determined by matching the boundary conditions. The other math-
ematically possible solution, e

|x |
L , is not physical because the carrier density would

go to infinity with x− > ∞.

Case 1—active region left outside the stripe
In this case, the boundary conditions at x = w

a are that N (x) is continuous, and
dN (x)

dx is continuous. Applying these boundary conditions, we have

A = −1

2
GL2e−w/2L

B = −A
(
ew/L − 1

)

= GL2

2

(
ew/2L − e−w/2L.

)

Therefore, the carrier density profile is given by

N (x) =
{

GL2
[
1 + −1

2

(
e(x−w/2)/L + (

e(−x−w/2)/L
))] |x | ≤ ∣∣W

2

∣∣
GL2

2

(
e(w/2−|x |)/L − (

e(−|x |−w/2)/L
)) |x | >

∣∣W
2

∣∣
Case 2—active region etched outside the stripe
In this case, there will be no carriers outside the active strip. The solution for

the carrier density equation inside the strip is the same as previously derived;
however, there will be a different boundary condition to satisfy at the surface.
Basically, the diffusion current at the boundary needs to be equal to the surface
recombination current, −qvs N = qDnp

dN
dx . If we define surface recombination

velocity as vsD =
√

Dnp
τnp

, we have

N (x) = GL2

⎡
⎣1 − ex/L + e−x/L(

1 + vsD
vs

e
w
2L

)
+

(
1 − vsD

vs
e

−w
2L

)
⎤
⎦ .

Other techniques for reducing the effects of surface recombination are also
being considered. One interesting method involves surface passivation. As might
be expected, the density and character of surface states is very dependent on the sur-
face chemistry. For example, an oxidized surface provides a different recombination
velocity than a freshly etched surface. If a GaAs surface is soaked for a while in
a water solution containing Na2S, (NH4)2S, or any one of various salts that yield
aqueous sulfur species, it has been demonstrated that the surface recombination
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velocity can be reduced dramatically, yielding vs ≈ 103 cm/s under high-level
injection conditions [28]. Unfortunately, the sulfur-containing compounds that tie
up and passivate the dangling bonds are somewhat volatile, and the surface passi-
vation effect can fade within an hour or two of exposure to air. Thus, efforts are
under way to make the passivation more permanent by placing an oxide or nitride
cap over the surface immediately after it has been passivated to lockin and retain
the passivating layer.

4.5.3 Auger Recombination

The last type of transition in Fig. 4.18 depicts what is essentially a collision between
two electrons that knocks one electron down to the valence band and the other to
a higher energy state in the conduction band. The high-energy electron eventually
thermalizes back down to the bottom of the conduction band, releasing the excess
energy as heat to the crystal lattice. An analogous collision can occur between
two holes in the heavy hole (HH) band; in this case, the hole that is knocked
deeper into the valence band is transferred to either the split-off (SO) or light hole
(LH) band. In all, there are three types of transitions, collectively referred to as
Auger processes, which are relevant in III-V semiconductors. These are shown in
Fig. 4.21. For quantum-well material, additional types of subband-to-subband and
bound-to-unbound transitions can be defined, but they still fall into these three
general categories.

Because Auger processes depend on carriers colliding with one another, the
Auger recombination rate, RA, should increase rapidly as carrier density increases.
The CCCH process involves three electron states and one heavy-hole state, and
hence is expected to become important when the electron density is high. The
CHHS and CHHL processes involve one electron state, two heavy-hole states, and
one split-off or light-hole state. Thus, they are expected to become important when
the hole density is high. In lasers, the electron and hole densities in the active
region are equal (if the active region is not heavily doped) implying that all three
processes are potentially important.
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FIGURE 4.21: Auger processes in III–V semiconductors.
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The Auger recombination rate, like the radiative transition rates, is dependent
on the probability of finding the various states occupied or empty, as the case may
be. For the Auger processes in Fig. 4.21, the relevant Fermi factors are

P1→3 = fc1fc2(1 − fv3)(1 − fc4), (CCCH) (4.90a)

P3→1 = (1 − fv1)(1 − fv2)fc3fv4. (CHHS and CHHL) (4.90b)

The subscript on the probability, P , indicates the significant electron recombination
path. The additional c and v subscripts on the Fermi functions identify the quasi-
Fermi level to be used in each case: EFc or EFv .

To obtain simple indicators of how these Fermi factors vary with carrier density,
we use the Boltzmann approximation (which is strictly valid only for low carrier
densities). From Table 10.1 we have

N

Nc
≈ e−(Ec−EFc )/kT and

P

Nv

≈ e−(EFv−Ev)/kT , (4.91)

which hold as long as EFc � Ec and EFv � Ev . Under these conditions, the 1 in
the denominator of the Fermi functions defined in Eq. (4.3) can be neglected, and

fc ≈ e−(E−EFc )/kT = N

Nc
e−(E−Ec )/kT ,

1 − fv ≈ e−(FFv−E )/kT = P

Nv

e−(Ev−E )/kT . (4.92)

With these relations, the transition probabilities can be approximated by

P1→3 ≈ N 2P

N 2
c Nv

e−(�E1+�E2+�E3)/kT , (CCCH) (4.93a)

P3→1 ≈ NP2

NcN 2
v

e−(�E1+�E2+�E3)/kT , (CHHS and CHHL) (4.93b)

where �Ei = Ei − Ec for conduction band states, and �Ei = Ev − Ei for valence
band states. The fourth, high-energy state is assumed to be completely empty
(CCCH) or completely full (CHHS and CHHL). These probability factors suggest
that CCCH processes are ∝ N 2P whereas, CHHS and CHHL processes are
∝ NP2. Furthermore, for a given electron and hole density, the probability
of Auger recombination increases exponentially with temperature. The strong
dependence on both carrier density and temperature makes Auger recombination
a potentially devastating recombination path for carriers in laser applications.

The Auger recombination rate is also strongly dependent on the bandgap of
the material. To understand why this is so, we need to examine the consequences
of energy and momentum conservation. With Auger transitions, as with radiative
transitions, the initial energy and momentum of the system must be conserved.
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This constrains Auger transitions to specific regions of the bands. In particular, the
lowest possible energy configuration does not occur right at the band edge, as it
does with radiative transitions, but at a slightly higher energy. This “lowest energy”
configuration for the CCCH process is depicted in Fig. 4.22 for two different
bandgaps. The shading illustrates the location of electrons assuming a zero
temperature distribution. The presence of holes at state 3 is greatly enhanced for
the smaller bandgap material; this allows for a much higher Auger transition rate
for the same overall carrier density. In fact at zero temperature, such lowest-energy
Auger transitions would not occur in the higher-bandgap material because state 3
would be fully occupied. The two initial electron states, 1 and 2, are also closer
to the band edge in the smaller-bandgap material, further enhancing the Auger
transition rate, because at finite temperatures more electrons can be found there.

To gain a more quantitative feel for how the bandgap affects the Auger transition
rate, we need to estimate how the transition probabilities in Eq. (4.93b) are affected
by the bandgap. Figure 4.22 demonstrates how states 1, 2, and 3 move closer
to the band edge as the bandgap is reduced. In mathematical terms, the sum of
energy offsets from the band edge, �E1 + �E2 + �E3, is reduced as the bandgap
is reduced. This sum can be described more conveniently in terms of �E4 using
energy conservation. Setting the initial energy equal to the final energy for the
CCCH process in Fig. 4.21 or 4.16, we must have

�E1 + �E2 = −(Eg + �E3) + �E4, (4.94)

where Ec is used as the energy reference. Rearranging, we obtain

�E1 + �E2 + �E3 = �E4 − Eg . (4.95)
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FIGURE 4.22: Lowest-energy CCCH Auger transition for two different bandgaps. The four
states are drawn roughly to scale, with μ = mC /mH ≈ 5.
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Thus, the probabilities in Eq. (4.93b) are maximized when �E4 is minimized. This
minimum value for �E4 is referred to as the threshold energy, ET , of the Auger
process. The lowest-energy CCCH configuration in Fig. 4.22 corresponds to this
threshold energy process and is therefore the most probable configuration for CCCH
Auger transitions.

Appendix 12 details the math involved with minimizing Eq. (4.78) subject to
momentum conservation. This exercise provides expressions for all energies and
k -vectors associated with the threshold Auger process. In particular, the threshold
energy for all three Auger processes in Fig. 4.21 are found to be

ET = 2mC + mH

mC + mH
Eg , (CCCH) (4.96)

ET = 2mH + mC

2mH + mC − mS
(Eg − �so), (CHHS) (4.97)

ET = 2mH + mC

2mH + mC − mL
Eg . (CHHL) (4.98)

For the CHHS process, ET is measured from the SO band edge. The effective
mass prefactors typically fall in the range of 1.1–1.2.8 The important point to
notice is that the threshold energy is proportional to the bandgap. Using Eq. (4.95)
in Eq. (4.93b), the maximum probability for CCCH Auger transitions becomes

P1→3 ≈ N 2P

N 2
c Nv

e−(ET −Eg )/kT , (CCCH) (4.99)

and similarly for the other two processes. With ET ∝ Eg , it is clear that the max-
imum probability for Auger transitions increases exponentially as the bandgap is
decreased. For example, if we were to reduce the bandgap of a given material by
a factor of two, the probability for CCCH Auger recombination would increase by

P(Eg/2)

P(Eg )
≈ e−(1/2)(ET −Eg )/kT

e−(ET −Eg )/kT
= e(1/2)aEg /kT , (4.100)

where

a = ET /Eg − 1 (≈ 0.1 − 0.2). (4.101)

InGaAs, a = 0.15 for the CCCH process, giving an increase of e4.14 ≈ 63 at
room temperature, if the bandgap were reduced by a factor of 2. With a = 0.2,
this factor would be e5.52 ≈ 250, indicating a strong dependence on ET /Eg − 1.
This example, although not quantitatively accurate (in that it only considers
the transition probability of one set of states, and assumes the Boltzmann

8For GaAs (0.87 μm) : (CCCH, CHHS, CHHL) = (1.15, 1.22, 1.12).
For InGaAsP (1.3 μm) : (CCCH, CHHS, CHHL) = (1.12, 1.13, 1.07).
For InGaAsP (1.55 μm) : (CCCH, CHHS, CHHL) = (1.11, 1.11, 1.06).
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approximation), nevertheless serves to illustrate the severity of the problem for
long-wavelength lasers, which must deal with Auger recombination rates much
larger than in short-wavelength lasers.

A type of Auger transition we have not yet considered involves an additional
particle, a phonon of the crystal lattice, which can absorb much of the momentum
in the transition. Such phonon-assisted transitions are familiar from indirect gap
materials such as silicon, where strong phonon-assisted absorption across the indi-
rect gap can occur, even though the electron’s momentum changes dramatically
(it is transferred from the phonon). With phonon-assisted Auger processes, the
final momentum of the two electrons does not have to equal the initial momentum
(but the overall momentum including the phonon is still conserved). In reference to
Fig. 4.22, this implies that states 1, 2, and 3 are free to move closer to the band edge
than allowed with momentum conservation. Thus, they become more probable and
less sensitive to the bandgap and temperature because a threshold energy (which
depends on bandgap) no longer exists. However, phonon-assisted Auger processes
do involve an additional particle and hence are less likely to occur overall.

In general, phonon-assisted Auger transitions become important in situations
where normal Auger recombination is minimal: that is, in large-bandgap materials
and/or at low temperatures. For example, Auger recombination in GaAs is domi-
nated by phonon-assisted processes, whereas InGaAsP long-wavelength materials
are dominated by normal Auger processes at room temperature. However, at low
temperatures below 100–150◦C, normal Auger processes are suppressed, and the
less temperature sensitive, phonon-assisted processes begin to dominate even in
long-wavelength materials.

To quantify the total Auger recombination rate, one would in principle use
Fermi’s Golden Rule to estimate the transition rate for a given set of states. This
would involve evaluating the overlap integral of the four states with a coulom-
bic potential perturbation, in addition to evaluating the Fermi factors defined in
Eq. (4.90b). With Fermi’s Golden Rule known for each set of four states, one
would then have to sum over all possible sets of states that obey energy and momen-
tum conservation. With four states involved in the transition, this would involve
summing independently over four k -vectors. However, energy and momentum con-
servation constrain the sums to two independent k -vectors.

Example 4.6 In a compressively strained, 1550-nm quantum-well material, the
Auger coefficient was measured to be C = 6 · 10−29 cm6/s at 300 K. The Auger
threshold energy can be assumed to be 10% higher than the bandgap energy
corresponding to the 1550-nm lasing wavelength.

Problem: If the temperature were increased to 340 K, what would the value of
the new Auger coefficient C be?

Solution: From the problem statement, we can establish the relationship between
the Auger coefficients at different temperatures,

C (340 K) = C0 · e− 0.1·Eg
kT .
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For this active material, the bandgap energy is Eg = 800 meV. At 300 K,

C (300 K) = 6 · 10−29 cm6/s = C0 · e− 80
26 ,

where kT = 26 meV at room temperature. Finally,

C (340 K) = C (300 K) · e
300
340 = 1.436 · C (300 K) = 8.617 · 10−29 cm6/s.

Theoretical models attempting the preceding procedure were first considered by
Beattie and Landsberg in their pioneering 1959 paper on Auger recombination [29].
Since that time researchers have applied more refined versions of the theory to var-
ious material systems. Dutta and Nelson [30] analyzed the InGasP system, whereas
Takeshima [32] also analyzed AlGaAs and other systems. Van de Walle analyzed
InGaN-based systems using density-functional theory with many body perturbation
theory [31]. Taylor et al. [39] as well as others have attempted to extend the theory
to quantum wells and quantum-wire material. Unfortunately, the difficulty with
theories of Auger recombination is that information of the band structure at more
than a bandgap away from the band edge must be known accurately. Overlap inter-
grals of “k -space distant” Bloch functions must also be known. Such experimental
information is sparse, and theories are inevitably led to making very simplifying
assumptions. In contrast, the spontaneous emission rate considered in Section 4.4
can be obtained from the band edge Bloch function overlap and band edge cur-
vatures, data that is experimentally abundant. Hence, spontaneous emission rate
calculations can be quite accurate.

In general, theories can predict the Auger rate to within an order of magnitude.
That is not to say they are not important. On the contrary, they remain valuable
for predicting trends in the Auger recombination rate, such as the temperature and
bandgap dependence. Also, the relative effects of material composition variations
and of reduced dimensionality can be estimated theoretically. In addition, the rel-
ative importance of the three Auger processes can be determined. Most Auger
theories predict that the CHHS process dominates in common III–V semiconduc-
tors, with the CCCH process almost an order of magnitude smaller (however, some
theories estimate comparable magnitudes for these two processes). The CHHL
process is orders of magnitude smaller than either the CHHS or CCCH process
and its contributions are negligible.

Continued refinements in the theory can hopefully produce more accurate predic-
tions. For example, Takeshima [32] has enhanced the accuracy of his Auger theory
by using realistic band structures. His model extends deep into both conduction and
valence bands, accounting for the nonparabolicity in all bands. In addition the band
model includes the anisotropy of the band structure (the change in the band curva-
ture along different directions of the crystal), which he considers a very important
factor. His predictions include phonon-assisted Auger processes implicitly, which
he finds also to be important in InGaAsP material, contrary to the results of other
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researchers. His predictions, in particular, appear to match well with experimentally
obtained results on InGaAsP material.

In light of the above theoretical challenges, the most common method of esti-
mating Auger recombination is to use experimentally obtained Auger coefficients
in combination with the calculated or experimentally measured carrier density,
assuming a recombination rate per unit volume of the form:

RA = CnN 2P + CpNP2, (4.102)

where the first term is due to the CCCH Auger process and the second term
is due to the CHHS process. These dependencies are strictly valid only under
nondegenerate conditions where Eq. (4.93b) can be used. For degenerate carrier
densities (≥1018 cm−3), this functionality overestimates the Auger recombination
rate somewhat. However, use of Eq. (4.102) is widespread and convenient.

In laser applications with lightly doped active regions, N = P at high injection
levels and the Auger recombination rate simplifies to

RA = CN 3 = IAuger

qV
, (4.103)

where C is a generic experimentally determined Auger coefficient that lumps
together CCCH, CHHS, and phonon-assisted Auger processes. In long-wavelength
InGaAsP materials, various carrier lifetime measurements that can extract the cubic
dependence on carrier density place C anywhere from 10−29 cm6/s to 10−28 cm6/s
at room temperature, depending on the particular method of measurement and the
material used. Representative values at room temperature are:

C ≈ 2 − 3 × 10−29 cm6/s, (bulk1.3 μm InGaAsP) (4.104)

C ≈ 7 − 9 × 10−29 cm6/s. (bulk1.55 μm InGaAsP) (4.105)

Equation (4.104) agrees well with the predictions of Takeshima [32]. For GaAs,
less data exist. Experimental data from Takeshima gives an Auger coefficient that
is about an order of magnitude less than in long-wavelength systems at room
temperature:

C ≈ 4 − 5 × 10−30 cm6/s. (bulk GaAs) (4.106)

For InGaN, based on the work by Van de Walle [31], the Auger coefficient is given
by

C ≈ 2 × 10−30 cm6/s. (InGaN quantum wells, λ = 0.496 μm) (4.107)

For other material systems, the Auger recombination rate is not well
characterized, but is expected to be similar to the values given in Eqs. (4.104)
through (4.107), depending on the bandgap of the material.

In quantum wells, the band structure is converted into subbands and it is
expected that the Auger rate is modified. Discussions by Smith et al. [33]
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and Taylor et al. [34] predict that the Auger coefficient should be reduced by
∼√

kT/aEg in quantum-well material, where a is defined in Eq. (4.101), for
aEg > kT . For long-wavelength materials, this factor is on the order of 1.5–2.0.
Experiments by Hausser et al. [39] indicate a reduction of about 3 in the Auger
coefficient when comparing measurements of quantum-well and bulk material.
Thus, reduced dimensionality appears to help with Auger recombination, but does
not completely solve the problem.

Another possible method of minimizing Auger recombination involves using
strain, which it has been suggested should reduce the Auger coefficient (see
Problem 7). Strained quantum-well lasers in long-wavelength material systems in
fact have approached threshold current densities comparable to larger-bandgap
quantum-well lasers, suggesting that the Auger recombination is much lower in
these devices.

4.6 ACTIVE MATERIALS AND THEIR CHARACTERISTICS

In this last section, we are going to run through a number of example calcula-
tions in bulk and quantum-well material in the two most popular material systems,
GaAs/AlGaAs and InGaAs/InP. The examples will serve to quantitatively illustrate
the various dependencies between the gain, current, and carrier density in different
materials. The order of presentation will proceed as follows. We will first look at
various gain spectra for different carrier densities. The peak gain and differential
gain will then be determined as a function of carrier density. The spontaneous
emission spectrum and its relation to carrier density will then be explored. From
this, the current as a function of carrier density and ultimately the gain as a function
of current density will be obtained. Experimental comparisons will then be made
to estimate the accuracy of the model. Finally, we will explore the parameter space
by varying the width of the quantum well, the doping, and the temperature.

4.6.1 Strained Materials and Doped Materials

Before getting started with the examples, we need to briefly consider the concept of
strained QWs, because a number of the examples considered include them. Strained
QWs use a material that has a different native latice constant than the surrounding
barrier material. If the QWs native lattice constant is larger than the surrounding
lattice constant, the QW lattice will compress in the plane, and the lattice is said to
be under compressive strain. If the opposite is true, the QW is under tensile strain.
In the GaAs system, adding a little indium to GaAs to form InGaAs can increase the
native lattice constant, allowing for the construction of InGaAs/GaAs compressively
strained QWs. In the InP system, the InGaAs ternary (or InGaAsP quaternary) can
be either smaller or larger than the lattice constant of InP. Thus, both tensile and
compressive strain can be achieved with InGaAs/InP QWs. However, in any lattice-
mismatched system, it is important to realize that there is a critical thickness beyond
which the strained lattice will begin to revert back to its native state, causing high
densities of lattice defects. For typical applications, this critical thickness is on the
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order of a few hundred angstroms, thus limiting the thickness of strained active
layers to a few QWs.

The effects of strain on the bandgaps are considered in detail in Appendix 11.
The corresponding effects on the band curvature are discussed in the latter part of
Appendix 8. Essentially strain of either type increases the curvature of the valence
band structure, greatly reducing the effective mass. However, compressive strain is
better at doing this. In relation to the gain, the implications are many. For example,
Fig. 4.23 shows a typical band structure in the center. Due to charge neutrality under
high-injection conditions, and the asymmetry in the effective masses, the quasi-
Fermi levels separate more toward the conduction band, as discussed in relation to
Fig. 4.9. Strain can reduce the valence band effective mass allowing the quasi-Fermi
levels to separate more symmetrically, as shown to the left.

The advantage of the left plot can be seen in the following. Concentrating on
the conduction band, it is clear that for a given quasi-Fermi level separation, the
electron density is always lower in the left plot than in the center plot. Thus, at trans-
parency when the quasi-Fermi levels are separated by the bandgap in both cases,
the left plot inevitably has a lower carrier density. In other words, the transparency
carrier density, Ntr , can be reduced substantially in strained materials. In addition,
because the current goes roughly as N 2, the transparency current, Jtr , can also be
reduced. In practical structures, the reduction can be as much as a factor of 2.

An additional advantage of the arrangement on the left in Fig. 4.23 is that the
differential gain is also enhanced. So not only does the material reach transparency
faster, but the gain also increases faster with carrier density. To understand this, it
is important to realize that the differential gain, dg/dN, depends on how quickly the
band edge carrier density changes in response to movements in the quasi-Fermi
levels. Because the slope of the Fermi occupation probability function with energy
is maximized at the location of the quasi-Fermi level, the band edge carrier density
will be affected most when the quasi-Fermi level is aligned with the band edge.
Thus, for increased differential gain, it is critical to bring both quasi-Fermi levels
as close to the band edges as possible. The left plot clearly accomplishes this task

Strain No strain
No doping

P-type doping

EFc

EFv

EFc

EFv

EFc

EFv

FIGURE 4.23: Illustration of how the quasi-Fermi levels are affected by strain and p-type
modulation doping.
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(particularly near transparency). The improvement in differential gain in strained
materials can be as much as a factor of 2.

Another way to improve the differential gain is by p-type doping of the active
region. As shown in the plot on the right in Fig. 4.23, the addition of doping can
pull the quasi-Fermi levels down to a more symmetrical position just as strain
does. Similarly, because of the alignment of the quasi-Fermi levels with the band
edges, the differential gain can again be improved. However, in this case, while
the electron density can be reduced at transparency for similar reasons as with
the strained example, the hole density is increased. Now because the electron
density is degenerate while the hole density is nondegenerate, the downward shift
in quasi-Fermi levels increases the hole density faster than it decreases the electron
density (P increases approximately exponentially while N decreases approximately
linearly). Thus, the NP product actually increases in this case, resulting in a higher
transparency current density. So unlike strained materials, where both transparency
and differential gain are improved, p-type doping increases the differential gain at
the expense of increased transparency current densities. Later we will examine this
relationship more quantitatively.

4.6.2 Gain Spectra of Common Active Materials

The following gain spectra were calculated using Eqs. (4.38) and (4.39) with
the reduced density of states functions derived in Appendix 8. Lineshape
broadening which smooths the spectral features has been included using Eq. (4.46)
with Eq. (4.48) as the lineshape function. The two quasi-Fermi levels defining
the gain have been connected by assuming charge neutrality in the QW region,
including filling of barrier states directly above the QW states. The carrier density
therefore refers to all carriers within the QW region. Also for the QWs, the
polarization is assumed to be in the plane of the well (TE polarization) because
the matrix element is much larger for this polarization. And unless otherwise
specified, all active materials are undoped.

Figure 4.24 shows gain spectra for three common active materials in the GaAs
system: (1) bulk GaAs, (2) an unstrained GaAs/Al0.2Ga0.8As 80 Å QW, and (3) a
compressively strained In0.2Ga0.8As/GaAs 80 Å QW. Figure 4.25 shows gain
spectra for three common active materials in the InP system: (1) lattice-matched
bulk In0.53Ga0.47As, (2) an unstrained In0.53Ga0.47As/(Q1.08) 60 Å QW, and
(3) a compressively strained In0.68Ga0.32As/(Q1.08) 30 Å QW. The strained QW
has a +1% lattice mismatch to InP. Both QWs have bandgap wavelengths of
1.5 μm. The (Q1.08) notation implies quaternary InGaAsP with 1.08 μm bandgap
wavelength.

The bulk gain spectra in both Figs. 4.24 and 4.25 are much smoother than the
staircase QW gain spectra. However, the QW gain spectra tend to provide higher
gain near the band edge. In comparing the QW gain spectra, the unstrained QWs
have a higher maximum gain, gmax, due to the larger density of states in the
valence band available to participate in transitions. However, it takes more carriers
to reach near complete inversion in the unstrained QWs. Other features in the QW
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FIGURE 4.24: TE gain spectrum versus carrier density in GaAs based materials. Indicated
values are the sheet carrier densities: ×1012 cm−2 (the bulk “sheet” density assumes an
80 Å width).

gain spectra include various subband transitions. These features are to be compared
with the idealized version in Fig. 4.13. At shorter wavelengths in the GaAs based
QWs, a bulk contribution from the 100 Å AlGaAs or GaAs barrier layers on either
side of the QW appears. In fact, the barriers also become inverted for very high
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FIGURE 4.25: TE gain spectrum versus carrier density in InP-based materials. Indicated
values are the sheet carrier densities: ×1012 cm−2 (the bulk “sheet” density assumes a 60 Å
width). The material gain in the 30 Å QW is divided by 2 to account for the smaller optical
confinement in comparison to the 60 Å QW.

carrier densities, particularly in the InGaAs/GaAs QW. In the InP-based QWs, the
bulk contributions are not within the wavelength range shown. The sheet carrier
density (NLz ) required to achieve gain in all cases appears to be slightly less than
2 × 1012 cm−2.
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4.6.3 Gain versus Carrier Density

To get a better feel for how the gain varies with carrier density, the peak of the
gain spectrum is plotted as a function of carrier density in Fig. 4.26. The upper
plot includes the GaAs-based active materials. Generally, Ntr is clustered near
2 × 1012 cm−2. However, the strained QW has the lowest Ntr and increases the
fastest with N , as expected from earlier discussions in Section 4.6.1. Curiously,
the bulk GaAs and the GaAs QW have similar characteristics. In other words, it
would appear that an 80 Å bulk GaAs layer would behave similarly to an 80 Å
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FIGURE 4.26: Peak TE gain versus sheet carrier density in GaAs (upper) and InP (lower)
based materials (bulk “sheet” densities assume an 80 Å width for GaAs and a 60 Å width
for In0.53Ga0.47As). In the lower plot, the strained QWs have 1.5 μm bandgaps where:
1% = (30 Å, xind = 0.68), 0% = (60 Å, xind = 0.53), −0.37% = (120 Å, xind = 0.48), and
−1% = (150 Å, xind = 0.38). Also in the lower plot, the dashed curves are TM gain, and
the “adjusted” material gain is the material gain multiplied by Lz /60 Å to account for the
difference in confinement for QWs of different width.
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GaAs QW, and that the major improvement to be gained from QWs is simply a
volume effect rather than a “quantum size” effect.

The lower plot in Fig. 4.26 includes the InP-based active materials with the
addition of two strained QWs: (1) a −0.37% tensile strained In0.48Ga0.52As/(Q1.08)
120 Å QW, and (2) a −1% tensile strained In0.38Ga0.62As/(Q1.08) 150 Å QW,
both with bandgap wavelengths close to 1.5 μm. For these QWs, the C–LH
transition (which provides higher gain for polarizations perpendicular to the well
plane–TM polarization) is dominant, and hence for these two cases, the peak TM
gain is plotted. In this system, Ntr for the unstrained and compressive materials
is clustered closer to 1 × 1012 cm−2. Again, the +1% strained QW increases the
quickest with carrier density. However, it saturates faster than the tensile strained
QWs. Bulk In0.53Ga0.47As has the lowest Ntr and remains comparable to the
unstrained QW performance. The two tensile strained QWs have a higher Ntr , but
do not saturate nearly as quickly, allowing for lower threshold carrier densities at
high threshold gains.

Curve fits have been applied to all gain curves in Fig. 4.26. The results appear in
Table 4.4. The two-parameter (Ntr , g0) logarithmic functionality works reasonably
well. However, for more linear gain curves (such as the bulk gain curves), the fit
is not so good. To correct for this, a third linearity parameter, Ns , has been added.
For this three-parameter model, the logarithmic functionality converts to linear
functionality as Ns → ∞ and g0/Ns → constant. Thus, the larger Ns is in the table,
the more linear the curve is, and the worse the two-parameter fit. In general, the
strained materials follow much closer to a pure logarithmic functionality. Both two-
and the more accurate three-parameter fits appear in the table. All carrier densities
in the table have been converted to volume carrier densities, and all material gains

TABLE 4.4: Three- and Two-Parameter Gain versus Carrier Density Curve Fits

g = g0 ln

[
N + Ns

Ntr + Ns

]
g = g0 ln[N /Ntr ]

Active Material Ntr Ns g0 Ntr g0

Bulk GaAs 1.85 6 4200 1.85 1500
GaAs/Al0.2Ga0.8As 80 Å QW 2.6 1.1 3000 2.6 2400
In0.2Ga0.8As/GaAs 80 Å QW 1.8 −0.4 1800 1.8 2100

Bulk In0.53Ga0.47As 1.1 5 3000 1.1 1000
InGaAs 30 Å QW (+1%) 3.3 −0.8 3400 3.3 4000
InGaAs 60 Å QW (0%) 2.2 1.3 2400 2.2 1800
InGaAs 120 Å QW (−0.37%) 1.85 0.6 2100 1.85 1800
InGaAs 150 Å QW (−1%) 1.7 0.6 2900 1.7 2300

In0.15Ga0.85N 25 Å QW [42] — — — 8 2400

Inverse Relation Differential Gain

N = (Ntr + Ns )eg/g0 − Ns
dg

dN
= g0

N + Ns

[N ] = 1018 cm−3, [g] = cm−1.
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are for each particular well width (“adjusted” material gains as used in Fig. 4.26
are not used here).

The differential gain, dg/dN, is an important parameter in high-speed laser
applications. This is primarily because the relaxation resonance frequency of the
laser depends on the square root of the differential gain as we learned in Chapter 2
and will discuss more fully in Chapter 5. Thus, higher differential gains can ideally
improve the modulation response of the laser (in practice, however, other damping
factors are just as important in determining the overall modulation bandwidth).
Figure 4.27 plots dg/dN for the gain curves in Fig. 4.26, dramatically revealing
the importance of working close to transparency when designing high-speed
lasers. In general, numbers in the mid- 10−16 cm2 are expected, and this is what
is generally observed in QW lasers (however, there can be a large variation in
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the measured differential gain depending on the threshold carrier density of the
laser). In both material systems, the strained QWs yield a ∼50% improvement
over unstrained QWs. The bulk values in both cases are the lowest, coming in
at below 5 × 10−16 cm2. In the InP system, dg/dN is highest at both extremes
of strain and dips by about one-third in between these extremes. The secondary
peak on the GaAs QW dg/dN curve corresponds to the peak gain switching to the
C–LH (11) transition, which rides on top of the C–HH (11) transition at slightly
shorter wavelengths (see Fig. 4.24).

Example 4.7 The GaAs/AlGaAs quantum-well active material from Table 4.4
is part of a 5 quantum-well-stack-based material used to fabricate an 800-μm-
long and 3-μm-wide ridge laser. The transverse confinement factor �xy is 5.5%.
From the parameter extraction, the average internal losses are determined to be
αi = 14 cm−1, and the injection efficiency is ηi = 0.75.

Problem: Determine the threshold current for this laser and compare the contri-
butions from spontaneous and nonradiative threshold current components.

Solution: The threshold modal gain of this all-active laser is given by

�gth = 〈αi 〉 + 1

L
ln

(
1

R

)
= 14 cm−1 + 104

800
ln

(
1

0.32

)
cm−1 = 28.24 cm−1.

To calculate the threshold current, we first need to calculate the threshold
carrier density using the Eq. (2.48). Because we are dealing with a GaAs-based
material system, we only need to take into account the radiative threshold current
component, given by Eq. (2.51). However, we need to compare the two current
components and thus need to calculate the nonradiative threshold current as well,
given by Eq. (2.52). Using the two-parameter fit from Table 4.4 and Eq. (2.48),
the threshold carrier density is

Nth = Ntr e
gth
g0N = 2.6 e

28.24
0.055·2400 · 1018 cm−3 = 3.22 · 1018 cm−3.

The volume of the active region consists of five 8-nm-wide quantum wells, bound
by the laser facets and the ridge width,

V = L · W · Nw · d = 800 · 3 · 5 · 0.008 · 10−12 cm−3 = 96 · 10−12 cm−3.

Finally, the threshold current is given by

Ith = qV

ηi
(BN 2

th + CN 3
th) = 1.602 · 10−19 · 96 · 10−12 cm−3

0.75

× (10.37 · 1026 + 1.334 · 1026)A = 24 mA,

where B = 1 · 10−10 cm3/s and C = 4 · 10−30 cm6/s.
The contribution from the Auger nonradiative current is 1.334

11.704 = 11.4%.
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4.6.4 Spontaneous Emission Spectra and Current versus Carrier Density

Having determined the gain as a function of carrier density, we now need to
understand how the spontaneous emission spectrum that generates radiative recom-
bination varies with carrier density. The spontaneous emission spectrum is found
using Eqs. (4.70) and (4.71). An example spectrum is shown in Fig. 4.28 for a
strained InGaAs/GaAs QW for different sheet carrier densities. The staircase spec-
trum can be observed and the saturation of the n = 1 transition at very high carrier
densities is noticeable. However, the second step is much smaller than the first step.
The reason is that the second electron state in the QW is barely confined, leading
to a poor overlap between the C2 state and the strongly confined HH2 state (this
is also visible in the gain spectrum in Fig. 4.24). The result is a smaller matrix
element and hence smaller step height.

The third step indicated by the dashed curves in the spectrum of Fig. 4.28 is
actually spontaneous emission occurring in the GaAs barrier layers. Such barrier
contributions to the radiative current density are particularly large in this active
material. In all other QWs considered, barrier recombination is minimal. The reason
is that in this material, the QW valence band states allow EFv to penetrate deeper
than normal due to the strained light band structure. As a result, both N and P
in the barrier regions can become large, as opposed to other QWs where P in the
barriers usually remains very small. The NP product in the barriers can therefore
become large leading to a high recombination there. The barrier heights are also
relatively small, allowing the barrier regions to populate quickly as carrier density
increases. The barrier recombination could be reduced by increasing the GaAs
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FIGURE 4.28: Spontaneous emission spectrum (per unit wavelength) versus sheet carrier
density in a strained In0.2Ga0.8As/GaAs 80 Å QW. The dashed curves include spontaneous
emission from the 100 Å thick GaAs barrier layers on either side of the well (total of 200 Å).
The emission is normalized such that peak × bandwidth (in nm) yields the spontaneous
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barriers to AlGaAs, however, materials growth issues of InGaAs grown directly on
AlGaAs make InGaAs/AlGaAs QWs difficult to grow.

The area under the spontaneous emission spectrum in Fig. 4.28 represents the
total spontaneous emission rate. For example at 4 × 1012 cm−2, the peak is ∼2
and the bandwidth is ∼100 nm. The (peak) × (bandwidth) therefore yields a spon-
taneous current density of ∼200 A/cm2 based on the units of the vertical axis.
Performing a more exact integration of the area under the curve via Eq. (4.72),
we can determine the spontaneous current density as a function of carrier density.
This relationship is plotted in Fig. 4.29 for the 80 Å GaAs-based materials and the
60 Å InP-based materials.
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(upper) and InP (lower) based materials (bulk currents per unit area assume an 80 Å
width for GaAs and a 60 Å width for In0.53Ga0.47As). Indicated values for B have units
of 10−10 cm3/s, and values for C have units of cm6/s.
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For low carrier densities in Fig. 4.29, bulk GaAs roughly follows a BN 2 law with
B = 1.2 × 10−10 cm3/s. For bulk In0.53Ga0.47As, B is closer to 0.7 × 10−10 cm3/s.
These values are in good agreement with measured values for these two materials.
The smaller coefficient in the latter case is the result of a lower optical mode density
at longer wavelengths (less modes, less spontaneous emission). For higher carrier
densities, the BN 2 law overestimates the recombination rate. This is because the
square law is strictly valid only within the Boltzmann approximation. As the injec-
tion level becomes highly degenerate, the recombination rate does not increase as
rapidly as N 2. To account for this, the bimolecular recombination rate is occasion-
ally written as B0N 2 − B1N . This trend is observed in all cases plotted in Fig. 4.29.
Interestingly, the QWs have lower B coefficients than their bulk counterparts.

The Auger recombination current is also plotted in Fig. 4.29 assuming typical
values for the two material systems. In GaAs, Auger recombination compared to
radiative recombination is small for normal carrier densities (2 − 4 × 1018 cm−3).
Thus, the radiative efficiency in GaAs based materials is quite high and can
approach unity at low carrier densities. In the InP system, the Auger current
dominates for N > 2 × 1018 cm−3. Thus, in most InP-based lasers, the radiative
efficiency is below 50% and can often be much lower than this. In this system,
where the optical mode density is low enough to yield very low radiative currents,
it is unfortunate that another mechanism such as Auger recombination has to turn
on and ruin everything.

4.6.5 Gain versus Current Density

With the current known, we can now proceed to determine the peak gain as a func-
tion of current density as shown in Fig. 4.30. The upper plot shows the GaAs-based
materials with and without the current contributions from Auger recombination and
barrier recombination (assuming C = 3.5 × 10−30 cm6/s). These latter currents can
degrade the active material performance for material gains larger than 2000 cm−1.
Plotted versus current density, it is clear that the InGaAs/GaAs QW provides much
better gain performance, particularly at currents below 300 − 400 A/cm2. The trans-
parency current density for the strained QW is near 50 A/cm2, in good agreement
with experimentally measured values. The unstrained GaAs QW has a transparency
current density slightly higher than 100 A/cm2. And in general for a given gain,
the strained QW requires roughly half the current required by the unstrained QW:
Thus, strained InGaAs QWs are the active region of choice in GaAs-based materi-
als (as long as the application can tolerate the 0.98 μm wavelength). In comparing
bulk GaAs to the GaAs QW, we see somewhat better performance out of the QW;
however, the “quantum size” effects are not that significant. In fact, the bulk GaAs
80 Å well has a lower transparency current density.

In the InP system, only the radiative currents are included in Fig. 4.30. The
trends are generally similar to those seen with the gain versus carrier density. How-
ever in this case, the unstrained QW clearly outperforms the bulk In0.53Ga0.47As.
For the compressively strained and unstrained materials, transparency radiative cur-
rent densities are near 10–15 A/cm2. For the tensile strained QWs, these values



230 GAIN AND CURRENT RELATIONS

w/o Auger

Carrier density (A/cm2)

Radiative current density (A/cm2)

2000
0

5000

3600

2000

1000

4000

400

M
at

er
ia

l g
ai

n 
(c

m
−1

)

1000800600

500
0

6000

3000

2000

1000

5000

4000

100

“A
dj

us
te

d”
 m

at
er

ia
l g

ai
n 

(c
m

−1
)

300200 250150

w/o Auger 
 w/ Auger

InGaAs 80 Å QW 

GaAs 80 Å QW 

Bulk GaAs 

+1%

–0.36%

Bulk In0.53Ga0.47As 

–1%

0%

InGaAs/(Q1.08) QWs 
(   = 1.5 μm)

TM gain 

TE gain 
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In0.53Ga0.47As). The effects of Auger and barrier recombination are included in the upper
plot only. Other comments regarding the lower plot can be found in the caption of Fig. 4.26.

are closer to 30–35 A/cm2. Unfortunately, Auger recombination prevents such low
threshold current densities from being realized in lasers.

Curve fits analogous to the gain versus carrier density fits are listed in Table 4.5.
For GaAs-based active materials, curve fits are provided for both radiative (spon-
taneous) current as well as the current including barrier and Auger recombina-
tion (assuming 100 Å barrier widths on either side of the QW and C = 3.5 ×
10−30 cm6/s). For InP-based active materials, only radiative current is fitted (the
Auger current can be included by using the carrier density curve fits along with
an appropriate value for C ). Again, all gains are not “adjusted” material gains, but
actual material gains that can be used directly in optical mode overlap integrals to
determine the modal gain.
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In Chapter 2, the current was empirically related to the carrier density through
a polynomial fit (i.e., J ∝ AN + BN 2 + CN 3). Combining Tables 4.4 and 4.5, we
have an alternative description of this relationship:

J = (Jtr + Js)

[
N + Ns

Ntr + Ns

]g0N /g0J

− Js . (4.108)

Here g0N and g0J refer to the fitting parameter g0 used with N and J , respectively.
Althoug this is a more complex six-parameter fit, it does also provide the gain
versus carrier and current density relations. The fit is most useful in converting
theoretical gain calculations into practical working models. We will make use of
it in the next chapter. It should however be noted that in using Eq. (4.108) below
transparency, it is better to use the two-parameter curve fits (i.e., Ns = Js = 0)
in Tables 4.4 and 4.5 to ensure that J goes to zero when N does. Note also that
in the two-parameter limit, J = Jtr [N /Ntr ]g0N /g0J , and hence the power relation is
governed by the ratio g0N /g0J . Thus for a simple BN 2 relation we would expect

TABLE 4.5: Three- and Two-Parameter Gain versus Current Density Curve Fits

g = g0 ln

[
J + Js

Jtr + Js

]
g = g0 ln[J /Jtr ]

Active Material Jtr Js g0 Jtr g0

Jsp + Jbar + JAug

Bulk GaAs 80 140 1400 80 700
GaAs/Al0.2Ga0.8As 80 Å QW 110 50 1600 110 1300
In0.2Ga0.8As/GaAs 80 Å QW 50 −10 1100 50 1200
InGaAsP/InGaAsP 65 Å QW [36] — — — 44 1040
In0.15Ga0.85N 25 Å QW [37]∗ — — — 300 1200
In0.15Ga0.85N 25 Å QW [38]∗ 900 31 K 5403 — —

Jsp

Bulk GaAs 75 200 1800 75 800
GaAs/Al0.2Ga0.8As 80 Å QW 105 70 2000 105 1500
In0.2Ga0.8As/GaAs 80 Å QW 50 0 1440 50 1440

Jsp

Bulk In0.53Ga0.47As 11 30 1000 11 500
InGaAs 30 Å QW (+1%) 13 2 2800 13 2600
InGaAs 60 Å QW (0%) 17 11 1500 17 1200
InGaAs 120 Å QW (−0.37%) 32 18 1400 32 1100
InGaAs 150 Å QW (−1%) 35 10 1700 35 1500

Inverse Relation Differential Gain

J = (Jtr + Js )eg/g0 − Js
dg

dJ
Lz = g0

J + Js
Lz

[J ] = A/cm2, [g] = cm−1

∗Values obtained for a ridge structure.
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g0N to be twice as large as g0J . In comparing the two-parameter fits in Tables 4.4
and 4.5, we see that this is true to an extent.

Example 4.8 Table 4.5 gives two-parameter fit data for the material gain of 1%
compressively strained 3-nm-thick 1.55-μm quantum-well on Indium Phosphide
that neglect Auger recombination. Now, we would like to include an Auger coef-
ficient, determined in Example 4.5.

Problem: Determine the new Jtr and g0 that would best model the gain curve for
the gains between 500 and 2500 cm−1.

Solution: To solve this problem, we need to compute g02 and Jtr2 of the new
logarithmic relationship between the gain and current density. To accomplish this,
we need to calculate the current densities for two different values of gain. The new
current density is given by J2 = J1 + JA, where JA = q ·C ·N 3·V

area = q ·d ·C ·N 3. From
Table 4.5, we have that g01 = 2600 cm−1 and Jtr1 = 13 A/cm2, and the quantum
well width d = 3 nm. Because we also know the carrier density versus gain depen-
dence for this material from Table 4.4, g = g0N ln N

Ntr
, and g0N = 4000 cm−1 and

Ntr = 3.3 · 1018 cm−3, we are in a position to calculate the total current density.
At transparency, g = 0, we have

Jtr2 = Jtr1 + JAtr = 13 A/cm2 + q · d · CN 3
tr = (13 + 103) A/cm2.

At J1 = e · Jtr1, we have

g = g01 ln
e · Jtr

Jtr
= g01 = 2600 cm−1, N = Ntr e

g
g0N

= 3.3 · 1018e
2600
4000 cm−3 = 6.32 · 1018 cm−3.

From here,

JA = q ·d ·C ·N 3

= (1.6·10−19C)(3·10−7 cm)(6·10−29 cm6/s)(6.32·1018 cm−3) = 727 A/cm2

and finally

J2 = e · Jtr1 + JA = 762 A/cm2.

Now, g02 can be calculated from the transparency current,

g02 = g01

ln J2
Jtr2

= 2600 cm−1

ln 762
116

= 1381 cm−1.
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4.6.6 Experimental Gain Curves

With the gain versus current density known, we can examine how well the theory
works by comparing it to measurements made on in-plane lasers. By measuring the
threshold and differential efficiency variations with cavity length, it is possible to
extract the internal loss, the internal injection efficiency, and the gain as a function
of injected current density. Results of this type of measurement are shown in
Figs. 4.31 and 4.32.

The theoretical curves in Figs. 4.31 and 4.32 are found to match quite well
in all three material systems, at 980 nm, 1550 nm and 445 nm. The value for
C , which best matches the InP data, also agrees well with other measured values
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FIGURE 4.31: Experimental material gain versus injected current curves for In0.2Ga0.8

As/GaAs 1 and 2 80 Å QW active region 0.98 μm lasers [26] (upper), and In0.53

Ga0.47As/(Q1.25) 1 and 4 70 Å QW active region 1.55 μm lasers [45] (lower). Theo-
retical curves are superimposed on the plots. The gain in the lower plot is well represented
by the two-parameter expression, g = 583 ln(J /81) cm−1, where J is given in A/cm2.
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Eqs. (4.104) and (4.105). Although it is true that in the InP system, the choice of
C makes the theory more of a curve-fitting procedure, the theory for the InGaAs/
GaAs QW involves very few fitting parameters and hence represents very good
agreement with experiment within the uncertainties involved with the Auger
and barrier recombination rates. Figure 2.15 also reveals excellent agreement
between the InGaAs/GaAs QW theory and experiment. Finally, excellent match
is observed for an InGaN-based quantum-well active region in Fig. 4.32, where
for high-quality material under sufficiently high current injection near threshold,
radiative recombination dominates [42].

4.6.7 Dependence on Well Width, Doping, and Temperature

In addition to picking the best active material, there are other choices to make in
designing a laser. For a QW active region, an obvious decision is the well width.
Aside from having a preference for a particular lasing wavelength, it is useful
to have some guidelines in deciding on the optimum well width. Because each
subband of a QW is inherently two-dimensional in nature, we should expect that
the performance of the n = 1 transition has little dependence on the width of the
well. However, in practice it is the spacing between subbands that interferes and
causes problems.

For example, the current required to reach transparency and 30 cm−1 modal
gain in an In0.2Ga0.8As/GaAs QW is plotted as a function of well width on the
left in Fig. 4.33. For midrange values between 50 and 100 Å, there is indeed
little change in the QW performance. However, at wider well widths the subband
spacing becomes smaller (see inset). As a result, other subbands become populated
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at typical injection levels, degrading the QW performance. In fact, the current starts
to become linear with well width as you would expect in bulk material. At narrower
well widths, the quantized state is squeezed to the top of the QW, very close to
the barrier states (see inset). As a result, the barriers begin to populate significantly
at typical injection levels, and again the QW performance is compromised. Thus,
there is a window of optimum performance; however, for the current density, the
window is fairly broad. For the differential gain, on the other hand, the functionality
is more sharply peaked near 60 Å. Away from this peak, the wider well widths
reduce the subband spacing, whereas the narrower widths bring the QW state too
close to the barrier states.

Another design consideration involves the doping of the active region. Now
doping within the active material itself can alter the band structure near the band
edges, degrading the performance. However, by placing the doping in the barrier
regions (modulation doping), the charge neutrality condition can be altered. In this
case, the quasi-Fermi levels are connected through the following equation:

N + N −
A = P + N +

D , (4.109)

where in quantum wells, the acceptor and donor densities are most easily defined
as sheet densities.

The basic effects of p-type doping were discussed in Section 4.6.1. Figure 4.34
provides a more quantitative description by plotting the gain and differential
gain versus current density for a GaAs/AlGaAs 80 Å QW for n-type, p-type,
and undoped material. The downward shift of the quasi-Fermi levels for p-type
doping increases the NP product (because N is degenerate and P is nondegenerate
at transparency), whereas the upward shift of the quasi-Fermi levels for n-type
doping reduces the NP product. Thus, Jtr is increased for p-type doping and is



236 GAIN AND CURRENT RELATIONS

0

1000

2000

3000

4000

0 200 400 600 800 1000

M
at

er
ia

l g
ai

n 
(c

m
–1

)

Current density (A/cm2)

Na = 5

Na, Nd = 0

Nd = 5

GaAs/AlGaAs 80 Å QW

0

5

10

15

20

0 200 400 600 800 1000

dg
/d

N
 (

10
–1

6  
cm

2 )
 

Current density (A/cm2)

Na = 5

Na, Nd = 0

Nd  = 5

GaAs/AlGaAs 80 Å QW

FIGURE 4.34: Peak TE gain and differential gain versus current density for three different
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reduced for n-type doping. However, due to the alignment of the quasi-Fermi
levels with respect to the band edges, p-type doping increases the differential gain
dramatically, whereas n-type doping reduces the differential gain. Thus, depending
on the application (ultra-high-speed laser, or ultra-low-threshold current), p-type
and n-type doping can add interesting variations to the gain curve, although neither
is as interesting as strain, which can simultaneously reduce Jtr and increase dg/dN.

Another parameter that affects the active material performance is an external
parameter, the operating temperature. Figure 4.35 illustrates the effects temperature
has on the gain versus current density in both unstrained GaAs QWs and unstrained
InGaAs/InP QWs including Auger recombination. In general, the current required
to reach a given gain increases with increasing temperature. The dominant cause of
this is the broadening of the Fermi occupation probability function, which spreads
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the carriers over a larger energy range for a given overall carrier density. The result
is a lower spectral concentration of inverted carriers, which leads to a broadening
and flattening of the gain spectrum.

In in-plane semiconductor lasers, the threshold current generally increases expo-
nentially with temperature. As discussed in Chapter 2, this dependence is com-
monly characterized by

Ith ∼ eT/T0 → T0 = T2 − T1

ln(I2/I1)
, (4.110)

where T0 is a parameter that characterizes the thermal behavior of the threshold
current of the laser. The second equation allows one to estimate T0 from two
threshold measurements at two different temperatures. By comparing the two
sets of gain curves in Fig. 4.35, it is evident that InP-based materials are affected
by temperature more than GaAs-based materials. Measurements yield a value of
T0 ∼50–100 K for InP-based in-plane lasers and a value of T0 ∼ 100–150 K for
GaAs-based in-plane lasers. These values are smaller than the theoretical curves in
Fig. 4.35 would suggest. However, there are other temperature-dependent effects.
For example, the Auger coefficient itself is temperature-dependent, and as the
latter part of Appendix 2 reveals, carrier leakage out of the active region is also
very sensitive to temperature.

Example 4.9 For an InP the laser based on the material from Example 4.6,
we would like to estimate the performance at 340 K, knowing that the radiative
efficiency, given as the ratio between the radiative and total threshold current, is
ηr = IRAD

IA+IRAD
= 0.134 at 300 K.

Problem: (1) Determine the ratio of the threshold current at 340 K/300 K, assum-
ing only Auger nonradiative recombination, and that the required threshold carrier
density increases by 10% as the temperature is raised from 300 to 340 K. (2) What
is the characteristic temperature T0 for this laser’s threshold current?

Solution: From the problem statement, we have that the threshold current is given
by the sum of the radiative and Auger components, Ith = qV (BN 2 + CN 3) =
IRAD + IA. At 340 K, N (340 K) = 1.1N (300 K), B(340 K) = B(300 K), and
C (340 K) = 1.436 · C (300 K). At 340 K,

�Ith

Ith
= ηr

(
�IRAD

IRAD

)
+ (1 − ηr )

(
�IA

IA

)
.

The change in the radiative current is caused by the change in the carrier con-
centration, �IRAD = ((1.1)2 − 1) · IRAD , whereas the change in the Auger current
is caused by both the carrier concentration, and the Auger coefficient change,
�IA = ((1.1)3 · 1.436) · IA. Finally,

�Ith

Ith
= 0.134 · (0.21) + 0.866 · (1.911) = 1.683.
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From here, we have that

Ith(340 K)

Ith(300 K)
= �Ith + Ith

Ith
= 2.683 = e

40 K
T0

and finally T0 = 40 K
ln 2.683 = 40.5 K.
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PROBLEMS

1. An edge-emitting laser uses a single InGaAs quantum well. The lasing wave-
length is at 950 nm, the threshold current is 1 mA, the active and modal
volumes are 10 and 300 μm3, respectively, the modal index and group index
are 3.5 and 4.0, respectively, the injection efficiency is measured to be 0.8, and
the threshold inversion factor, nsp = 1.6. By making measurements from the
back surface of the chip and factoring in appropriate geometrical corrections,
the total spontaneous emission power spectrum at and above threshold is found
to be as in Fig. 4.36. (Do not use any material data from elsewhere)
(a) What is the radiative efficiency, ηr ?

(b) What is the spontaneous emission rate per unit energy per unit active
volume at 950 nm?

(c) What is the optical mode density?

(d) What is the threshold modal and material gains for the TE mode?

(e) What is the spontaneous emission factor, βsp?

2. The reduced density of states function determines the total density of state pairs
available as a function of photon energy and is therefore critical in determining
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FIGURE 4.36: Total spontaneous emission power spectral density versus wavelength.

the shape of the gain spectrum. Thus, it is worthwhile getting a feel for this
function:
(a) Plot ρr (E ) for bulk GaAs from the GaAs bandgap energy to the

Al0.2Ga0.8As bandgap energy. Be sure to include both C–HH and C–LH
transitions.

(b) Plot ρr (E ) for a fictitious 100 Å GaAs QW with infinitely high barriers,
assuming parabolic subbands and including all allowed C–HH and C–LH
subband pairs between the GaAs and Al0.2Ga0.8As bulk bandgaps. Overlay
the bulk GaAs ρr (E ) on top of this curve. Discuss any correspondence you
observe between these curves.

(c) Now plot the QW ρr (E ) in (b) for C–HH transitions only and overlay the
C–HH component of the bulk GaAs ρr (E ) on top of this curve. Make a
similar comparison for C–LH transitions. Discuss any correspondence you
observe between these curves.

(d) Mathematically derive the reasons why the comparisons in (c) work the
way they do. Hint : Begin by expressing the step edges of the QW ρr (E ) in
terms of the quantum numbers, and then (after some substitutions) compare
with the bulk ρr (E )).

(e) Now plot a realistic QW ρr (E ) assuming a 100 Å GaAs QW with
Al0.2Ga0.8As barriers (assume that 60% of the band discontinuity occurs
in the conduction band). In your plot, assume parabolic subbands and
include all allowed C–HH and C–LH transitions between the GaAs and
Al0.2Ga0.8As bulk bandgaps. Also, add to this plot the contributions to
ρr (E ) from the Al0.2Ga0.8As bulk barriers by extending the energy range
another 50%. Overlay the bulk GaAs ρr (E ) on top of this curve. In
comparing the bulk GaAs to the GaAs QW, do you qualitatively find
much difference in the total density of state pairs existing within the
energy range plotted?

3. The measured absorption curve of a GaAs/Al0.2Ga0.8As 100 Å QW (with
excitonic effects removed) reveals that the C1–HH1 absorption step has a
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magnitude of 104 cm−1 for light with polarization such that the electric field
lies in the plane of the QW (TE polarization).

(a) Determine the differential lifetime, τ 21
sp , for this transition.

(b) With the TE absorption known, we can estimate the TE gain spectrum
for different pumping levels. Plot the expected gain spectrum from the
QW band edge to the bulk Al0.2Ga0.8As bandgap energy, for two dif-
ferent injection levels: (1) EFc � Ec1 (i.e., EFc → ∞) and EFv = Ehh1,
and (2) EFc � Ec1 and EFv = Ehh2. Neglect forbidden transitions, C–LH
transitions, and bulk barrier transitions in your plot. Also assume that the
density of state pairs and the overlap integral is the same for all subband
transition pairs. Further assume that the transition matrix element is not a
function of energy. Neglect lineshape broadening in your calculation.

(c) What is the maximum possible spontaneous emission rate per unit energy
at the C1–HH1 subband edge of this QW, assuming the rate is the same
for light polarized in any direction?

(d) Considering only C–HH subband transition pairs, what are the radiative
currents required to support the two gain spectra plotted in (b), assuming
a single QW active region with lateral dimensions of 2 μm × 200 μm? In
your estimation, assume that the optical mode density and gmax are con-
stants evaluated at the C1–HH1 subband edge. Also assume the emission
rate is the same for light polarized in any direction. Be sure to include
spontaneous transitions over all energies by letting EFc → ∞.

(e) Can you explain why the quasi-Fermi level positions given in (b) are unre-
alistic?

4. The previous problem was simplified by allowing EFc → ∞, while EFv

remained finite. For this situation, the electron density would be much higher
than the hole density. In reality, charge neutrality in the active region under
high injection conditions requires that the electron and hole densities be equal,
making the previous problem unrealistic (but useful for academic purposes).
A different, more realistic simplification, which includes charge neutrality,
can be made by neglecting all but the lowest C1–HH1 subband transition pair
in our analysis.

In this problem, we will make use of this approximation to explore the
effect of the effective mass asymmetry between the conduction and heavy-hole
band. Defining D = mhh/mc , show that charge neutrality leads to the following
relationship between the Fermi functions at the C1 and HH1 subband edges
(neglecting all other subband and bulk transitions pairs):

f1(Ehh1) = (1 − f2(Ec1))
1/D . (4.111)

Using Eq. (4.111), plot the following quantities as a function of the fraction
of filled states at the C1 subband edge (from 0 to 1), for symmetric (D = 1)

and asymmetric (D = 5) bands (assume mc is the same in both cases):
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(a) The fraction of empty states at the HH1 subband edge.

(b) The stimulated absorption and stimulated emission Fermi factors.

(c) The subband edge gain normalized to the maximum possible gain in each
case.

(d) The carrier density normalized to the density at f2(Ec1) = 0.5.
These plots reveal fundamental differences between the symmetric and
asymmetric band structures in the way they behave under nonequilibrium
conditions.

(e) Which of the two band structures reaches transparency first as a function
of the fraction of filled C1 subband edge states? What is the main cause
of this?

(f) Does the symmetric or the asymmetric band structure have the lowest
transparency carrier density (the carrier density at which g = 0)? What are
the values for the normalized carrier density in each case? Assuming the
radiative current density roughly follows a BN 2 dependence, how different
do you expect the transparency current densities to be?

(g) Derive an expression for the differential gain, dg /dN, explicitly
including the dependence of gmax on D and mc (neglect lineshape
broadening; it may be helpful to begin by setting dg/dN = (dg/df2(Ec1))/
(dN /df2(Ec1))). Does the symmetric or asymmetric band structure provide
a higher differential gain at transparency? By how much? Can you explain
this behavior qualitatively?

(h) The application of strain in the plane of the QW is known to reduce
the in-plane heavy-hole effective mass dramatically. From the preceding
considerations, and what you know about the effective mass asymmetry
of unstrained GaAs QWs, can you predict qualitatively what changes
in performance in strained QWs can be expected? Should we be using
strained QWs in the active regions of lasers? What benefits do you foresee?

5. Assume we have a strained QW that has a completely symmetric subband
structure in the conduction and valence bands including subband curvatures and
subband spacings (also assume that only heavy-hole subbands exist). Now, the
modal absorption loss (w/o excitonic effects) of the lowest subband transition
is measured to be 400 cm−1 in an unpumped laser. If we want to ensure that
the n = 1 gain is always larger than the n = 2 gain for modal gain 200 cm−1,
what is the minimum subband spacing between the two lowest conduction band
states that we can tolerate? Assume gmax is constant and of equal magnitude
for each subband transition, and also neglect lineshape broadening effects.

6. Comparing Appendix 6 to Chapter 4, what is τ 21
sp in terms of |MT |2?

7. For the sake of completeness, the setup of this problem repeats the setup of
Example 4.5. where we’ve seen than the surface recombination velocity can be
estimated using the simple “broad-area” (i.e., infinite stripe width) threshold
carrier density. In reality the carrier density profile will vary over the cross
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section of the active region, particularly when the active width is narrow. In
this problem, the effects of a finite diffusion constant for carriers in the active
region will be examined.

Assume that the carrier densities in the active region are high enough that
any differences in the diffusion profiles of electrons and holes will set up an
electric field that will pull the two densities to nearly the same profile. In this
ambipolar diffusion limit, the hole diffusion rate is enhanced by a factor of ∼2
by the forward pull of the electrons, and the electron diffusion rate is limited
to approximately twice the normal hole diffusion rate by the backward pull
of the holes. The overall effect is that we can assume the electron and hole
densities are equal everywhere in the active region and are characterized by a
single ambipolar diffusion constant, Dnp . The lateral profile of carriers is then
governed by the simple diffusion equation:

Dnp
d2N (x)

dx2
= − I (x)

qV
+ N (x)

τnp
. (4.112)

The carrier lifetime is in general a function of N ; however, to obtain ana-
lytic solutions, we can evaluate the lifetime at the broad-area threshold value,
τnp |th = qLz Nth/Jth .

The problem we wish to solve is the carrier density profile across the width
of the active region in the in-plane laser depicted in Fig. 4.19. For this case,
we can define two distance regions: one beneath the contact within w, where
we assume a uniform current injection profile, and the region outside w where
there is no current injection. Mathematically, with x = 0 defined as the center
of the stripe, we have I (x) = I0 for x < w/2, and I (x) = 0 for x > w/2. In
fabricating the laser we can either leave the active region in place outside the
stripe, or we can remove it by etching through the active region outside the
contact area. The first case leads to carrier outdiffusion, whereas the second
case leads to surface recombination. We would like to compare these two cases.
(a) With the active region in place away from the contact, carriers are free to

diffuse outside the stripe width. Draw a sketch of this configuration and
solve Eq. (4.112) for N (x ) in and out of the stripe assuming the carrier
density and its derivative (i.e., the diffusion current) are constant across
the x = w/2 boundary. Qualitatively sketch N (x ).

(b) With the active region etched away, the carriers recombine at the surface.
Draw a sketch of this configuration and solve Eq. (4.112) for N (x ) under
the stripe, assuming the diffusion current (defined by the slope of the carrier
density) is equal to the surface recombination current, DnpdN /dx = −vs N ,
at the x = w/2 boundary. Place your result in terms of the diffusion equiva-
lent surface recombination velocity, vsD = √

Dnp/τnp . Qualitatively sketch
N (x ). In comparing N (x ) in (ii) to N (x ) in (i), what is the significance of
vsD ? Show that Eq. (4.78) is recovered in the limit of Dnp → ∞.

Assuming an injection current of 166.4 A/cm2 (corresponding to the
broad-area threshold in Fig. 4.18) and a stripe width of 2 μm, plot N (x ) on
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the same graph for four different cases: (1) N (x ) found in (i), (2) N (x ) found
in (ii) with vs = 1 × 104 cm/s, (3) vs = 1 × 105 cm/s, and (4) vs =
5 × 105 cm/s. Assume Dnp = 20 cm2/s for all cases. Produce similar plots
for stripe widths of 10 μm and 20 μm.

The single quantum-well in-plane laser defined in Fig. 4.20 is expected
to lase with the above injected current density. However, the finite stripe
width reduces N , which reduces the gain, preventing the onset of lasing at
166.4 A/cm2. Assuming that the injection current must establish a carrier den-
sity in the center of the stripe, which is equal to the broad-area threshold carrier
density in order to lase, calculate and tabulate the new threshold current den-
sity for all 12 cases considered above. Compare the threshold current densities
for (2) through (4) to the values found using the simple techniques discussed
in relation to Eq. (4.80). Answer the following questions:

(a) How does the inclusion of carrier diffusion affect the estimated magnitude
of the surface recombination current?

(b) When is carrier diffusion important to consider?

(c) How does the threshold current density with carrier outdiffusion (profile
(1)) compare to the three different recombination velocity profiles? Can
you use vsD to understand this comparison?

(d) For InGaAs QW active regions, is it better to etch through the active
region?

(e) For GaAs QW active regions, is it better to etch through the active region?
In reality, the threshold lasing condition will be more complex than simply
setting N (0) = Nth because the material gain will be relaxed near the stripe
edges, reducing the overall modal gain.

(f) Qualitatively discuss how the above-threshold current densities would be
modified by the inclusion of this effect.

8. The 300 K Auger recombination coefficient, C, is measured to be 10−29 cm6/s
for some material with a bandgap of 1 eV and an Auger threshold energy that
is 10% higher.

(a) If the temperature were increased to 400 K, what is the new C?

(b) If the material were changed to have a bandgap of 2 eV with everything
else remaining the same, and the temperature then increased to 400 K,
what is the new C?

9. Discuss the effects of strain on the threshold energy for the CCCH Auger
process by constructing a diagram analogous to Fig. 4.22. Assume D = 5 in
one case and D = 1 in the other (see Problem 4 for the definition of D). You
may find Appendix 12 helpful in quantifying the exact positions of the four
states in each case (use bulk GaAs values for mc and Eg ). How would you
expect this difference in the threshold energy to affect the Auger transition rate
for a given electron and hole density?
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10. The one pass absorption for probe light passing perpendicularly across a single
unpumped strained InGaAs 80 Å quantum well is determined to be 1% for a
wavelength 20 nm shorter than the absorption edge, which is at 1 μm. A 1000-
μm-long broad-area, cleaved-facet edge-emitting laser with a transverse con-
finement factor of 1% made from this material is found to have threshold and
transparency current densities of 100 and 70 A/cm2, respectively, at about the
same wavelength. Additional measurements indicate an internal loss of 5 cm−1.

(a) What is the threshold material gain?

(b) What is the Fermi function difference ( f2 − f1) at threshold?

(c) What are g0 and Jtr in a two-parameter logarithimic fit to this data?

(d) What is the Fermi function difference (f2 − f1) at a current of twice
threshold in the laser?

(e) What is the approximate βsp?

(f) If the laser were cut to half its length (i.e., 500 μm) what would the new
threshold current density and Fermi function difference at threshold be?



CHAPTER FIVE

Dynamic Effects

5.1 INTRODUCTION

In Chapter 2, the rate equations for both the carrier and the photon density of a given
optical mode, in the active region were developed from simple intuitive arguments.
The below-threshold and above-threshold limits to the steady-state solutions of the
rate equations were considered to give a feel for the operating characteristics of the
laser. We also took a first look at the small-signal intensity modulation response
of the laser. In this chapter we wish to expand on these simplified discussions
considerably, drawing on the results of Chapter 4 for the evaluation of the various
generation and recombination rates.

We will first summarize many of the results obtained in Chapter 2. This review
will serve as a convenient reference to the relevant formulas. We will then move
on to dynamic effects, starting with a differential analysis of the rate equations.
We will derive the small-signal intensity and frequency modulation response of the
laser as well as the small-signal transient response. We then consider large-signal
solutions to the rate equations. The turn-on delay of the laser and the general
relationship between frequency chirping and the modulated output power will also
be treated here. Next we consider laser noise. Using the Langevin method, we will
determine the laser’s relative intensity noise (RIN) and the frequency fluctuations
of the laser’s output from which we can estimate the spectral linewidth of the laser.
We will also discuss the role of the injection current noise in determining the RIN
at high power and examine the conditions necessary for noise-free laser operation.

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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In the final two sections we consider dynamic effects in specific types of lasers.
The first section considers carrier transport limitations in separate-confinement het-
erostructure (SCH) quantum-well lasers. The second deals with the effects of weak
external feedback in extended cavity lasers.

5.2 REVIEW OF CHAPTER 2

Figure 5.1 summarizes the reservoir model used to develop the rate equations in
Chapter 2. To ensure particle conservation, each arrow in the flowchart represents
the number of particles flowing per unit time. This is why the rates per unit vol-
ume and the densities are multiplied by the active-region volume V of the carrier
reservoir or the mode volume Vp of the photon reservoir. Before deriving the rate
equations, we will briefly follow the flowchart from input to output.

Starting with the carrier reservoir, we have the rate of carrier injection into
the laser I/q. Of these carriers only ηi I /q reach the active region, where ηi is
the injection or internal efficiency of the laser introduced in Chapter 2. The rest
recombine elsewhere in the device (this includes all carriers recombining at rates
not directly tied to the carrier density in the active region). Once in the carrier
reservoir, the carriers have a number of options. Some recombine via nonradiative
recombination at the rate Rnr V . Others recombine spontaneously at the rate RspV ,
of which a certain fraction emit photons into the mode of interest at the rate R′

spV
(or βspRspV where βsp is the spontaneous emission factor). Other carriers recom-
bine via stimulated emission into the mode of interest at the rate R21V . Although
photons in other modes can also induce stimulated recombination of carriers, we
limit ourselves initially to a single mode. Finally, photons in the photon reservoir

R21VR12V
R′spV

RspVRnrV
NV

Carrier reservoir

NpVp

NpVp NpVp

NpVp

Psp

P0

I/q

τp τp

τp

Heat

Heat &
light

Heat & light

(1−ηi) I/q

ηi I/q

(1−η0)

η0

Photon reservoir

FIGURE 5.1: Model used in the rate equation analysis of semiconductor lasers.
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can be absorbed, serving as an additional source of carriers, which are generated
at the rate R12V . In Chapter 2, we also considered carriers that might leak out of
the active region via lateral diffusion and/or thermionic emission at the rate Rl V .
However, because Rl V is often negligible and furthermore plays a role identical
to Rnr V in the rate equations, we will not include it explicitly in this chapter (if
we wish to include carrier leakage at any time, we can set Rnr → Rnr + Rl ).

In the photon reservoir, the stimulated and spontaneous emission rates into
the mode provide the necessary generation of photons at the rate R21V + R′

spV .
Stimulated absorption in the active region depletes photons at the rate R12V . All
other photons leave the cavity at the rate NpVp/τp . Of those leaving the cavity,
only η0NpVp/τp leave through the desired mirror to be collected as useful output
power, P0, where η0 is the optical efficiency of the laser to be defined below.
The rest of the photons exit the cavity through a different mirror or disappear
through: (1) free carrier absorption in the active region (which does not increase
the carrier density), (2) absorption in materials outside the active region, and/or
(3) scattering at rough surfaces.

5.2.1 The Rate Equations

By setting the time rate of change of the carriers and photons equal to the sum of
rates into, minus the sum of rates out of the respective reservoirs, we immediately
arrive at the carrier and photon number rate equations:

V
dN

dt
= ηi I

q
− (Rsp + Rnr )V − (R21 − R12)V, (5.1)

Vp
dNp

dt
= (R21 − R12)V − NpVp

τp
+ R′

spV . (5.2)

Setting R21 − R12 = vg gNp using Eq. (4.37), dividing out the volumes, and using
� = V /Vp (by definition of Vp), we obtain the density rate equations derived in
Chapter 2 in slightly more general form:

dN

dt
= ηi I

qV
− (Rsp + Rnr ) − vg gNp , (5.3)

dNp

dt
=

[
�vg g − 1

τp

]
Np + �R′

sp . (5.4)

It is a matter of preference to use either the density or the number rate equations in
the analysis of lasers.1 Throughout this book we choose to use the density versions.
This choice forces us to do a little more book-keeping by explicitly including V
and Vp in various places (as we will see in Section 5.5) but in the end places results

1It is important to note that the gain term in the density versions has a � in the photon density rate
equation, but not in the carrier density rate equation. While in the number rate equations, the gain term
is symmetric. This asymmetry in the density rate equations is often overlooked in the literature.
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in terms of the more familiar carrier density and related terms (e.g., the differential
gain, the A, B, and C coefficients, etc.).

To complete the description, the output power of the mode and total spontaneous
power from all modes are given by

P0 = η0hν
NpVp

τp
and Psp = hνRspV, (5.5)

where

η0 = F
αm

αm + 〈αi 〉 . (5.6)

The optical efficiency defined here times the injection efficiency yields the differen-
tial quantum efficiency defined in Chapters 2 and 3, ηd = ηi η0. The prefactor F in
Eq. (5.6) is the fraction of power not reflected back into the cavity that escapes as
useful output from the output coupling mirror as derived in Chapter 3. The mirror
loss can usually be defined as αm = (1/L) ln(1/r1r2), and 〈αi 〉 is the spatial average
over any internal losses present in the cavity. The photon lifetime is given by

1

τp
= vg (αm + 〈αi 〉) = ω

Q
, (5.7)

where vg is the group velocity of the mode of interest including both material and
waveguide dispersion. The more general definition of τp in terms of the cavity
Q is useful in complex multisection lasers where αm can prove difficult to define
(see the latter part of Appendix 5). In such cases, we can use the definition:
Q ≡ ω (energy stored in cavity)/(total power lost).

We can use Eq. (4.67) to set R′
sp = �vg gnsp/V in Eq. (5.4). However, a useful

approximation to R′
sp is found by setting R′

sp → βspRsp and evaluating βsp at its
threshold value:

βsp ≈ βsp

∣∣∣
th

= �vg gnsp

ηi ηr I /q

∣∣∣∣
th

= q

Ithτp

[
nsp

ηi ηr

]
th

, (5.8)

where Eq. (4.82) was used to define βsp and ηr = Rsp/(Rsp + Rnr ). The latter equal-
ity makes use of Eq. (5.11). The term in brackets at threshold is typically between
1.5 and 2 in short-wavelength materials, but it can be as large as 10 in long-
wavelength materials due to low radiative efficiencies (high Auger recombination).

5.2.2 Steady-State Solutions

The steady-state solutions of Eqs. (5.3) and (5.4) are found by setting the time
derivatives to zero. Solving Eq. (5.4) for the steady-state photon density and
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Eq. (5.3) for the DC current, we have

Np(N ) = �R′
sp(N )

1/τp − �vg g(N )
, (5.9)

I (N ) = qV

ηi
(Rsp(N ) + Rnr (N ) + vg g(N )Np(N )). (5.10)

As the functionality implies, it is useful to think of N as the independent parameter
of the system, which we can adjust to determine different values of both current
and photon density. Solving for vg gNp in Eq. (5.9), and using Eq. (5.11) below to
define gth , Eq. (5.10) can alternatively be written as

I (N ) = qV

ηi
(Rsp(N ) − R′

sp(N ) + Rnr (N ) + vg gthNp(N )). (5.10′)

In this form, the right-hand side more clearly identifies where the current eventually
goes. In fact, Eq. (5.10′) can be derived by simply drawing a box around the entire
carrier–photon system in Fig. 5.1 and equating the inward flow with the sum of all
outward flows (as opposed to Eq. (5.10), which is derived by drawing a box only
around the carrier reservoir).

To gain more understanding of how Eqs. (5.9) and (5.10) behave, we will first
consider the limiting forms (below and above threshold) and then we will plot the
equations over the entire range. The threshold gain and carrier density as defined
in Chapter 2 are

�vg gth ≡ 1

τp
and g(Nth) = gth . (5.11)

The first two cases below summarize (1) what happens when the gain and carrier
density are much smaller than Eq. (5.11) and (2) what happens as they approach
their threshold values.

Case (i): Well Below Threshold

For N � Nth and �vg g � 1/τp , we can neglect �vg g in the denominator of
Eq. (5.9), and the steady-state solutions become

Np(N ) = �R′
sp(N )τp ≈ 0, (5.12)

I (N ) = qV

ηi
(Rsp(N ) + Rnr (N )), (5.13)

and

P0 ≈ 0 and Psp = ηi ηr
hν

q
I . (5.14)
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With negligible power in the mode, the injection current only needs to resupply
carriers lost to spontaneous and nonradiative recombination. The output power
is close to zero, and the spontaneous power increases approximately linearly with
injected current (if Auger recombination is significant, the increase will be sublinear
because ηr decreases). These solutions were also derived in Eqs. (2.5) and (2.7).
As we approach threshold, the denominator of Eq. (5.9) becomes small, and the
power in the mode starts to build up.

Case (ii): Above Threshold

As N → Nth and �vg g → 1/τp , we can evaluate all terms in Eqs. (5.9) and (5.10)
at Nth except for the denominator of Eq. (5.9), which contains the difference
between the threshold gain and the actual gain:

Np(N ) = R′
sp(Nth)/vg

gth − g(N )
, (5.15)

I (N ) = qV

ηi
(Rsp(Nth) + Rnr (Nth)) + qV

ηi
vg gthNp(N ), (5.16)

and

P0 = ηi η0
hν

q
(I − Ith) and Psp = ηi ηr

hν

q
Ith . (5.17)

The output power in (5.17) was found by rearranging (5.16) and recognizing that
V vg gthNp = P0/(η0hν). The threshold current of the laser is defined as

Ith = qV

ηi
(Rsp(Nth) + Rnr (Nth)). (5.18)

In this above-threshold limit, the output power increases linearly with current, and
the spontaneous power saturates at the level found at threshold. From (5.15), it is
clear that N and g never actually reach Nth and gth for finite output powers (and
finite current). They remain ever so slightly below their “threshold” values. These
solutions were also derived in Eqs. (2.35) and (2.41).

In lasers where βsp is relatively large, we need to revise our derivation slightly.
For example, comparing Eq. (5.16) to Eq. (5.10) reveals that we have inadvertently
dropped a factor, −R′

sp(Nth), in arriving at Eq. (5.16) (it happened when we set g →
gth ). The more exact threshold current is found by setting Np → 0 in Eq. (5.10′).
Equation (5.18) is then revised to

Ith = qV

ηi
((1 − βsp(Nth))Rsp(Nth) + Rnr (Nth)). (5.18′)
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The threshold current as defined here represents the offset in the LI curve at
output power levels generated by carrier densities close to Nth . If nonradiative
recombination is negligible, then as βsp(Nth) → 1, the threshold current reduces to
zero. In such a “thresholdless” laser, all injected current is funneled into the lasing
mode. For typical lasers, βsp(Nth) � 1 and (5.18′) reduces to Eq. (5.18).

Using Eq. (5.17), the current above threshold can be written as

I = Ith + q

hν

P0

ηi η0
. (5.18′′)

Case (iii): Below and Above Threshold

To observe the transition between below threshold and above, it is useful to plot
(5.9) as a function of (5.10). Parameterized light–current (L − I ) curves found by
varying N from 0 to Nth are shown in Fig. 5.2 for a typical in-plane laser and
three VCSELs. The details of the VCSEL and in-plane structures are given later
in Table 5.1. The plots use Table 4.4 for g(N ) and the combination of Tables 4.4
and 4.5 for Rsp(N ) + Rnr (N ) (see Eq. (4.123)). We can find R′

sp(N ) directly from
gain calculations2 (solid curves in upper plot) or we can approximate R′

sp(N ) using
Eq. (5.8) to define the threshold value of βsp (dashed curves in upper plot). For
these examples, βsp actually decreases by about 30% as the current increases to
threshold. As a result, the approximate dashed curves underestimate the power level
by about 30% at very low currents. Above threshold the output power becomes
independent of the value of βsp , as Eq. (5.17) verifies.

Each of the “idealized” L − I curves3 in the upper plot of Fig. 5.2 displays a
sudden ∼30 dB increase in output power (or ∼20 dB for the smaller VCSELs).
This dramatic change of course corresponds to the lasing threshold of the laser and
reveals that the transition to lasing is quite sharp. Below the lasing threshold, the
power in the mode comes primarily from the spontaneous emission rate, �R′

sp . This
power is typically well under 1 μW and is larger for smaller devices because the
fraction of spontaneous emission into the lasing mode increases with decreasing
mode volume (see Eq. (4.67)). As the current increases, the gain approaches the
loss, and the stimulated emission rate increases dramatically. For the largest VCSEL
and the in-plane laser this occurs at ∼0.7 mA and ∼1.1 mA, whereas for the

2Setting R′
sp(N ) = �vg gnsp/V , the gain calculations can be used to find both g and nsp as a function of

N . For the InGaAs/GaAs 80 Å QW considered in Section 4.6, the calculated gain–population inversion
factor product can be modeled very well (for g < 2500 cm−1) by gnsp = (850 cm−1) × ln[1 + N 2/2]
where N is in units of 1018 cm−3 (if desired we can combine this with the curve fit for g to estimate
nsp for g > 0).
3The L − I curves are ideal in the sense that surface recombination and heating at high injection levels
have been neglected. In realistic devices, surface recombination will require additional current to reach
threshold (particularly in the smaller devices), and heating will limit the maximum output power of the
devices.



254 DYNAMIC EFFECTS

10−6

10−5

10−4

10−3

10−2

0.1

1

10

100

10−3 10−2 0.1 1 10 100

P
ow

er
 o

ut
  (

m
W

)

Current (mA)

(10 μm)2 VCSEL

(5 μm)2 VCSEL

250 μm × 2 μm IPL 

(2 μm)2 VCSEL

250 μm × 2 μm IPL 

1

2

3

4

5

0

500

1000

1500

2000

2500

0.5 1 1.5 2

N
 (

× 
10

18
 c

m
–3

),
  P

0 
(×

 0
.1

 m
W

) 
 

M
aterial G

ain (cm
–1)

Current (mA)

N

g

P0

Nth

gth

Threshold

0
0

FIGURE 5.2: Upper plot: light vs. current in two different lateral-size 3-QW VCSELs and
in a single QW in-plane laser (IPL) (all lasers use InGaAs/GaAs 80 Å QWs). Lower plot:
Light vs. current on a linear scale for the same in-plane laser. Plot also shows carrier density
and material gain vs. current.

smaller VCSELs only ∼0.2 mA and ∼30 μA are required due to the smaller active
volumes. Above the lasing threshold all curves approach a unity slope, which on
a log-log plot implies a linear relationship between power and current.

The linear L − I relationship above threshold for the in-plane laser is more
clearly illustrated in the lower plot in Fig. 5.2. The L − I curve near threshold,
which was approximated in Chapter 2 as a discontinuous change in the L − I
slope, is more accurately a knee in the curve. This knee becomes softer for smaller
devices due to the higher spontaneous emission rate into the mode. However,
when measured experimentally, the light collected into a detector often captures
spontaneous emission from more than just the lasing mode, and this can also give
the appearance of a softer transition to lasing.

The lower plot in Fig. 5.2 also displays the carrier density and material gain as a
function of current. Below threshold, the approximately quadratic carrier density–
current relationship and the logarithmic gain–current relationship can be observed.
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For this example, transparency in the active material occurs at about one-third of
the way toward threshold. At threshold, both the carrier density and gain become
clamped near their threshold values. Beyond threshold, the carrier density and gain
continue to increase; however, the increase is in the fractions of a percent range.
Thus for all practical purposes, above threshold we can set N = Nth and g = gth

as we did in Chapter 2. The only time we cannot use this approximation is when
we need the difference Nth − N or gth − g .

The carrier clamping mechanism illustrated so dramatically in Fig. 5.2 is perhaps
best understood by defining a stimulated carrier lifetime τst and writing the total
carrier recombination rate as

Rtot (N ) = N

τsp
+ N

τnr
+ N

τst
, (5.19)

where

1

τsp
+ 1

τnr
= Rsp + Rnr

N
, (5.20)

τst = N

vg gNp
≈ Nth

vg gth
· 1

Np
. (5.21)

The inverse dependence of the stimulated carrier lifetime on photon density sets
up a negative feedback loop, which prevents N from increasing beyond its thresh-
old value. For example, as the current increases and the clamped carrier density
increases closer to Nth , the gain moves incrementally closer to gth , which increases
the output power through Eq. (5.15). This increase in output power reduces τst

just enough to prevent any further increase in N . Carrier clamping is therefore
maintained via the photon density’s control over the stimulated carrier lifetime. As
a result of this interplay, all injected current above threshold ηi (I − Ith) is simply
eaten up by the self-adjusting N /τst . For this reason, ηi (I − Ith) is referred to as
the stimulated emission current. Note that when 1/τst = 1/τsp + 1/τnr (i.e., when
ηi (I − Ith) = ηi Ith), we are at twice threshold.

5.2.3 Steady-State Multimode Solutions

As discussed in Chapter 3, if the laser cavity is not carefully designed, it is
inevitable that a number of different resonant modes of the cavity (either axial
or lateral) will require similar amounts of gain to reach threshold. To make matters
worse, the gain spectrum in semiconductor materials is very broad and can typ-
ically provide almost uniform gain across at least a few mode spacings. In such
cases, the gain difference gth − g in Eq. (5.15) can be similar for different modes
of the cavity at a given injection level. As a result, the photon density can build
up in more than one mode.

In such multimode situations, the steady-state solution for the photon density
in each mode remains the same as before; however, the steady-state current must
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FIGURE 5.3: Light vs. carrier density for three different modes in an SQW in-plane laser.
The threshold modal gains for modes 0, 1, and 2 are 50, 60, and 70 cm−1, respectively.

include contributions from all m modes:

Npm = �mR′
spm

1/τpm − �mvgmgm
, (5.22)

I = qV

ηi

(
Rsp + Rnr +

∑
m

vgmgmNpm

)
. (5.23)

Figure 5.3 plots the steady-state photon density Eq. (5.23) for three modes of
the in-plane laser considered earlier, assuming the threshold modal gains for mode
0, 1, and 2 are 50, 60, and 70 cm−1, respectively. From earlier discussions we
know the carrier density cannot increase beyond Nth0 for finite current levels. As
a result, the power in modes 1 and 2 cannot increase beyond the levels indicated
in the figure. Thus the power in the side modes saturates just as the spontaneous
power saturates at threshold.4 However, the closer Nth1 and Nth2 are to Nth0, the
higher this maximum saturated power level will be. The mode suppression ratio
(defined as the ratio of power in the main mode to the power in either of the side
modes) can be determined from Eq. (5.22) as worked out in Chapter 3. Note that
due to the clamping of power in the side modes, the MSR increases linearly with
the power in the main mode.

4Actually, gain compression created by high photon densities can force N to increase in order to
maintain g0 ∼ gth0. As a result, with increasing power in the main mode, N can increase slightly
beyond Nth0, and the side mode power can to some degree increase beyond the levels indicated
in Fig. 5.3.
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5.3 DIFFERENTIAL ANALYSIS OF THE RATE EQUATIONS

When we want to observe how lasers behave dynamically in response to some
perturbation to the system such as a modulation of the current, we must ana-
lyze Eqs. (5.3) and (5.4) with the time derivatives included. Unfortunately, exact
analytical solutions to the full rate equations cannot be obtained. Therefore if ana-
lytical solutions are desired we must make some approximations. In this section
we analyze the rate equations by assuming that dynamic changes in the carrier and
photon densities away from their steady-state values are small. Such small-signal
responses of one variable in terms of a perturbation to another can be accommo-
dated by taking the differential of both rate equations. Considering I , N , Np , and
g as dynamic variables, the differentials of Eqs. (5.3) and (5.4) become

d

[
dN

dt

]
= ηi

qV
dI − 1

τ	N
dN − vg gdNp − Npvg dg , (5.24)

d

[
dNp

dt

]
=

[
�vg g − 1

τp

]
dNp + Np�vg dg + �

τ ′
	N

dN , (5.25)

where

1

τ	N
= dRsp

dN
+ dRnr

dN
≈ A + 2BN + 3CN 2, (5.26)

1

τ ′
	N

= dR′
sp

dN
≈ 2βspBN + dβsp

dN
BN 2. (5.27)

The differential carrier lifetime τ	N depends on the local slope dR/dN , whereas the
total carrier lifetime τ depends on the overall slope R/N. Due to the mixed quadratic
and cubic dependence of R on N , τ	N is typically a factor of two to three smaller
than τ . The differential lifetime of carriers that radiate photons into the lasing mode
τ ′
	N is typically in the tens of microseconds range and is negligible in most cases.5

Equations (5.24) and (5.25) can also be found by performing an expansion about
the steady-state of the form x(t) = x0 + dx(t) for all dynamic variables. Neglecting
product terms involving two or more small-signal terms and canceling out the
steady-state solutions, we would obtain a set of approximate rate equations for
dN (t) and dNp(t) identical to Eqs. (5.24) and (5.25). This procedure was in fact
carried out in Chapter 2. The differential approach simply provides a more direct
path to the desired equations.

5A maximum limit can be placed on 1/τ ′
	N by defining it as follows:

1

τ ′
	N

= vg nsp

Vp

dg

dN

[
1 + g

nsp

dnsp

dg

]
≤ vg nsp

Vp

dg

dN
.

The second term within brackets goes from −1 at transparency to 0 at infinite pumping levels. Thus,
the latter inequality defines the largest possible value for 1/τ ′

	N at positive gains.
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The gain variation dg can be further expanded by assuming it is affected by
both carrier and photon density variations:

dg = adN − apdNp . (5.28)

The sign convention reflects the fact that gain increases with increasing carrier
density while it decreases or is compressed with increasing photon density. In
Chapter 4 it was shown that the gain versus carrier density could be well approxi-
mated by a logarithmic function. The gain is also known to be inversely proportional
to (1 + εNp), where ε is a constant known as the gain compression factor. Thus,
we can approximate the gain by

g(N , Np) = g0

1 + εNp
ln

(
N + Ns

Ntr + Ns

)
. (5.29)

With this expression the gain derivatives become

a = ∂g

∂N
= g0

(N + Ns)(1 + εNp)
≡ a0

(1 + εNp)
, (5.30)

ap = − ∂g

∂Np
= εg

(1 + εNp)
. (5.31)

In Eq. (5.30), a0 is defined as the nominal differential gain—the value of a with
zero photon density (with no gain compression). Also note that neither a nor ap

are constants—both tend to get smaller at higher densities.
Replacing dg with Eq. (5.28), collecting like terms and defining a set of rate

coefficients, the differential rate equations become

d

dt
(dN ) = ηi

qV
dI − γNN dN − γNP dNp , (5.32)

d

dt
(dNp) = γPN dN − γPP dNp , (5.33)

where

γNN = 1

τ	N
+ vg aNp , γNP = 1

�τp
− R′

sp

Np
− vg apNp , (5.34)

γPN = �

τ ′
	N

+ �vg aNp , γPP = �R′
sp

Np
+ �vg apNp .

We have replaced g in these definitions using the steady-state relation: 1/τp −
�vg g = �R′

sp/Np (see Eq. (5.9)). To interpret the subscripts of the rate coeffi-
cients, it is helpful to remember “effect precedes cause.” For example, γNP defines
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the effect on N caused by changes in P (i.e., Np). This mnemonic aid allows us
to quickly associate γNN with the differential carrier lifetime, γPP with the effec-
tive photon lifetime, γNP with the gain, and γPN with the differential lifetime of
carriers, which radiate into the mode. The change in gain Eq. (5.29) also adds a
differential gain term ∝ a to the rates caused by N , γNN and γPN , and a gain
compression term ∝ ap to the rates caused by Np , γPP and γNP . Aside from the
small-signal assumptions, these rate coefficients contain no approximations. Well
above threshold, Np is large enough that a few terms can be dropped and the rate
coefficients simplify to

γNN = 1/τ	N + vg aNp , γNP = 1/�τp − vg apNp , (above threshold) (5.35)

γPN = �vg aNp , γPP = �vg apNp .

Table 5.1 gives values of these and related parameters for two specific laser struc-
tures (the values assume N = Nth |ε=0 at and above threshold).

The rate coefficients have been introduced to allow us to conveniently describe
the differential rate equations in a compact matrix form:

d

dt

[
dN
dNp

]
=

[−γNN −γNP

γPN −γPP

] [
dN
dNp

]
+ ηi

qV

[
dI
0

]
. (5.36)

In this form, the current is seen as the driving term or forcing function. Later when
we treat noise in semiconductor lasers, the current forcing function will be replaced
by noise sources. If necessary, we could also choose any other parameter to be the
forcing function. For example, if we could somehow modulate the mirror loss, then

the analysis would proceed by replacing the last term in (5.38) with vg Np

[
0

−dαm

]
.

The rate coefficients would remain unchanged.
For multimode small-signal analysis, we can extend Eq. (5.36) in a natural way:

d

dt

⎡
⎢⎢⎢⎣

dN
dNp1

...

dNpm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−γNN −γNP1 · · · −γNPm

γPN 1 −γPP1 0 0
... 0

. . . 0
γPNm 0 0 −γPPm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

dN
dNp1

...

dNpm

⎤
⎥⎥⎥⎦ + ηi

qV

⎡
⎢⎢⎢⎣

dI
0
...

0

⎤
⎥⎥⎥⎦ . (5.37)

The three rate coefficients γPP , γPN , and γNP for each mode m are still given by
Eq. (5.36) with Np replaced by Npm . However, Np in the rate coefficient γNN is
replaced by a sum over all photon densities. The solution of Eq. (5.37) for two
modes is considered in one of the problems at the end of the chapter. The zeros
in the interaction matrix of Eq. (5.37) imply zero interaction or zero coupling
between modes. In reality the gain compression of one mode might affect the gain
experienced by another mode. Such coupling could be included by replacing the
zeros with some intermodal gain compression term.



260 DYNAMIC EFFECTS

TABLE 5.1: List of Common Parameters for Two Laser Structures

Parameter In-Plane Laser VCSEL

d 80 Å 10 μm
w 2 μm 10 μm
La 250 μm 3 × 80 Å
L 250 μm 1.15 μm
�xy 0.032 1
�z 1 1.83 × 0.0209 = 0.0382
V 4 × 10−12 cm3 2.4 × 10−12 cm3

Vp 1.25 × 10−10 cm3 0.628 × 10−10 cm3√
R1R2 0.32 0.995

αm 45.6 cm−1 43.6 cm−1

αi 5 cm−1 20 cm−1

F1 0.5 0.9
ηd1 = ηi η0 0.8 × 0.45 = 0.36 0.8 × 0.617 = 0.494
gth 1580 cm−1 1665 cm−1

τp 2.77 ps 2.20 ps

At Threshold:
Nth 3.77 × 1018 cm−3 3.93 × 1018 cm−3

Jth 178.3/0.8 = 223 A/cm2 575.2/0.8 = 719 A/cm2

Ith 1.11 mA 0.719 mA
ηr 0.840 0.829
a 5.34 × 10−16 cm2 5.10 × 10−16 cm2

ap 2.37 × 10−14 cm2 2.50 × 10−14 cm2

τ 2.71 ns 2.63 ns
τ	N 1.57 ns 1.52 ns
τ ′
	N 44.3 μs 23.0 μs

nsp 1.13 1.11
R′

sp 1.02 × 1023 cm−3/s 2.09 × 1023 cm−3/s
βsp |th 0.869 × 10−4 1.69 × 10−4

At P01 = 1 mW:
I 3.31 mA 2.32 mA
Np 2.43 × 1014 cm−3 2.80 × 1014 cm−3

γNP 1.12 × 1013 s−1 1.18 × 1013 s−1

γPN 2.95 × 107 s−1 3.88 × 107 s−1

γNN 1.56 × 109 s−1 1.67 × 109 s−1

γPP 1.32 × 109 s−1 1.93 × 109 s−1

fR Eq. (5.49) 2.907 GHz 3.423 GHz
∼fR Eq. (5.51) 2.904 GHz 3.418 GHz
γ 2.88 × 109 s−1 3.60 × 109 s−1

γ0 0.651 × 109 s−1 0.686 × 109 s−1

K 0.265 ns 0.250 ns
(	ν)ST 1.07 MHz 2.27 MHz
RIN peak −112 dB/Hz −111 dB/Hz
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TABLE 5.1: (Continued)

Material Parameters For Both Laers
Active Material ln0.2Ga0.8As/GaAs 80 Å QWs @ 980 nm)

Curve fits (from Chapter 4):
Ntr , Ns , g0N 1.8 × 1018 cm−3, −0.4 × 1018 cm−3, 1800 cm−1

Jtr , Js , g0J 50 A/cm2, −10 A/cm2, 1100 cm−1

Jtr , Js , g0J (Jsp only) 50 A/cm2, 0, 1440 cm−1

gnsp 850 cm−1 × ln[1 + (N /1018 cm−3)2/2]
vg 3/4.2 × 1010 cm/s
ηi 0.8
ε 1.5 × 10−17 cm3

A assumed negligible
B ∼0.8 × 10−10 cm3/s (see Fig. 4.29)
C 3.5 × 10−30 cm6/s

5.3.1 Small-Signal Frequency Response

To obtain the small-signal responses dN (t) and dNp(t) to a sinusoidal current
modulation dI (t), we assume solutions of the form

dI (t) = I1ejωt ,

dN (t) = N1ejωt , (5.39)

dNp(t) = Np1ejωt .

Setting d/dt → jω and rearranging Eq. (5.36), we obtain
[
γNN + jω γNP

−γPN γPP + jω

] [
N1

Np1

]
= ηi I1

qV

[
1
0

]
. (5.40)

The determinant of the matrix is given by

	 ≡
∣∣∣∣γNN + jω γNP

−γPN γPP + jω

∣∣∣∣
= (γNN + jω)(γPP + jω) + γNPγPN

= γNPγPN + γNN γPP − ω2 + jω(γNN + γPP ). (5.41)

With this, we can apply Cramer’s rule to obtain the small-signal carrier and photon
densities in terms of the modulation current:

N1 = ηi I1

qV
· 1

	

∣∣∣∣1 γNP

0 γPP + jω

∣∣∣∣ , (5.42)

Np1 = ηi I1

qV
· 1

	

∣∣∣∣γNN + jω 1
−γPN 0

∣∣∣∣ . (5.43)
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Expanding the determinants, the small-signal solutions can be written as

N1 = ηi I1

qV
· γPP + jω

ω2
R

H (ω), (5.44)

Np1 = ηi I1

qV
· γPN

ω2
R

H (ω), (5.45)

where the modulation response is conveniently described in terms of the following
two-parameter modulation transfer function:

H (ω) = ω2
R

	
≡ ω2

R

ω2
R − ω2 + jωγ

. (5.46)

We define ωR as the relaxation resonance frequency and γ as the damping fac-
tor. The physical significance of these parameters was discussed in Chapter 2.
Comparing (5.46) to (5.41), the following associations can be made:

ω2
R ≡ γNPγPN + γNN γPP , (5.47)

γ ≡ γNN + γPP (5.48)

The densities N1 and Np1 both follow the frequency response of the modulation
transfer function; however, the carrier density has an additional zero in the complex
frequency plane at ω = jγPP . The general behavior of H (ω) is shown in Fig. 5.4.
It is essentially a second-order low-pass filter with a damped resonance appearing
near the cutoff frequency. The intensity modulation can follow the current modula-
tion up to frequencies near ωR , with an enhancement in the response existing at the
relaxation resonance. Beyond the resonance, the response drops off dramatically.
The actual peak frequency of the resonance, ωP , is slightly less than ωR depending
on the damping. The frequency at which the electrical power response drops to
half its DC value, ω3 dB, is somewhat higher than ωR for small damping. The
relations for both ωP and ω3 dB are included in the figure. To understand how we
can maximize the modulation bandwidth, or ω3 dB, we need to evaluate Eqs. (5.47)
and (5.48).

The relaxation resonance frequency and the damping factor that characterize
H (ω) can be expanded using Eq. (5.34):

ω2
R = vg aNp

τp
+

[
�vg apNp

τ	N
+ �R′

sp

Npτ	N

] (
1 − τ	N

τ ′
	N

)
+ 1

τ ′
	N τp

, (5.49)

γ = vg aNp

[
1 + �ap

a

]
+ 1

τ	N
+ �R′

sp

Np
. (5.50)

In practice, the expression for ω2
R can be simplified dramatically. For example,

the last term is small compared to the first for NpVp > nsp (see footnote 5), and
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FIGURE 5.4: Sketch of the modulation transfer function for increasing values of relaxation
resonance frequency and damping factor, including relationships between the peak frequency,
ωP , the resonance frequency, ωR , and the 3 dB down cutoff frequency, ω3dB.

hence can be ignored above threshold where nsp ∼ 1 − 2 and NpVp  1. Of the
remaining terms, two are ∝ Np , and one is ∝ 1/Np . The former will dominate at
some point above threshold as the photon density increases. For typical numbers
(see Table 5.1), this crossover occurs very close to threshold. Hence, we can also
neglect the 1/Np term. Comparing the coefficients of the two terms ∝ Np , with
τ	N  τp and a ∼ �ap , we conclude that a/τp  �ap/τ	N . Thus, the first term
dominates over all other terms and ω2

R reduces to

ω2
R ≈ vg aNp

τp
. (above threshold) (5.51)

This is the same result we found in Chapter 2 with the exception that in this case
a = a0/(1 + εNp). As mentioned in Section 2.7, ωR can be enhanced by increasing
the photon density or output power. This increase continues until the photon
density approaches 1/ε, at which point the differential gain falls off appreciably
due to gain compression. For photon densities well beyond 1/ε, ω2

R becomes
independent of output power, saturating at vg a0/τpε (however, in practice, such
high photon densities are not typically encountered, and furthermore, it is not clear
that the form assumed here for gain compression is even valid at such high photon
densities).

Because we will be concentrating on the laser performance above threshold, we
will specifically define ωR using Eq. (5.51) unless otherwise stated. This simplified
definition of ωR can be used to rewrite the damping factor as

γ = Kf 2
R + γ0, (5.52)
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where

K = 4π2τp

[
1 + �ap

a

]
and γ0 = 1

τ	N
+ �R′

sp

Np
. (5.53)

For large resonance frequencies, the K -factor describes the damping of the
response, and as such is an important parameter in the characterization of
high-speed lasers. The damping factor offset γ0 is important at low powers where
the relaxation resonance frequency is small. In practice, K and γ0 are used as
fitting parameters to be extracted from the laser modulation response.

Example 5.1 A small signal modulation is applied to a VCSEL whose diameter
is 4 μm. Resonant frequency, fR , damping, γ , and ratio of FM/IM , M/m , measured
for three different bias values above threshold are shown in Table 5.2.

TABLE 5.2:

I − Ith (mA) fR(GHz) γ (GHz)
M

m
(@ 50 MHz)

0.5 6 5.5 30
1.0 8.5 10.5 60
2.0 12 20.5 120

Problem: What are the K factor and the damping factor offset, γ0?

Solution: The relationship between the damping factor and the resonance fre-
quency is given by Eq. (5.52),

γ = Kf 2
R + γ0.

Taking two points from the experimental data, we can calculate K and γ0,

γ1 − γ2 = K (f 2
R1 − f 2

R2), → K = γ1 − γ2

f 2
R1 − f 2

R2

= 5

36
= 0.1389 ns,

and

γ0 = γ1 − Kf 2
R1 = 0.5 GHz.

The solution can be verified by making sure that the third data point satisfies the
equation.

Because the damping increases in proportion to ω2
R , as we attempt to drive the

laser harder to increase ωR , the response flattens out as illustrated in Fig. 5.4. At
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some point, the damping becomes large enough that the response drops below the
3 dB cutoff at frequencies less than ωR . As a result, there is a maximum bandwidth
that can be achieved. Using the formulas in Fig. 5.4 combined with the definition
of γ (neglecting γ0), we can determine the modulation bandwidth for low damping
as well as the maximum possible bandwidth:

f3 dB ≈ fR

√
1 +

√
2 ≈ 1.55fR , (γ /ωR � 1) (5.54)

f3 dB|max =
√

2
2π

K
. (γ /ωR =

√
2) (5.55)

The modulation bandwidth increases linearly with the relaxation resonance fre-
quency and remains about 50% larger than fR until damping becomes strong. With
strong damping the bandwidth is compromised and eventually decreases with fur-
ther increases in ωR and γ . The optimum damping and maximum bandwidth occur
when ωP = 0 and ωR = ω3 dB as defined in Fig. 5.4. This point is determined by the
K -factor, which in turn is determined by the photon lifetime of the cavity. The K -
factor therefore defines the intrinsic modulation bandwidth capabilities of the laser.

Returning to the AC photon density modulation response Eq. (5.45), we can
use the explicit definition of ωR to simplify the relation. With the above-threshold
version of γPN in Eq. (5.36), we can set γPN ≈ �vg aNp = �ω2

Rτp . We then obtain

Np1

I1
= ηi

qV
�τpH (ω). (5.56)

Using Eq. (5.5) to set τp = η0hνNp1Vp/P1, the AC output power modulation
response finally becomes

P1

I1
= ηi η0

hν

q
H (ω). (5.57)

This result was also found in Eq. (2.54). The electrical power received, which
is of more fundamental interest is given by the absolute square of Eq. (5.57). In
decibels, the frequency response is therefore ∝ 10 log10 |H (ω)|2 or 20 log10 |H (ω)|.
The phase shift of the modulation is given by ∠H (ω).

Figure 5.5 gives an example of experimental modulation responses of an
InGaAs/GaAs VCSEL at different biases. The resonance peak, which occurs at
∼ ωR is clearly visible in each curve. Note that the resonance shifts to higher
frequencies with increasing bias current. This is because the output power and
photon density increase with increasing current above threshold which increases
ωR via Eq. (5.51). We can write this relationship more directly by plugging
Eqs. (5.5) and (5.17) into Eq. (5.51) to obtain

ω2
R = vg a

qVp
ηi (I − Ith). (5.58)

For high photon densities, it is important to appreciate that a = a0/(1 + εNp), and
hence gain compression can affect the resonance frequency. However, for practical
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FIGURE 5.5: Small-signal intensity modulation of a mesa-etched intracavity-contacted
7 μm diameter 3-quantum-well InGaAs/GaAs VCSEL at the DC biases indicated. Its thresh-
old current is 0.75 mA, the powers out are 0.2, 0.4, 0.9 and 1.4 mW, respectively, and the
MSR is greater than 30 dB over the entire range [1]. Experimental curves are dashed and
curve fits are solid.

situations its effect is minimal. The curves in Fig. 5.5 also reveal that the resonance
peak flattens and broadens out with increasing bias. This is due to the increase in
damping present through γ which goes as ω2

R from Eq. (5.53). And unlike the
resonance frequency, the K -factor is enhanced by ∼2 due to gain compression,
independent of the magnitude of the photon density .

5.3.2 Small-Signal Transient Response

To find the transient response to the linearized system characterized by Eq. (5.36),
it is useful to rewrite the double-pole modulation transfer function as the product
of two single-pole transfer functions:

H (ω) = ω2
R

ω2
R − ω2 + jωγ

= ω2
R

(jω + s1)(jω + s2)
. (5.59)

The roots s1,2 in the complex frequency plane are given by

s1,2 = 1
2γ ± jωosc , ωosc = ωR

√
1 − (γ /2 ωR)2. (5.60)

Note from Fig. 5.4 that ω2
osc = 1

2 (ω2
P + ω2

R). From linear systems theory, these
complex roots suggest solutions of the following form:

e−γ t/2(ejωosc t ± e−jωosc t ), (5.61)

plus any additional constants required to satisfy initial and final conditions.



5.3 DIFFERENTIAL ANALYSIS OF THE RATE EQUATIONS 267

In general we can say that in response to an abrupt change in the system (e.g.,
a step increase in current, a reduction in the photon lifetime, etc.), the transient
carrier and photon densities will oscillate sinusoidally or “ring” at the rate ωosc

before eventually decaying to new steady-state values, the decay being character-
ized by the damping factor (hence the name). When the system is underdamped (i.e.,
when γ /2 ωR � 1), the oscillations are characterized by the relaxation resonance
frequency ωR from Eq. (5.60).6 However, γ ∝ ω2

R so that as ωR increases with
increasing output power, the system approaches critical damping, or γ /2 ωR → 1
and ωosc → 0. Under these conditions, the densities will simply rise/fall expo-
nentially to their new steady-state values. At even larger output powers the sys-
tem becomes overdamped, γ /2ωR > 1, and the oscillation frequency becomes
imaginary, ωosc → jγosc , which slows the system down, increasing the rise and
fall times of the transient solutions. The maximum modulation bandwidth of the
laser is obtained when γ /2ωR = 1/

√
2 (which is slightly underdamped), yielding

ωosc = ωR/
√

2 (and ωP = 0). Thus, for practical applications the laser is always
underdamped, and oscillations toward steady-state are expected.

Now let us consider a specific example. We want to know the effect of suddenly
increasing the current by dI. If we define the transient responses as dN (t) and
dNp(t), then Eq. (5.61) can be used to obtain their general forms (i.e., damped
sines or damped cosines), and Eq. (5.36) can be used to find the initial and final
conditions. Initially, the system is at steady-state and we can set dN (0) = dNp(0) =
0. At t = 0+, the current has abruptly increased, but no time has elapsed so no
change in carrier density is observed. Because the photon density can only increase
as a result of an increase in gain, which in turn follows the carrier density increase,
it also must still be at its initial value. From this we conclude that dN (0+) =
dNp(0+) = 0. Equation (5.36) at t = 0+ therefore becomes

d

dt

[
dN (t)
dNp(t)

]
= ηi

qV

[
dI
0

]
. (t = 0+) (5.62)

This gives us our set of initial conditions: the initial slope of dN (t) is finite and
proportional to the current step, whereas the initial slope of dNp(t) is zero (the
carrier density must rise before the gain can begin to make a change in the photon
density).

Due to the clamping of the carrier density above threshold, we know that the
final value of dN (t) must be approximately zero after the transient has damped

6In some treatments, ωR is by definition set equal to ωosc , and the damping factor is set equal to γ /2
to comply with the natural roots of the transfer function. The problem with setting ωR = ωosc is that
ωosc goes to zero at high output powers. The more standard definition of ωR (as defined in this chapter)
allows us to use Eq. (5.51) for all but very small output powers. As for the damping factor, the alternate
definition causes no harm, and in fact would perhaps be the better way to define it. However, in the
literature, the damping factor is usually defined such that the decay rate is γ /2, as we have it here.
A word of warning: although either set of definitions can be used, one must be careful not to mix and
match results found using either set (an error commonly made in the literature).
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out. This fact, together with the initial condition on the slope suggests that dN (t)
is a damped sine wave of the form:

dN (t) = dN0e−γ t/2 sin ωosc t . (5.63)

From Eq. (5.62), we find dN0 = ηi dI /(qV ωosc).
For the photon density, we know the initial slope is zero. This suggests a damped

cosine solution. However, because the current has increased, the steady-state output
power must also increase. In other words, the final value of dNp(t) must have a
finite positive value. Hence, the solution is more likely equal to the final value less
a damped cosine of the same initial value:

dNp(t) = dNp(∞)[1 − e−γ t/2 cos ωosc t]. (5.64)

Upon closer examination, we find that the initial slope of the term in brackets is
not zero but is equal to γ /2. For small damping we can neglect this. However for
the more general case, we need to add another term which is zero initially but has
an initial slope −γ /2. A damped sine wave with the appropriate prefactor can be
used to give

dNp(t) = dNp(∞)

[
1 − e−γ t/2 cos ωosc t − γ

2ωosc
e−γ t/2 sin ωosc t

]
. (5.65)

This function now has zero initial slope and reaches dNp(∞) in the steady state.
To determine dNp(∞), we know that as t → ∞, the time derivatives must go

to zero in Eq. (5.36) allowing us to write

[
γNN γNP

−γPN γPP

] [
dN (∞)

dNp(∞)

]
= ηi

qV

[
dI
0

]
. (t = ∞) (5.66)

Using Cramer’s rule to solve for the steady-state values, we obtain

dN (∞) = ηi dI

qV

γPP

ω2
R

≈ ηi dI

qV
�τp · ap

a
, (5.67)

dNp(∞) = ηi dI

qV

γPN

ω2
R

≈ ηi dI

qV
�τp . (5.68)

The photon density transient is now completely specified. However, we find that
our initial assumption that dN (t) must return to zero in the steady state is not
quite right. Two factors affect the final carrier density. First of all, to increase
the photon density, the gain must be brought closer to threshold as suggested in
Fig. 5.3. As a result, the carrier density must increase slightly. In addition, gain
compression reduces the gain at a given carrier density as the photon density is
increased. Thus to maintain a given gain, the carrier density must again increase
with increasing photon density. Both of these factors are included in γPP ; however,
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FIGURE 5.6: Comparison of exact numerical calculation (−) with analytical approximations
(−−) for a small-signal step transient. An in-plane laser with parameters given in Table 5.1 is
biased at twice threshold initially. Threshold gain, �gth = 50.6 cm−1; initial carrier density,
N = 3.77 × 1018 cm−3; initial photon density, Np = 1.23 × 1014 cm−3. (a) Transient from
2.0 to 2.1 Ith ; (b) transient from 2.0 to 3.0 Ith .

for reasonable photon densities, the gain compression term dominates, leading to
the approximation given in Eq. (5.67).

The question now is how to include a finite final value for dN (t). We need a
function which has zero slope initially and a finite final value, just like the photon
density. In fact, noting that dN (∞) = (γPP/γPN )dNp(∞) motivates us to write the
new improved version of the carrier density transient as

dN (t) = dN0e−γ t/2 sin ωosc t + γPP

γPN
dNp(t), (5.69)

where again dN0 = ηi dI /(qV ωosc) and γPP/γPN ≈ ap/a .
Although we have used rather ad hoc methods, one can easily verify that

Eqs. (5.65) and (5.69) satisfy the differential rate Eqs. (5.36), which themselves
are valid as long as the transients are small compared to the steady-state
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carrier and photon densities. We could have alternatively derived these solu-
tions through a more rigorous linear systems approach (Laplace transform of
H (ω) → impulse response → step function response).

Figure 5.6 gives two examples of responses to step function current transients,
using both Eqs. (5.65) and (5.69) and an exact numerical solution of the rate
equations. The first pair is for a small current step, which gives excellent agreement,
and the second is for an order of magnitude larger step, both starting from a bias
point of twice threshold. For larger bias points proportionally larger transients can
be approximated by Eqs. (5.65) and (5.69). However for the best fit, the analytic
solutions should use the final photon and carrier density values to estimate the rate
coefficients (note that both ωR and γ are larger in Fig. 5.6b).

For small-signal data that involve a square-wave-like current waveform, time-
shifted versions of Eqs. (5.65) and (5.69) can be superimposed to give the net time
response of the photon and carrier density, respectively. From a linear systems
point of view, a square wave input can be described as one positive step function
plus a second time-delayed negative step function. The linearity of the system then
guarantees that the overall solution is simply the sum of the responses created by
each individual step function input.

5.3.3 Small-Signal FM Response or Frequency Chirping

As we saw in the previous sections, current modulation of the active region results
in a modulation of both the photon density and the carrier density. The modulation
of the carrier density modulates the gain; however, it also modulates the index of
the active region na . As a result, the optical length of the cavity is modulated by
the current, causing the resonant mode to shift back and forth in frequency. This
frequency modulation (FM) of the laser may be desirable if we wish to dynamically
tune the laser. However for intensity modulation (IM) applications, FM or frequency
chirping broadens the modulated spectrum of the laser, hindering its effectiveness
in optical fiber communications.

To derive the general relationship between 	ν and 	na , we write the frequency
of mode m including a passive section as

ν[n̄aLa + n̄pLp] = mc/2. (5.70)

To find the frequency deviation, we take the differential of this equation and include
the possibility of the active index changing with carrier density. The first differential
term is

	(νn̄a) = 	νn̄a + ν

[
dn̄a

dν
	ν + dn̄a

dN
	N

]
= 	νn̄ga + ν

dn̄a

dN
	N . (5.71)

For the passive section, we simply have 	(νn̄p) = 	νn̄gp . In both cases, the g
subscript denotes group index: n̄g ≡ n̄ + νdn̄/dν. Setting the differential of the
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RHS of Eq. (5.70) to zero and solving for 	ν, we obtain

	ν = −�z vg

λ

dn̄a

dN
	N , (5.72)

where �z = n̄gaLa(n̄gaLa + n̄gpLp) and vg is the group velocity in the active
section. In cases where La � λ, it can be shown that standing wave effects as
considered in Appendix 5 would also appear in �z (to derive this, one would need
to take into account the index discontinuities and resulting reflections between the
active and passive sections).

In Chapter 6, we will find that the change in effective propagation index can be
related to the change in active material index through 	n̄ = �xy	n (see Eqs. (6.23)
and (A5.13)), allowing us to set dn̄/dN = �xy dn/dN . With this substitution and
with �xy�z = �(= V /Vp), we obtain

	ν = −�vg

λ

dna

dN
	N . (5.73)

The complex index is given by ñ = n + jni , and the power gain is related to
the imaginary index through: g = 2koni = 4πni /λ. The relationship between how
the real and imaginary indices are affected by the carrier density is described using
what is referred to as the linewidth enhancement factor :

α ≡ − dn/dN

dni /dN
= −4π

λ

dn/dN

dg/dN
= −4π

λa

dn

dN
, (5.74)

where a is again used to define the differential gain. With this definition, the
frequency shift in response to changes in carrier density becomes

	ν = α

4π
γ vg a	N . (5.75)

The amount of frequency modulation is proportional to the linewidth enhancement
factor, which is typically between 4 and 6 but can be as low as 2 in some active
materials.

Using Eq. (5.44) for the AC carrier density modulation response, we immedi-
ately obtain

ν1

I1
= α

4π
�vg a

ηi

qV
.
γpp + jω

ω2
R

H (ω). (5.76)

Figure 5.7 compares the qualitative frequency response of this FM and the IM
derived in Section 5.3.1. Both FM and IM exhibit a resonance peak; however, the
FM response falls off at low frequencies at 20 dB/decade before leveling out below
γPP/2π . Also, the peak of ω2|H (ω)|2 occurs directly at ωR .
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FIGURE 5.7: Qualitative comparison of the FM and IM response of a semiconductor laser.

Dividing Eq. (5.76) by Eq. (5.56) and setting ω2
R = vg aNp/τp , we obtain the

simple result:

ν1 = α

4π
(γPP + jω)

Np1

Np
. (5.77)

So we discover that the frequency chirping of the lasing spectrum increases lin-
early with the intensity modulation depth (because Np1/Np = P1/P0). This effect
is dramatically illustrated in Fig. 5.8, which displays the lasing spectrum under
different degrees of intensity modulation for a constant modulation frequency. The
peaks at both extremes of the modulated spectrum result from the time averaging
of the sinusoidal modulation signal (i.e., the lasing frequency spends more time on
average at the extremes of the sine wave).

If we define the FM modulation index as M = ν1/f and the IM modulation
index as m = P1/P0, then using the absolute magnitude of Eq. (5.77), the ratio of
the FM-to-IM modulation index becomes

M

m
= α

2

√(γPP

ω

)2 + 1. (5.78)

From Eq. (5.36), γPP ≈ �vg apNp . For typical numbers, this term can be in
the hundreds of MHz to few GHz range, depending on the output power level.
For modulation frequencies beyond this (i.e., ω  γPP ), M/m → α/2, providing
us with a simple and very direct method of measuring α. For lower modulation
frequencies, M/m becomes inversely proportional to the modulation frequency. By
measuring M/m as a function of ω, one can then determine γPP , and ultimately
determine the gain compression factor ε (via ap) if curves are taken at different
output power levels. Such a measurement is shown in Fig. 5.9. From these curves
it is clear that for this laser, γPP varies from 1–3 GHz, and α is just over 6.
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FIGURE 5.8: Time-averaged power spectra of a 1.3 μm InGaAsP laser under sinusoidal
modulation at 100 MHz. The spectrum broadens with an increase in the modulation current
due to frequency chirping. The horizontal scale is 0.5 Å per division. After [2]. (Reprinted,
by permission, from Journal of Applied Physics).
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Example 5.2 For the VCSEL from Example 5.1, the plot of M/m as a function
of 1/fm is found to decrease for low frequencies, and then saturate at a value of
2.5 for high modulation frequencies.

Problem: What is the linewidth enhancement factor for this laser?

Solution: (a) The relationship between the FM-to-IM modulation index and the
linewidth enhancement factor is given by Eq. (5.78),

M

m
= α

2

√(γPP

ω

)2 + 1.

For high modulation frequencies, the expression under the square root reduces to
1, and the value from the plot corresponds to 1

2 of the enhancement factor α,
therefore,

α = 5.

So far we have only considered changes in the index created by the modulation
of the carrier density. However, at low modulation frequencies the temperature of
the laser is also modulated when we apply current modulation. Because the index
varies with temperature, we should expect the frequency modulation to be affected
by thermal effects as well. The total FM of the laser may therefore be written as
the sum of two contributions:

ν1

I1
=

(
	ν

	I

)
carrier

+
(

	ν

	I

)
thermal

(5.79)

where
(

	ν

	I

)
carrier

= α

4π

ηi

qVp

ε

1 + εNp
· (1 + jω/γPP )H (ω),

(
	ν

	I

)
thermal

= (1 − ηwp)VthZT dν/dT

1 + jωτT
.

In the first equation we have again set γPP ≈ �vg apNp , expanded ap using
Eq. (5.31), and set 1/τp = �vg g , which is a good approximation above threshold.
In the second equation, ηwp is the well-plug efficiency of the output power
Pout/Pin , ZT is the thermal impedance of the laser structure discussed in Chapter 2,
and Vth is the threshold voltage of the laser that is assumed roughly constant
above threshold. Also τT is the thermal time constant, which is typically in the
few microseconds range, yielding thermal cutoff frequencies in the few hundred
kilohertz range. Finally, dν/dT = −(c/λ2)dλ/dT is the shift in the mode fre-
quency with temperature. For 1 μm emission lasers, dλ/dT ∼ 0.06−0.08 nm/K,
which translates into dν/dT ∼ −20 GHz/K.

For a thermal impedance of 0.1 K/mW, the temperature tuning below the thermal
cutoff frequency is ∼ − 2 GHz/mA (assuming (1 − ηwp)Vth ≈ 1V ). For a VCSEL
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FIGURE 5.10: Sketch of the frequency tuning characteristics as a function of modulation
frequency including both temperature and carrier effects (numbers indicated are for a typical
in-plane laser). Because the temperature and carrier effects are opposite in sign at low
modulation frequencies, one might expect a null in the combined tuning curve at the crossing
point. This does not occur because the modulation phase of the temperature tuning shifts by
90◦ beyond the thermal cutoff frequency.

the thermal impedance is closer to 1 K/mW implying an order of magnitude larger
temperature tuning than with in-plane lasers. The carrier tuning below γPP/2π is
closer to ∼300 MHz/mA for numbers given in Table 5.1, and is opposite in sign
to temperature tuning. Figure 5.10 sketches the important characteristics of the
combined frequency tuning as a function of modulation frequency. For modulation
frequencies between 1/τT < ω < γPP (i.e., ∼1 MHz < f < ∼1 GHz), the response
is flat with a value typically in the range of a few hundred MHz/mA.

Example 5.3 For the VCSEL from Example 5.1, the injection efficiency for
the material is ηi = 0.8, the confinement factor is � = 3.15%, and the differential
efficiency is ηd = 0.291. The active region consists of 5 7-nm-wide quantum wells.
Assume the mirror transmission Tm = 0.00212 and LDBR = 2 μm.

Problem: (a) What is the differential gain a? (b) What is the gain compression
ap?

Solution: (a) The value of the differential gain can be computed from the known
bias above threshold and resonance frequency, using the expression given by
Eq. (5.58),

ω2
R = vg a

qVp
ηi (I − Ith) = �vg a

qV
ηi (I − Ith).

From here, the differential gain can be calculated for any bias point—we choose
to do it for I − Ith = 0.5 mA,

a = (2π fR)2qV

�vgηi (I − Ith)
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= (2π · 6 · 1091/s)2 · 1.6 · 10−19C(π · 4 · 10−8 cm2)(0.035 · 10−4 m)

(0.0315) 3
4 1010 cm/s(0.8)(0.5 · 10−3)C/s

= 1.06 · 10−15 cm2.

(b) Gain compression can be easily extracted from the relationship between the FM-
to-IM modulation index and the linewidth enhancement factor, Eq. (5.78), using
the expression for γpp = �vg apNp , Eq. (5.36). Because the value for M

m = 30, we
can simplify the computation by neglecting 1 from the Eq. (5.78), thus expressing
the gain compression as

ap = 2

α

M

m

ω

�vg Np
.

We now need to compute the photon concentration. From the expression for the
output power, Eq. (2.37), the photon concentration in the laser cavity is

Np = ηi (I − Ith)

qvg gthV
= ηi (I − Ith)�

qvg (αi + αm)V
= ηd�(I − Ith)

qvgαmV
.

Substituting into the expression for gain compression, we now have

ap = 2

α

M

m

ωVq Tm
LDBR

�2ηd (I − Ith)
= 1.95 · 10−14 cm2

5.4 LARGE-SIGNAL ANALYSIS

For deviations from the steady-state, which are comparable to the steady-state
values themselves, our previous differential analysis of the rate equations fails to
provide accurate solutions as evidenced by Fig. 5.6(b). To determine the dynamic
response of the laser for large-signal inputs, we must therefore return to the general
rate Eqs. (5.3) and (5.4). These equations are valid for large signal modulation
provided the nonlinear changes in gain with the carrier and photon densities are
included. Furthermore, they hold continuously below threshold and above threshold.
Of course if the laser is always kept above threshold, the carrier density does not
change by a large amount due to carrier clamping, even during large transients.
The problem we face here is that these equations cannot be solved analytically.
Therefore, to proceed we must use numerical techniques. Such numerical solutions
to the rate equations are in principle found by iterating from one rate equation to
the other using a small increment of time 	t in place of dt. As always, the power
out can be calculated from Np , and the frequency chirping can be obtained from
the deviations of N from some reference value using Eq. (5.75).
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5.4.1 Large-Signal Modulation: Numerical Analysis of the Multimode Rate
Equations

In this section we consider numerical solutions to the multimode rate equations
to give a feeling for the large-signal dynamic properties of multimode lasers. As
mentioned in Section 5.2, the single-mode rate equations as given by Eqs. (5.3)
and (5.4) give a good description of the dynamics of operation in single-frequency
lasers. Generally, however, several different modes with different resonant wave-
lengths exist. In well-designed in-plane lasers these are generally due to different
axial modes, whereas in VCSELs these are usually associated with different lateral
modes. Each mode will have a different cavity loss and a different gain because
of their different wavelength. These differences will be accentuated in lasers with
frequency-dependent losses. Because all modes interact with a common reservoir
of carriers, they are indirectly coupled even though they are orthogonal solutions
to the electromagnetic wave equation.

Writing a separate photon density for each mode indexed by the integer m ,
Eqs. (5.3) and (5.4) become

dN

dt
= ηi I

qV
− (Rsp + Rnr ) −

∑
m

vgmgmNpm , (5.80)

dNpm

dt
=

[
�mvgmgm − 1

τpm

]
Npm + �mR′

spm , (5.81)

and gm is given by Eq. (5.29) with a photon density Npm . For numerical analysis,
we replace dN, dNpm , and dt by 	N , 	Npm , and 	t , respectively, then multiply
through by 	t . This time increment is set to some sufficiently small value so
that the derivatives are accurately estimated. Because we can expect the response
will involve oscillations near ωR , we should set 	t � 1/ ωR . The equations are
then successively iterated to increment the carrier density and photon density for
each mode from the initial values. Thus, after the i th iteration (t = i	t), the
carrier density is given by N (i ) = N (i − 1) + 	N , etc. In practice, numerical
techniques such as the fourth-order Runge–Kutta method can be used to reduce the
calculation time because much larger time steps can be used for the same accuracy
in the solutions (the simple iteration scheme requires extremely small time steps
to successfully determine the solution without introducing large errors).

To model the spectral roll-off of the gain near the gain peak, we can often
approximate the gain spectrum by a Lorentzian, as illustrated in Fig. 5.11. The
gain experienced by each mode m can then be described by

g(N , Np , m) = 1

(1 + (	M/m2))
· g0

1 + ∑
n

εnmNpn
ln

(
N + Ns

Ntr + Ns

)
, (5.82)

where 	m is the mode number measured away from the central mode (	m = 0),
which is assumed to be aligned with the gain peak, and M is the mode number
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True gain spectrum

Lorentzian model

M

Δm =
–3 –2 –1 0 +1 +2 +3 Cavity modes

FIGURE 5.11: Simple Lorentzian model of the gain spectrum convenient for analyzing
multimode lasers.

where the gain has fallen to half of its peak value. In practice, M is adjusted to
match the curvature of the gain specturm near the gain peak, where the details of the
spectrum are most relevant. The sum in the denominator accounts for intermodal
gain compression.7

Figure 5.12 gives numerical plots of the carrier density and photon density for
the various modes of an InGaAs/GaAs Fabry–Perot laser. No wavelength-dependent
losses are assumed. The current at t = 0 increases from zero to I + = 2Ith . As
shown, the carrier density initially increases as the active-region reservoir is filled.
Little photon density exists until the carrier density reaches its threshold value.
At this point, stimulated recombination begins to limit a further increase in carrier
density as the photon density increases. This delay before the photon density “turns
on” is called the turn-on delay of the laser.

The Fabry–Perot laser considered in Fig. 5.12 is obviously not a very good
single-mode laser. Initially many modes turn on, and in the steady-state two strong
side modes (	m = ±1) persist. So we discover that the dynamic mode suppression
ratio (MSR) is quite a bit different (worse) than the steady-state MSR considered at
the end of Chapter 3. The challenge for state-of-the-art single-frequency lasers is to
maintain a dynamic MSR of greater than 30 dB throughout such a turn-on transient.

Figure 5.13 illustrates the predicted turn-on characteristics of a VCSEL in
which the axial mode spacing is much larger. Everything else is assumed to be
the same. Here we observe the desired single-frequency behavior. In practice,
such single-axial mode operation in VCSELs is compensated for by multi-lateral
mode operation not considered in this calculation. One challenge in VCSEL
design is to eliminate such lateral modes from appearing in the lasing spectrum.

7If neighboring modes have no effect on each other’s gain then only diagonal terms of εnm are nonzero
(εmm = ε, εnm = 0 for n �= m) and the sum can be replaced by εNpm . On the other extreme, if all modes
are affected equally by any photons present, then all terms of εnm are nonzero (εnm = ε), and the sum
can be replaced by εNp . Spectral and spatial hole burning of the carrier population will typically lead
to gain compression, which is somewhere in between these extremes.
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FIGURE 5.12: Large-signal modulation of an SQW InGaAs/GaAs in-plane laser using
parameters given in Table 5.1. The relative gain width is set to M = 25 as might be appro-
priate for an in-plane laser. Twenty-five modes (	m = ±12 ) are included in the calculation.
The sum of gain compression terms is assumed to be εNpm .
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FIGURE 5.13: Large-signal modulation of a short-cavity laser using the VCSEL parameters
given in Table 5.1. M = 3 is assumed.

Such single axial mode operation can also be achieved with in-plane lasers by
using frequency-dependent losses as discussed in Chapter 3 (for example, a DFB
or DBR can be employed).

5.4.2 Mode Locking

Because the axial modes of a laser cavity satisfy the same axial boundary condi-
tions, giving regularly spaced modal frequencies according to Eq. (2.29), it is also
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possible for them to be aligned in time, such that they will all add in phase at
some point along the cavity and be generally out of phase elsewhere. The result
as time proceeds is a pulsed output power intensity, with pulses whose width and
repetition rate will be determined by the length and other design aspects of the
laser cavity and the active region. Figure 5.14 illustrates this phenomenon at sev-
eral different instants in time, for a given location along the laser cavity. This type
of laser, called a mode-locked laser, may be of interest for various applications
that require optical pulses, such as optical sampling, different medical applications,
laser-based distance and speed measurements (LADAR and range finding), as well
as optical regeneration. To illustrate how a number of continuously lasing modes
can produce output light in the form of pulses, we will look at a simple case of

m = –1
m = –2

m = –3

m = 3

m = 2
m = 1

m = 0

m = 1
m = 2

m = 3

m = –3
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(a) (b) (c)

(d)(e)(f)

m = 0,±1,±2,±3,±4, ...

m = ±4

FIGURE 5.14: Phasor diagrams of the longitudinal modes in a mode-locked laser, at six
distinct time instants, in one cross section of the laser. Note that the difference in angular
velocity between each set of phasors is 	ω. (a) All phasors adding in phase, corresponding
to the maximum in the pulse amplitude; (b) phasors still adding to a significant positive
amplitude; (c) all phasors are evenly spread and cancel out, and the pulse power is equal
to zero; (d) the pulse power remains zero, as the phasors cancel out while rotating; (e) the
phasors still cancel out, but a resulting power is about to grow after this time instant, as
they are moving into alignment; and (f) the pulse power is growing, as more and more of
the phasor components add in phase. The power will peak at when they are all in phase
again, as shown in subplot (a).
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a cavity with two equal amplitude adjacent longitudinal modes. Using the time
and space-varying electric field representation from Eq. (2.20), and looking at the
total electric field variation in time for constant z (using z = 0 without the loss of
generality), the two mode fields can be expressed as

EEEE 1 = êy E0U (x , y)ej (ωt) (5.83)

EEEE 2 = êy E0U (x , y)ej ((ω−	ω)t) (5.84)

where 	ω is the angular frequency difference between the two longitudinal cavity
modes, per Eq. (2.32). In diode lasers, 	ω � ω, and adding the two modes to
obtain the total electric field yields

EEEE = EEEE 1 + EEEE 2 = 2êy E0U (x , y)e
j
(

(2ω+	ω)t
2

)
e

j
(

(	ω)t)
2

)
. (5.85)

This result corresponds to a fast oscillation at a frequency very close to ω, modu-
lated by a slowly varying envelope, whose frequency of oscillation is 	ω

2 . Because
the optical power is proportional the amplitude squared of the electric field, two
simultaneously lasing modes give rise to pulselike optical intensity as function of
time, at a given cross section of the laser.

In a practical laser cavity, the number N of cavity modes that can lase simultane-
ously will be determined by the gain bandwidth of the laser active region. If we now
extend the two-mode approach to this case, the total electric field will be given by

E (t) =
∑

N

Emej (ωm t+φm (t)) (5.86)

where Em is the amplitude, ωm is the angular frequency, and φm(t) is the
time-dependent phase of the mth lasing mode. The difference in angular frequency
between adjacent cavity modes, per Eq. (2.32), is given by

	ω = ωm − ωm−1 = 2πc

2n̄g L
, (5.87)

where L is the cavity length, and n̄g is the group velocity. We note that the resultant
electric field is periodic in time, with a period defined by T = 2π

	ω
. We will use

this information in the next subsection, when calculating the pulse repetition rate.
The intensity of the light is proportional to |E (t)|2 = E (t)E ∗(t), where E ∗(t)

is the complex conjugate of E (t), thus yielding

|E (t)|2 =
∑

N

∑
N

EmEnej (ωm−ωn )t+(φm (t)−φn (t)). (5.88)

If the phase difference term, φm(t) − φn(t), is constant in time, we say that the
modes are locked in phase. The practical implication of this case is that the temporal
intensity of the light at any point in the laser can be described as a sum of a number
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of phasor vectors, all rotating at angular velocities, which are integer multiples of
	ω. Again, without the loss of generality, by fixing the phase differences at zero,
assuming an even number N of modes supported, the laser gain peak at the angular
frequency of ω0, and for simplicity, assuming equal amplitudes of the modes, the
resultant electric field can be described as

E (t) = E0ejω0t
N /2∑

m=−N /2

ejm	ωt = E0ejω0t sin(N 	ωt
2 )

	ωt
2

. (5.89)

Similarly to the two mode case, Eq. (5.85), we have the light intensity that is a
product of two factors, one varying rapidly with the average frequency ω0, and
the other varying much more slowly, with the frequency of 	ω. The slow varying
term has a familiar dependence of a sinc function, encountered in Chapter 3,
and responsible for the pulse shape. A graphic respresentation of the Eq. (5.89)
is shown in Figure 5.14. At time t = 0, Fig. 5.14a, all the electric field phasor
vectors are aligned along the real axis, and the optical pulse is at its peak power.
As the time increases, the optical phasors rotate in the complex plane, reducing
the pulse power (b), until the vector with the highest value of angular velocity,
N
2 	ω reaches the negative real axis, when the pulse is no longer discernible, and
its power goes to zero, as seen in (c). From this analysis, we can determine the
width of the pulse by noting that

N

2
	ω	tp = π (5.90)

and thus

	tp = 2π

N 	ω
= 1

	ν
, (5.91a)

where 	ν is the gain bandwidth of the laser active region, encompassing all the
active modes in the mode locked laser. This result is expected, as it is consistent
with the Fourier transform relationship between the bandwidth and the pulse width.

Going back to the analysis of the mode-locked laser operation, Figure 5.14d,
after the end of the pulse, the phasors will continue to rotate, spanning the whole
complex plane, and the resulting output field will be zero. Another pulse will start
appearing after the phasors have rotated to the positions shown in Fig. 5.14e. As
they continue the rotation toward the real positive axis, the field resultant and
the pulse intesity will grow (f). Finally, when the vector corresponding to the
m = 1 (slowest) mode has rotated over the full circle and it coincides with the real
positive axis, the other vectors will have rotated an integer number of full circles,
and the pulse power will peak again, as shown in Fig. 5.14a. Therefore, the period
corresponding to the pulse creation can be calculated based on the angular velocity
of the m = 1 mode and the fact that this mode travels over the angle of 2π from

T = 2π

	ω
= 2Ln̄g

c
. (5.91b)
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This is the same period that was established previously, from examining the case
of two modes and Eq. (5.87). Intuitively, it illustrates that the pulse repetition rate
is determined by the cavity parameters of the laser.

The output power from a multimode laser is equal to the sum of powers of each
individual mode. The power contained in each of these modes is the same, whether
or not the modes are locked in phase. If for illustrative purpuses, we assume that
each mode has the same electric field amplitude E0, the total output power when
the modes are not locked will be proportional to N · |E0|2. On the other hand,
in the mode locked configuration, at the pulse peak, all the mode amplitudes add
in phase, leading to the peak power proportional to N 2 · |E0|2. Because the peak
power in the mode locked laser is related to the average power 〈P〉 as

P = N 〈P〉.
a large number of oscillating modes can greatly enhance the pulse power in a mode
locked laser. Mode locking does not change the average power of the laser beam,
but rather redistributes this energy in time.

Mode Locking Techniques One simple technique that can be used for mode
locking a laser is to introduce a time-variable loss inside the cavity. This type
of mode locking is called active mode locking. If this loss is modulated in time
at a frequency equal to the mode separation, 	ω, it will lead to coupling of the
two adjacent cavity modes. If the coupling is sufficiently strong, the phase of the
different modes will be locked, resulting in mode locking.

In the time domain, with a sinusoidal loss modulation applied, the time between
loss the minima is T = 2n̄g L/c, the round-trip time for a pulse in the cavity.
Therefore, the light that arrives at the variable loss medium when the loss is at a
minimum has a lower round-trip loss than light arriving at other times. This leads
to the process of self-selection of the modes, where only the particular combination
of modes that are locked in phase will prevail, having the lowest lasing threshold.

Another approach to achieving a mode-locked combination of modes sponta-
neously in the cavity, without the need for a user-supplied modulation, is called
passive mode locking. This is generally accomplished by inserting a saturable
absorber inside the cavity. The absorption coefficient of the saturable absorber
decreases with increasing light intensity, which favors the development of high
intensity pulses. The gain for the passively mode locked laser is set just below
threshold, so that CW lasing will only occur if the light intensity is high enough
to decrease the absorption loss in the saturable absorber. This, in turn, can occur if
the modes lock together in phase to create short pulses because the peak power in
each pulse is very high compared with the equivalent CW power. The pulse length
is determined by the recovery speed of the saturable absorber material.

5.4.3 Turn-On Delay

The numerical simulations in Figs. 5.12 and 5.13 clearly illustrate that time is
required for the carrier density to build up to the threshold value before light
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is emitted. This turn-on delay, defined as td , can be detrimental in high-speed
data links, however it can be useful for measuring the carrier lifetime. As a first
approximation to estimating td , we can simply calculate the initial slope of the
carrier density and draw a straight line up to the threshold value Nth . To determine
the initial slope, we use the carrier density rate equation, assuming no appreciable
photon buildup:

dN

dt
= ηi I

qV
− (Rsp + Rnr ). (5.92)

If we start with some initial current Ii then the term in parentheses under steady-
state conditions can be set equal to ηi Ii /qV . Now we change the current instanta-
neously to If . The initial slope then becomes

	N

	t

∣∣∣∣
t=0

= ηi

qV
(If − Ii ) ≈ Nth − Ni

td
(5.93)

Solving for the turn-on delay, we find

td ≈ qV

ηi

Nth − Ni

If − Ii
(5.94)

Replacing N with I using the carrier lifetime or differential carrier lifetime (both
evaluated at threshold), the turn-on delay for the two extreme initial bias limits
becomes

td ≈ τth
Ith

If
, (Ii ≈ 0) (5.95)

td ≈ τ	Nth
Ith − Ii

If − Ii
, (Ii ≈ Ith) (5.96)

where 1/τth ≈ A + BNth + CN 2
th and 1/τ	Nth ≈ A + 2BNth + 3CN 2

th . For small
initial biases, the turn-on delay is proportional to the total carrier lifetime
(∼3 − 4 ns), whereas for initial biases approaching threshold, the turn-on delay
becomes proportional to the differential carrier lifetime (∼1 − 2 ns). If we know
all currents involved, it is a simple matter to estimate both total and differential
carrier lifetimes from measured turn-on delays. In practical applications we want
to avoid a large turn-on delay. This is accomplished by (1) increasing If as much
as possible above threshold, or (2) adjusting the bias level Ii close to threshold.
In fact for Ii larger than threshold, the turn-on delay becomes very small and can
be estimated using the methods discussed in Section 5.3.2.

The first-order estimates of td in Eqs. (5.95) and (5.96) neglect the fact that as
the carrier density increases, so does the recombination term in Eq. (5.92). This
increase in recombination reduces the rate of increase of N from linear to sublinear
as illustrated in Fig. 5.15. Thus, although Eqs. (5.95) and (5.96) yield a reasonable
first approximation to td , they tend to underestimate the value somewhat.
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FIGURE 5.15: Carrier density as a function of time. The dashed curves show the carrier
density increase without carrier clamping at threshold.

For a constant carrier lifetime (i.e., Rsp + Rnr = N /τ0), Eq. (5.92) yields an
exponential saturation of the carrier density at Nf :

N (t) = Ni + (Nf − Ni )(1 − e−t/τ0). (5.97)

Of course, N will never reach Nf due to stimulated emission, which clamps N at
Nth as Fig. 5.15 suggests. The time required for N to reach Nth defines the turn-on
delay, and we can set N (td ) = Nth . Solving for the turn-on delay we obtain

td = τ0 ln
If − Ii

If − Ith
, (τ = τ0 �= τ(N )) (5.98)

where the constant carrier lifetime has been multiplied through to convert all N →
τ0I . Note from Fig. 5.15 that our initial linear approximation (5.85) is expected to
work well when Nf  Ni (or equivalently, when If  Ii ), as a Taylor expansion
of Eq. (5.98) for large (If − Ii ) verifies.

For short-wavelength lasers, the carrier lifetime is not a constant but is domi-
nated by bimolecular recombination (i.e., BN 2  AN + CN 3). For this case, the
exponential saturation at Nf becomes a tanh function saturation, and the solution
of Eq. (5.92) is given by

N (t) = Nf tanh[BNf t + tanh−1(Ni /Nf )]. (5.99)

Again setting N (td ) = Nth and solving for td , we find

td = τf ·
[

tanh−1

√
Ith

If
− tanh−1

√
Ii

If

]
, (BN 2  AN + CN 3) (5.100)

where τf = 1/BNf = √
qV /ηi If B , and we have set all N → √

ηi I /qVB .
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In long-wavelength lasers, Auger recombination dominates, and we can assume
CN 3  AN + BN 2. Unfortunately, no closed-form expression for N (t) can be
obtained for this case. However, a solution can still be obtained from the more gen-
eral definition of td , which is found by directly integrating Eq. (5.92) and solving
for td :

td =
∫ Nth

Ni

dN

Nf /τf − N /τ(N )
, (5.101)

where τf = τ(Nf ). It is easily shown that both Eqs. (5.98) and (5.100) can be
found from Eq. (5.92) by setting τ(N ) = τ0 and 1/τ(N ) = BN , respectively.

With 1/τ(N ) = CN 2, the resulting expression for the turn-on delay is rather
lengthy, but is important to include for long-wavelength laser applications.
Expressing td as two components (where the first is typically much larger than
the second), we have

td = td1 + td2, (CN 2  AN + BN 2) (5.102)

where

td1 = τf · 1

6
ln

[(
rf − ri

rf − 1

)3 r3
f − 1

r3
f − r3

i

]
,

td2 = τf · 1√
3

(
tan−1 1 + 2/rf√

3
− tan−1 1 + 2ri /rf√

3

)
.

The ratios are rf = Nf /Nth and ri = Ni /Nth , or equivalently r3
f = If /Ith and

r3
i = Ii /Ith . In addition, τf = 1/CN 2

f where Nf is defined by CN 3
f = (ηi /qV )If .

The turn-on delay for the case where AN + BN 2  CN 3 can also be found.
Figure 5.16 shows td/τf for various initial-to-threshold and final-to-threshold

current ratios using the three different expressions for the turn-on delay Eqs. (5.89),
(5.91), and (5.93). With no prebias (Ii = 0), the turn-on delay is generally on
the order of the would-be carrier lifetime. In contrast, with a prebias and a final
current level that is well above threshold, the turn-on delay can be reduced to just
a fraction of the final carrier lifetime.

5.4.4 Large-Signal Frequency Chirping

Here we shall briefly introduce a useful analytic formula to calculate the frequency
chirp from the known intensity modulation waveform, which holds even under
large-signal modulation. Taking the photon density rate equation and solving for
the difference between the gain and loss, we obtain

�vg g − 1

τp
= 1

Np

dNp

dt
− �R′

sp

Np
. (5.103)
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FIGURE 5.16: Normalized turn-on delay for different initial and final currents relative to
threshold for the three types of recombination.

Because of carrier and gain clamping above threshold, a first-order expansion of
the gain around its threshold value remains a good approximation even for large
signals, allowing us to set

g = gth + a(N − Nth) − apNp . (5.104)

Substituting this into Eq. (5.94), recognizing that �vg gth = 1/τp , and using
Eq. (5.75) to express the carrier density deviation as a frequency deviation, we
obtain

ν(t) − νth = α

4π

[
1

Np

dNp

dt
− �R′

sp

Np
+ �vg apNp

]
. (5.105)

With Np = Np0 + Np1ejωt , the time-varying portion of the frequency chirp formula
reduces to the small-signal result Eq. (5.77) derived earlier for Np1 � Np0. If the
modulated output power varies rapidly (on the order of a nanosecond or less),
then the first term in brackets will usually dominate. Under these conditions and
using the fact that Np ∝ P0, the frequency chirp 	ν(t) = ν(t) − νth reduces to
the simple result

	ν(t) = α

4π
· 1

P0(t)

dP0(t)

dt
. (5.106)

With this equation, the frequency chirp for large-signal modulation can be
determined directly from the shape of the modulated signal (e.g., square-wave,
sine-wave, Gaussian). If we are interested in minimizing the frequency chirp,
Eq. (5.106) can be used to predict which output waveforms produce the lowest
chirp. We can then tailor the current input signal accordingly.
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5.5 RELATIVE INTENSITY NOISE AND LINEWIDTH

Up until now we have only considered intensity and frequency responses due to
the deliberate modulation of the current or some other cavity parameter. In the
steady state, it has been assumed that the carrier and photon densities are constant.
However, in reality random carrier and photon recombination and generation
events produce instantaneous time variations in the carrier and photon densities,
even with no applied current modulation. The variations in photon density lead
to variations in the magnitude of the output power, which provides a noise floor,
and the variations in carrier density result in variations in the output wavelength,
which creates a finite spectral linewidth for the lasing mode. Before launching
into the specifics of how to deal with these random noise sources, it is worth
considering the implications of intensity and frequency noise in practical laser
applications for motivational purposes.

5.5.1 General Definition of RIN and the Spectral Density Function

Figure 5.17 illustrates a noisy laser output for both analog and digital signal
transmission. For analog applications, the noise is quantified using the electrical
signal-to-noise ratio (SNR). For the laser output defined in Fig. 5.17, the SNR
can be written as

SNR = 〈i 2
S 〉

〈i 2
N 〉 = 〈(P1 sin ωt)2〉

〈δP(t)2〉 = m2

2

P2
0

〈δP(t)2〉 , (5.107)

where the IM modulation index is given by m = P1/P0. The 〈〉 denote the time
average.

For digital applications, a decision level at the midpoint defines whether a “0”
or “1” is recorded. If the noise happens to exceed P0/2 in Fig. 5.17, then a false
recording might be made. If the noise has a Gaussian distribution around the mean
power level, then to reduce the probability of finding |δP(t)| > P0/2 to less than
1 in 109 (i.e., a bit-error rate < 10−9), we require that [4]

P2
0

〈δP(t)2〉 > (11.89)2, (for BER < 10−9) (5.108)

where 〈δP(t)2〉 is the mean-square of the assumed Gaussian noise distribution.
Bit error rate of less than 10−9 is sufficient for data rates lower than 10
Gigabits/s. For data rates in the range of 10–100 Gigabits/s, BERs better than
10−10 are generally required. However, with implementation and deployment of
advanced forward error correction coding techniques, this type data BERs can
be achieved through error correction from signals whose BERs are in the range
of 10−5.
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P(t) = P0 + P1 sin wt + dP(t)

〈dP(t)2〉

P(t)

P1

P0

t

√

P(t)

P0

Noise spike
(potential false reading)

0 0 0

t

Decision level

1 0? 1

〈dP(t)2〉√

FIGURE 5.17: Noise in modulated laser signals for both analog and digital applications.

For either of these two applications, we find it useful to quantify the relative
intensity noise (RIN) of the laser:

RIN ≡ 〈δP(t)2〉
P2

0

. (5.109)

The RIN is often described in decibels, or 10 log10(RIN). For analog applications,
if a given electrical SNR is required, then Eq. (5.107) can be used to determine
the maximum allowable RIN. For example, if we require the SNR > 50 dB with
m = 1, then the laser must have a RIN < −53 dB. Alternatively, for a bit-error
rate (BER) < 10−9 in digital applications, Eq. (5.108) suggests that the laser must
have a RIN < −21.5 dB.

To quantify the output power fluctuations (and hence the RIN), it is more conve-
nient to work in the frequency domain, making use of the Fourier transform pairs:

δP(t) = 1

2π

∫ +∞

−∞
δP(ω)ejωt dω, (5.110)

δP(ω) =
∫ +∞

−∞
δP(t)e−jωt dt , (5.111)

where δP(ω) is the component of the noise, which fluctuates at the frequency, ω.
Now suppose we were to use a spectrum analyzer to measure the electrical power
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(i.e., the square of the optical power) associated with the noise. If the spectrum
analyzer applies a narrowband filter to the signal with a passband described by
F (ω), then the measured mean-square time-averaged signal would be given by

〈δP(t)2〉 = 1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
〈δP(ω)δP(ω′)∗〉F (ω)F (ω′)∗ej (ω−ω′)t dω dω′.

(5.112)

For completely random noise, the magnitude of the noise at any given frequency
is completely uncorrelated with the magnitude of the noise at any other frequency.
As a result, when the product of two frequency components is averaged over
time, there is a delta function correlation between them (see Appendix 13). The
strength of the delta function correlation is defined as the spectral density, SδP (ω),
of δP(t) at ω, and we can write

〈δP(ω)δP(ω′)∗〉 = SδP (ω) · 2πδ(ω − ω′). (5.113)

With this substitution, the measured mean-square power fluctuation reduces to

〈δP(t)2〉 = 1

2π

∫ +∞

−∞
SδP (ω)|F (ω)|2dω. (5.114)

If the measurement filter is centered at ω0, and is narrowband relative to
variations in the spectral density, then with F (ω0) = 1 we obtain

〈δP(t)2〉 ≈ SδP (ω0)

∫ ∞

−∞
|F (ω)|2 df = SδP (ω0) · 2	f . (5.115)

This relation is graphically illustrated in Fig. 5.18 for an arbitrary noise
spectrum. Note that the effective measurement bandwidth is 2	f because we

SdP (w0)

−w0

F(w)

w0 w

Δ f

Single-sided

Double-sided

SdP (w)

Δf

FIGURE 5.18: Measured noise using a narrowband filter. Because the noise spectral density
is always an even function of frequency (SδP (−ω) = SδP (ω)), we can fold the spectrum in
half, if desired, and define a single-sided spectrum existing only in the positive frequency
domain that is a factor of two larger than the double-sided spectrum.
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must include both positive and negative frequencies. We could alternatively define
the spectral density as “single-sided” existing only in the positive frequency
domain as indicated by the dashed line in Fig. 5.18. In this case, the measurement
bandwidth would simply be 	f , and the factor of two would be lumped into
the single-sided spectral density. The choice of using a single-sided or double
sided spectral density is academic as long as we are consistent. In this chapter,
the spectral density will always be defined as double sided. Finally note that the
spectral density has units of (seconds) × (fluctuating variable units)2.

In terms of the spectral density of the noise accompanying the signal, we can
redefine the relative intensity noise as

RIN

	f
= 2SδP (ω)

P2
0

, (5.116)

where 	f is the filter bandwidth of the measurement apparatus (if the spectral
density is defined as single sided, then the factor of 2 should be removed in
Eq. (5.107)). Because the measurement bandwidth can vary from application
to application, it is common to specify the quantity on the left as RIN in
dB/Hz or RIN per unit bandwidth. The full RIN is then found by integrating
the RIN per unit bandwidth over the (single-sided) detection bandwidth of the
system of practical interest. In designing a communications system, the desired
SNR or BER sets a maximum limit on the total RIN of the laser. If the RIN
spectrum is flat, then the required RIN per unit bandwidth of the laser is found
from

RIN(dB/Hz) = RIN(dB) − 10 log10(	f [in Hz]). (5.117)

Example 5.4 A new DFB laser has been fabricated for use in digital transmission
links. For a digital link, assume that the required bandwidth is 0.75 of the link
bit rate.

Problem: (a) What is the minimum acceptable laser RIN per unit bandwidth for
a link operating at 2.5 GB/s? (b) If we wanted to have an option to use the same
laser in an upgraded link, operating at 10 GB/s, what is the new RIN per unit
bandwidth requirement?

Solution: In a digital link, a maximum allowable bit error rate is BER = 1 · 10−9.
From Eq. (5.108), the required laser RIN needs to be RIN ≤ −21.5 dB. The RIN
per unit bandwidth can be computed from Eq. (5.117).

(a) for a 2.5 GB/s link, we have

RIN(dB/Hz) = RIN(dB) − 10 log10(	f ) = −21.5 − 10 log10(1.875 · 109)

= −114.23 dB/Hz.
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(b) for a 10 GB/s link, we have

RIN(dB/Hz) = RIN(dB) − 10 log10(	f ) = −21.5 − 10 log10(0.75 · 1010)

= −120.25 dB/Hz.

5.5.2 The Schawlow–Townes Linewidth

In addition to intensity noise, the laser also produces frequency noise, which can
adversely affect the lasing spectrum. In single-mode lasers, such as the DFB and
DBR types introduced in Chapter 3, the spectral width of the laser’s output is
reduced to that of a single mode; however, the linewidth of this single mode
is still finite due to laser noise. Unless great care is taken, experiments typically
show diode laser linewidths much greater than a megahertz. For many applications,
such as sensor or communication systems using coherent detection, it is desirable
to have linewidths much less than a megahertz. Thus, an understanding of the
inherent linewidth of diode lasers is of great practical importance.

The linewidth of a diode laser results from phase fluctuations in its output. These
arise from two basic sources: (1) spontaneous emission and (2) carrier density fluc-
tuations. The first is inherent in all lasers, resulting simply from the random addition
of spontaneously emitted photons to the quasi-coherent resonant cavity mode. The
second is of significance only in diode lasers, and it results from the proportionality
between 	N and 	ν characterized by Eq. (5.75); the constant of proportionality
contains the linewidth enhancement factor, α. This factor exists because both the
gain and the index of refraction depend directly on the carrier density.

We will develop the full expression for the laser linewidth a little later, after
the treatment of frequency noise. For now, we wish to consider a simplified
derivation of the spontaneous emission component of the laser linewidth, which,
although not entirely correct for lasers above threshold, does provide the reader
with an intuitive feel for the origin of a finite laser linewidth.

In the derivation of the rate equations in Chapter 2, the cavity lifetime was
introduced as the natural decay rate of photons in the resonant cavity in the
absence of stimulated or spontaneous emission sources. Therefore, in the absence
of sources, Eq. (5.4) has the solution

Np(t) = Np0e−t/τp . (5.118)

The corresponding time dependence of the field is

E (t) = E0ejω0t e−t/2τp u(t), (5.119)

where u(t) is a unit step function that turns on at time zero to indicate that the field
is instantaneously created at t = 0 by a stimulated emission event, for example.
The Fourier transform of this time domain response gives the frequency domain
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response of the laser cavity. The Fourier transform of an exponential is a Lorentzian.
This undriven result, sometimes called the cold cavity response, is given by

|E (ω)|2 = |E (ω0)|2
1 + (ω − ω0)2(2τp)2

. (5.120)

From this we can see that the full-width half-maximum (FWHM) linewidth of the
cold cavity is 	ω = 1/τp . This spectral width corresponds to the filter bandwidth
of the Fabry–Perot resonator mode with no active material present (hence cold
cavity response). The key point here is that the resonance width is linked with the
photon decay rate. Now, if we add back the stimulated term that is responsible
for gain in the cavity, we see from Eq. (5.4) that the same exponential solution
in time is obtained, but it is now characterized by a new effective cavity lifetime:

1

τ ′
p

= 1

τp
− �vg g . (5.121)

The effective cavity lifetime increases as the gain in the cavity compensates for
cavity losses. Thus with gain, the FWHM linewidth becomes 	ω = 1/τ ′

p , and
so as τ ′

p increases, the resonance width decreases. As illustrated in Section 5.2.2,
Eq. (5.4) can be solved in the steady state for Np :

Np = �R′
sp

1/τp − �vg g
. (5.122)

Using Eq. (5.113) to replace [1/τp − �vg g] in Eq. (5.112), we can express the
driven FWHM linewidth as

	νspon = 1

2πτ ′
p

= �R′
sp

2πNp
. (spontaneous only) (5.123)

Equation (5.123) is equivalent to the famous Schawlow–Townes linewidth formula
[6]. One central conclusion of this formula is that the linewidth varies inversely
with photon density (or output power). And because the photon density in a
laser can grow very large, the linewidth can collapse into a very narrow spectral
line—one of the defining characteristics of lasers.

Unfortunately, this intuitive derivation has some shortcomings. Equation (5.123)
does correctly give the below-threshold linewidth and is therefore accurate for
amplified spontaneous emission problems. However, above threshold, the
nonlinear coupling between the rate equations suppresses one of the two
quadrature components of the noise (the field amplitude fluctuations are stabilized
above threshold), resulting in a factor of 2 reduction in the linewidth predicted
here [7, 8]. With a correction factor of 1/2, Eq. (5.123) becomes the modified
Schawlow–Townes linewidth formula:

(	ν)ST = �R′
sp

4πNp
. (5.124)
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The modified Schawlow–Townes linewidth, however, still only considers
spontaneous emission noise and does not include carrier noise. To describe carrier
noise, we will need to develop the Langevin rate equation approach to laser
noise.

5.5.3 The Langevin Approach

To determine the laser RIN and the carrier noise, we must find the spectral density
of the output power and carrier noise fluctuations. For this purpose, we introduce
Langevin noise sources FN (t) and FP (t) as the AC driving sources for the carrier
and photon densities, respectively. These sources are assumed to be white noise
(see Appendix 13) and are assumed small enough that we can make use of the
differential rate equations. For a constant drive current (dI = 0), Eqs. (5.32)
and (5.33) become

d

dt
(dN ) = −γNN dN − γNP dNp + FN (t), (5.125)

d

dt
(dNp) = γPN dN − γPP dNp + FP (t). (5.126)

The rate coefficients are defined by Eqs. (5.34) as always. To solve these equations
it is again convenient to place them in matrix form:

d

dt

[
dN
dNp

]
=

[−γNN −γNP

γPN −γPP

] [
dN
dNp

]
+

[
FN (t)
FP (t)

]
. (5.127)

To determine the spectral densities we must first transform to the frequency
domain. Replacing all time-dependent variables with equivalent versions of
Eq. (5.110), we obtain for each frequency component:

[
γNN + jω γNP

−γPN γPP + jω

] [
N1(ω)

Np1(ω)

]
=

[
FN (ω)

FP (ω)

]
, (5.128)

where N1, Np1, FN , and FP represent the components of the noise that fluctuate
at frequency ω. This result is analogous to the small-signal result obtained
in Section 5.3.1. Using Cramer’s rule and the definitions in Section 5.3.1, we
immediately obtain

N1(ω) = H (ω)

ω2
R

∣∣∣∣FN (ω) γNP

FP (ω) γPP + jω

∣∣∣∣ , (5.129)

Np1(ω) = H (ω)

ω2
R

∣∣∣∣γNN + jω FN (ω)

−γPN FP (ω)

∣∣∣∣ . (5.130)
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Using Eq. (5.113) we can define the carrier and photon density spectral densities as

SN (ω) = 1

2π

∫
〈N1(ω)N1(ω

′)∗〉dω′, (5.131)

SNp (ω) = 1

2π

∫
〈Np1(ω)Np1(ω

′)∗〉dω′. (5.132)

Multiplying both sides of Eq. (5.129) by N1(ω
′)∗, and both sides of Eq. (5.130)

by Np1(ω
′)∗, taking the time average, and integrating over ω′, we finally obtain

SN (ω) = |H (ω)|2
ω4

R

[γ 2
NP 〈FP FP 〉 − 2γPPγNP 〈FP FN 〉 + (γ 2

PP + ω2)〈FN FN 〉],
(5.133)

SNp (ω) = |H (ω)|2
ω4

R

[(γ 2
NN + ω2)〈FP FP 〉 + 2γNN γPN 〈FP FN 〉 + γ 2

PN 〈FN FN 〉].
(5.134)

where the Langevin noise source spectral densities are defined by

〈Fi Fj 〉 = 1

2π

∫
〈Fi (ω)Fj (ω

′)∗〉 dω′. (5.135)

Because FN and FP are white noise sources, their noise spectral densities 〈Fi Fj 〉
are uniformly distributed over all frequencies. Hence, the various 〈Fi Fj 〉 can
be regarded as constants in the frequency domain (see Appendix 13 for further
details). Equations (A13.28) and (A13.26) therefore reveal that the carrier and
photon density fluctuations follow a (a1 + a2 ω2)|H (ω)|2 spectral dependence,
peaking at the relaxation resonance frequency (we will quantify a1 and a2 later).
This behavior is not surprising because the natural resonance of the carrier–photon
system would be expected to accentuate and amplify any noise existing near that
resonance. Furthermore, the inverse dependence on ω4

R suggests that the fluctu-
ations and corresponding noise decrease with increasing output power. To fully
quantify these relationships, we need to expand the terms within square brackets.

5.5.4 Langevin Noise Spectral Densities and RIN

Equations A13.28 and A13.26 reveal that with the Langevin method, the evaluation
of the laser noise boils down to evaluating the spectral densities or noise correlation
strengths 〈Fi Fj 〉 between the various Langevin noise sources. Assuming NpVp  1
above threshold, Appendix 13 shows that these terms reduce to the following:

〈FP FP 〉 = 2�R′
spNp , (5.136)

〈FN FN 〉 = 2R′
spNp/� − vg gNp/V + ηi (I + Ith)/qV 2, (5.137)

〈FP FN 〉 = −2R′
spNp + vg gNp/Vp . (5.138)



296 DYNAMIC EFFECTS

The various factors appearing in these equations are essentially the summation of
the shot noise associated with the random generation and recombination/escape of
both photons and carriers in both reservoirs. The shot noise associated with the
injected current (which gives rise to the ηi I /qV 2 term appearing in Eq. (5.137))
can in principle be eliminated or at least reduced by careful design of the current
drive circuitry [9]—a point we will return to later in this section.

With Eqs. (5.136) through (5.138) the carrier Eq. (5.124) and photon Eq. (5.125)
spectral density functions can be expanded. The desired output power spectral
density function, SδP (ω) needed in Eq. (5.116), can then be calculated. However,
this calculation is complicated by an additional noise term in the output power
due to the negative correlation between photons reflected and transmitted at the
output mirror [10]. Thus, as shown in Appendix 13, SδP (ω) is not simply related to
SNP (ω) by the expected factor (hνVpvgαmF )2 or (η0hνVp/τp)

2. After first deriving
SNP (ω), Appendix 13 shows that for above- threshold conditions, the output power
spectral density can be written as

SδP (ω) = hνP0 ·
[

a1 + a2 ω2

ω4
R

|H (ω)|2 + 1

]
, (5.139)

where

a1 = 8π(	ν)ST P0

hν

1

τ 2
	N

+ η0 ω4
R

[
ηi (I + Ith)

Ist
− 1

]
,

a2 = 8π(	ν)ST P0

hν
− 2η0 ω2

R
�ap

a
,

and (	ν)ST = �R′
sp/4πNp , Ist = qP0/η0hν = ηi (I − Ith). Also, P0 defines the

power out of the desired facet.
If the emitted field is in a perfectly coherent state, the output power noise

(double-sided) spectral density is limited to a minimum value of hνP0. This quan-
tum noise floor of the coherent field is often referred to as the standard quantum
limit, or the shot noise floor. The two contributions within the square brackets of
Eq. (5.130) can therefore be thought of as the excess intensity noise and the inher-
ent quantum noise of the laser. At low output powers, the excess noise dominates
and is dramatically enhanced near the relaxation resonance frequency of the laser.
At high powers, the laser generally quiets down to the standard quantum limit
except near the resonance, where the excess noise can persist even at very high
output powers. Figure 5.19 illustrates these characteristics for the in-plane laser
characterized in Table 5.1.

Characteristics of the RIN Spectrum The laser RIN plotted in Fig. 5.19 is
related to SδP (ω) through Eq. (5.116) and can be written as

RIN

	f
= 2hν

P0

[
a1 + a2 ω2

ω4
R

|H (ω)|2 + 1

]
. (5.140)
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FIGURE 5.19: Calculated relative intensity noise at different output power levels for an
InGaAs/GaAs in-plane laser with parameters given in Table 5.1.

The prefactor 2hν/P0 is the standard quantum limit for the minimum RIN of the
laser. The frequency coefficients, a1 and a2, are as defined in Eq. (5.139). The first
terms of both a1 and a2 are independent of power, whereas the latter terms depend
on P2

0 and P0, respectively. At low powers, these latter terms can be neglected and
the RIN reduces to

RIN

	f
= 16π(	ν)ST

1/τ 2
	N + ω2

ω4
R

|H (ω)|2 + 2hν

P0
. (low power) (5.141)

This form of the RIN is commonly used in laser applications and in fact is a
reasonable approximation at higher powers as well, as long as the laser current
source is shot noise-limited. With Eq. (5.141), the measured RIN spectrum can be
modeled using four fitting parameters: τ	N , γ , ωR , and (	ν)ST [11].

When the excess noise term in Eq. (5.141) dominates, the RIN spectrum levels
off to a constant value for ω < 1/τ	N , which is typically in the range of 100 MHz,
as shown in Fig. 5.19 for the 0.25 and 0.5 mW curves. At higher powers, this range
of constant RIN increases up to a few GHz, as the low frequency RIN saturates
at the shot noise floor. Setting ω = 0 in Eq. (5.140) and using a1 as defined in
Eq. (5.139), the low frequency RIN becomes

RIN

	f
= 16π(	ν)ST

ω4
Rτ 2

	N

+ 2hν

P0

[
η0

ηi (I + Ith)

Ist
+ (1 − η0)

]
. (ω � ωR) (5.142)

The first term decreases as 1/P3
0 (since (	ν)ST ∝ 1/P0 and ω4

R ∝ P2
0 ) and hence

quickly drops below the shot noise floor with increasing power. The second term
converges toward the shot noise 1/P0 power dependence at high current levels
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where ηi (I + Ith)/Ist → 1. In Fig. 5.19, we can see this trend by examining the
intervals between every doubling of power. At low frequencies, the steps change
from 9 dB to 3 dB with increasing power as the power dependence changes from
1/P3

0 to 1/P0.
At the RIN peak, a2 ω2  a1 in Eq. (5.140). Hence, the frequency dependence

in this range is characterized by ω2|H (ω)|2. Using Eq. (5.46), it can be shown
that the peak of this function occurs at ωR regardless of the extent of damping, in
contrast to |H (ω)|2 which peaks right at ωR only when γ /ωR � 1 (see Fig. 5.4).
Setting |H (ωR)|2 = (ωR/γ )2 in Eq. (5.140), and neglecting both the noise floor
limit and the second term of a2 in Eq. (5.139), we obtain the simple result

RIN

	f
= 16π(	ν)ST

γ 2
. (ω = ωR) (5.143)

In general, the damping factor γ = Kf 2
R + γ0 from Eq. (5.52). However, at higher

powers, γ ≈ Kf 2
R ∝ P0. Hence, the RIN peak converges toward a 1/P3

0 power
dependence because (	ν)ST ∝ 1/P0. In other words, the RIN peak drops by 9 dB
with every doubling of power, as Fig. 5.19 indicates at the higher power levels.
Beyond the resonance frequency, the RIN reduces to the standard quantum limit,
which drops by 3 dB with every doubling of power.

Example 5.5

Problem: For the in-plane laser whose parameters are described in Table 5.1,
determine the peak RIN value at 1 mW output power.

Solution: (in-plane) At 1 mW of output power, the in-plane laser has a Schawlow–
Townes linewidth of (	ν)ST = 1.07 MHz and a damping factor of γ = 2.88 ·
109/s. The peak RIN value is given by

RIN

	f
= 16π(	ν)ST

γ 2
= −111.88 dB/Hz

This is illustrated in Fig. 5.19. This peak level of noise barely satisfies the criterion
for a 2 Gbit/s (1 GHz) digital transmission link (see the previous example, follow-
ing Eq. (5.117)). However, the peak occurs beyond the system bandwidth and will
not add to the detected noise. When the 1 mW RIN spectrum in Fig. 5.19 is inte-
grated from 0 to 1 GHz, the average RIN per unit bandwidth is only −140 dB/Hz,
easily satisfying the transmission link requirements.

Noise-Free Operation The component of the laser noise, which derives from the
noise of the current source appears in the second term of a1 in Eq. (5.139). This
is one component of the noise we can modify externally, and ideally eliminate. In
Eq. (5.140), a2 ω2|H (ω)|2 is responsible for the RIN peak at ωR , and 2hν/P0 domi-
nates the spectrum beyond the RIN peak. Thus, a1|H (ω)|2 only significantly affects
the low frequency RIN away from the RIN peak, or at ω � ωR . Within the denom-
inator of a1|H (ω)|2 then, we can set (ω2

R − ω2)2 ≈ ω4
R without introducing much
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error in the total RIN spectrum (this works well as long as (γ /ωR)2g2/(1 + 2
√

rp)

where rp is the RIN peak relative to the shot noise floor). With this modification,
and also concentrating on moderate-to-high powers such that we can neglect the
1/P3

0 term of a1, Eq. (5.140) reduces to

RIN

	f
≈ 2hν

P0

[
η0ηi (I + Ith)/Ist + (1 − η0) + ω2τ ′′2

p

1 + ω2τ ′′2
p

]
+ 2hν

P0

a2 ω2

ω4
R

|H (ω)|2,

(5.144)

where τ ′′
p ≡ γ /ω2

R ≈ τp[1 + �ap/a]. The first term provides the RIN noise floor,
while the second term provides the RIN peak, which rises above the noise floor
near ωR . The various contributions to the noise floor originate from (in order of
appearance in the first term): (1) injected current (I ) and carrier recombination (Ith),
(2) the random selection of output photons (partition noise), and (3) the random
delay associated with photons escaping the cavity (only observable at frequencies
comparable to or greater than 1/τ ′′

p).
The injected current contribution to the RIN noise floor can be reduced if a cur-

rent source with subshot noise characteristics is used. Yamamoto has suggested and
demonstrated along with others that if a high impedance source is used in driving
the laser, then subshot noise current injection is possible [9, 12]. To accommodate
such cases, we can generalize Eq. (5.144) by setting I → SI /q , where SI is the
double-sided spectral density of the injection current. For a perfectly quiet current
source, SI = 0. For a shot noise-limited current source, SI = qI . If we have a very
efficient laser with η0 → 1, and if we are far above threshold such that I  Ith

and Ist ≈ ηi I , then Eq. (5.144) (excluding the RIN peak contribution) reduces to

RIN

	f
≈ 2hν

P0
· SI /qI + ω2τ ′′2

p

1 + ω2τ ′′2
p

. (noise floor) (5.145)

This function is sketched in Fig. 5.20. For a shot noise-limited current source,
SI /qI = 1, and the RIN noise floor reduces to a constant at the standard quantum
limit, 2hν/P0, for all frequencies. At frequencies � 1/2πτ ′′

p , the noise of the
laser comes from the current pumping source. Thus, if a noiseless pumping
source is used (SI = 0), the output power noise can be reduced or potentially
eliminated below f � 1/2πτ ′′

p . However, Eq. (5.144) shows that the current noise
contribution is replaced by partition noise as η0 → 0. Hence it is essential to use
an optically efficient laser.

Yamamoto and Machida [9] have shown that the current injection noise into a
forward-biased PN junction is dominated by the thermal noise of the series resistor
such that the double-sided spectral density is SI = 2kT/RS . By using a large series
resistance the pump noise can be reduced below the shot noise limit of qI. In
other words, we require that RS  2kT/qI . For a 1 mA drive current at room
temperature, this translates into RS  50 �. By using a constant current source
with very large series resistance, the current input noise can be reduced substantially
below the shot noise limit. This is the strategy some researchers have employed to
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FIGURE 5.20: The two components of the relative intensity noise floor, assuming a high
optical efficiency laser. Low frequency noise can be reduced below the standard quantum
limit if the pumping source is quiet.

attain noise-free laser operation [9, 10, 12]. To be successful, such lasers must have
a very high optical efficiency (η0 → 1) and must be operated well above threshold.

Another caveat we must consider, particularly with noiseless lasers is the trans-
mission and detection process. Imagine an ideally quiet laser that emits a perfectly
regular stream of photons. In the process of transmission and detection, some of
these photons will be lost, randomly selected out of the uniform stream. These
random vacancies in the otherwise perfectly regular photon stream produce parti-
tion noise in the detected signal. For high losses, the magnitude of this partition
noise approaches the shot noise limit. Using the Langevin method detailed in
Appendix 13 to include this partition noise (see Problem A13.1), we can derive
the detected noise spectral density and corresponding RIN [12]:

Sdet (ω) = η2
det (q/hν)2SδP (ω) + (1 − ηdet )qIdet , (5.146a)

(RIN)det = (RIN)laser + (1 − ηdet )(RIN)shot , (5.146b)

where Idet = ηdet (q/hν)P0 and (RIN)shot = 2qIdet/I 2
det . Here, ηdet is the photon

collection efficiency of the photodetector including coupling and transmission losses
in getting from the laser to the detector (current leakage in the detector is not
included in ηdet because parallel current paths do not necessarily lead to partition
noise—the same goes for ηi at the laser end [12]).

In Eq. (5.146a), the coefficient of the first term is the normal transfer function
one would expect in converting the power noise to detector current noise. The
second term is the standard (double-sided) shot noise term commonly attached to
the detector current noise, which more correctly here includes a (1 − ηdet ) factor.
Equation (5.146b) gives the corresponding RIN of the detector current. Both of
these equations reveal that to achieve subshot noise performance in an optical
communications system, it is essential to keep the losses in going from the laser
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to the detector to a minimum. For example, if half of the light is lost before being
converted to current, then the best one can hope to do is drop 3 dB below the
standard quantum limit, even if the laser is perfectly quiet.

Note that the argument for high ηdet is no different from the argument demanding
a high η0 in the laser. Essentially, a perfectly regular stream of electrons injected
into the laser must have a one-to-one correspondence with electrons generated in
the detector to replicate the perfect regularity. Any random division or loss of
photons along the way introduces irregularities that show up as shot noise in the
receiver current.

RIN in Multimode Lasers Because the derivation leading up to Eq. (5.140) used
the single-mode rate equations, it is not surprising that Fig. 5.19 gives a good repre-
sentation of what is experimentally observed in single-frequency lasers. However,
it also is roughly valid for multimode lasers provided all modes are included in the
received power. On the other hand, if only one mode is filtered out from a multi-
mode spectrum, it is typically found to contain a much larger noise level, especially
at the lower frequencies. This is because of mode partitioning. The energy tends
to switch back and forth randomly between the various modes observed in the
time-averaged spectrum causing large power fluctuations in any one mode. If all
modes are included, the net power tends to average out these fluctuations. There are
numerous ways in which an optical link can provide the unwanted spectral filtering
of a multimode laser’s output. For example, in multimode fiber the spatial modes
will interfere differently for each frequency in the laser’s spectrum, providing a
different transmission fraction for each. This is especially accentuated if there is
some incidental spatial filtering in the optical link, so that different spatial modes
are coupled differently.

It is also somewhat surprising how large the mode suppression ratio (MSR)
for the unwanted modes must be before the laser behaves like a single-frequency
laser. Experiments have verified that significant mode partitioning can occur even
for MSRs ∼30 dB, although this is roughly the level at which mode partitioning
tends to disappear. Such single-frequency lasers also tend to be very sensitive to
spurious feedback from external reflections in the optical path. This sensitivity will
be the subject of later discussions in this chapter.

5.5.5 Frequency Noise

For frequency modulation applications, it is useful to determine the frequency jitter
or noise. By an extension of Eq. (5.75), we can write

dφ

dt
= 2π	ν(t) = α

2
�vg a[dN (t)] + Fφ(t). (5.147)

The first equality reminds us that the frequency deviation can be considered a
rate equation for the field phase. The latter equation introduces a Langevin noise
source for this rate equation that can be associated with the phase noise of the



302 DYNAMIC EFFECTS

laser. Converting to the frequency domain, we obtain

ν1(ω) = α

4π
�vg aN1(ω) + 1

2π
Fφ(ω). (5.148)

Appendix 13 shows that the correlation strengths for the phase noise source reduce
to the following:

〈FφFφ〉 = �R′
sp

2Np
, 〈FφFP 〉 = 〈FφFN 〉 = 0. (5.149)

Note that the phase noise source is uncorrelated with photon and carrier density
noise sources. To determine the frequency noise spectral density, as before we
multiply both sides of Eq. (5.148) by ν1(ω

′)∗, take the time average, and integrate
over ω′, to obtain

Sν(ω) =
( α

4π
�vg a

)2
SN (ω) + 1

(2π)2
〈FφFφ〉. (5.150)

The cross-term does not appear because there is no correlation between the carrier
and phase noise. Thus, the frequency noise has two contributions: (1) the carrier
noise, which induces refractive index changes causing the lasing frequency to fluc-
tuate, and (2) the inherent phase noise of the laser, originating from photons, which
are spontaneously emitted into the mode. For semiconductor lasers, carrier noise
dominates by typically more than an order of magnitude.

We can use Eqs. (5.136) through (5.138) to evaluate the carrier noise spectral
density in Eq. (5.124). Appendix 13 carries out this task revealing that the carrier
density noise spectral density can be well approximated by

SN (ω) = 8π

(�vg a)2

[
�R′

sp

4πNp

]
· |H (ω)|2. (5.151)

With Eq. (5.151) for the carrier noise and Eq. (5.140) for the phase noise, the
frequency noise spectral density (double-sided) becomes

Sν(ω) = 1

2π
(	ν)ST · (1 + α2|H (ω)|2), (5.152)

where again

(	ν)ST = �R′
sp

4πNp
.

The measured FM noise can be modeled using four fitting parameters: α, γ , ωR ,
and (	ν)ST [11]. A typical FM noise spectrum is sketched in Fig. 5.21. Beyond the
relaxation resonance frequency, the carrier noise becomes negligible, reducing the
FM noise to the white noise background provided by spontaneous emission phase
noise. In addition thermal contributions from the noise on the pumping source can
also contribute to the FM noise at low frequencies, as discussed in Section 5.3.3.
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FIGURE 5.21: Frequency noise spectrum illustrating contributions from both carrier and
spontaneous emission noise.

5.5.6 Linewidth

To relate the FM noise to the frequency spectrum of the laser, it is useful to intro-
duce the coherence time of the laser light. Consider a measurement that mixes the
emitted electric field, E (t), with a time-delayed version of itself, E (t − τ). As long
as the phases of the two fields are well correlated, the fields will add coherently. We
can write the cross-term of the coherent addition, or the autocorrelation function
of the field as

〈E (t)E (t − τ)∗〉 ∝ ejωτ e−|τ |/τcoh . (5.153)

The first factor gives the expected interference fringes created by the coherent
mixing. However, because the laser is not emitting a pure single frequency, with
increasing time delay, τ , the phases of the two fields become less and less correlated
and the interference fringes gradually disappear to the point where the two fields
add incoherently. The envelope of the fringe pattern given by the second factor
characterizes this coherence decay. As the functionality suggests, the decay can
often be described by an exponential with a decay constant defined as the coherence
time of the laser, τcoh . However, more generally, τcoh may be a function of the
time delay itself, τcoh(τ ), in which case the autocorrelation does not yield a simple
decaying exponential.

Figure 5.22a suggests one method of directly measuring the autocorrelation
function, allowing us to experimentally extract τcoh(τ ). Using the measured fringe
pattern in Fig. 5.22a, we can write the envelope of the autocorrelation function as

e−|τ |/τcoh = P1 + P2

2
√

P1P2

Pmax − Pmin

Pmax + Pmin
, (5.154)

where P1 ∝ 〈|E1(t)|2〉 and P2 ∝ 〈|E2(t − τ)|2〉 are the individual powers in the two
legs of the interferometer, and Pmax ∝ 〈|E1(t) + E2(t − τ)|2〉 and Pmin ∝ 〈|E1(t) +
E2(t − τ)|2〉 are the maximum and minimum powers of the interference fringes
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FIGURE 5.22: Schematics of two techniques to measure linewidth. (a) Coherence length
measurement in which one branch of a Mach-Zehnder interferometer is increased in
length until fringe visibility is reduced. A piezoelectrically driven mirror provides a small
length variation to display interference fringes. (b) Self-heterodyne technique in which a
long length of fiber ( coherence length) is used to mix the laser emission with an incoher-
ent version of itself. The difference frequency signal replicates the combined lineshape of
both signals at low frequencies and is easily observed using an RF spectrum analyzer [13].

measured by the detector. The second ratio is often referred to as the fringe visi-
bility. The first ratio normalizes the fringe visibility when P1 �= P2. Measuring the
normalized fringe visibility as a function of the time delay between the two arms
yields the envelope of the autocorrelation function.

Once the autocorrelation is known, it can be related to the frequency spectrum
of the mode, P0(ω), through a Fourier transform (see Appendix 13):

P0(ω) ∝ F [〈E (t)E (t − τ)∗〉]. (5.155)

For example, if τcoh is a constant (i.e., not a function of τ ) then the autocorrelation
is a decaying exponential, and the corresponding lasing spectrum is a Lorentzian.

Experimentally, the lasing spectrum can be measured conveniently using
the experimental setup illustrated in Fig. 5.22b. The laser is coupled through
an optical isolator into a fiber (the isolator is necessary to remove unwanted
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feedback, which can affect the laser linewidth (see Section 5.7)). One leg of fiber
is fed through an acousto-optic modulator, which shifts the light frequency by
typically 40 MHz. The other leg of fiber is much longer than the coherence length
(Lcoh ≡ vτcoh) of the laser. When the two incoherent fields are recombined in
the detector, they generate a difference-frequency signal current at 40 MHz that
contains the combined FM field noise of both light sources. The square of this
current is therefore equivalent to the combined optical power spectrum. In other
words, this technique effectively converts the combined optical power spectrum to
an electrical power spectrum centered at 40 MHz, which can easily be measured
using a radio-frequency spectrum analyzer. However, because it contains the
noise of both signals, the electrical power 3 dB-down full-width of the spectrum
is twice as wide as the original laser linewidth (the factor of 2 is specific to the
combination of two Lorentzian lineshapes [13]).

Theoretically, the lasing spectrum is found by determining τcoh(τ ) and
applying Eq. (5.155). We can relate the coherence time to the FM noise and the
measurement time delay as follows [14]:

1

τcoh
= πτ

∫ +∞

−∞
Sν(ω)

sin2(ωτ/2)

(ωτ/2)2
dω. (5.156)

The coherence time is related to the integrated frequency noise of the laser
times a sinc2(ωτ/2) function.8 Because the first zero of sinc2(ωτ/2) occurs at
ω = 2π/τ , the entire function scales toward zero with increasing time delay. This
effect is illustrated in Fig. 5.23a. As the peaks and nulls of sinc2(ωτ/2) sweep by
the resonance peak of the noise with increasing time delay, they produce periodic
undulations in the overlap (because the resonance peak is either included or
excluded from the overlap). The effect of this on 1/τcoh is shown in Fig. 5.23(b).
The decaying oscillations that appear in the otherwise linear τ/τcoh are the direct
result of the resonance peak in the noise. The oscillation frequency is equal
to the peak frequency of the resonance (∼ ωR), whereas the magnitude of the
oscillations is governed by how sharp and strong the resonance is (∼1/γ ).

Eventually, τ/τcoh relaxes back to a linear relationship. In fact, for τg2π/ωR ,
the sinc2(ωτ/2) function is peaked in the low-frequency portion of the FM noise
spectrum, and we can approximate Sν(ω) ≈ Sν(0) inside the integral. This leads to
the simple result:

1

τcoh
≈ πτSν(0)

∫ +∞

−∞

sin2(ωτ/2)

(ωτ/2)2
dω = 2π2Sν(0). (τ  2π/ωR) (5.157)

8This result comes about as follows. Assume the field is ∝ ejωt ejφ(t) where φ(t) is a fluctuating
phase created by frequency noise. The autocorrelation is then ∝ 〈ej	φ(τ)〉 = exp[−〈	φ(τ)2〉/2], and
we conclude that τ/τcoh ≡ 〈	φ(τ)2〉/2. Using the Fourier transform pair 	φ(τ) = φ(τ) − φ(0) ⇔
φ(ω)(ejωτ − 1) and Eq. (5.113), we can derive another Fourier transform pair 〈	φ(τ)2〉 ⇔ 2Sφ(ω)(1 −
cos ωτ) where Sφ(ω) is the phase noise spectral density. Because phase and frequency are related
by a time derivative we can set Sφ(ω) → (2π)2Sν(ω)/ω2. This leads to 〈	φ(τ)2〉 = 2τ/τcoh ⇔
(4π)2Sν(ω) sin2(ωτ/2)/ω2. Expressing the Fourier transform explicitly using Eq. (5.110) and rear-
ranging we obtain Eq. (5.156).
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FIGURE 5.23: (a) Overlap between FM noise spectrum and sinc2(ωτ/2) function for
increasing time delays. (b) Resultant functionality of τ/τcoh vs. time delay. (c) Lasing spec-
trum with and without satellite peaks.

The integral is equal to 2π/τ , canceling out the dependence on time delay.
Thus, for time delays much greater than 1/fR , τcoh is a constant, τ/τcoh increases
linearly, and the autocorrelation reduces to a decaying exponential. For shorter
time delays, the decaying exponential contains some ripples.

From a physical point of view, it is the relaxation oscillations occurring in
response to random absorption/emission events that enhance the FM noise near the
resonance frequency. And because these oscillations are created by noise events
that occur earlier in time, we could argue that some component of the noise at
any given time mirrors the noise that existed ∼1/fR seconds ago. Thus, we might
expect a higher correlation or coherence between fields that are delayed by time
intervals of ∼1/fR . This is exactly what Fig. 5.23b reveals.

Taking the Fourier transform of e−|τ |/τcoh produces the power spectrum of the
laser as shown in Fig. 5.23c. Without ripples in τ/τcoh , the spectrum is a Lorentzian.
With ripples, the Lorentzian acquires a series of satellite peaks spaced by the reso-
nance frequency. The magnitude of the satellite peaks depends on the damping fac-
tor of the laser (less damping ⇒ stronger peaks). However, the FWHM linewidth
of the spectrum is essentially the same with or without these satellite peaks.

Using the long time delay expression for τcoh Eq. (5.148) to isolate the expo-
nential component of the autocorrelation and then Fourier transforming, we obtain
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the dominant Lorentzian lineshape. In general, if the exponential decay constant
is τ0, then the transformed Lorentzian FWHM is 	ω = 2/τ0. In the simpler
treatment of linewidth leading to Eq. (5.123), τ0 corresponds to the field decay or
2τp , yielding 	ω = 1/τp . Here, τ0 corresponds to the coherence time such that

	νFW = 1

πτcoh
= 2πSν(0). (5.158)

Inserting Eq. (5.152) with |H (0)|2 = 1, we obtain

	νFW = (	ν)ST (1 + α2) = �R′
sp

4πNp
(1 + α2). (5.159)

Thus, the modified Schawlow–Townes expression for linewidth is enhanced by
1 + α2 in semiconductor lasers (this is where α gets its name as the linewidth
enhancement factor) [5, 14]. The 1 represents the spontaneous emission noise
contribution, and the α2 represents the carrier noise contribution.

The above-threshold linewidth can be rewritten in terms of external parameters
by setting R′

sp = �vg gthnsp/V, Np = P0/hνVpvgαmF , and αmF = η0�gth :

	νFW = (�vg gth)2η0

4πP0
nsphν(1 + α2)

= 38 MHz ×
(

4.2

n̄g

)2 (
�gth

50 cm−1

)2 ( η0

0.4

) (nsp

1.5

) (
hν

1.5 eV

)
(

1 mW

P0

) (
1 + α2

26

)
. (5.160)

Typical numbers have been used to evaluate the linewidth (the value for η0 refers
to the single-facet efficiency, and hence P0 refers to single-facet power). Generally
speaking, powers in the milliwatts range in a typical semiconductor laser produce
linewidths in the tens-of-megahertz range. Thus, to achieve sub-megahertz
linewidths it is necessary to increase the power well above 10 mW. Another
approach to reducing the linewidth involves the use of external cavities, which
we explore in Section 5.7.

Example 5.6 For the VCSEL from Examples 5.1, 5.2 and 5.3, we are interested
in calculating the linewidth. Assume nsp = 1.25.

Problem: What unmodulated linewidth would be expected at the three biases,
assuming no external feedback?

Solution: To compute the linewidth, we need to use the expression for the modified
Schawlow–Townes linewidth, given by Eq. (5.159),

	ν = �R′
sp

4πNp
(1 + α2).
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Plugging in the expression for spontaneous emission into a mode, Eq. (4.67), we
have

	ν = �(1 + α2)
�vg gthnsp

4πVNp
= (1 + α2)

v2
g

ηi
ηd

α2
mnspq

4πηd (I − Ith)
= 49.49 MHz

for I − Ith = 0.5 mA. For I − Ith = 1.0 mA and I − Ith = 2.0 mA, the linewidths
are 24.475 MHz and 12.37 MHz, respectively.

5.6 CARRIER TRANSPORT EFFECTS

In the sections so far we have neglected any transport time for carriers to reach
the active region. For cases where the intrinsic region of the pin diode and the
active region are one and the same, such as for simple bulk DH structures, this
assumption is generally good. However, for separate-confinement heterostructures
(SCHs) used with quantum-well active regions, it has been found that transport
effects must be considered [15]. This structure was introduced in Fig. 1.8. Figure
5.23 gives a slightly more detailed SCH schematic for the present discussion.

For a number of years during the 1980s there was a dilemma as to why
quantum-well lasers were not providing the modulation bandwidths predicted by
the calculations given earlier. From Eq. (5.51) and earlier versions, it was clear
that the resonant frequency was directly proportional to the differential gain, which
is much higher with quantum-well active regions. Thus, it was surprising when
experiments showed quantum-well laser bandwidths about the same as for bulk
DH structures. Once it was realized that carrier injection delays due to transport
effects were significant, laser designs were modified, and bandwidths increased
dramatically. In this section we shall review the relevant theory.

With reference to Fig. 5.24 we construct a set of three rate equations for the
SCH design. The change is that the carrier equation has been replaced by two new
equations. The first is for the carrier density in the barrier regions, NB , and the
second is for the carrier density in the active region, N . Multiple quantum-well
active regions can also be treated by lumping all the barrier regions together. The
new rate equations are

dNB

dt
= �qηi I

qV
− nB

τs
+ �q N

τe
, (5.161)

dN

dt
= NB

�qτs
− N

[
1

τ
+ 1

τe

]
− vg gNp , (5.162)

dNp

dt
=

[
�vg g − 1

τp

]
Np + �R′

sp , (5.163)

where �q = V /VSCH is the fraction of the SCH region filled by the quantum-
well active region, NB/τs is the loss rate of carriers from the SCH region to the
quantum-well active region, N /τe is the loss rate of carriers from the quantum wells
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FIGURE 5.24: Schematic diagram of a single quantum-well laser with a separate-
confinement heterostructure (SCH) used in the carrier transport model.

to the SCH region, and the other symbols are as defined before. In this simplified
treatment, we ignore the fact that the holes come from one side of the junction and
the electrons from the other. Fortunately, other more in-depth treatments, which
include holes and electrons separately yield essentially the same results as this
simplified analysis.

Limiting our attention to small-signal perturbations, we can linearize the rate
equations as we did in Section 5.3 to obtain the differential rate equations. In matrix
form, these become

d

dt

⎡
⎣dNB

dN
dNp

⎤
⎦ =

⎡
⎣−γBB γBN 0

γNB −γtNN −γNP

0 γPN −γPP

⎤
⎦

⎡
⎣dNB

dN
dNp

⎤
⎦ + �qηi

qV

⎡
⎣dI

0
0

⎤
⎦ . (5.164)

The rate coefficients of the upper left 2 × 2 submatrix are given by

γBB = 1/τs , γBN = �q/τe ,

γNB = 1/�qτs , γtNN = �NN + 1/τe . (5.165)

The other rate coefficients are as defined before in Eq. (5.34). Converting to the
frequency domain and applying Cramer’s rule, we obtain

Np1(ω) = �qηi I1(ω)

qV
.

1

	t

∣∣∣∣∣∣
γBB + jω −γBN 1

−γNB γtNN + jω 0
0 −γPN 0

∣∣∣∣∣∣ , (5.166)



310 DYNAMIC EFFECTS

where

	t ≡
∣∣∣∣∣∣
γBB + jω −γBN 0

−γNB γtNN + jω γNP

0 −γPN γPP + jω

∣∣∣∣∣∣ . (5.167)

The only nonzero portions of 	t are (1) the product of the upper-left element
with the determinant of the lower right 2 × 2 submatrix and (2) the product
γBN γNB (γPP + jω). Pulling out the factor (γBB + jω) in the denominator,
setting γBN γNB/(γBB + jω) = γBN γNB/γBB − jω(χ − 1), and recognizing that
γNN = γtNN − γBN γNB/γBB , we obtain

Np1(ω) = �qηi I1(ω)

qV
· γNBγPN

γBB + jω
· 1/χ

ω2
tR − ω2 + jωγt

, (5.168)

where

ω2
tR = (γNPγPN + γNN γPP )/χ , (5.169)

γt = γNN /χ + γPP , (5.170)

χ ≡ 1 + γBN γNB/γBB

γBB + jω
. (5.171)

The new term χ is referred to as the transport factor. Using the definitions
of the rate coefficients (Eqs. (5.35) and (5.156)), and additionally setting γPN ≈
�vg aNp ≈ �χω2

tRτp and τp = η0hνNp1Vp/P1, we obtain the small-signal output
power modulation response:

P1(ω)

I1(ω)
= ηi η0

hν

q
· 1

1 + jωτs
· ω2

tR

ω2
tR − ω2 + jωγt

, (5.172)

with

ω2
tR = ω2

R/χ ≈ vg (a/χ)Np/τp , (5.173)

γt = vg (a/χ)Np

[
1 + �ap

a/χ

]
+ 1

τ	N χ
+ �R′

sp

Np
, (5.174)

χ = 1 + τs/τe

(1 + jωτs)
≈1 + τs

τe
. (5.175)

The approximate expression for the relaxation resonance frequency ignores the
last two terms in Eq. (5.49), and makes use of the fact that in most lasers,
a/τp  �ap/τ	N . The approximate expression for the transport factor neglects
the frequency roll-off of the second term. For typical SCH-SQW lasers at room
temperature, τe∼100 − 500 ps, τs∼20 − 100 ps, and the transport factor χ ∼ 1.2.
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Using the approximate expression for ω2
tR , the damping factor can be rewritten

in terms of the K -factor:

γt = Kt f
2

tR + γt0, (5.176)

where

Kt = 4π2τp

[
1 + �ap

a/χ

]
and γt0 = 1

τ	N χ
+ �R′

sp

Np
. (5.177)

In examining Eqs. (5.173) and (5.174), we conclude that transport across the SCH
region effectively reduces the differential gain from a to a/χ , and effectively
increases the differential carrier lifetime from τ	N to τ	N χ . The gain compression
factor remains unmodified in this model. The reduced differential gain decreases the
relaxation resonance frequency and increases the K -factor. The increase in differen-
tial carrier lifetime reduces the damping factor offset, γt0. In addition (and perhaps
most significantly), there is a new prefactor that provides a low-pass filtering effect
with a cutoff at ω = 1/τs . This prefactor provides an insidious parasitic-like roll-off
that is indistinguishable from an RC roll-off.

Figure 5.25 gives examples of the effects of transport in SCH structures. Note
that with the narrower SCH region, the low-pass filter effect is eliminated allowing
for a much larger modulation bandwidth.

5.7 FEEDBACK EFFECTS AND INJECTION LOCKING

Signals returning to a laser cavity, or being injected into the cavity from the outside
can have important effects on lasing. Although optical feedback effects in lasers are
unavoidable, and generally we try to minimize them due to their negative impact
on laser’s linewidth, deliberate, controlled optical feedback or injection locking
can improve the laser’s performance through noise suppression, reduced nonlinear
distortion and modulation bandwidth enhancement [22]. In this section, we will
analyze both effects, starting with optical feedback, and modifying the results from
this case to correspond to the injection locking case as well.

5.7.1 Optical Feedback Effects—Static Characteristics

In typical applications of diode lasers some light is unintentionally reflected back
into the laser cavity. For example, the reflection from the front surface of a fiber is
about 4%, and perhaps one-tenth of this may be coupled back into the laser cavity
in a pigtailing arrangement. Surprisingly, even such small amounts of feedback
can have dramatic effects on the laser’s linewidth and noise properties. This is
especially true for single-frequency lasers. In fact, 0.4% (−24 dB) is considered to
be a large feedback. Experiments have shown that even −60 dB of feedback can
be unacceptable with single-frequency lasers.
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FIGURE 5.25: Modulation response for (a) a narrow SCH and (b) a wide SCH-SQW laser
(the lasers are otherwise identical). The modulation response for the wide SCH laser, at
comparable power levels, shows the detrimental effects of the low frequency roll-off due to
carrier transport. After [15]. © 1992 IEEE.

To analyze the effects of feedback, we consider the three-mirror cavity results
of Chapter 3. Figure 3.9 and Eq. (3.35) are our starting point. They describe an
effective mirror concept that folds the effects of the external cavity back into
the active laser diode section. From this starting point, we explore the effects of
feedback on the laser’s output power and spectrum. After the static characteristics
are quantified, we consider the dynamic effects on the laser’s linewidth and noise
spectrum.

Equation (3.35) describes the vector addition of the primary reflection at the
laser facet, r2, with the feedback term. This is shown schematically in Fig. 5.26. For
relatively weak feedback, the external cavity resonance can be neglected (i.e., we
can ignore the denominator in Eq. (3.35), so that the in-phase (ip) and quadrature
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FIGURE 5.26: Polar plot (left) of effective reflection from output side of laser; 	r represents
feedback that can change both the amplitude and phase of reff . Plots of the magnitude and
phase of reff illustrate the quadrature relationship.

(q) components of the feedback term, reff − r2 = 	r , become

	rip = t2
2

√
fext cos(2βLp),

	rq = −t2
2

√
fext sin(2βLp), (5.178)

where −2βLp is the round-trip phase of the external cavity. Also, the external
feedback level, fext represents the fraction of emitted power coupled back to the
laser. It replaces r3 in Eq. (3.35) to account for additional coupling and propagation
losses encountered through one round-trip path of the external cavity.

The in-phase component of the feedback, 	rip , affects the laser by changing
the magnitude of the effective reflectivity at mirror #2. This modifies the photon
lifetime of the cavity, which in turn modifies the threshold gain, threshold carrier
density, and threshold current of the laser. The perturbed photon lifetime is given by

1

τ ′
p

= 1

τp
+ vg	αm = 1

τp
+ vg

L

[−	R

R

]
, (5.179)

where R = r1r2 and 	R = r1	rip . Expanding these terms and defining the round-
trip time of the laser cavity as τL = 2L/vg , we can express the change in mirror
loss as

vg	αm = −2
t2
2

r2

√
fext

τL
cos(2βLp) = −2κf cos(2βLp). (5.180)

The feedback rate κf = (t2
2

√
fext/r2)/τL introduced here represents the normalized

reflected field injection rate per round-trip time of the cavity (i.e., per bounce).
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The change in mirror loss gives rise to a shift in the threshold modal gain, or
	(�gth) = 	αm . For small changes, we can use the differential gain a = 	g/	N
to determine the corresponding shift in threshold carrier density, and we can write

	gth = − 2κf

�vg
cos(2βLp), (5.181)

	Nth = − 2κf

�vg a
cos(2βLp), (5.182)

The perturbed threshold current can also be described as follows:

I ′
th = Ith − |	Ith | cos(2βLp), (5.183)

where 	Ith can be found by defining a differential gain per unit current density, aJ ,
similar to Eq. (5.182). When the external reflection is in phase with the reflection at
mirror #2 (i.e., when 2βLp = 2πm), the threshold level decreases due to an increase
in reff . When the external reflection is out of phase (i.e., when 2βLp = 2πm + π ),
the threshold level increases due to a decrease in reff .

The change in mirror loss also affects the differential efficiency and output
power. Expanding Eqs. (3.31) through (3.33) to first-order in 	rip/r2, we can
obtain new perturbed values for the total differential efficiency, η′

d , the fraction
of light emitted through each mirror, F ′

1,2, and the corresponding power out, P ′
01,02.

Using Eq. (5.183) and assuming both laser facets are lossless (i.e., t2 = 1 − r2),
the perturbed power out of mirrors #1 and #2 becomes

P ′
01,02 = P01,02[1 − μ1,2 cos(2βLp)], (5.184)

where

μ1,2 =
[

2κf τp

(
ηi

ηd
− 1

)]
±

[
κf τL(1 − F1,2)

(
1 + r2

2

t2
2

)]
−

[ |	Ith |
I − Ith

]
.

The upper sign is for μ2, whereas the lower sign is for μ1. As a reminder, |	Ith |
represents half of the peak-to-peak change in threshold current.

Equation (5.184) shows that if we vary the optical path length between the laser
and the reflection causing the feedback, the output power will oscillate sinusoidally
as the external reflection goes in and out of phase with the reflection at mirror #2.
The oscillation is the combined result of (in order of appearance in μ1,2): (1) the
change in overall differential efficiency, (2) the change in the fraction of power
emitted out of either facet, and (3) the shift in threshold current. The first two
effects reinforce each other (upper sign) for light emitted out mirror #2, but work
against each other (lower sign) for light emitted out mirror #1. Also, the first effect
is enhanced for small ηd , whereas the second effect is enhanced when the fraction
of light emitted from the measured facet is small. The third effect is enhanced near
threshold. At certain operating points all three effects can cancel each other out.
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However, for bias currents well above threshold, the third effect is negligible. By
recording the peak-to-peak power variation as the feedback phase is scanned, we
can directly measure μ1,2. This provides a method of estimating both κf and the
feedback level fext . However, the technique is limited to relatively large feedback
levels because the change in output power for very weak feedback is hard to detect.

While 	rip affects the threshold level and power out, the quadrature component
of the feedback, 	rq modifies the phase angle of the net reflection at mirror #2
from zero to φeff = 	rq/r2, affecting the cavity’s resonant wavelength. With no
feedback, the resonance condition is met when −2β0L = 2πm . With feedback, the
accumulated round-trip phase must now satisfy: −2βL + φeff = 2πm ≡ −2β0L.
In other words, β must adjust itself such that 2(β − β0)L = φeff . In a dispersive
medium, 	β = 	ω/vg allowing us to write the frequency shift due to the external
feedback as

	ωφ = φeff

τL
= −κf sin(2βLp). (5.185)

If we specify the round-trip phase change as 	φr−t = −	ωτL, we find
that this equation is equivalent to −	φr−t/τL = φeff /τL, which reduces to
	φr−t + φeff = 0. In other words, the round-trip phase change compensates for
the altered phase of mirror #2.

An additional round-trip phase change is created by the shift in threshold carrier
density via the linewidth enhancement factor, α. This leads to an additional shift
in the lasing frequency. Placing the threshold carrier density shift Eq. (5.173) into
Eq. (5.75), the resulting carrier-induced frequency shift is given by

	ωN = −ακf cos(2βLp). (5.186)

Adding Eqs. (5.185) and (5.186), and using the trigonometric identity

a sin φ + b cos φ =
√

a2 + b2 sin[φ + tan−1(b/a)],

the total frequency shift becomes

	ω = −κf

√
1 + α2 sin(2βLp + φα) ≡ φ′

eff

τL
, (5.187)

where φα = tan−1 α (which varies from 0 to π/2 as α increases). By defining
φ′

eff as the effective phase of mirror #2 factoring in the carrier-induced round-
trip phase shift, Eq. (5.187) becomes equivalent to −	φr−t/τL = φ′

eff /τL, which
reduces to 	φr−t + φ′

eff = 0. Note that α enhances φ′
eff and pulls the quadrature

sin x dependence toward a cos x dependence more in sync with the threshold gain
variation (5.172).

Our goal is to determine the mode frequency shift, 	ω. We start by writing
the feedback phase directly in terms of the frequency shift and the external cavity
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round-trip time τext = 2Lp/vgp :

2βLp = 	ωτext + 2β0Lp . (5.188)

2β0Lp is the feedback phase that would exist at the laser’s unperturbed frequency.
Substituting this into Eq. (5.187) leads to a transcendental equation that cannot
be solved for 	ω analytically. However, we can get a feel for the solutions by
plotting the left- and right-hand sides individually and looking for frequencies that
satisfy the equation. Such a graphical solution is shown in Fig. 5.27. The negative
of the round-trip phase shift, −	φr−t = 	ωτL for three internal cavity modes and
the effective phase of mirror #2, φ′

eff are all plotted as a function of frequency.
A cavity mode appears wherever the phases cancel, −	φr−t = φ′

eff , which means
wherever the two curves intersect.

For weak feedback, only one mode per original internal cavity mode exists.
However, for strong feedback we find that multiple modes clustered near each
original internal cavity mode become possible. The spacing between these external
cavity modes is somewhat uneven for the case shown in the figure. However, as the
feedback and oscillation amplitude increase, the external mode spacing evens out
approaching 	ωm = π/τext (one for every zero crossing). This is half the mode
spacing one might expect. For example, the unperturbed internal cavity modes
are spaced by 	ωm = 2π/τL. The reason for the π phase interval instead of the
normal 2π phase interval is that both in-phase and out-of-phase feedback reflection
cases (which are spaced by π ) represent valid solutions (for α = 0, 2β0Lp = πm)

Mode 0 Mode +1Mode –1

Strong
feedback

Weak
feedback

f′eff , − Δfr−t

w − w0

ΓvgΔgth

−kftL√1 + a2  sin(Δwtext + fα)

−2kf cos (Δwtext)

ΔwtL + 2π ΔwtL − 2πΔwtL

w − w0

FIGURE 5.27: Graphical solution of the laser cavity modes with external feedback. Cavity
modes for both weak and strong feedback are found at the intersection of the straight and
sinusoidal phase curves. The relative threshold gains of the external cavity modes clustered
near mode 0 in the strong feedback case are indicated by the dashed lines (the curves assume
2β0Lp = 2πm).
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because both cases leave the reflection phase of mirror #2 unperturbed. The catch
is that the out-of-phase solutions have a higher threshold gain (see Eq. (5.181)),
and hence are not as prominent in a multimode lasing spectrum.

In general, the solutions do not usually yield either pure in-phase or out-of-phase
feedback modes (identified by alignment with the extremes in 	gth ). However,
modes do show tendencies toward one or the other. For example, in Fig. 5.27, the
first, third, and perhaps fifth external cavity modes originating from mode 0 might
be classified as relatively in phase, whereas the second and clearly the fourth are
closer to out-of-phase modes. Of the three relatively in-phase feedback modes, the
one with the lowest threshold gain (i.e., the one with the most in-phase reflection)
becomes the dominant mode in the spectrum, replacing what was the internal mode
of the laser with no feedback. Note from the figure that the dominant cavity mode
is not necessarily the external mode closest to the original internal mode.

The transition from single to multiple mode solutions signifies a distinct change
in the mode spectrum of the laser and is useful to quantify. From Fig. 5.27,
it is evident that multiple solutions cannot exist when the slope of the straight
curve (−	φr−t ) exceeds the maximum slope of the oscillatory curve (φ′

eff ). Using

Eq. (5.187), the maximum slope of φ′
eff /τL is κf τext

√
1 + α2, whereas the slope of

−	φr−t/τL is 1. Thus, multiple solutions cannot exist for

C = κf τext

√
1 + α2 < 1. (5.189)

The feedback coefficient, C , characterizes the level of feedback in relation
to how it affects the mode structure of the laser (C = |dφ′

eff /d(ωτL)|max). From
Fig. 5.27, it is obvious that rapid and/or large oscillations in φ′

eff can lead to multiple
solutions. Equation (5.189) reflects this observation showing that both long external
cavities and/or strong feedback can produce multiple external cavity modes.

A good example of how feedback can affect the LI curve of a laser is shown in
Fig. 5.28. As shown in the inset, the substrate-air interface of the substrate-emitting
VCSEL provides a strong external reflection. The oscillations in output power in
this case are not caused by changes in the external path length, but rather by a
steady increase in the lasing wavelength with increasing current (which is equally
effective at scanning the feedback phase, −4πnpLp/λ, through multiples of 2π ).
We can observe a cancellation between the differential efficiency change and the
threshold shift effects at about 3 mA. We can also observe that the oscillations are
not entirely sinusoidal as Eq. (5.184) might suggest. This is due to mode pulling,
where the feedback itself modifies β in often unpredictable ways (we will consider
these effects next). To prevent such oscillations in output power, an antireflection
coating is usually applied to the substrate of the VCSEL.

5.7.2 Injection Locking—Static Characteristics

The case of injection locking is analogous to the case of optical feedback, with a
difference that the external (master) signal coupled into the cavity is now uncorre-
lated to the original (slave) laser signal, and generally on a different wavelength.
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FIGURE 5.28: Continuous-wave LI curve of a substrate-emitting VCSEL with strong feed-
back from the substrate-air interface. As the current increases, the temperature of the VCSEL
increases. This increases both the index and optical path of the resonator cavity, leading to
a steady increase in lasing wavelength (and shift in feedback phase) with increasing current.
The peaks (valleys) in the output power occur when the feedback field subtracts from (adds
to) the recirculating field in the VCSEL cavity (the opposite of what one might think). The
rollover of the LI curve beyond 8 mA is due to a variety of thermal effects.

Still, like in the case of optical feedback, this injected signal will cause the fre-
quency shift that can be described by two distinct effects—gain and phase condition
changes inside of the slave laser. The interplay between the injected field and the
local field will cause the output signal from the slave laser to appear at the wave-
length of the master laser, even though the slave laser itself will continue lasing at
a frequency corresponding to one of its cavity modes. However, because the carrier
density in the cavity will be perturbed by this external stimulus, the cavity modes
of the slave laser will be shifted relative to their unperturbed state. Similar to the
case of optical feedback, we will use the injected electric field Ei over the cavity
round-trip time τL to define the normalized master laser field injection rate as

κi = Ei

E τL
, (5.190)

where E is the electric field of the slave laser. A phasor model describing the
operation of the injection locked slave laser is illustrated in Fig. 5.29. The change
in value of the complex electric field E of the slave laser is caused by the injected
master signal Ei , represented by a real vector.

Over a time period of 	t , the injected signal introduces an out-of-phase electric
field component into the slave laser’s electric field, 	E = E κi 	t , as shown in
Fig. 5.29. This addition will alter the phase of the slave vector by 	φ. From
Fig. 5.29, we can observe that

	φ ≈ sin(	φ) = 	Es

E
= 	E sin φ

E
= κi 	t sin φ, (5.191)
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FIGURE 5.29: Injection locking mechanism that keeps a slave laser locked in a time 	t ,
the injected electric field adds a real component of the electric field to the slave laser signal,
causing a phase shift equal to 	φ.

which is valid for small values of 	t and consequently 	φ. From here, the angular
frequency change of the slave laser is

	ω = −	φ

	t
= −κi sin φ. (5.192)

The second mechanism that alters the frequency of the slave laser is its gain
perturbation, caused by the injected signal. The condition imposed by the slave
laser’s steady-state operation is that its output power be constant in time. Thus,
over the same time period of observation 	t , the gain in the slave laser needs
to change to maintain that constant output. Optical power P is proportional to the
electric field squared, P = c2|E |2, where c is a constant. The change in output
power from the slave laser is given by

	P = P(	t) − P(0) = c2(|E | + 	Ec)
2 − c2|E |2 ≈ 2c2|E |	Ec . (5.193)

Again, referring to Figure 5.29, we have that

	Ec ≈ 	E cos φ, (5.194)

leading to

	P = 2c
√

P	E cos φ. (5.195)

Another way to determine the change in the output power is from the rate
equation for photons, Eq. (2.17). In a time period 	t , we can calculate the change
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in the photon density, which is proportional to the change of the light power,

	P = �vg · 	g · P · 	t . (5.196)

We can now equate the expressions for the power change 	P , from Eqs. (5.193)
and (5.196), to get

	g = 2
Ei

E vg�τL
cos φ = 2

κi

�vg
cos φ. (5.197)

Analogous to the case of optical feedback, the change in optical gain causes
an additional round-trip phase change through the refractive index change, and
can be expressed via the linewidth enhancement factor, α. Using Eq. (5.75), and
the relationship between the angular velocity and frequency, 	ω = 2π	ν, the
resulting carrier induced frequency shift is

	ω = −α

2
�vg · 	g = −ακi cos φ. (5.198)

Similarly, the change in carrier density can be expressed from the change in
gain, obtaining the result identical to Eq. (5.182), with κi replacing κf . The total
frequency shift, using expression 5.192, becomes

	ω = −(κi sin φ + ακi cos φ) = −κi

√
1 + α2 sin(φ + φα), (5.199)

where φα = tan−1 α. This expression also is identical to the expression obtained for
the frequency shift due to optical feedback, Eq. (5.187). This is no coincidence, as
the case of optical feedback can be treated as a special case of optical injection, by

realizing that P1 = t2
2

r2
Pf , where the injected master power is given by P1 = c2|Ei |2.

5.7.3 Injection and Feedback Dynamic Characteristics and Stability

The static behavior of the laser discussed in the previous section considered the
basic changes to the threshold, output power, and mode spectrum induced feedback
or external injection into the laser. However, such steady-state solutions may not
always be stable against random fluctuations in the carrier and photon density. In
other words, the inherent noise of the laser can induce dynamic instabilities, which
can literally run wild under certain external signal conditions.

To solve for the dynamic behavior of a laser under feedback or optical injection,
we need to generalize our rate equations, by replacing the photon density rate
equation with two separate rate equations describing the electric field amplitude and
phase changes in time. We can then apply the same technique of differential analysis
to these three rate equations to observe how the laser will behave dynamically in
response to the perturbations due to feedback/optical injection. The response will in
large part be directed by the determinant of the matrix of the system of equations,
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d

dt

⎡
⎣ 0

0
	J

⎤
⎦ =

⎡
⎣γEE + jω γEφ γEN

γφE γφφ γφN

γNE 0 γNN + jω

⎤
⎦

⎡
⎣ dE

dφ

dNp

⎤
⎦ . (5.200)

Based on the solutions for laser behavior under both static and dynamic con-
ditions, we can define different ranges of laser operation. We are particularly
interested in the laser’s locking range, under which the laser will operate with
stable, narrow linewidth and be locked to the perturbation signal.

The first condition for stability comes from Eqs. (5.187) and (5.198), and the
fact that the phase of the (slave) laser has to be real. This condition will be fullfilled
if the value of the sine function is less than unity, which will be true for angle φ

in the range of

−π

2
− tan−1 α ≤ φ ≤ π

2
− tan−1 α. (5.201)

The second condition comes from the requirement that the change in carrier
density must be negative, so that the total carrier density can never be higher than
the threshold carrier density, Nth. From this, we note that cos φ > 0, and −π

2 ≤ φ.
Combining the two requirements for the (slave) laser phase, and using Eqs. (5.187)
and (5.198), we finally arrive at the Morgensen’s locking range [22],

−κi

√
1 + α2 ≤ 	ω ≤ κi . (5.202)

The final constraint comes from the dynamic equation solution for the frequency
response, and from the knowledge of the stability theory that states that real parts
of roots of the system determinant must remain negative for a system to remain
stable. Unfortunatelly, the locking range based on this constraint needs to be
determined numerically.

A diagram showing the locking range on a detuning frequency versus injection
ratio plot is shown in Figure 5.30. The solid curves show the boundaries between
optical injection locking and nonlocking regions. The boundary of the unstable and
stable injection locking areas is denoted by a dotted curve. The asymmetric fea-
ture of stable injection locking again originated from the fact that the α linewidth
enhancement factor has a nonzero value in semiconductor lasers. The case of optical
feedback is represented by the line obtained for detuning frequency equal to zero.

5.7.4 Feedback Effects on Laser Linewidth

In this section, we analyze qualitatively random fluctuations in the carrier and
photon density caused by feedback, and their impact on laser linewidth. Two
dominant factors are responsible for these instabilities.

The first factor is related to the mode solutions depicted in Fig. 5.27. Under
certain conditions, the two intersecting curves can run tangent to each other as
demonstrated by mode +1 with weak feedback (at the zero crossing), or mode −1
with strong feedback (at the extreme of the sine wave). In such cases, the resonance
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FIGURE 5.30: Locking and unlocking regions in phase space of frequency detuning and
injection field. Reprinted with permission from Springer-Verlag, [22].

condition is not well defined making the exact position of the mode extremely
sensitive to carrier-induced fluctuations in the round-trip phase. The random posi-
tioning of the mode also affects the threshold gain, which can lead to sporadic mode
hopping if other solutions have similar threshold gains. The second factor involves
the external round-trip delay of the feedback field relative to the recirculating
mode. This time-delayed reinjection of power and phase fluctuations can accentuate
the instability of the laser considerably. The net result is that external feedback can
affect the noise, linewidth, and dynamic properties of single-frequency lasers very
dramatically. Certain levels of feedback and delay can result in self-pulsations,
very large linewidths, or large enhancements in the low-frequency noise.

Experimentally, five distinct regimes of laser performance under feedback have
been identified [19]. These are indicated in Fig. 5.31, for reflection distances
of 5 cm and higher. For zero distances, it is interesting to note that there is a
correspondence with the regions indicated in Figure 5.31—that is, regions II and
III disappear, region V becomes the stable injection locking region, and region
IV, coherence collapse, becomes the unstable injection locking region. Finally,
region I remains a single mode region in both cases.

To understand the origins of these five regions under feedback, let’s begin at
the bottom of the plot in regime I. For weak feedback and relatively short external
cavities, C<1 and only one mode for each original internal laser mode exists. In
this regime it has been observed that the laser linewidth is narrowed for certain
feedback phases and broadened for others. A similar decrease and increase occurs
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FIGURE 5.31: Sketch of the five feedback regimes. The regime boundaries plotted here
were measured on one particular laser and will vary somewhat, depending on the laser
structure and bias level. For example, the arrows indicate the movement of the boundaries
with increasing output power. After Ref. [16].

in the RIN level. Figure 5.27 can be used to explain this behavior. As mentioned
earlier, when the two intersecting curves run tangent to each other, the mode
position can fluctuate leading to an increase in linewidth. For mode +1 with weak
feedback, the phase slopes of −	φr−t and φ′

eff are parallel and an instability is
expected. However, when the phase slopes are crossed like at mode 0 with weak
feedback, the mode position is actually stabilized by the feedback, narrowing the
linewidth and quieting the laser. A more rigorous analysis [17] reveals that the laser
linewidth varies inversely with the difference between the phase slopes squared,9

or ∝ [d(	φr−t + φ′
eff )/d(ωτL)]−2. Using Eq. (5.187) to evaluate the derivatives,

we can write the linewidth with feedback relative to the unperturbed linewidth as

	ν = 	ν0

[1 + C cos(2βLp + φα)]2
, (5.203)

where again φα = tan−1 α and C is given by Eq. (5.189).

9This relation holds as long as τext < τcoh , such that the feedback field interferes coherently with the
recirculating field in the cavity.
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When the feedback phase is adjusted to 2βLp = 2πm − φα , the phase
slopes are crossed and the linewidth is narrowed to 	ν0/(1 + C )2. When
2βLp = 2πm + π − φα , the phase slopes are parallel and the linewidth is broad-
ened to 	ν0/(1 − C )2. In between these extremes (for example at mode −1), the
feedback phase approaches zero slope and the linewidth → 	ν0. The crossed phase
slopes configuration of mode 0 is often referred to as having “in-phase” feedback
even though this is only true for φα = 0. Likewise, the parallel phase slopes config-
uration of mode +1 is referred to as having “out-of-phase” feedback. For large α,
both configurations are closer to having a quadrature feedback phase. We can tune
the dominant mode of the laser (e.g., mode 0) to either of these configurations by
adjusting 2β0Lp , which has the effect of shifting all sinusoidal curves in Fig. 5.27
to the left or right by as much as we desire. Every π change in 2β0Lp alternates the
phase slope alignment from crossed to parallel. In any case, regardless of the feed-
back phase, when C < 0.05, the feedback modifies the linewidth by < 10% and
the laser can be considered sufficiently isolated for many applications. As C → 1,
the narrowing and broadening increase until eventually Eq. (5.203) predicts an
infinite linewidth for the out-of-phase feedback configuration (i.e., when the two
phase slopes are perfectly tangent to each other). In reality, the laser mode splits
into two modes [16, 18] and this defines the boundary between regimes I and II.

For long external cavities, even relatively weak feedback can lead to C>1 and
we enter regime II as illustrated in Fig. 5.31. Regime II is characterized by the same
feedback phase sensitivity described for regime I. However, in this regime multiple
solutions are allowed. Experimentally, the in-phase feedback configuration of mode
0 continues to provide a narrowing single line as C increases. Apparently when the
linewidth is stabilized by the crossed phase slopes, the laser favors this mode even in
the presence of other mode solutions. For the out-of-phase feedback configuration of
mode +1, the one mode splits into three mode solutions as the extremes of the sine
wave penetrate across the straight phase curve with increasing feedback. The three
modes of mode +1 can be observed in Fig. 5.27 for strong feedback. Of the three
modes, the zero-crossing mode generally has a higher threshold gain and hence
does not appear in the spectrum. The outer two mode solutions, however, can be
tuned slightly via 2β0Lp until they have identical threshold gains. For this feedback
phase, the laser line splits into two closely spaced modes. Thus, the out-of-phase
feedback configuration in regime II is characterized by a double peaked lineshape.

As the feedback increases, the separation between the two modes increases
and eventually reaches 2π/τext (one full cycle of the sine wave). Thus, the overall
effective laser linewidth can increase to 	ν∼1/τext [18]. Furthermore, the laser
does not exist in both modes at the same time. Rather, it jumps between the two
modes at a rate in the few MHz range. This mode hopping creates low-frequency
noise that can be undesirable in some applications. However, for both regimes I
and II, one might argue that intentional feedback with the proper feedback phase
can improve the laser performance. In practice, maintaining the proper feedback
phase can prove challenging and it is generally best to either keep C < 0.05 or
stay away from regimes I and II entirely.
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As the two modes of the out-of-phase feedback configuration (mode +1)
reach a separation close to 2π/τext with increasing feedback, the rate of jumping
decreases and eventually stops altogether marking the transition to regime III. The
laser then settles down to one of the two modes. It is interesting to point out that
the two outer modes originating from mode +1 have now shifted on the sine wave
over to a crossed phase slopes, and hence stable, narrow linewidth configuration.
In fact they are approaching this level in Fig. 5.27. As a result, the linewidth
is narrowed for both in-phase and out-of-phase feedback configurations, making
regime III independent of feedback phase. The boundary between regimes II and
III has been found experimentally to be independent of external cavity length
(as have all other higher feedback regime boundaries indicated in Fig. 5.31).
Although regime III offers stable, low noise, narrow single-line laser operation, it
unfortunately spans only a small range of feedback levels. The feedback regime
opens up for higher output powers [16], but is still relatively small. Designing an
intentional feedback system with tight tolerances to maintain the feedback level
in regime III is possible but not very practical.

As the feedback level is increased still further, the laser enters a new regime
that is characterized by complex dynamic interactions between the many relatively
strong multiple external mode solutions. Rate equation models of the field and phase
including the time delay of the feedback field reveal unstable solutions and chaotic
behavior at these high feedback levels [19]. Indeed, experiments reveal linewidths
so large that the coherence length of the laser drops below 1 cm (as opposed to
tens of meters). For this reason, regime IV is referred to as the coherence collapse
regime. The collapse begins at the transition to regime IV, where the normally
small satellite peaks created by noise-induced relaxation oscillations (depicted in
Fig. 5.23) grow larger and larger, eventually becoming comparable to the central
peak and broadening the linewidth dramatically. It has been suggested that the
transition between regimes III and IV occurs when the feedback rate κf ∼ ωR [16].
A more refined theoretical estimate of the critical level of feedback is given by [20]

fext |crit = τ 2
L

16C 2
e

(Kf 2
R + γ0)

2
[

1 + α2

α4

]
, (5.204)

where we define a laser coupling factor, Ce = t2
2 /2r2 (for Fabry–Perot cavities).

The K -factor and γ0 are given by Eq. (5.53). The critical feedback level is
increased for larger output power (via f 2

R ), smaller α, longer cavity lengths,
and smaller laser coupling factors. The maximum linewidth and RIN level
within the coherence collapse regime have also been theoretically estimated and
experimentally verified. They are given by [19]

	ν|max = fR
√

1 + α2
√

ln 4, (5.205)

RIN

	f

∣∣∣∣
max

= 1

γ
= 1

Kf 2
r + γ0

. (5.206)
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For a resonance frequency of 5 GHz and α = 5, we obtain a maximum
linewidth of 30 GHz! However, for a typical damping factor of 1010 s−1 at a few
milliwatts of output power, we obtain a RIN of −100 dB/Hz. This level of RIN
is large but not extreme. Thus, simple systems may be able to function adequately
in regime IV as long as the linewidth is not of critical importance. Figure 5.32
summarizes the impact on laser linewidth due to feedback as it is scanned through
regimes I through IV [21]. The envelope superimposed on the measurements
reveals the linewidth variation created by the feedback phase.

Finally, at very high feedback levels when the external mirror becomes
comparable to the laser’s mirror feedback, a stable regime can be observed.
Regime V is usually achieved only when the feedback is deliberate and well
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designed. For example, monolithic complex cavities considered in Chapter 3 fall
into this category. An external mirror with good coupling to the laser cavity
via an antireflection coating on mirror # 2 can also reach feedback levels in
regime V. The mode solutions in this feedback regime are stable with very
narrow linewidths. If the mirror # 2 reflection is small, it is sufficient to treat the
entire laser cavity as a solitary laser with mode spacing given by 2π/(τL + τext ).
The effect on linewidth is then simply calculated by including a fill factor
in the modal gain. The expression for linewidth derived earlier Eq. (5.151)
depends on �2. Thus, all else being equal, we can describe the line narrowing in
regime V by

	ν = 	ν0

[
n̄gaLa

n̄gaLa + n̄gpLp

]2

. (5.207)

This result is not entirely different from Eq. (5.203) evaluated at the in-phase condi-
tion because C ∝ n̄gpLp/n̄gaLa . With typical numbers such as La = 300 μm, Lp =
5 cm, n̄ga = 4.2, and n̄gp = 1, the line narrowing is ∼ (1/40)2. The external cavity
can therefore reduce a 100 MHz linewidth down to 62.5 kHz! Combined with a
frequency-selective filter to attain single-mode operation, such deliberate external
cavity feedback can be quite useful for applications demanding highly coherent
light.

As for unintentional feedback, it is unfortunately very easy to fall into regime
IV with small reflections. For on-chip optical feedback reduction, the main
strategy is to reduce the number of optical interfaces with large discontinuities, as
well as to angle these interfaces, to minimize the coupling back of the reflected
light into the fundamental mode—through phase front missalignment [26]. For
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facet reflection suppression, a combination of angled interface and optical beam
expansion (that amplifies the effect of the angled interface) is most often used.
The simplest implementation is a curved tapered output waveguide, as shown
in Figure 5.33 on the left. The combination of these approaches can reduce the
reflectance by several orders of magnitude, as shown in Figure 5.33 (right), before
an antireflection coating is applied.

For off-chip reflections, the main sources of reflection are micro-optic
components used to couple the light into the fiber, as well as fiber connectors at
moderate distances. Optical isolators that provide greater than 60 dB of isolation
are therefore often required.
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PROBLEMS

1. What is the current relative to threshold in Fig. 5.1?
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2. Derive N1 for P1 for a mirror-loss-modulated laser instread of a current-
modulated laser (i.e., assume dI (t) = 0 and dαm(t) = αm1ejωt ). What is the
major distinction between the two types of modulation?

3. Derive Np1 + Np2 assuming there are two competing modes in the cavity
and that intermodal gain compression can be neglected. Under what condi-
tions does the modulation response of the total photon density resemble the
modulation response of either of the two modes separately (in other words,
under what conditions can we ignore the division of photons into separate
modes)?

4. Derive P1/I1 for a laser that has a series resistance, R, and a parallel shunt
capacitance, C , across the diode such that not all of the terminal current, I1,
makes it to the active region. Express the result in terms of an overall transfer
function, HRC (ω)H (ω), which includes RC parasitics. For a series resistance of
10 � and a laser with negligible damping and a relaxation resonance frequency
of 20 GHz, determine the capacitance that reduces the 3 dB bandwidth of the
laser to 90% of its value with no parasitics.

5. By solving for the poles of Eq. (5.59), show that Eq. (5.60) is correct.

6. Using Table 5.1, evaluate all terms in Eq. (5.49), and thus, verify Eq. (5.51).

7. Using the analytic approximations for a step function in current, plot the power
out of one end of a 300-μm-long, 3-μm-wide cleaved-facet InGaAs/GaAs
3-QW buried-heterostructure laser versus time in response to a current that
abruptly rises by 10% from an initial value of twice threshold. The laser emits
at 0.98 μm and has an internal loss of 5 cm−1, an internal efficiency of 80%,
gain and recombination parameters as in Table 5.1 for an 80 Å quantum-well,
and a confinement factor of 6%.

8. For the transient response given in the example of Fig. 5.6a, plot the frequency
chirping versus time assuming a linewidth enhancement factor of 5.

9. For the in-plane device described in Table 5.1 and Fig. 5.6, a small signal
sinusoidal current of varying frequency is applied at a bias current of twice
threshold. The frequency response peaks at some frequency and then falls off
rapidly. What is this peak frequency? By how much is it different from the
relaxation resonance frequency?

10. An edge-emitting, mode-locked laser in InP, operating at 1.55 μm, consists of
an active region, a 50-μm-long saturable absorber, and 2 DBR mirrors, whose
lengths are L1 = 100 μm and L2 = 200 μm. The coupling constant for the
gratings in the DBR mirrors is κ = 0.0131/μm. Assume that the group index
in all sections is equal to 3.8, and that the laser waveguide supports only one
lateral and one transverse mode. AR coatings are applied to the laser facets.
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What is the length of the active region if this laser generates pulses with the
repetition rate of 40 GHz?

11. For the mode locked laser from the previous example, assuming that the gain
bandwidth is 3.2 nm, and that the cavity modes are evenly distributed over this
range, what is the number of supported cavity modes and what is the width of
the pulses emitted by this laser?

12. A 1.55-μm InGaAsP/InP laser with a linewidth enhancement factor of 5 is
modulated from 1.5 to 4.5Ith , creating an output power variation of 1–7 mW.
Assuming a trapezoidal output at 1 Gb/s with 0.5 ns linear transitions and
0.5 ns constant power plateaus at each extrema, plot the chirping for two
periods of a 10101. . . sequence.

13. A 1.3-μm InGaAsP/InP laser with a threshold carrier lifetime of 3 ns is biased
at 0.9Ith . At time t = 0 the drive current is suddenly increased to 2Ith . What
is the turn-on delay? Make whatever assumptions are necessary.

14. Consider the noise emitted from an InGaAs/GaAs VCSEL parameterized in
Table 5.1, at 100 MHz.

(a) What is the RIN level for I = 2Ith? (Can P0 be assumed small?)

(b) What is the RIN level at I = 5Ith? (Can P0 be assumed large?)

15. What is the expected linewidth for the two cases of Problem 5.14, assuming a
linewidth enhancement factor of 5?

16. Estimate the 3 dB modulation bandwidth for the two cases of Problem 5.14.

(a) Neglect transport effects.

(b) Include transport effects wherein the lifetime of carriers in the SCH region
due to relaxation into the quantum wells is 50 ps and the leakage out of
the well can be neglected.

(c) Include transport wherein leakage out of the well to the SCH region is
additionally characterized by a lifetime of 200 ps.

17. A cleaved facet, 400-μm-long edge emitting GaAs multi quantum-well laser
lases at 860 nm and its threshold current is 10 mA. The laser injection efficiency
is ηi = 0.78, the average internal cavity losses are < αi >= 14 cm−1, and
the active and passive region volumes are V = 5 μm3, and Vp = 200 μm3,
respectively. The laser’s differential gain is a = 5 · 10−16 cm2 and
βsp = 1.3. The laser is initially biased with a current source set to 5 mA.
Then, the laser is biased above threshold, by applying a 35 mA bias
current.

(a) What is the turn-on delay of this laser?

(b) What is the laser output power?
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(c) What is linewidth of this laser after its output stabilizes, with a bias current
(I = 35 mA), if its linewidth enhancement factor is equal to 3?

18. For the laser from previous example, under the same operating conditions,
(a) What is the 3 dB modulation frequency f , assuming that damping is neg-

ligible?

(b) What is the maximum the linewidth of this laser under coherence collapse?

19. For the laser from the previous two examples, if we now bias it at 1 mA
above threshold and apply a large signal current modulation, the output power
waveform can be approximated by the signal sketched out in Fig. 5.34. Sketch
the large signal chirp of this laser as a function of time, labeling the time, chirp
amplitude and slope.

20. Verify Eq. (5.154). If the normalized fringe visibility decays exponentially and
is equal to 0.2 at a time delay of 3 ns, what is the linewidth of the laser?

21. In Fig. 5.28, estimate μ2 near 2.5 mW of output power. From this determine
the feedback level fext using the VCSEL parameters in Table 5.1, assuming that
all of the light is coupled out of mirror #2, and that we are well above threshold.
Use a VCSEL cavity length and group index of 1 μm and 4.2, respectively.
Also express the feedback level in decibels.

22. Estimate the substrate thickness of the VCSEL in Fig. 5.28, assuming a con-
stant voltage of 3 volts above threshold, a thermal impedance of 3 C/mW,
a wavelength shift of 0.08 nm/

◦C, a substrate–air reflection of 32%, and a
substrate group index of 4.2.

23. The intensity feedback from the end of a fiber is 4% and about one-quarter
of this is coupled back into the lasing mode (excluding transmission through
mirror # 2) in a 300-μm-long cleaved-facet 1.55 μm in-plane laser.
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FIGURE 5.34: Idealized output power waveform for large signal modulation of a laser in
Problem 5.19.
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(a) Plot the feedback parameter, C vs. Lp , the fiber length (nfiber = 1.45), for
α = 0, 2, 4, 6, up to Lp = 1 km.

(b) Plot the linewidth narrowing and broadening factor applicable in regimes
I through III vs. C for 0 < C < 10. Discuss what really happens near
C∼1.



CHAPTER SIX

Perturbation, Coupled-Mode
Theory, Modal Excitation,
and Applications

6.1 INTRODUCTION

This chapter is the first of two that focus more on the electromagnetic aspects of
lightwave propagation, particularly as applied to diode lasers and related photonic
integrated circuits. In this chapter, after examining the guided mode power and effec-
tive width, a concept we will be using through the remainer of the book, we introduce
the powerful perturbation and coupled-mode approaches to approximately solve
very complex problems, which otherwise might only be addressed numerically.

To use these approaches we generally must know at least some of the eigenmodes
of a relatively simple waveguide configuration. Then, the trick is to express the solu-
tion to some perturbed or more complex configuration in terms of this original basis
set of eigenmodes. As we shall see, by using the orthogonality relationships among
the original basis set, it is possible to derive some general formulae that are helpful
in solving specific problems. The usefulness of these formulae derives from the fact
that they only involve physical dimensions and some of the original basis functions.

To get started, we refer back to Chapter 2 to recall a convenient form for the
electric field, EEEE , of some waveguide eigenmode. For mode m , then, the electric
field as a function of space and time, Eq. (2.19), can be written as

EEEE m(x , y , z , t) = êi E0mUm(x , y)ej (ωt−βm z ), (6.1)

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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where êi is the unit vector along the i th coordinate (giving the polarization direc-
tion), E0m gives the magnitude of the field, and Um is the normalized transverse
mode shape for mode m . For convenience, we can also combine the polariza-
tion into Um , so that Um = êi Um . Thus, making use of the orthogonality between
eigenmodes, we have ∫

U∗
m · Un dA = δmn , (6.2)

where δmn is the Kronecker delta function, which equals unity for m = n and zero
otherwise. (For orthogonal polarizations the dot product also gives zero, even for
m = n .) Orthogonal modes of a uniform waveguide do not interact. It is also worth
mentioning that in the normal course of solving a waveguide problem, one finds
that the eigenfunctions Um provide a complete set.

Given that the Um form a complete set, we can express an arbitrary field in
the vicinity of a waveguide by a normal-mode expansion of all of the waveguide
eigenmodes (including unguided radiation modes). Thus,

EEEE (x , y , z , t) =
∑

m

EEEE m(x , y , z , t), (6.3)

where the amplitudes of the various terms in the summation are given by E0m in
Eq. (6.1). Both Eqs. (6.1) and (6.3) are solutions to the wave equation,

∇2EEEE + ε(x , y , z )k2
0 EEEE = 0, (6.4)

where ε(x , y , z ) is the relative dielectric constant, and k0 is the free-space
propagation constant for the medium of interest. For a single mode of a waveguide,
we can also use Eq. (6.1) in (6.4) to obtain a wave equation for the transverse
mode profile, U :

∇2
T U + [ε(x , y , z )k2

0 − β2]U = 0, (6.5)

where we have used ∇2EEEE = ∂2EEEE /∂z 2 + ∇2
T EEEE .

Although the higher order modes of even a simple waveguide may be compli-
cated, it is fortunate that we need only know the details of at most two modes
for all of the discussion to follow in this chapter. In fact, only one mode must be
characterized for many problems.

6.2 GUIDED-MODE POWER AND EFFECTIVE WIDTH

In this and the subsequent chapter, many calculations require a normalization of the
eigenmode or some integration over a part of it. In this section we calculate the time-
averaged Poynting vector power, P , carried by a guided mode along the direction
of propagation, which can be useful in such calculations. For a simple three-layer
slab guide, illustrated in Figure 11.1, we find that the value of the Poynting vector
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can be expressed in terms of the magnitude squared of the electric field in the center
of the guide and an effective width, deff , which accounts for the energy stored in
the evanescent fields. Also, for two-dimensional guides in which the lateral width
is much wider than the transverse width, we get a similar result.

The time-averaged power propagating in the z -direction is given by

Pz = 1

2
Re

∫∫
(EEEE × HHHH ∗) · êz dx dy . (6.6)

The electric field, EEEE , is given by Eq. (6.1), and the magnetic field, HHHH , is obtained
from the curl of EEEE . We initially consider the TE modes with the electric fields
aligned along the x -direction. Because only Ex and Hy survive the vector products,
and Hy = (j/ωμ)dEx /dz , we have

Pz = β

2ωμ

∫∫
|Ex |2 dx dy = 1

2ηg

∫∫
|Ex |2 dx dy , (6.7)

where ηg = ωμ/β = 377 �/n̄ is the waveguide impedance, and

Ex = E0mUxm(x , y)ej (ωt−βz ). (6.8)

The form of the transverse mode shape, U (x , y), for the even (symmetric) modes is
given by Eqs. (A3.17), (A3.21), and (A3.22) for a rectangular guide cross section.

For simplicity we wish to look at a guide with a lateral width much wider than
the transverse width or w � d . For the lateral dimension we consider only two
extreme cases: (a) a fundamental lateral mode or (b) a uniform field. In both cases
because w is large, we neglect any fields for |y | > w. Thus, the lateral integration
gives in case (a),

∫ ∞

−∞
|U (x , y)|2dy = |U (x)|2

∫ w/2

−w/2
cos2

( π

2w
y
)

dy = |U (x)|2 w

2
, (6.9)

(fundamental lateral mode)
and in case (b),

∫ ∞

−∞
|U (x , y)|2dy = |U (x)|2

∫ w/2

−w/2
dy = |U (x)|2w. (6.10)

(uniform lateral field)

Thus, the lateral integration adds only a multiplication by the width in the case
of uniform fields or the half-width for the cosinusoidal lateral mode.

Now, we can plug U(x) from Eqs. (A3.17) and (A3.21) into Eq. (6.7) and per-
form the integration. For the even modes of a symmetric waveguide,

Pz = w/ρ

2ηg
|E0U0|2

[
2
∫ d/2

0
cos2(k1x x) dx + 2

∫ ∞

d/2
cos2(k1x d/2)e−2γx (x−d/2) dx

]
,

(6.11)
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FIGURE 6.1: Zigzag ray picture of energy propagation in a three layer waveguide.

where ρ = 2 or 1 for lateral waveguide cases (a) or (b), respectively. Using the
waveguide characteristic equation, Eq. (7.17) or (A3.9), to simplify, it can be
shown that

Pz = w/ρ

2ηg
|E0U0|2 deff

2
, (6.12)

where

dTE
eff = d + 2

γx
. (symmetric guide) (6.13)

For the odd modes, it can be shown that the result is the same. Also, if we had
considered the more general asymmetric waveguide, we would have obtained

dTE
eff = d + 1

γ2x
+ 1

γ3x
. (asymmetric guide) (6.14)

In all cases, we see that the power propagating down the waveguide is proportional
to the magnitude squared of the peak field amplitude in the guide, |E0U0|2, and
an effective width, deff , which equals the slab thickness plus the decay lengths
of the evanescent fields in the cladding regions. This is very useful in trying to
approximate integrals involving the transverse mode, such as the perturbation
integrals of the previous chapter. It is also interesting to note that the integrals
in Eq. (6.11) contribute a factor deff /2, just as if the transverse field were a
half-period of a cosine that goes to zero at |x | = deff /2. However, such a cosine
would have a slightly longer transverse period than the actual cosine of the guide.

If we repeat the above for the TM modes we would find that

dTM
eff = d + ϑ2

γ2x
+ ϑ3

γ3x
, (6.15)

where

ϑi =
[

k2
1x + γ 2

ix

k2
1x + (ε1/εi )2γ 2

ix

]
ε1

εi
.
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In addition to the total power, it is useful to know the relative power contained in
the guide and cladding layers, represented by the two integrals in Eq. (6.11). We can
write the terms corresponding to each integral conveniently for the fundamental TE
mode of a symmetric guide by using the normalized frequency, V = d

√
k2

x + γ 2
x ,

introduced in Appendix 3. With Eq. (7.17), we can set cos(kx d/2) = kx d/V and
sin(kx d/2) = γx d/V in the evaluated integrals to obtain

deff =
[

d + 2γx d2

V 2

]
+

[
2

γx
− 2γx d2

V 2

]
. (6.16)

The first set of brackets gives the relative power in the guide and the second
set gives the relative power in the cladding layers. Eq. (A3.14) gives the resulting
fundamental TE mode confinement factor (aside from an n1/n̄ factor).

For weak guiding either through a small index difference or a narrow guide
width (characterized by a small V ), the tangent function in Eq. (A3.9) reduces
to its argument from which we can derive γx d → √

1 + V 2 − 1 ≈ V 2/2. In this
weak-guiding limit, we can use Eq. (6.13) to show that x → 2d/deff . This result
can also be obtained by considering a thin region of width dA, which only samples
the peak field of the guide. The power contained in this region is ∝ |E0U0|2dA.
In view of Eq. (6.12), the fraction of power is then x = dA/(deff /2) = 2dA/deff .
This result applies equally to a quantum well of width dA placed at the peak of
a mode in an SCH waveguide or to a weakly guided mode in which the guide
itself only samples the peak field, for which we can set dA = d . For the latter
case, as the guiding becomes stronger, the prefactor of 2 approaches 1 as both x

and d/deff converge toward unity. In general, for strong guiding, d/deff < x < 1,
and x 
= d/deff until both are unity. Thus, the deff defined in Chapter 2 (see
Section 2.4) does not refer to this effective width, but the equivalent width of a
mode with constant cross-section that is by definition equal to dA/x (where dA is
the active region width).

6.3 PERTURBATION THEORY

Many real waveguide structures involve a slight perturbation from a mathemati-
cally more simple structure, for which the eigenmode shapes, Um , and propagation
constants, βm , are known. The perturbation can usually be expressed in terms of
a change in relative dielectric constant, �ε, which for generality can be complex
and/or periodic along z .

If we replace ε by ε + �ε in Eq. (6.4), we most generally must assume that
Eq. (6.3) must be used to represent the perturbed field. However, first we consider
sufficiently weak perturbations where scattering to other modes can be neglected.
This might occur most easily in a single-mode guide. Also, we assume �ε is
uniform along z for this first example. Thus, in response to ε → ε + �ε, let β →
β + �β, and U → U + �U in Eq. (6.5). That is,

∇2
T (U + �U ) + [(ε + �ε)k2

0 − (β + �β)2](U + �U ) = 0. (6.17)
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Multiplying this out, and dropping the unperturbed transverse wave equation,
which equals zero, and the second-order perturbation terms, we are left with

∇2
T �U + εk2

0 �U + �εk2
0 U − 2β�βU − β2�U = 0. (6.18)

Now, we introduce a technique that we shall use again and again in this chapter to
simplify complex expressions:

Multiply by the complex conjugate of the transverse mode and integrate over the
cross section.

In later cases, modal orthogonality will help to remove many of the unwanted
terms. In this case, we obtain

2β�β

∫
|U |2 dA =

∫
�εk2

0 |U |2 dA

+
∫

[(∇2
T �U )U ∗ + εk2

0 �UU ∗ − β2�UU ∗] dA. (6.19)

As shown in Appendix 14, the second term on the right is negligible, provided that
both �U and U vanish at infinity and that the unperturbed ε and β are mostly
real. This indicates that the small change in the transverse mode shape, �U , due
to �ε will have no effect on the propagation constant to first order. Thus, we
fortunately do not have to worry about how the changing mode shape will change
the averaging, at least for this first-order approximation, and we only need know
the original unperturbed transverse mode.

Then, solving for �β, we have the desired perturbation formula

�β =

∫
�εk2

0 |U |2 dA

2β

∫
|U |2 dA

. (6.20)

If U is normalized according to Eq. (6.2), the denominator integral is just unity.
Usually, the index perturbation is limited in lateral extent, and it may even be
constant over some range. In these cases the integration is easily performed. It is
important to keep in mind that all quantities, except for the actual perturbation, �ε,
are for the original unperturbed problem. Next we consider the example of adding
a quantum-well active region to a simple three-layer slab waveguide to form a
more complex SCH-QW laser.

Example 6.1 The addition of a quantum well to a simple three-layer slab guide
is an example of a relatively easy problem to solve using perturbation theory. This
approach gives a quick and familiar result for a relatively complex, and certainly
technologically important, problem.

Problem: Applying the perturbation theory, calculate the expressions for the
modal gain and effective index change caused by insertion of a quantum well
layer of thickness dA.
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Solution: Figure 6.2 schematically shows the problem at hand. The solution
using Eq. (6.20) requires that we know only the unperturbed transverse eigen-
mode, U (x , y), and propagation constant, β, in addition to the actual perturbation,
�ε̃ = �εr + j�εi , which in this case is complex. The integration is limited to the
area of the active region, A, since �ε̃ is zero elsewhere. Starting from the defini-
tion of ε = (n + jgc/2ω)2, we can expand �ε̃ in terms of its real index and gain
components in the active region. Then, expanding �β in terms of the real effective
index and modal gain perturbations, we have

�β = 2π�n̄

λ
+ j

〈g〉xy

2
= k2

0

2β

2nav

∫
A

(
�nA + j

λgA

4π

)|U |2 dA
∫

|U |2 dA
, (6.21)

where nav = (2nA + �nA)/2. Solving for the modal gain and effective index per-
turbations separately, we have

〈g〉xy =
navgA

n̄

∫
A
|U |2 dA

∫
|U |2 dA

= xy gA, (6.22)

and

�n̄ =
nav�nA

n̄

∫
A
|U |2 dA

∫
|U |2 dA

= xy�nA, (6.23)

where we have assumed that the gain and index perturbations are constant over the
active region at gA and �nA, respectively. For U properly normalized, the integral
in the denominator equals one.

With reference to Appendix 5 and Chapter 2, we see that Eqs. (6.22) and (6.23)
are the same expressions as derived there for the modal gain and effective index
increase for such a waveguide configuration.

Active

SCH
waveguide z

nA

U(x, y)

nA + ΔnA, gA

FIGURE 6.2: Quantum-well laser schematic wherein the active layer is considered to be
the perturbation.
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6.4 COUPLED-MODE THEORY: TWO-MODE COUPLING

By introducing index and loss perturbations along a waveguide, it is possible to
facilitate a coupling between basis modes, which, of course, are orthogonal without
any such perturbation. Considering the basis set of an isolated uniform waveg-
uide, the perturbation usually has to have some periodicity along the propagation
direction to cause such a coupling, since the propagation constants of the two
uncoupled modes are different. An important practical example is a grating, which
has a period such that scattering from one waveguide mode couples coherently to
another counterpropagating mode.

On the other hand, if two identical uniform guides are brought together so that
their unperturbed degenerate modes overlap, the existence of the index of one guide
will perturb the mode of the other such that coherent coupling results. This is called
a directional coupler, since only modes traveling in the same direction with about
the same velocity can couple. More generally, periodic index perturbations can be
added to coupled waveguides to provide more complex couplers. In what follows,
we shall first consider simple gratings in a single waveguide, then the coupling of
uniform waveguides, and finally, the so-called grating-assisted coupling between
two waveguides.

6.4.1 Contradirectional Coupling: Gratings

General Theory Initially, we consider the coupling of two identical modes of
the same waveguide propagating in opposite directions. Such coupling is obviously
important in reflecting a particular mode within a laser cavity, for example. With
this assumption and limiting the discussion to index-guided structures where the
phase fronts are perpendicular to the axis of the guide, we can express the net
field as the sum of the two identical counterpropagating modes. That is, using
Eqs. (6.1) and (6.3)

EEEE (x , y , z , t) = êi U (x , y)[Ef ej (ωt−βz ) + Ebej (ωt+βz )], (6.24)

where Ef and Eb give the amplitudes of the two counterpropagating modes.
Now, we plug Eq. (6.24) into the wave Eq. (6.4) with an assumed pertur-

bation, ε → ε + �ε(z ). We let �ε be z -dependent, since we suspect that this
will be necessary to provide the desired coupling. If there is coupling, then the
amplitudes Ef and Eb will vary with z , so the full wave Eq. (6.4) is needed.
However, if we assume that the coupling will be weak, the amplitudes should
vary relatively slowly. That is, we will be able to drop terms containing their
second derivatives in the expansion of the wave equation if the coefficients are
not large. Also, for generality we allow a small �U , although we suspect that
it will not show up in the final result, in analogy with the perturbation result of
Section 14.2.
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Observing that the unperturbed ε and U will generate terms that satisfy the
unperturbed wave equation and dropping the second-order terms in the perturba-
tions as well as the second derivatives, we are left with

−2jβ(U + �U )
dEf

dz
e−jβz + 2jβ(U + �U )

dEb

dz
ejβz

= −[∇2
T �U + (εk2

0 − β2)�U ][Ef e−jβz + Ebejβz ]

− �ε(z )k2
0 U [Ef e−jβz + Ebejβz ]. (6.25)

We now dot multiply by U ∗ and integrate over the cross section. Then, we see
that the first term on the right is zero according to Appendix 14, as was the case in
Eq. (6.19) above. Next, we recognize that the terms containing �U (dEi /dz ) are
really second-order terms and are negligible in comparison to the others. Finally,
we divide by −2jβ

∫ |U |2 dA, to get

dEf

dz
e−jβz − dEb

dz
ejβz = −j

k2
0

2β
[Ef e−jβz + Ebejβz ]

∫
�ε(z )|U |2 dA∫ |U |2 dA

. (6.26)

Note that if �ε(z ) were uniform along z , we would be left simply with the per-
turbation formulas for both forward and backward traveling waves independent
of each other, since dE f /dz = −j�βEf , and dE b/dz = j�βEb , in that case. Any
DC component in �ε(z ) has exactly the predicted effect of uniformly changing
the propagation constants by �β. However, to couple forward to backward waves
and vice versa, it can be seen that �ε(z ) must contain factors exp (±2jβz ).

More generally, we allow �ε(z ) be a complex spatially periodic function with
possibly a nonuniform cross section. Thus, Fourier analysis can be applied to give

�ε(x , y , z ) =
∑
l 
=0

�εl (x , y)e−jl(2π/�)z , (6.27)

where 2π l/� are the various space harmonics of the arbitrary periodic perturba-
tion of fundamental period �. Using this in Eq. (6.26), and looking for possible
solutions that couple forward to backward waves and vice versa, we identify terms
that could provide similar exponential factors on each side of the equation for all
z . That is,

dEf

dz
e−jβz = −j

k2
0

2β
Ebejβz e−jl(2π/�)z

∫
�ε+l (x , y)|U |2 dA∫ |U |2 dA

, (6.28)

and the comparable equation for dE b/dz from the remaining terms,

dE b

dz
ejβz = j

k2
0

2β
Ef e−jβz ejl(2π/�)z

∫
�ε−l (x , y)|U |2 dA∫ |U |2 dA

. (6.29)
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FIGURE 6.3: Waveguide containing index grating for contradirectional coupling. The rela-
tive dielectric constant (square of index of refraction) varies periodically along z about some
average value, ε̄, so that reflected components add in phase.

From both Eqs. (6.28) and (6.29) we see that the condition,

l
2π

�
≈ 2β = 4π n̄

λ
, (6.30)

must be met for dE f /dz or dE b/dz to have the same sign over some distance,
or put another way, for coherent phasing of the coupling. All other terms can
be neglected, since we are only interested in the net effect on Ef and Eb over
a distance of several wavelengths or more. That is, the differential Eqs. (6.28)
and (6.29) would not provide for any net change in Ef and Eb versus z unless
Eq. (6.30) is satisfied. Eq. (6.30) indicates that for a good reflective grating, the
period of the index perturbation, �, should be some multiple, l , of λ/2n̄ . This is
called the Bragg condition. Figure 6.3 illustrates a waveguide containing an index
grating for forward to backward wave coupling.

Before continuing to find solutions to Eqs. (6.28) and (6.29), it is convenient
to make some substitutions. As already suggested, the propagation constant at the
Bragg condition is given by Eq. (6.30) with ≡ replacing ≈. More specifically, we
let β0 ≡ lπ/�, which also defines the Bragg wavelength, λ0/n̄ ≡ 2�/l (note that
higher orders of l allow us to use a longer grating period for the same λ0). In
addition, we let

κ±l = k2
0

2β

∫
�ε±l (x , y)|U |2 dA∫ |U |2 dA

. (6.31)

As before, if U is normalized according to Eq. (6.2), the denominator drops
out. It is also important to remember that �ε±l are Fourier coefficients as given
by Eq. (6.27), not the actual amplitude of the index perturbation.

Example 6.2 A cosinusoidal grating perturbation, whose index varies as δngd

cos(2πz/� − φ), was introduced into a uniform slab waveguide, whose refractive
index is ngd .
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Problem: Determine the coupling coefficients κ±1 for this type of perturbation.

Solution: With a given perturbation, two terms will result from Eq. (6.27) for
l = ±1, each with a magnitude, �εl=±1 = δε/2. That is, we can expand the cosine
to find

�ε(x , y , z ) = δε(x , y)

2
e−jφej (2π/�)z + δε(x , y)

2
ejφe−j (2π/�)z

= �ε−1(x , y)ej (2π/�)z + �ε+1(x , y)e−j (2π/�)z . (6.32)

To calculate the magnitude of δε, we start from the relationship between the
permitivity and the index of refraction, and compute δε = (ngd + δngd )2 − n2

gd ≈
2 · ngd · δngd . Thus, we can use the Fourier components from Eq. (6.32) in
Eq. (6.31) to write the coupling coefficient for the cosinusoidal dielectric
perturbation with an arbitrary phase relative to z = 0. That is,

κ±1 = κe±jφ = ngd

n̄

π

λ
xyg (δngd )e±jφ , (6.33)

where for the second equality, we have assumed a uniform grating perturbation
over some lateral portion of the waveguide, for which xyg is the lateral grating
region confinement factor.

Finally, if we define the detuning parameter as δ ≡ β − β0, Eqs. (6.28)
and (6.29) become

dEf (z )

dz
= −jκl Eb(z )e2jδz , (6.34)

and

dEb(z )

dz
= jκ−l Ef (z )e−2jδz . (6.35)

Equations 6.34 and 6.35 are relatively clear statements of the coupling between
the forward- and backward-going lightwaves. They both indicate that the change
in amplitude of one wave is directly proportional to the amplitude of the other, and
that the proportionality involves a coupling constant, κ±l , which depends on the
overlap of a periodic index perturbation and the modes’ energy density, as well as
a dephasing factor, which deviates from unity if the Bragg condition is not met. It
is also worth noting from Eq. (6.31) or Eq. (6.33) that κ−l = κ∗

l for a real �ε(z )

and β, and that this condition is still approximately true for waveguides with small
gains or losses (i.e., β predominately real), as is usually the case.

So now all we need to do is solve the coupled Eqs. (6.34) and (6.35). Unfor-
tunately, these equations are still not in a very convenient form for mathemati-
cal solution. The solution for the net electric field along the guide is given by
Eq. (6.24) as a linear superposition of the forward and backward fields. We also
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can express this net field in terms of two new z -varying factors, A(z ) = Ef (z )e−jδz ,
and B(z ) = Eb(z )ejδz , so that we have,

EEEE (x , y , z ) = êi U [Ef (z )e−jβz + Eb(z )ejβz ] = êi U [A(z )e−jβ0z + B(z )ejβ0z ].
(6.36)

The latter form combines both coupling and dephasing effects within the z -varying
coefficients, A and B , since β0 = π l/� is a constant for a given grating.

Expressing Ef (z ) and Eb(z ) in Eqs. (6.34) and (6.35) in terms of A(z ) and B (z ),
we obtain

dA

dz
= −jκl B − j δA, (6.37)

and

dB

dz
= jκ−l A + j δB . (6.38)

These coupled differential equations can now be straightforwardly solved in the
usual way by letting

A = A1e−σ z + A2eσ z , (6.39)

and

B = B1e−σ z + B2eσ z . (6.40)

Plugging Eqs. (6.39) and (6.40) into Eqs. (6.37) and (6.38), and separately equating
the coefficients of eσ z and e−σ z (since the intermediate expressions must be true
for all z ) leads to relationships between A1 and B1, and A2 and B2, e.g.,

B1 = jκ−l A1

−σ − j δ
and B2 = jκ−l A2

σ − j δ
, (6.41)

as well as a solution for σ given by

σ 2 = κlκ−l − δ2 = κ2 − δ2, (6.42)

where for the last equality we have made use of Eq. (6.33).
For waveguides that contain gain or loss, β is complex, and therefore, so is the

detuning parameter, δ. Thus, following previous nomenclature, we also have

σ̃ 2 = κ2 − δ̃2, (6.43)
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where

δ̃ = β̃ − β0 = 2π n̄

λ
+ j

〈g〉xy − αi

2
− π l

�
. (6.44)

In cases where �ε(z ) is complex (i.e., where there is a significant periodic gain or
loss), κ is complex, and κ−l 
= κ∗

l . However, Eq. (6.43) is still valid since this con-
dition has not been used in its derivation. For simultaneous cosinusoidal index and
gain perturbations over some region of the waveguide cross section, the derivation
of Eq. (6.33) yields

κ = ngd

n̄

π

λ
xyg

(
δngd + j

δgg

2k0

)
, (6.45)

where δgg is the magnitude of the cosinusoidal gain perturbation in the grating
region. Thus, Eq. (6.45) can be used in Eq. (6.43) and elsewhere for this case.

Using Eqs. (6.39) and (6.40) with σ = j
√

δ2 − κ2 in the expression for the prop-
agating electric field, Eq. (6.36), we observe four combinations of phase factors,
one for each of the A and B coefficients:

jβg = ±j (β0 ±
√

δ2 − κ2). (6.46)

The propagation constant of the grating, βg , therefore, has four possible solutions
at any given frequency, ω, or equivalently, δ = β − β0 = (ω − ω0)/vg . Far away

−b0

w = w0 + vgd

2k

2kvgw0

b0 bg

A1A2B2 B1

Forward wave

Backward wave
“replica”

Stopband

2π/Λ−2π/Λ

b−b

d = −k

d = k

Backward wave

Forward wave
“replica”

b−2π/Λ −b+2π/Λ

FIGURE 6.4: An ω − β diagram for the coupled βg -solutions to contradirectional cou-
pling in a grating, with the uncoupled solutions denoted by thinner straight lines. Each of
the grating-generated replica solutions (dashed) and ordinary forward and backward wave
solutions (solid) correspond to one of the A or B coefficients indicated. The extent of the
stopband in both ω and β directions is also shown (where vg is the group velocity of the
unperturbed mode). However, the complex β̃g -solutions which exist throughout the stop-
band are not shown. Finally, the scale of the stopband has been exaggerated somewhat,
considering that κ � π/� to satisfy the weak coupling criterion.
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from the Bragg frequency (|δ| � κ), these solutions are ±β and ±(β − 2β0),
which as shown in Fig. 6.4, are (a) the unperturbed forward and backward wave
propagation constants, ±β, and (b) grating-induced replicas of these propagation
constants displaced by ∓2π/� (for l = 1). Away from the Bragg condition, the
two sets of solutions do not interact and the latter solutions never contain much
energy (A2, B1 ≈ 0).

At the Bragg frequency (δ = 0, ω0 = (c/n̄)(π/�)), the solutions are ±(β0 ±
jκ). That is, all field solutions propagate at ±β0, but grow or decay at the rate κ

as they travel due to the coherent transfer of energy from one solution to the other.
In this case, the solutions interact heavily, and all four A and B coefficients can
have significant amplitude. Detuning to |δ| = κ , or ω = ω0 ± vgκ , the propagation
constants become purely real and equal to ±β0, or ±π/�. Detuning further, the
solution split and approach their uncoupled values asymptotically. Thus, as illus-
trated in the figure, the coupling between the solutions creates a “stopband” for
|δ| < κ . Within this stopband, the solutions have complex propagation constants,
the real parts remaining fixed at ±β0. It is in this regime where an incident field can
decay in the grating and eventually be reflected back out (hence the name stopband).

Finite-Length Gratings with no Back Reflections Now, we are finally ready
to look at some practical characteristics of a real physical problem. For example,
consider the grating of finite length, Lg , in Fig. 6.5. We assume a forward (+z -
traveling) wave incident from the left that enters the grating at z = 0 and divides
into a net reflected backward (−z -traveling) wave emerging at z = 0, as well as
a transmitted forward wave at z = Lg . Of course, if the grating contains gain or
loss the sum of the transmitted and reflected powers will not equal the incident

Ef  (Lg)

Eb (z)

Ef  (z)

z0 Lg

Ef  (0)

Eb (0)

s cosh s(Lg− z) + jd sinh s(Lg− z) 

−jk−l sinh s(Lg− z)

FIGURE 6.5: Grating of finite length. The forward wave decays as the backward wave
grows. The backward wave is zero at z = Lg , and a portion of the forward wave is transmit-
ted. The functionality of A(z ) and B (z ) within the grating is also shown. The shaded areas
indicate regions of lower index.
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power. Within the grating the forward wave decays as more and more energy is
coupled to the backward wave. The backward wave grows as it propagates to the
left. We also assume no reflections beyond the grating, so the backward wave has
no amplitude at z = Lg .

For this case of no reflection from the right side of the grating, we have the
boundary condition, Eb(z = Lg ) = 0, which requires that B(z = Lg ) = 0. The ratio
of the amplitudes of the net reflected wave to the incident wave is defined as the
grating reflection coefficient,

rg = Eb(0)

Ef (0)
= B(0)

A(0)
= B1 + B2

A1 + A2
. (6.47)

From the right-hand boundary condition at z = Lg and Eq. (6.40),
B2 = −B1e−2σLg . Using this and Eq. (6.41), we obtain

r̃g = −j
κ̃−l tanh σ̃Lg

σ̃ + j δ̃ tanh σ̃Lg
. (6.48)

The tildes have been added to explicitly indicate that the coupling constant, κ ,
detuning parameter, δ, and decay constant, σ , can be complex. The reflectivity
from the other side of the grating is given by Eq. (6.48) times e−2jβ0Lg , with κ̃l

replacing κ̃−l (the phase factor arises from the definitions of A and B in Eq. (6.36)).
Implicit in the derivation is the assumption of a reference plane at z = 0. If

the grating is unshifted (i.e., φ = 0 in Eq. (6.33)) and the index perturbation is
real then, κ−l is real, and we have a maximum positive deviation at z = 0 (i.e.,
a cosinusoidal space harmonic in �ε.) (In this case, the grating has real, positive,

n

Δn/2

Λ

0 Lg

z

fr = 0

4/π
1

−π/2 −π/2

−π

Reference planes for f = 0

Reference planes for f = −π/2

FIGURE 6.6: Illustration of reference planes used to define z = 0 and z = Lg in a finite-
length grating. The coupled-mode equations assume the index profile has a Fourier compo-
nent that varies as cos(2β0z − φ). The first set of reference planes are drawn for φ = −π/2,
which aligns the z = 0 plane with an index down step of a square wave grating (these are
the reference planes assumed in Chapter 3). The second set shifts the planes to the left for
a more symmetric placement by setting φ = 0.



350 PERTURBATION, COUPLED-MODE THEORY AND APPLICATIONS

and symmetrical Fourier coefficients.) Equation (6.48) shows that at the Bragg
frequency, the reflection coefficient has a phase of −π/2 referenced to this plane.
Figure 6.6 illustrates this choice of reference planes and its correspondence to a
square wave index grating, for which the reflection phase is more obvious. That
is, at the Bragg frequency, where all reflection components add in phase, we know
that the reflection phase from a square wave grating must be zero referenced to an
index down step. The first Fourier component of this grating has a zero crossing
at this point and is a maximum one quarter-wave back. Thus, for a reference plane
placed at this maximum of the first Fourier component, the grating phase would
be −β�/2 = −π/2.

More generally, the reflection phase, φr , of waves incident from the left is deter-
mined by −jκ−l ∝ −je−jφ at the z = 0 plane, for a lossless grating at the Bragg
frequency. For waves incident from the right, φr is determined by −jκl e−2jβ0Lg ∝
−jejφe−2jβ0Lg at the z = Lg plane. These reflection phases are shown in Fig. 6.6
for two different choices of the grating phase, φ, and a grating with Lg = m�.
When combining a grating with other elements, the symmetric reference planes are
a convenient choice. To use them, we adjust the input plane to a cosine peak by set-
ting φ = 0. However if Lg 
= m�, the output plane will not coincide with a cosine
peak if it is placed at Lg . To retain the symmetry, we must shift the output plane
slightly to create a reference plane separation of Lr = m�. This is accomplished by
adding a phase delay, e−2jβ(Lr −Lg ), to the reflection phase from the right. The total
reflection phase from the right then becomes −jejφe−2jβ0Lr e−2jδ(Lr −Lg ) ≈ −jejφ ,
where the approximation holds for Lr ∼ Lg , or δ = 0. In practice then, for any
grating length, the reflection phase at the Bragg frequency can be set to −π/2
from both sides of the grating. Away from the Bragg frequency and/or with gain
or loss, the reflection phases remain symmetric (for Lr ∼ Lg ), but are no longer
exactly equal to −π/2.

Although our choice of reference planes is arbitrary, it is important to realize that
our choice of Lg is not, since it determines the reflectivity magnitude. Typically with
in-plane lasers, Lg corresponds to the physical length of the grating (i.e., where the
uniform index stops to where the uniform index begins again). However, this may
not always be the case. For example, in Figs. 6.5 and 6.6 (and the gratings analyzed
in Chapter 3), Lg is �/2 longer than the physical length of the grating. The reason
for this has to do with how the index outside the grating compares with the average
index inside the grating. If there is a mismatch, additional reflections are created at
the boundaries that can either enhance or reduce the overall grating reflectivity. In
coupled-mode theory, this is approximately taken into account by modifying Lg .
In Fig. 6.6, each �/4 segment contributes a �n/2 step. Thus, adding a mismatch
of �n/2 at a physical boundary should be roughly equivalent to increasing Lg by
�/4, as long as the mismatch reflection adds in phase with the grating reflections.
In Figs. 6.5 and 6.6, the index on either side of the grating is �n/2 larger than the
average grating index. The two �n/2 mismatches therefore effectively increase Lg

by �/2. In the case of long gratings and small mismatches typically encountered
with in-plane lasers, such subtle modifications to Lg are not important to consider.
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FIGURE 6.7: The left plot shows the power reflection spectrum of the grating for four differ-
ent values of κLg versus the detuning parameter, δ ≡ β − β0 = (ω − ω0)/ω0 · (π/�)(n̄g/n̄),
where � = λ0/2n̄ . Exact and coupled-mode results are indistinguishable on this scale. The
right plot shows the percent error in transmission at resonance calculated using the coupled-
mode formula. For example, if the exact result predicts Rg = 99%, then a 10% transmission
error would correspond to a coupled-mode prediction of Rg = 98.9%.

The power reflection spectrum of the grating, given by the absolute square
of Eq. (6.48), is plotted on the left in Fig. 6.7 for different values of κLg . The
curves have similar characteristics to those of Fig. 3.14, with a sin x/x spectrum
for small κLg and the development of a well-defined transmission stopband for
large κLg . The dashed curve tracks the |δ| = κ transition. Outside this transition
point, (i.e., for |δ| > κ), the reflectivity drops off dramatically. Thus, the trans-
mission stopband (or reflection bandwidth) of the grating can be characterized by
∼ 2κ . From the definition of the grating penetration depth given in Chapter 3, we
observe that the reflection bandwidth is roughly the reciprocal of the penetration
depth (Leff ≈ 1/2κ).

It may seem surprising that the coupled-mode formula given by Eq. (6.48),
which has little resemblence to Eq. (3.34) derived from transmission matrix theory,
leads to a nearly identical reflection spectrum (as revealed by the right plot in
Fig. 6.7). It turns out that there is a correspondence. It is just obscured by the
math. For the interested reader, Appendix 7 reveals this hidden correspondence
between the two formulas.

As in Chapter 3, the reflection parameter of interest is κLg . This can be real-
ized in the present case by evaluating Eq. (6.48) at the Bragg frequency by using
Eq. (6.43),

r̃g = −j tanh κLg , (δ = 0) (6.49)

and noting that for small κLg , |rg | → κLg . That is, κ can be interpreted as the reflec-
tion per unit length, just as in Chapter 3. However, unlike the result of Chapter 3
discussed in the caption of Fig. 3.14, the coupled-mode prediction is characterized
only by the product κLg , independent of whether κ is small or large. In fact, for
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large perturbations (large κ , and more significantly, large reflection per half-period,
2r , using the jargon of Chapter 3), the coupled-mode result begins to break down
even for small κLg . However, even for interface field reflectivities (i.e., �n/2n)
as high as 18% and κLg = 4, Fig. 6.7 reveals that the error in transmission at the
center of the stopband is still less than 10%. Figure 6.7 also shows that the range
of interface reflectivities and κLg used in typical VCSEL semiconductor DBRs
would lead to transmission errors of ≈1% if the coupled-mode formula (6.37)
were used. Thus, coupled-mode theory still works surprisingly well even in this
regime. However, in practice the terminations used with VCSEL mirrors are far
from the average index of the DBRs, and this ultimately makes the coupled-mode
formula impractical for such applications. In such cases where the terminations
have a very different index (a DBR terminating in air, for example), the analysis at
the end of Appendix 7 can be used to determine the peak reflectivity; however, the
reflectivity spectrum must be calculated numerically using the transmission matrix
techniques introduced in Chapter 3.

Other important grating relationships useful for DBR and DFB lasers may also
be found in Chapter 3. For example, the reflection for small κLg is given by
Eq. (3.58), and the grating effective reflection plane spacing (or penetration depth),
Leff , is given by Eq. (3.63).

The transmission through the grating in Fig. 6.5 is given by

tg = Ef (Lg )

Ef (0)
e−jβLg = A(Lg )

A(0)
e−jβ0Lg . (6.50)

The phase factors arise from how Ef and A are defined relative to the full electric
field in Eq. (6.36). Using Eq. (6.39) for A(Lg ), the boundary condition B(z =
Lg ) = 0, and Eq. (6.41) to relate the Ai ’s to the Bi ’s, we obtain

t̃g = σ̃ sech σ̃ Lg

σ̃ + j δ̃ tanh σ̃ Lg
e−jβ0Lg . (6.51)

The tildes have again been added to indicate the possibility of complex factors. Note
that the prefactor for transmission is σ̃ instead of κ̃−l as it was for reflection. This
has to be the case because the transmission should not go to zero when the coupling
goes to zero. In fact, for a lossless grating with κ = 0, we see that σ → j δ and tg →
e−jβLg , which is the simple expected transmission delay between the two reference
planes. Also note that because the transmission only depends on the coupling
through κ̃l κ̃−l , the phase of the grating relative to the reference planes, φ, drops
out (from Eq. (6.33)). So unlike the reflection phase, the transmission phase does
not depend on the specific placement of the reference planes, only on the separation
between. For example, at the Bragg frequency, the transmission phase is −πLg/�,
which for Lg = m�, reduces to −mπ , regardless of where we place the reference
planes relative to the grating. However, if we separate the reference planes by Lr 
=
Lg , then the phase factor in Eq. (6.51) should be replaced with e−jβ0Lr e−jδ(Lr −Lg ) ≈
e−jβ0Lr (the approximation is good for Lr ∼ Lg ). Finally, it should be noted that
the transmission from the other side of the grating is identical to Eq. (6.51).
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6.4.2 DFB Lasers

As discussed in Chapter 3, a DFB laser consists of grating mirrors that also provide
gain. For a DFB laser, at threshold, the gain is sufficient to overcome internal and
transmission losses and provide an output with no input. In terms of the previous
section, the characteristic equation for such a laser can be obtained from the poles
of rg or tg , and these can be obtained by setting the denominator of the grating
reflection or transmission coefficient, Eqs. (6.48) or (6.40), respectively, to zero,
as long as there aren’t any end reflections past the grating. Thus, the characteristic
equation, which determines the threshold gain and wavelength, is

σ̃th = −j δ̃th tanh σ̃thLg . (6.52)

The symbols have been already defined, but for clarity we repeat at threshold,

σ̃ 2
th = κ2 − δ̃2

th

δ̃th = β̃th − β0,

β̃th = βth + j
〈g〉xyth − 〈αi 〉xy

2
, (6.53)

βth = 2π n̄/λth and β0 = π l/�.

Again, the fundamental quantities we are usually after are the threshold modal gain,
〈g〉xyth , and wavelength, λth . Thus, solutions such as those plotted in Fig. 3.26 can
be obtained numerically by plugging these definitions into Eq. (6.52).
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FIGURE 6.8: Coupling constant for the fundamental TE mode as a function of guide
width in a three-layer waveguide for three different values of the guiding index. Param-
eters assumed are: λ = 1.55 μm, nc = 3.17 (InP at 1.55 μm), 2a = 50 nm, and G = 1
(sinusoidal first-order grating).
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The coupling constant κ is calculated from Eq. (6.31) for the specific dielectric
grating perturbation involved. In practical DFB lasers a number of different con-
figurations are used. Figure 6.8 shows a popular waveguide cross section, along
with calculated values for κ over a range of corrugation depths. Since the thick-
ness of some layer is usually varied in typical semiconductor waveguide gratings
rather than the index over the layer as assumed in the above calculations, it is
generally most convenient to first calculate the effective index as a function of z
over a period of the perturbation. This is accomplished by using Eq. (6.20) repeat-
edly over the perturbation period. Then, this effective index variation is used as if
the index perturbation were uniform across the waveguide cross section. Finally,
Fourier analysis is used to obtain the space harmonic of interest. Having obtained
the magnitude of this space harmonic, δn̄ , we can replace δngd in Eq. (6.33) by δn̄
with xyg = 1 and ngd = n̄ to obtain

κ±1 = π

λ
δn̄ · e±jφ. (6.54)

For a square wave corrugation pattern, the effective index alternates abruptly
between n̄1 and n̄2, implying that n̄(z ) is also a square wave with peak-to-peak
variation �n̄ = n̄2 − n̄1. The fundamental cosine component of this square
wave varies from peak-to-peak by (4/π)�n̄ which we can set equal to 2δn̄ ,
yielding δn̄ = (4/π)(�n̄/2) (see Fig. 6.6). Thus, for a square wave corrugation,
κ = 2�n̄/λ, which is the same result we found in Chapter 3 (see discussion
following Eq. (3.59)). For other corrugation patterns, n̄(z ) and δn̄ must generally
be calculated numerically, making this approach to determining the coupling
constant less than ideal.

The coupling constant has also been derived from a different standpoint. Instead
of developing a coupling of waves, the mode is defined in terms of rays bouncing
down the guide at some angle and with some effective width, which takes into
account the penetration into the cladding layers (see Chapter 7). The number of
bounces per unit length can easily be determined from this. Next, the grating per-
turbation is considered to be a diffraction grating with a plane wave incident at
some angle, which at every bounce diffracts some energy backward at the same
angle as the incident ray. The amount of energy diffracted per bounce is character-
ized by the diffraction efficiency of the grating. The advantage to this approach is
that a closed-form expression for the coupling constant can be derived, which is in
complete agreement with the numerical procedure outlined above. The expression
for a three-layer guide, as shown in Fig. 6.8, is given by [1]

κ = Gk0a
n2

gd − n̄2

2n̄deff
, (6.55)

where deff = d + 1
γx1

+ 1
γx3

, ngd is the refractive index of the waveguide, and n̄ is
the effective index of the mode. The decay rates into cladding regions i = 1 and

3 are defined as γxi = k0

√
n̄2 − n2

ci , and d is the width of the guiding region. The
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guide and cladding indices are, ngd and nc1, nc3. The total height of the grating
is 2a , and k0 = 2π/λ. Finally, G is related to the spatial Fourier coefficient of
the grating pattern: (1) G = 1 for a sinusoidal variation, (2) G = 4/π for a square
wave pattern, (3) G = 8/π2 for a triangular sawtooth pattern, and (4) G = (4/π)

sin x/x for a graded square wave, where x = 0 for no grading (perfect square
wave) and x = π/2 for complete grading (perfect sawtooth pattern), and in general,
x = (π/2) × (fraction of graded material). For k0a approaching unity, G generally
becomes more complex than listed here. If a higher-order component of the Fourier
spectrum of the grating pattern is used for coupling modes, then G would have to
be modified accordingly.

The coupling constant is shown in Fig. 6.8 as a function of the guide width, for
a total grating height of 50 nm. We see that there is an optimum guide width, which
becomes more peaked as the index step between the guide and cladding increases.
By converting from a sinusoidal grating to a square wave grating, the coupling
constant can be increased by 4/π ≈ 1.27. Also, there is a linear dependence on
grating depth, implying that very deep grooves can be used to obtain large κ . In
general, the curves in Fig. 6.8 can be scaled for different G and a .

The closed-form expression for the coupling constant Eq. (6.55) can only be
used if the effective index of the guide is known, which in general must be found
using the techniques discussed in Appendix 3. However, if the guide is symmetric
(nc = nc1 = nc3), the effective index is given exactly by [2]

n̄2 = n2
gd b + n2

c (1 − b), where b ≈ 1 − ln(1 + V 2/2)

V 2/2
. (6.56)

In this expression, b is defined as the field confinement factor (i.e., the field instead
of the field squared is used as the weighting function). As with , we can approx-

imate b using the normalized frequency, V = k0d
√

n2
gd − n2

c . The approximation
in Eq. (6.56) produces less than 1.2% error in the effective index over all ranges
of V . In fact, using Eq. (6.56) in Eq. (6.55), we would obtain curves almost indis-
tinguishable from those plotted in Fig. 6.8.

Example 6.3 As indicated in Chapter 3 and illustrated in Fig. 6.9, it is not uncom-
mon to have facet reflections at the end of the grating in practical DFB lasers.

Problem: Determine the characteristic equation of a DFB laser with facet reflec-
tions.

Solution: This situation can be modeled using the scattering theory developed
in Chapter 3. Since we have the reflection and transmission parameters of a sym-
metrical grating, we can describe the grating by a scattering matrix and include it
within a Fabry–Perot resonator formed by the facet reflections.

The grating and back reflector can be combined to get an effective reflector,
which together with the front reflector form a simple two-mirror resonator for
which we can write a characteristic equation. First, we combine the grating and the
back reflector assuming that the propagation phase is included in r ′

2 = r2e−2jβL2 .
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Following Fig. 6.9,

reff = rg + t2
g r ′

2

1 − rg r ′
2

, (6.57)

and

teff = tg t ′
2

1 − rg r ′
2

, (6.58)

where t ′
2 = r2e−jβL2 is the transmission coefficient of facet 2 with phase included.

Equations (6.57) and (6.58), of course, are the same as Eqs. (3.20) and (3.21),
although here we have included the phase of the reflections and transmissions
relative to the grating reference planes in rg and r ′

2, and tg and t ′
2, respectively.

Note also that with the reference planes of the previous section, the reflection
from either side of the grating is rg , unlike the case in Chapter 3, where we used
physical reference planes and the reflection from opposite sides of the grating had
opposite signs (see Fig. 6.6).

Now, we can use Eqs. (6.57) and (6.58) as the properties of a new effective back
mirror, and write the net transmission through the entire structure. That is,

t ′
g = t1teff e−jβL1

1 − r1reff e−2jβL1
= t1tg t2e−jβL1[

1 − r1rg e−2jβL1 − r1r2t2
g e−2jβL1

1−rg r2

]
(1 − rg r2)

. (6.59)

The characteristic equation is again given by the poles, or,

r1r2t2
g e−2jβL1

(1 − r1rg e−2jβL1)(1 − r2rg )
= 1. (6.60)

As before, this can be solved for the threshold gain and wavelength using the
constituent relationships. For the simple case of no grating, we can set rg = 0,
and Eq. (6.60) reduces to the Fabry–Perot threshold condition, r1r2t2

g = 1. Alterna-
tively, for r1 = r2 = 0, it reduces to the standard DFB threshold condition, tg = ∞.
And for r1 = 0(r2 = 0), it reduces to r2rg = 1(r1rg = 1), which is the threshold
condition for a laser with active mirrors. When solving for threshold, keep in mind
that the phase delays implicit in r1 and r2 include the round-trip distance between
facet-1 or facet-2 and the nearest cosine maximum of the grating index variation
(since we have chosen φ = 0 and Lr = m� for our grating reference planes).

6.4.3 Codirectional Coupling: Directional Couplers

In this section, two different modes propagating in the same direction are consid-
ered. These may be (a) orthogonal modes of the same waveguide, or (b) modes
of two, initially separate, waveguides. A dielectric perturbation can couple these
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FIGURE 6.9: Progression of calculations to get net transmission and/or reflection from a
grating with facet reflections. Any distances to the facet reflections are included in the phases
of r1 and r2 for convenience. That is, reference planes are those of the grating.

U1, b1

U1, b1
U2, b2U2, b2

TE TM

x

z

x

z

(a) (b)

FIGURE 6.10: Codirectional coupling schemes. Uncoupled eigenmodes (a) in the same
waveguide and (b) in different waveguides.

two modes in either case. In Case (a), the index of the single guide is perturbed,
usually in a periodic fashion, and in Case (b) each initially separate guide acts as a
dielectric perturbation for the other. As indicated in Fig. 6.10, an example of Case
(a) is TE to TM coupling in one guide; and an example of Case (b) is a directional
coupler for modes of separate, but closely spaced waveguides. In either case, we
can express the net field as

EEEE (x , y , z ) = E1(z )U1(x , y)e−jβ1z + E2(z )U2(x , y)e−jβ2z , (6.61)
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FIGURE 6.11: Cross-sectional schematic of directional coupler showing added index
regions for waveguides which also serve to perturb the other waveguide. Eigenmodes and
propagation constants refer to unperturbed values.

where U1 and U2, and β1 and β2 represent the unperturbed solutions for the two
uncoupled modes, and the Ei ’s give the amplitude of each component in the net
field.

For coupling between the modes, we need to add a dielectric perturbation. For
Case (a), we assume ε(x , y , z ) = εgd (x , y) + �ε(x , y , z ), where εgd (x , y) is the
unperturbed waveguide, and �ε(x , y , z ) is the (possibly periodic) dielectric pertur-
bation seen by both U1 and U2. Referring to Fig. 6.11 for Case (b), we observe that
�ε2 acts as the dielectric perturbation for U1, while �ε1 acts as the perturbation
for U2. Hence, for this case, ε(x , y) = εc + �ε1(x , y) + �ε2(x , y), where the latter
two terms act as both waveguides and perturbations simultaneously. The equations
to follow are derived for Case (b). However, by setting �ε1 = �ε2 = �ε in these
equations, we obtain the results for Case (a) as well.

Proceeding as before, we add the dielectric perturbation, write the new perturbed
mode profiles as Ui + �Ui , and plug the assumed net field into the wave Eq. (6.4).
After dropping out second-order terms (assuming β1 ∼ β2) and the unperturbed
solutions, this leads to

2jβ1U1
dE1

dz
e−jβ1z + 2jβ2U2

dE2

dz
e−jβ2z

= �ε2(x , y)k2
0 U1E1e−jβ1z + �ε1(x , y)k2

0 U2E2e−jβ2z . (6.62)

Additional terms containing �U1 and �U2 analogous to those appearing on the
right side of Eq. (6.25) also exist. However, we have left them out of Eq. (6.62)
anticipating that we will be able to set them to zero if we dot multiply by U∗

1 or
U∗

2 and integrate over the transverse cross section, as we have done in every other
perturbation problem (we go to the trouble of first defining perturbed mode profiles
U′

i = Ui + �Ui and then setting the �Ui terms to zero to prove that to first order,
we only need to know the unperturbed mode profiles, Ui , to estimate the coupling
between modes).

Performing the integration of Eq. (6.62) after dot multiplying by U∗
1 (the parallel

case with U∗
2 will be the same except for permuted subscripts), we obtain

2jβ1
dE1

dz
e−jβ1z

∫
|U1|2 dA + 2jβ2

dE2

dz
e−jβ2z

∫
U∗

1 · U2 dA

= k2
0 E1e−jβ1z

∫
�ε2|U1|2 dA + k2

0 E2e−jβ2z
∫

�ε1U∗
1 · U2 dA. (6.63)
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To go further, we must consider Cases (a) and (b) separately. However, in both
cases we argue that the second term on the left side of the equation and the first
term on the right side are negligible or unimportant for coupling. Then, we can
proceed to calculate a simple expression for dE1/dz . Following this, we can write
the corresponding expression for dE2/dz , which follows by multiplying Eq. (6.62)
by U∗

2 and integrating. The justification for dropping the unwanted terms goes as
follows for the two cases.

Case (a) U1 and U2 are Eigenmodes of the Same Guide: For this case, the
second term on the left side of Eq. (6.63) is identically zero, since the unperturbed
eigenmodes are orthogonal. The first term on the right side of Eq. (6.63) is not
necessarily negligible, but it gives only the single-mode β-perturbation calculated
earlier from the DC part of �ε, and no mode-coupling effect. In fact, we already
know that �ε must be periodic along the z -axis to couple the two different β’s in
this case, so this periodic portion will integrate to zero in this first right-hand term.

Case (b) U1 and U2 are Eigenmodes of Two Separate Guides: Figure 6.11 illus-
trates the overlapping fields in a directional coupler and the fact that the placement
of guide # 2 near guide # 1 is the perturbation to be analyzed for guide # 1. On
the left side of Eq. (6.63), we argue that the first term is much larger than the
second for weakly coupled guides, since there is no place in the cross section of
integration where both modes have coincidental large amplitudes. The coefficients
of the integrals should be comparable. Put another way, we could say that since
we choose to neglect the second term on the left side, the theory is only valid
for very small overlap of the two modes quantified by

∫ |U1|2 dA � ∫
U∗

1 · U2 dA.
(When this condition is not met, a superposition of the exact “supermodes” of the
five-layer system is required to determine the net energy transfer from the vicinity
of one dielectric stripe to the other. This will be discussed later.)

To neglect the first term on the right side for case (b), we realize that the
integration is limited to the cross section of guide # 2, where according to the
weak overlap assumption, U1 must be very small, so the first integral on the right
is indeed small. The second term survives since U1 � U2 over guide # 1 where
the integration exists. Also, this term is still much larger than the second term on
the left side, since k2

0 E2 � β2dE2/dz .
With these arguments then, we proceed with the analysis of the directional

coupler using only the leftmost and rightmost terms in Eq. (6.63). Thus, for
guide # 2 perturbing guide # 1:

2jβ1
dE 1

dz
e−jβ1z

∫
|U1|2 dA = k2

0 E2e−jβ2z
∫

�ε1U∗
1 · U2 dA. (6.64)

For guide # 1 perturbing guide # 2, an equation similar to Eq. (6.63) can be derived
by dot multiplying Eq. (6.62) by U∗

2 and integrating. After dropping the small terms,

2jβ2
dE2

dz
e−jβ2z

∫
|U2|2 dA = k2

0 E1e−jβ1z
∫

�ε2U∗
2 · U1 dA. (6.65)
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Or, after rearranging both,

dE 1

dz
= −j

k2
0

2β1
E2e−j (β2−β1)z

∫
�ε1U∗

1 · U2 dA∫
|U1|2 dA

, (6.66)

and

dE 2

dz
= −j

k2
0

2β2
E1e−j (β1−β2)z

∫
�ε2U∗

2 · U1 dA∫
|U2|2 dA

. (6.67)

These are the basic coupled mode expressions for codirectional coupling. They
show that unless �εi contains some spatially periodic factor, β1 must nearly equal
β2 for coherent coupling (monotonic growth of Ei ) over some distance. This is
the case for uniform directional couplers. However, if β1 
= β2, then �εi must
contribute the difference by including a periodicity. Such is generally the case in
our Case (a), where U1 and U2 are unperturbed eigenmodes of the same guide, and
it can be the situation in our Case (b) if the two coupled waveguides are different.

In the case of β1 
= β2, �εi can be Fourier analyzed, as in Eq. (6.27), and
Eqs. (6.66) and (6.67) can be modified to explicity show the z -dependence of �εi ,
analogous to Eqs. (6.28) and (6.29). As in the case of contradirectional coupling,
these modified equations give a requirement on the spatial period of the perturbation
for coherent addition of the coupling. For the present codirectional coupling case,

l
2π

�
= |β2 − β1| = 2π

λ
|n̄2 − n̄1|. (6.68)

As can be seen, this condition leads to a somewhat coarser period than in the reflec-
tive grating case. In fact, the period is generally tens of wavelengths long, since
the difference between the mode effective indicies, n̄2 − n̄1, is usually not so large.

Also, in Case (a) there is no distinction between �ε1 and �ε2, since there is
only one perturbation of a single waveguide. Thus, the subscripts can be dropped
in Eqs. (6.66) and (6.67) in future codirectional coupling results for analyzing this
case. In what follows, however, we shall explicitly treat the slighltly more complex
Case (b), which generally requires the distinction of �ε1 from �ε2. Of course, it
also leads to the technologically important four-port directional coupler.

Before moving on to the four-port directional coupler, we choose to rewrite
the coupled-mode Eqs. (6.66) and (6.67) in terms of the “normalized amplitudes,”
ai ’s, introduced in Chapter 3. Using Eq. (3.2) then, we make the substitutions,

a1(z )
√

2η1 = E1(z )e−jβ1z ,

a2(z )
√

2η2 = E2(z )e−jβ2z .

(6.69)

In this case, the assumed total electric field may be written as,

EEEE =
√

2η1a1U1 +
√

2η2a2U2. (6.70)
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From Eq. (6.70) it can be seen that the power flow in the positive-z direction is
just |a1|2 + |a2|2, as should be the case for the normalized amplitudes. Note that
the cross terms are negligible for the same reasons as given earlier.

Plugging Eq. (6.69) into Eqs. (6.67) and (6.68) and neglecting the difference
between η1 and η2, we find

da1

dz
= −jβ1a1 − jκ12a2,

da2

dz
= −jβ2a2 − jκ21a1,

(6.71)

where

k12 = k2
0

2β1

∫
G1

(ε1 − εc)U∗
1 · U2 dA

∫
|U1|2 dA

,

k21 = k2
0

2β2

∫
G2

(ε2 − εc)U∗
2 · U1 dA

∫
|U2|2 dA

,

(6.72)

and the integration is shown explicitly as only over the region of perturbation
where �εi = (εi − εc) is added to form the additional guide as indicated in
Fig. 6.11. That is, G2 represents the cross-sectional area of added index material
to form guide # 2, etc. Again, recall that the ε’s are always the relative dielectric
constants. Also, note that although the coefficient of κij , k2

0 /(2βi ) = ω/(2cn̄i ), is
linearly proportional to the optical frequency, the overlap integrals can decrease
rapidly as the wavelength decreases; thus, κij actually tends to decrease slightly
with increasing optical frequency in a directional coupler.

Example 6.4 Two uniform slab waveguides, 0.1 μm in width, are spaced by
0.3 μm. The index of the slabs is 3.4, and that of the surrounding regions is 3.17,
for the operating wavelength of 1.55 μm. These values can be used to calculate
the effective index of each waveguide, n̄eff = 3.1836, and the confinement factor
 = 0.11, based on the material from Appendix 3.

Problem: What is the ratio of amplitudes of the fundamental mode from the
second waveguide to the fundamental mode of the first waveguide, at the center of
the first waveguide?

Solution: To compute the ratio of normalized fields, we need to make a couple of
observations. Inside waveguide #1, the normalized field profile U1(x) will have a
cosine dependence, and outside, it will exponentially decay toward zero. Since the
confinement factor  is relatively low, we can make the following approximations
to the shape of the normalized electric field profiles: U (x) is approximately constant
inside the waveguide, U1(x) = U1(0), and U (x) is approximately linear across
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the second waveguide. Thus, to link the amplitude of the normalized field of the
fundamental mode to the amplitude of the tail of the other waveguide’s fundamental
mode, we need to calculate the exponential decay constant for this waveguide
system,

γx =
√

β2 − k2
0 · n2

c = 2π

1.55 μm

√
3.18362 − 3.172 = 1.192 μm−1.

Based on our assumptions, U2(0)

U1(0)
≈ e−γ ·x , where x = 0.3 + 0.05 μm, yielding

U2(0)

U1(0)
≈ e−0.192·0.35 = 0.659.

In lossless waveguides, �ε1 and �ε2 are real and the phase fronts of the modes
are flat and perpendicular to the propagation direction, implying that both U1 and
U2 are real functions. As a result, both κ12 and κ21 are real. This remains approxi-
mately true for waveguides with small gains or losses, as long as �ε1 and �ε2 are
predominantly real, as is usually the case. In such cases, we can use the real part
of the perturbation in each guide to estimate κ12 and κ21. In addition, if the guides
are symmetric, then κ12 = κ21 = κ (for asymmetric guides we can still define an
average κ = √

κ12κ21).
Equations (6.71) are already in a convenient form for solution, so we proceed

toward a general solution. To this end, we assume trial solutions, a1 = a10e−jβc z ,
and a2 = a20e−jβc z , where a10 and a20 are real constants independent of z and βc

is some unknown propagation constant, presumably with multiple solutions, for
the coupled waveguides. The general solutions for the ai (z )’s will then be a linear
superposition of all of the particular solutions. Plugging the trial solutions into
Eqs. (6.71), and solving for βc , we obtain

βc = β1 + β2

2
±

√(
β1 − β2

2

)2

+ κ12κ21, (6.73)

or

βc = β̄ ± s , (6.74)
where

β̄ = β1 + β2

2
and s =

√(
β1 − β2

2

)2

+ κ12κ21. (6.75)

We can also define a codirectional detuning parameter, δ ≡ (β2 − β1)/2, such that
s2 = κ12κ21 + δ2, making it the codirectional analog of Eq. (6.42).

With Eq. (6.74), the general solutions are of the form:

a1(z ) = e−j β̄z [A1ejsz + A2e−jsz ],
a2(z ) = e−j β̄z [B1ejsz + B2e−jsz ],

(6.76)

and we are now ready for a real problem with real boundary conditions.
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a1(0) a1(L)

a2(L)

Guide #1

zL0

Guide #2

FIGURE 6.12: Four-port directional coupler showing a single input excited.

The Four-Port Directional Coupler Figure 6.12 schematically shows a four-port
directional coupler formed by two coupled waveguides of finite length, L. In fact,
we can derive most of the desired directional coupler expressions without being
specific about the length, but we will assume that the outputs are matched so that
no reflections exist. This allows us to derive the general scattering parameters for
the directional coupler, and from these we can add a wide variety of different
boundary conditions that can be handled from the scattering theory.

To get started, we let a1(0) = a1(0), and a2(0) = 0, and plug into Eq. (6.76) to
find that B1 = −B2, and a1(0) = A1 + A2. Next, we evaluate Eq. (6.71) at z = 0,
and using Eqs. (6.74) and (6.76), solve for B2. We find that

B2 = κ21

2s
a1(0). (6.77)

Again using Eq. (6.76) this gives

a2(z ) = −j
κ21

s
a1(0)e−j β̄z sin sz . (6.78)

Next, we solve for A1 and A2 using these same equations. This leads to

a1(z ) = a1(0)e−j β̄z
[

cos sz + j
β2 − β1

2s
sin sz

]
. (6.79)

Therefore, generally, by linear superposition letting the input at port #2, a2(0) =
a2(0), we have

a1(z ) =
[

a1(0)

(
cos sz + j

β2 − β1

2s
sin sz

)
− j

κ12

s
a2(0) sin sz

]
e−j β̄z , (6.80)

and, likewise by symmetry, we can interchange subscripts to solve for a2(z ),

a2(z ) =
[
−j

κ21

s
a1(0) sin sz + a2(0)

(
cos sz − j

β2 − β1

2s
sin sz

)]
e−j β̄z . (6.81)

Figure 6.13 illustrates these normalized amplitudes versus z for β1 = β2 and β1 
=
β2 under the initial assumption that a2(0) = 0.
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|a1|2, |a2|2 b2 = b1

b2 − b1 = 0.8(p/Lc)

FIGURE 6.13: Energy exchange between two coupled waveguides as a function of propa-
gation distance for matched and mismatched propagation constants.

In the simple case of identical coupled guides, β1 = β2 and s = √
κ12κ21 ≡ κ .

For a coupler of length L, Eq. (6.78) gives
∣∣∣∣a2(L)

a1(0)

∣∣∣∣
2

= sin2 κL, (6.82)

from which the length, Lc , for full coupling from guide #1 to guide #2 is found to be

Lc ≡ π

2κ
. (6.83)

This is generally referred to as the coupling length. Odd multiples of the length
given by Eq. (6.83) also provide full coupling, as indicated by Fig. 6.13.

Example 6.5 A vertical directional coupler is created from the vertical waveguide
structure described in Example 6.4.

Problem: (a) What is the coupling coefficient κ for this coupler? (d) What is the
coupling length Lc of this coupler?

Solution: (a) Starting from the definition of κ , and keeping in mind the discussion
about normalized fields from the previous example, we have

κ = k2
0

2 · β

∫
G1(ε1 − ε2)U∗

1 · U2 dA∫ |U1|2 dA
= π

λ · n̄eff
(n2

gr − n2
c )

∫
G1 |U1|2 dA U2(0)

U1(0)∫ |U1|2 dA

where we have approximated U1(x) and U2(x) with their average values over
the range of integration, waveguide G1. Using the results from Example 6.4, the
coupling coefficient is given as

κ = π

λ · n̄eff
(n2

gr − n2
c )

U2(0)

U1(0)
 = π

1.55 μm · 3.1836
(3.42 − 3.172)(0.11)(0.659)

= 0.0681 μm−1.
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(b) From the definition of the coupling length, Eq. (6.83),

Lc ≡ π

2κ
= π

2 · 0.0659−1
= 23.82 μm.

Viewing the directional coupler as a four-port network, as suggested by
Fig. 6.12, it is desirable to develop the four-port scattering matrix, so that the tech-
niques of Chapter 3 can be applied. For the labeling given in Fig. 6.14, Eqs. (6.78)
through (6.81) can be used to identify these coefficients by inspection. That is,

S =

⎡
⎢⎢⎣

0
√

1 − c2 0 −jc√
1 − c2 0 −jc 0

0 −jc −0
√

1 − c2

−jc 0
√

1 − c2 0

⎤
⎥⎥⎦ e−j β̄L, (6.84)

where for κ12 ≈ κ21 ≈ κ ,

c = κ

s
sin sL. (6.85)

Note that we have retained the use of ai (z ) and bi (z ) for the forward and
backward waves in guide i , rather than going to the standard “input” and “output”
definitions in Fig. 6.14. To conform to the standard scattering theory jaron used
in Chapter 3, we must use a1 ≡ a1(0), b1 ≡ b1(0), a2 ≡ b1(L), b2 ≡ a1(L), a3 ≡
a2(0), b3 ≡ b2(0), a4 ≡ b2(L), and b4 ≡ a2(L).

The general scattering matrix given by Eq. (6.84) can be combined with various
boundary conditions to develop scattering matrices of more complex photonic
integrated circuits. For example, consider the configuration shown in Fig. 6.16
where guide #2 has reflectors r3 and r4 at z = 0 and z = L, respectively. These
provide boundary conditions that create backward traveling waves, b1(z ) and
b2(z ). In the present case, it can be seen that b2(L) = r4a2(L) and a2(0) = r3b2(0).
After a little algebra, the scattering parameters for the resulting two-port network
can be obtained. That is,

S =

⎡
⎢⎣

− c2r4e−j β̄L

1−r3r4(1−c2)e−2j β̄L

√
1 − c2 − c2r3r4

√
1−c2e−2j β̄L

1−r3r4(1−c2)e−2j β̄L

√
1 − c2 − c2r3r4

√
1−c2e−2j β̄L

1−r3r4(1−c2)e−2j β̄L
− c2r3e−j β̄L

1−r3r4(1−c2)e−2j β̄L

⎤
⎥⎦ e−j β̄L. (6.86)

b1(0) b1(L)

b2(L)b2(0)

a2(0)

a1(0) a1(L)

a2(L)

Guide #1

zL0

Guide #2

1

3

2

4

FIGURE 6.14: Schematic of four-port network formed by two coupled waveguides.
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FIGURE 6.15: Ring laser with directional-coupler output tap.

Guide #1

zL0

a1 = a1(0)

b1 = b1(0)

a2 = b1(L)

b2 = a1(L)

r3 r4

Guide #2

FIGURE 6.16: Two-port formed by placing reflectors at ports 3 and 4 of a directional
coupler.

Applications of Directional Couplers: Ring Structures Directional couplers
(and multimode interference couplers, discussed later in this Chapter) are key com-
ponents in implementing waveguide ring structures, illustrated in Fig. 6.15, which
can be used as optical filters or simple single-mode laser structures. As the light
from the coupler is coupled into a ring waveguide, for certain wavelengths, phase
matching will occur between the light coupled in, and out of the ring, leading to
a resonance. In the next example, we will derive some important properties of a
ring resonator, consisting of entirely passive waveguides.

Example 6.6 A planar waveguide ring resonator, similar to the one shown in
Figure 6.15, is coupled to a straight waveguide. The ring length is Lr , the straight
waveguide length is Ls . The one pass coupling magnitude due to the coupling
length Lc between the straight guide and the ring is c.

Problem: Calculate the S21 parameter for this ring.

Solution: Using Mason’s rule from Chapter 3, and the results on directional cou-
plers from this chapter, we can directly calculate S21 by calculating the transfer
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function between the normalized input field a1 and the normalized output field b2,

b2 = S21a1

Converting this structure into a signal flow chart (which is left to the reader as an
exercise), we have that

� = 1 −
√

1 − c2e−j β̃Lr .

There are two independent forward paths, and one loop in this system, therefore,

T1 · �1 =
√

1 − c2e−j β̃Ls · (1 −
√

1 − c2e−j β̃Lr ),

and

T2 · �2 = (jc)2 · e−j β̃Lr · e−j β̃Ls .

Finally, the value for S21 is

S21 =
(√

1 − c2e−j β̃Ls + (jc)2 · e−j β̃Lr e−j β̃Ls

1 − √
1 − c2e−j β̃Lr

)

This result is analogous to the result for a Fabri–Perot cavity, in which the reflection
is replaced by r = √

1 − c2 and transmission by t = jc. The pole in the denominator
will determine the transfer function of the ring resonator, and this structure can be
used as a filter. An example application will be discussed in Chapter 8.

Ring lasers represent an attractive implementation of single mode lasers, due
to their simple building blocks and fabrication processes involved. In addition,
the “mirrors” in a ring laser are actually light couplers, which allow for a portion of
the light to escape the cavity. Figure 6.15 illustrates the use of a directional coupler
as an output coupler for a ring laser. In a ring laser, the round trip cavity length is the
circumference of the cavity, and there are generally two propagating modes, which
are uncoupled (clockwise and counterclockwise), and whose degeneracy must be
removed through insertion of differential loss to achieve stable operation. One way
to remove the degeneracy, particularly suitable for PIC ring laser implementation
is through seeding of a particular mode by an on-chip light source. The priciple of
designing a ring laser is illustrated in the following example.

Example 6.7 We wish to analyze a ring laser device as shown in Fig. 6.15,
assuming a 4-quantum-well gain region from Fig. 4.31. The passive waveguide
cross section in the transverse direction is 0.3 μm thick, and the waveguide index is
3.37. The waveguide is clad by InP, with an index of 3.17 at 1.55 μm. The lateral
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width is adjusted to insure single mode operation. A BH structure is assumed,
clad by InP. The waveguide internal losses are αi = 10 cm−1, the bend radiative
losses (to be discussed in detail in Chapter 7) αR = 16.3 cm−1, and the waveguide
separation in coupler s = 1 μm.

Problem: (a) Determine the output coupling loss (analogous to mirror loss).
(b) Calculate the threshold modal gain, threshold current, and differential efficiency.

Solution: (a) For the calculation of the coupling loss, we first need to determine
κ , the guide-to-guide coupling constant from Eq. (6.72). Assuming the lowest-
order symmetric lateral mode, we can plug Eqs. (6.8), (A3.17), and (A3.21) into
Eq. (6.72) and solve. For identical guides coupled laterally, we find that

κ = x
2k2

0 (ε1 − εc)γy cos2(k1yw/2)

βweff (γ 2
y + k2

1y )
e−γy s ,

where x is the transverse confinement factor, ε1 and εc are the relative dielectric
constants (indices squared) of the waveguide slab and surrounding cladding, γy is
the lateral decay constant outside of the guides, w is the lateral waveguide width,
weff is the effective width (given by Eq. (6.13), with y replacing x ), and s is the
waveguide separation in the coupler region.

First, we determine the guide width, w, and the lateral propagation and
decay constants using the effective index technique. For single lateral mode,
Vy ≤ 3.25. Therefore, from Eq. (A3.12), w ≤ 1.2 μm. Then, using n̄2 = 3.24
and n̄ = 3.216, we get ky = 1.60/μm, and γy = 2.20/μm. These numbers give
weff = 2.51 μm. Then, we solve for the coupling constant between the two guides
in the directional coupler,

κ = 0.49
2(2π/1.55 μm)2(3.2162 − 3.172)2.2/μm × cos2(1.6 × 1.2/2)

[2π(3.216)(1.55 μm]2.51 μm (2.22 + 1.62)/μm2
e−2.2×1

= 15.7 cm−1.

The fractional power coupled from one guide to the other over the 500-μm-long
coupler length is

c2 = sin2 κL = sin2(15.7 × 0.05) = 0.498,

omitting internal losses. This means that (1 − c2) = 0.502 of the power is trans-
mitted through one of the guides, again omitting losses.

(b) For the ring laser, we need to identify the various lengths so that we
can use Eq. (2.23) or (2.25) for the threshold modal gain. We only consider
propagation in one direction, since there is no coupling between forward and
backward waves. Clearly, the active length La is 500 μm, and the total passive
length, Lp = (500π + 500) μm = 2071 μm. The equivalent of the mean mirror
reflectivity, R, in Eqs. (2.23) and (2.25) is just (1 − c2), as might be verified by
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reviewing the derivation leading up to Eq. (2.23). Thus, the output coupling loss
(equivalent of mirror loss) is

αm = 1

Ltot
ln

1

1 − c2
= 2.7 cm−1.

The average internal modal loss consists of the internal losses and of the radiation
losses in the bends. The total average internal modal loss is

〈αi 〉 = (2 × 500 μm)10 cm−1 + (1571 m)16.3 cm−1

2571 μm
= 13.8 cm−1.

Now, we can calculate the threshold modal gain as

gth = 〈αi 〉 + αm = 16.5 cm−1.

The confinement factors for the transverse, lateral, and axial directions are
0.06, 0.84, and 0.194, respectively. Thus, the threshold gain, gth = 1688 cm−1,
from which we can extrapolate from Fig. 4.31 that Jth = 5.2 kA/cm2. Then, the
threshold current, Ith = JthwLa/ηi = 52 mA. This is a very high threshold gain
and current density. In a real case, we would try to include more quantum wells
to increase the modal gain by increasing the transverse confinement factor. For
example, with six quantum wells the threshold gain and current density would be
reduced to 1125 cm−1 and 3.3 kA/cm2, more reasonable values for 1.55 μm.

Using the above numbers, but excluding loss in the output waveguide, the dif-
ferential efficiency is

ηd = (0.8)
2.7

16.5
= 13.1%.

For the output power, this must be multiplied by the additional attenuation factor
from the coupler to the output facet. The coupler loss has been included in the
ring cavity, but not for the energy coupled over. A careful review of the theory
reveals that the average propagation constant is used in the propagation delay for
both the coupled and uncoupled portions of the lightwave. If it is complex, an
attenuation factor will be introduced in both cases. That is, in the present case the
coupled fractional power is c2 exp(−αi L), and the uncoupled fractional power is
(1 − c2) exp(−αi L). We have already included all the loss in the uncoupled fraction
by including the coupler length in Lp , but this only includes the loss in one guide for
the coupler as a whole (i.e., half of the coupler loss for the coupled fraction). Thus,
we must include an additional factor of e−(10×0.25) for the energy coupled over.
(Put another way, we have modeled the coupler as an effective lumped coupler
at the center of the actual coupler.) Since we have an additional 250 μm in the
extension guide after the coupler, the net reduced differential efficiency becomes

η′
d = 0.131e−(10×0.05) = 7.9%.
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This ring laser is obviously not a very efficient device, primarily because of the
long sections of lossy passive waveguide.

6.4.4 Codirectional Coupler Filters and Electro-optic Switches

β1 ≈ β2 If two identical waveguides are brought into close proximity to form
a directional coupler, the device tends to function over a broad bandwidth of
input wavelengths. This is because the unperturbed eigenmodes will be the
same and the dispersion properties of each component guide will be the same.
Thus, phase-matched coupling will always occur. This kind of dispersion is
illustrated in Fig. 6.17, where we have plotted the two β solutions of Eq. (6.73)
as a function of optical frequency. The overlap between the unperturbed
eigenmodes will vary with wavelength, and this results in a change in the coupling
constant, κ , according to Eq. (6.72). This gives the gradual spreading of the two
propagation constant solutions as κ increases for longer wavelengths (lower optical
frequencies).

For a given coupling level, a length can be chosen for 100% coupling from
one guide to the other at the operating wavelength. This is given by the coupling
length, Lc , in Eq. (6.83) or odd multiples thereof. If the wavelength is now
changed, the net transfer would be less for wavelengths either shorter or longer
than this according to Eq. (6.82). In fact, to make a wavelength-selective filter, it
is common to use a device many coupling lengths long, so that as the wavelength
changes and κ changes, the transfer fraction, Eq. (6.83), will vary sinusoidally.
Thus, at one wavelength the device can have an odd number of transfer lengths,
while at another it can have an even number, yielding either 100% or 0% transfer,

w = b
c
n

w0

b0

b1 = b2 = b

bc = b ± k

w

bc

2k

FIGURE 6.17: Dispersion diagram for identical coupled waveguides near the operating
wavelength. The operating radial optical frequency, ω0, results in two propagation constant
solutions displaced ±κ from β0, the value of the uncoupled β for each guide at this point.



6.4 COUPLED-MODE THEORY: TWO-MODE COUPLING 371

respectively. This kind of filter is useful for separating relatively widely spaced
wavelengths, such as 1.3 μm from 1.55 μm; however, because κ is a slowly vary-
ing function of wavelength, this approach is not effective in providing relatively
narrow filter passbands. The quantitative details of the filtering action of such
four-port directional couplers are given by Eqs. (6.80) through (6.84). These also
allow for slight mismatches in the unperturbed propagation constants as discussed
previously.

A voltage-controlled switch or modulator can be constructed of such nominally
identical coupled waveguides, if the device is constructed in electro-optic material.
The III–V compound semiconductors are electro-optic, and thus, such devices can
be compatible with diode lasers. Appendix 15 gives a brief introduction to the
electro-optic effect. Without going into a myriad of details, suffice it to say that for
certain orientations of electro-optic materials, the application of an electric field
with a frequency much lower than that of the optical wave (from DC up to at
least 100 GHz) leads to a change in the index of refraction for certain polarizations
of the lightwave. Thus, by applying differing electric fields to the waveguides
in a directional coupler the propagation constants can be changed slightly, so that
β1 
= β2 and the coherence of the coupling can be reduced according to Eqs. (6.78)
and (6.79).

As an example of electro-optic modulation, Fig. 6.18 shows a vertical
directional-coupler configuration, which allows separate control of the applied
low-frequency electric fields in each guide, along with a plot of the power transfer
fraction |a2(L)/a1(0)|2 from Eq. (6.78) for a general directional coupler with
L = Lc and 5Lc . As can be seen, for a directional coupler that is one coupling
length long, no transfer occurs between the guides when

β2 − β1

2
=

√
3κ , (6.87)

p

p

SI
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5

FIGURE 6.18: Schematic of vertical directional-coupler electro-optic switch and example
plot of power transfer versus the normalized deviation of the index of one guide from the
other.
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since s has increased from κ to 2κ at this point. More generally, for a coupler of
length L = mLc , the first null in transmission from one guide to the other occurs
when the mismatch is

(β2 − β1)Lc = π
√

[(m + 1)/m]2 − 1. (6.88f)

Thus, as Fig. 6.18 illustrates, a longer coupler (larger m) requires less of a mismatch
to shut off the power transfer.

β1 �= β2 If the two waveguide constituents in a directional coupler are not iden-
tical, or if two dissimilar modes of the same waveguide are coupled, then a much
sharper wavelength filtering action is possible. The conditions for coherent addition
of any coupling were discussed in conjunction with Eqs. (6.66) and (6.67). There
are several specific possibilities worth mentioning. Two cases have already been
outlined in Fig. 6.10. In Case (a) some coarse periodicity in the perturbation was
found necessary to couple modes with different propagation constants in the same
waveguide. In Case (b), if the β’s are different, a modulation of the index will again
generally be necessary. In both cases, Eq. (6.68) gives the relationship between the
periodicity and the difference in propagation constants. However, in some cases the
waveguides can be different, but due to their different dispersive properties, they
can have the same propagation constant at some particular wavelength, even with
no index modulation. Thus, this becomes a third case, Case (c), where a codirec-
tional waveguide filter is possible. These three cases are summarized by the ω − β

diagrams in Fig. 6.19.
To understand the filtering action of these cases more quantitatively, we go

back to Eqs. (6.66) and (6.67) and Fourier analyze �ε as suggested thereafter.
This generates a ±2π/� term in the argument of the exponential and replaces
�ε in the integrals by the Fourier coefficients �ε±l . Now for the specific case
illustrated in the top of Fig. 6.19, β1 > β2, and for phase matching we choose
−2π/� in Eq. (6.66) and +2π/� in Eq. (6.67). Equivalently, we let

β ′
1 = β1 + 2π

�
, (6.89)

and replace β1 in all of the equations to follow with β ′
1. Thus, when we arrive at

Eq. (6.78), s and β̄ are primed, which denotes the use of Eq. (6.89) in place of β1.
The use of Eq. (6.89) results in a relatively large crossing angle for the two

effective propagation constants as shown in Fig. 6.19. Since the proximity of the
two curves near ω0 determines the degree of phase coherence for the coupling,
the large crossing angle suggests a relatively narrow filter band. In fact, this is the
case. Figure 6.20 gives an example of the transfer function, |a2(L)/a1(0)|2, versus
the detuning parameter, from Eq. (6.78) using Eq. (6.89). The detuning parameter,
δ, is defined as

δ ≡ (β2 − β ′
1)/2 = (ω − ω0)/ω0 · (π/�)(�n̄g/�n̄), (6.90)
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Case (c)
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Λ

w0

Cases (a) and (b)

2p
Λ

w

w0

w
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b2(w0) = b1(w0) + 2p
Λ

b2(w0) = b1(w0)

FIGURE 6.19: Dispersion characteristics for two classes of codirectional coupler filters
in which two dissimilar modes are coupled. At the top, a grating perturbation is included
to provide for phase matching at ω0. Either two modes of a single guide, Case (a), or
coupled waveguides, Case (b), can be used. At the bottom, Case (c), two different waveguide
geometries are engineered to have identical β’s at ω0 prior to coupling. The crossing regions
are expanded at the right insets to show the pair of new βc-solutions resulting from the
coupling.

where � = λ0/�n̄ . The ratio of the group effective index difference, n̄g2 − n̄g1, to
the effective index difference, n̄2 − n̄1, for typical semiconductor coupled waveg-
uides is �n̄g/�n̄ ≈ 3, which reduces the filter bandwidth accordingly.

Switchable or tunable filters result from the combination of the above filters with
electro-optic material. The application of a field in one guide changes its refractive
index which changes the slope of its dispersion curve on the ω − β diagram. Since
the slopes of the two dispersion curves are similar and since the offset 2π/�

does not change, the intersection point, ω0, changes by a much larger relative
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FIGURE 6.20: Power transfer for two different transfer lengths in grating-coupled waveg-
uides versus the detuning parameter.

amount than the index (much like how the intersection point on a pair of scissors
moves more rapidly than the motion of the blades themselves, particularly when
the blades are near parallel). That is, the center frequency of the grating-assisted
codirectional coupler filter can be tuned by a much larger relative amount than
the index. A similar action takes place for Case (c) in Fig. 6.19, since here also,
the two uncoupled dispersion curves cross at a small angle. This enhanced tuning
rate is in stark contrast to most filters, including the contradirectional grating filter,
whose center or Bragg frequency tunes by the same relative amount as the index.

To be more specific, for the grating-assisted codirectional coupler filter shown
at the top of Fig. 6.19, where β2 = β1 + 2π/� for phase matching, we find that
the center frequency and wavelength vary as

�ω

ω
= −�λ

λ
= �n̄2

n̄g2 − n̄g1
, (6.91)

in response to an index change in guide #2. The g subscript denotes the group
index, which appears due to the frequency dependence of the indices. For Case
(c) in Fig. 6.19, we get the same result, but via a different derivation. Relative
to simple tuning of a Bragg grating, where �λ/λ = �n̄/n̄g , in a grating assisted
codirectional coupler filter the tuning is enhanced, such that

�λ

λ
= �n̄

n̄g1 − n̄g2
= F

�n̄

n̄g1
, (6.92)

where the tuning enhancement factor is given by

F = n̄g1/(n̄g1 − n̄g2).

Also, this tuning enhancement is accompanied by a similar increase in the filter’s
FWHM optical bandwidth, �λ1/2. For a uniform interaction region of length LC ,



6.4 COUPLED-MODE THEORY: TWO-MODE COUPLING 375

z

z = 0 

e(0)

FIGURE 6.21: Illustration of waveguide excitation with some arbitrary field at z = 0. This
can be expressed in terms of a linear superposition of all the eigenmodes of the waveguide
(including radiation modes).

this bandwidth, as outlined in Fig. 6.21, is given by

�λ1/2 = 0.8
F

n̄g1Lc
λ2. (6.93)

Thus, for a reasonably narrow bandwidth filter, F cannot be too large. This implies
that the effective index difference between the two coupled modes must be rela-
tively large. The tuning enhancement effect has been used for implementation of
widely tunable lasers, as will be discussed in Chapter 8.

Example 6.8 A grating-assisted codirectional coupler is fabricated using a
0.1 μm-thick bottom waveguide, separated by 0.3 μm from the top waveguide,
whose thickness changes from 0.28 to 0.32 μm periodically. The waveguides are
clad with InP, and their core indices are ngd = 3.4 μm. The peak filter wavelegth
is 1.55 μm, and the relative group effective index dispersion is �ng/�n = 3. The
average effective index of the top waveguide is nt = 3.247, and of the bottom
waveguide is nb = 3.184.

Problem: (a) What is the necessary grating period for coherent coupling? (b)
What is the coupler’s optical bandwidth for the coupler length of Lc = 243 μm?

Solution: (a) From the definition of the grating period, Eq. (6.68),

� = λ

nt − nb
= 1.55 μm

3.247 − 3.184
= 24.3 μm.

(b) To determine the coupler’s bandwidth, we use Figure 6.20. From there, we
conclude that the value for δLc = ±1.25 at half maximum of the power transfer
curve, which corresponds to the filter bandwidth. From the definition of detuning,
Eq. (6.90), and substituting �λ/λ = (ω − ω0)/ω0, we have

�λ

λ
= δLc

Lc

�

π

�n

ng
= 2.5

243 μm

24.3 μm

π

1

3
= 0.0265.
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Finally, the coupler’s bandwidth is

�λ = 1.55 · 26.5 nm = 41 nm.

6.5 MODAL EXCITATION

In the process of interconnecting various optical waveguide components together,
we must constantly deal with the problem of determining how much power
is transmitted and reflected at the junctions. To derive general expressions for
this problem we return to the normal mode expansion, Eq. (6.3), which allows
us to express an arbitrary excitation field, EEEE e , in terms of a superposition of
the eigenmodes, EEEE m , of the new waveguide section being excited. Figure 6.21
illustrates the problem schematically. For this exercise it is convenient to work in
terms of the normalized amplitudes, since their magnitude squared gives the power
flow independent of the impedance of the medium. Thus, we express eigenmode
m of the waveguide to be excited as

EEEE m = E0mUm(x , y)e−jβm z =
√

2ηmamUm , (6.94)

from which the power flow in the positive z -direction is given by

Pzm = |am |2 =
∫

EEEE ∗
m · EEEE m

2ηm
dA, (6.95)

provided the transverse mode function Um is properly normalized according
to Eq. (6.2).

According to Fig. 6.21, we assume the given arbitrary field is incident on our
waveguide at z = 0. Using Eq. (6.3) then,

EEEE e(0) =
∑

m

EEEE m(0) =
∑

m

√
2ηmam(0)Um . (6.96)

Now, we dot multiply by U∗
l and integrate over the cross section. That is,

∫
U∗

l · EEEE e(0) dA =
∫ ∑

m

√
2ηmam(0)U∗

l · Um dA. (6.97)

Next, we recognize that all terms in the summation except the l th term are zero and
solve for the desired eigenmode amplitude at the entrance to our waveguide, al (0).

al (0) = 1√
2ηl

∫
U∗

l · EEEE e(0) dA. (6.98)

We can apply Eq. (6.98) for whatever eigenmode number, l , we desire. Fortu-
nately, we only need to know the transverse mode function of the mode(s) in
which we are interested.
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FIGURE 6.22: Illustration of butt-coupling between two waveguides and the excitation of
the fundamental eigenmode of the right-hand guide by the left-hand guide.

To illustrate how to use Eq. (6.98) consider the common situation shown in
Fig. 6.22, which depicts the joining of two dissimilar waveguides. As shown, power
Pz1 is incident from guide 1, and some fraction Pz2 is transferred to the fundamental
mode of guide 2. Other modes may also be excited, but we are not interested in
them initially. (If the guide only supports a single guided mode, then the other
modes of the summation are radiation modes, and these would generally be of
little interest some distance away.)

The most difficult problem in this and many similar problems is to determine the
excitation field on the right side of the boundary (region 2). Once it is determined,
we can just plug into Eq. (6.98) for the desired a20. Unfortunately, it is a rather
complex problem to determine EEEE e(0) rigorously. Fortunately, for weak dielectric
waveguides, it has been found that the field on the right side of the boundary
is similar in shape to that on the left, but it is reduced in amplitude by some
transmission coefficient. Also, in this case the transmission coefficient can be well
approximated by using the waveguide effective indices in a plane wave formula.
Taking all of this on faith, then,

Pz2(0
+) ≈ Pz1(0

−)t2, (6.99)

where

t2 ≈ 4n̄1n̄2

(n̄1 + n̄2)2
. (6.100)

Thus,

EEEE e(0
+) ≈

√
2η′

2ta10(0
−)U10, (6.101)

where η′
2 is some effective impedance for the excitation field in region 2. It would

be some weighted average of the impedances of the modes to be excited. Applying
Eq. (6.98), we find

P20(0+)

P10(0−)
=

∣∣∣∣a20(0+)

a10(0−)

∣∣∣∣
2

=
∣∣∣∣t

∫
U∗

20 · U10 dA

∣∣∣∣
2

, (6.102)
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where we have neglected the difference between η20 and η′
2, which is a good

assumption if most of the energy goes into mode 0 or if the impedances of the
primary modes excited are not so different. More generally, we could solve for
P20/P1m to obtain the excitation of the mth mode.

6.6 TWO MODE INTERFERENCE AND MULTIMODE INTERFERENCE

The directional coupler, which we have solved exactly earlier in this chapter, can
also be viewed as a five-layer waveguide. As indicated in Fig. 6.23, the first even
and odd eigenmodes of the five-layer region can be superimposed to approximate
the eigenmode of the individual three-layer guide, which excites the coupled region.
The phase velocities of the odd and even five-layer eigenmodes are different, so that
after some propagation distance, Lc , their superposition can result in most of the
energy being aligned with the second high-index region, which in turn, can excite
the second exit guide. Thus, most of the problem reduces to calculating the exci-
tation of the different sets of eigenmodes at the boundaries between the uncoupled
and coupled regions. Section 14.4 can be used to address this issue.

The concept of mode interference can be expanded even further, by replacing a
five-layer waveguide with a single multimode waveguide, which is being excited by
an input waveguide, as shown in Fig. 6.24. In this case, the input field will excite
multimode waveguide’s modes, all with different phase velocities. After certain
propagation distance, their superposition will result in single, or multiple, regular or
inverted interference images of the input field, as illustrated in Fig. 6.24. The prop-
agation distance will depend on whether all or some of the modes in the multimode
waveguide have been excited, corresponding to general or restricted interference,
respectively. Restricted interference produces multiple images at shorter distances
compared to the general interference case. Details about multimode interference
(MMI) and different types of effects are discussed in Appendix 15. Here, we focus
on the main results and their applications to photonic ICs.

FIGURE 6.23: Directional coupler viewed in terms of the modal interference model. Input
excites superposition of first even (solid) and odd (dotted) eigenmodes of the five-layer
system. Over the coupling length the even mode travels some number of guided wavelengths,
but the high-phase-velocity odd mode travels half a wavelength less.
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FIGURE 6.24: A schematic of a multimode waveguide, and its imaging properties—single
and multiple images of the input field are reconstructed at various points.
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FIGURE 6.25: Calculated total electric field in a multimode waveguide, illustrating the
general interference effect. Based on the final waveguide length chosen, a 1 × N or 2 × N
splitter, 2 × N coupler, or a 1 × 1 image reverser can be implemented.

One of the main applications of the multimode interference is for generation
of multiple images of the input field. Multiple images are required for various
photonic integrated circuits, such as interferometric modulators, power splitters
and combiners. Of those, the most common are 1 × 2 and 2 × 2 light splitters
and couplers. Recently, 2 × 4 MMI structures have also gained popularity as a
way to realize optical hybrids used in coherent optical communications systems,
discussed in Chapter 8. MMI structures are attractive and widely used due to their
low inherent losses, large optical bandwidths, low polarization dependence, and
simple fabrication, since MMI coupler properties, unlike directional couplers, do
not depend on the reproducibility of submicrons gaps between waveguides [3].
MMI resolution depends on the number of modes supported, which depends on
the waveguide width. At the same time, in Appendix 15 we have shown that the
optimum MMI length depends from the MMI width squared, so it is clear that
careful tradeoffs need to be made for loss and resolution.

In general, 1 × N and N × N passive light splitters and couplers can be real-
ized using the multimode interference effects; however, it is not possible to achieve
arbitrary splitting ratios between different output waveguides using purely passive
MMIs, in contrast to the directional couplers. The splitting ratio of the MMI cou-
plers can be tuned through current injection induced refractive index change [4].

The most common implementation of an MMI splitter is a 1 × 2 symmetric
interference based splitter. As explained in Appendix 15, for this component, the
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FIGURE 6.26: Response of a 1 × 2 splitter based on symmetric interference. Note the opti-
mum length of this component, compared to the 1 × 2 splitter based on general interference
case. The field response has been calculated and superimposed on the waveguide structure.

input waveguide is located at the center of the multimode waveguide, thus exciting
only its even modes, and the 2-fold images are obtained at multimode waveguide
distances of

L = p

2

(
Lsi

8

)
, (6.103)

where p is an integer, and Lsi � 8nl d2
eff

λ0
is the beat length between the lateral

plane wave in the structure, and the first guided mode of the MMI, as defined
in Appendix 15. The output waveguides need to be located symmetrically along
the x -axis, with equal spacings of deff /N starting from the bottom of the multimode
waveguide. The effective width of the waveguide was defined by Eq. (6.55).

To obtain a 2 × 2 light coupler using general interference, per Appendix 15, the
multimode waveguide distance needs to be

L = 2p + 1

4
Lsi , (6.104)

and the output waveguide positions need to be positive and negative x position of
the input waveguide, symmetric to the center of the MMI coupler.

With all MMI components, the practical limits in device implementation come
from: the access waveguide width, which determines the minimum MMI width
and; the component maximum length, since scattering losses will affect imaging
resolution of the MMI components.

Example 6.9 Using a waveguide layer whose transverse effective index is nl =
3.185, and which is clad by InP, we need to design a general interference based
MMI 2 × 2 coupler operating at 1.55 μm. The MMI waveguide width is d = 9 μm,
and the input/output access waveguide widths are 3 μm.

Problem: What is the optimum length of this MMI coupler?

Solution: From Table 6.1, the shortest general interference coupler that can be
made has a length of L = 1

4 Lsi , where Lsi = 2π
(k0nl −β0)

, as defined in Eq. (A15.4).



6.7 STAR COUPLERS 381

Using the material from Appendix 3, we can simply calculate the propagation
constant for the fundamental mode of this MMI coupler,

V = k0d
√

n2
gd − n2

InP = 2π

1.55
9
√

3.1852 − 3.172 = 11.26

and

b = 1 − ln(1 + V 2

2 )

V 2

2

= 1 − ln(1 + 11.262

2 )

11.262

2

= 0.934.

Now, we can calculate the effective index, similarly to Example 6.5,

n0 =
√

b(n2
gd − n2

InP ) + n2
InP =

√
0.934(3.1852 − 3.172) + 3.172 = 3.184.

Now, Lsi = λ
(n̄l −n̄0)

= 1550 μm, and L = 1
4 Lsi = 387.5 μm.

6.7 STAR COUPLERS

Star couplers are passive optical components that allow for the light from N input
waveguides to be coupled to M output waveguides. This function is of interest in a
number of applications involving photonic integrated circuits, such as novel diode
laser implementations, laser array implementations, advanced integrated receiver
designs, as well as arrayed waveguide grating based devices, which will be covered
in the following section. The main difference between star couplers and MMI
couplers, discussed in the previous section, is that star couplers rely purely on
difraction of input light, whereas MMI components rely on beating of modes to
form appropriate output images.

A schematic of the most common implementation of a waveguide star coupler is
shown in Fig. 6.27. The power transfer between the input and output waveguides
takes place in a free space region, a slab waveguide, which is placed between
the two strips of input and output waveguides. Power from each of the input

TABLE 6.1: Summary of Properties of the General and Restricted (Paired and Sym-
metric) Interference Components

Interference Mechanism General Symmetric

Inputs × Outputs N × N 1 × N
First single image distance Lsi /2 Lsi /8
First N-fold image distance Lsi /2N Lsi /8N
Excitation restrictions none no excitation of modes 1, 3, 5, . . .
Input position(s) any x = 0
Output positions same as inputs at each deff /N from the MMI edge
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FIGURE 6.27: Illustration of a star coupler. (© IEE [5].)

waveguides is radiated in the free space region, and it is in part intercepted by
the output waveguide array, and in part lost. The main causes for inherent losses
of this scheme are in the finite output waveguide separation, leading to part of
the light not being coupled, as well as in finite output imaging plane, causing
part of the difracted light to be clipped, and thus lost. The input and the output
waveguide arrays are located on two circles, which pass through the centers of
each other. The key when designing a star coupler is to maximize the coupling
efficiency for the output waveguides [5]. In addition, variable width output waveg-
uides can be used to maintain the constant power splitting ratio between different
output waveguides [6]. A useful method for analyzing the star coupler operation
is through Gaussian approximation of the waveguide fields in input and output
waveguides.

6.8 PHOTONIC MULTIPLEXERS, DEMULTIPLEXERS AND ROUTERS

Realization of photonic multiplexing, demultiplexing and wavelength routing func-
tions is of interest for complex photonic ICs, such are wavelength division mul-
tiplexed (WDM) transmitters and receivers, or WDM wavelength selective lasers.
In this section, we will introduce the key chip-scale de/multiplexing components,
which utilize either waveguide, or etched difraction gratings. Their applications
will be discussed in Chapter 8.
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6.8.1 Arrayed Waveguide Grating De/Multiplexers and Routers

Arrayed waveguide grating (AWG) passive optical waveguide devices are the
most widely deployed de/multiplexing devices in modern optical communication
systems. Within the scope of our discussion, focusing on active, complex pho-
tonic ICs, AWGs can be used as building blocks to realize optical, chip-scale
multiplexer, demultiplexer, cross-connect and router functions, as well as different
digitally tunable diode laser cavities—all discussed in Chapter 8.

An AWG functions similar to an optical prism, by imaging the input optical field
onto different spatial output locations based on the wavelength of the incoming
light. Generally, an array of output waveguides is placed at desired locations on
the output imaging plane in order to capture the imaged light. A 1 × 4 AWG
demultiplexer is illustrated in Figure 6.28.
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FIGURE 6.28: Illustration of an arrayed waveguide grating demultiplexer, per [7], indicating
key device components and design parameters, such as the arrayed waveguide spacing da ,
and the output waveguide spacing dr . Free propagation regions (FPR in the figure) are
synonimous for star couplers. (© IEEE 1996, [7].)
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AWGs consist of three main functional elements: two star couplers and a set of
interconnecting arrayed waveguides, whose optical lengths, given by the product
of their effective indices n̄wgd and physical lengths, vary by a constant m num-
ber of wavelengths of light at a central wavelength λc from one waveguide to
another,

n̄wgd · �L = m · λc . (6.105)

�L is the difference in physical lengths of adjacent waveguides in the array, which
introduces a fixed optical phase difference of ��. The star couplers are generally
based on the Rowland circle construction, where the radius of curvature of
the input and output waveguide planes is one half of the radius of inner waveguide
array planes. This arrangement ensures that the output light is focused along the
circular output interface with the change in wavelength of the input signal.

In terms of device principle of operation, the light from the input waveguide
radiates into the first star coupler slab waveguide and excites the modes of the
arrayed waveguides at the star coupler output. After traveling through the arrayed
waveguides, the light from the waveguides is difracted into the output star slab
waveguide, where it constructively converges in one focal point at the output
of the star coupler. This is accomplished because the path length difference
between the arrayed waveguides results in a relative phase delay �� in each
waveguide, which changes with wavelength. This results in a rotation of the field
phase front in the second slab and a translation of the location of the focal point
as a function of the wavelength. The amount of dispersion and shift of the focal
point as a function of wavelength is one of the design parameters for an AWG.

Based on the classic diffraction theory, and treating the phased array as a number
of diffraction slits, we can derive the arrayed waveguide grating equation. For a
signal entering the first star coupler under an angle φ relative to the center line, the
relative phase difference between the signal paths inside the star coupler that land
to two adjacent array waveguide openings will be given by n̄FPR · da · sin φ, where
n̄FPR is the transverse effective index of the star coupler slab, and da is the center-to-
center spacing between the array waveguides, as illustrated in Fig. 6.28. Additional
phased delays between these two paths will be introduced due to the physical length
differences in the adjacent array waveguides, as well as due to the position of the
output waveguide, at an angle θ relative to the centerline of the output star coupler.
The Bragg’s law for this type of diffraction grating is then given by

n̄FPR · da · sin φ + n̄wgd�L + n̄FPR · da · sin θ = m · λ. (6.106)

Differentiating Eq. (6.106) with respect to the wavelength λ, keeping in mind
that for realistic cases angle θ is small, and for simplicity, assuming that φ = 0,
we can obtain the expression for angular dispersion of an AWG(R) as

dθ

dλ
= �L · n̄g

λc · n̄FPR · da
, (6.107)



6.8 PHOTONIC MULTIPLEXERS, DEMULTIPLEXERS AND ROUTERS 385

where n̄g is the group index of the array waveguide. By defining the output waveg-
uide separation in the focal plane as ds = Ra · dθ , the dispersion of the focal point
position along the output imaging plane, s , with respect to wavelength λ is given by

ds

dλ
= �L · n̄g · Ra

λc · n̄FPR · da
. (6.108)

This important expression, relating the star coupler size, array waveguide spacing,
and �L is key for design of AWG components, and its use will be illustrated later
in this section.

In a configuration where we have an equal number of input and output waveg-
uides, with proper selection of device parameters and dimensions, it is possible to
realize a full optical router. In it, input light from any of the input waveguides can
be imaged to any of the output waveguides, through control of the wavelength of
light in input waveguides, and this particular device is called an arrayed waveg-
uide grating router (AWGR). It is important to note that the responses of both an
AWG and an AWGR are periodic, since for every change in relative optical phase
difference �� of 2π , the optical image occurs in the same physical position. The
wavelength change that corresponds to the relative optical phase change of 2π

determines the free spectral range (FSR) of an AWG. For an AWGR, �L and FSR
can be related from the fact that FSR represents a frequency shift for which the
phase shift in the array �� = 2π . From here, we have

FSR = c

n̄wgd�L
. (6.109)

Arrayed waveguide grating devices have many degrees of freedom in their geo-
metric parameter selection, and various design strategies are possible. Here, we
outline a strategy developed by M. K. Smit [7]. This design strategy consists of:
selecting the center wavelength of operation λc ; the optical channel spacing �λ,
which will determine the required change of wavelength (dispersion) to steer the
output light beam to one of the adjacent output waveguides; and the total number of
channels Nch , based on the required device function, which determines the number
of input and output waveguides. Per example, a four-channel demultiplexer would
require Nch = 4.

Many important device physical features, such as the access and arrayed waveg-
uide widths and their minimum separation, will be dictated by the maximum
resolution of the device fabrication process. The arrayed waveguide spacing da

should be as low as possible, since any light not coupled into the array will con-
tribute to the device insertion losses. The output waveguide spacing, dr in Figure
6.28, will directly impact the crosstalk of the AWG, since the output image at a
given spatial location will have exponential tails that can couple into the adjacent
output waveguides, depeding on the distance. Note that this spacing is defined
in s coordinate, along the focal line of the output plane. The lower bound of this
parameter can be determined, based on the desired crosstalk and receiver waveguide
architecture, using the normalized crosstalk plot in Figure 6.28.
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The value of key free design parameters, the length of the star coupler, Ra , and
the number of array waveguides, Na , depends on the maximum tolerable output
power nonuniformity between different output waveguides, on the maximum apper-
turing crosstalk, and on the maximum acceptable losses in going through the star
coupler. To gain an understanding of the key relationships between these differ-
ent geometric and performance parameters, we approximate the input and arrayed
waveguide fields as Gaussian, and then apply the known relations for Gaussian
far-field to our problem.

As the input light is radiated freely into the star coupler, the size of the phased
array needs to be determined based on the input beam diffraction over the length
of the star coupler. The angular size of a Gaussian far-field �0 emmitted from a
waveguide is given by,

�0 ≈ λc

n̄starwinput
(
0.5 + 1

V −0.6

) , (6.110)

where in the case of AWG/AWGR, winput is the input waveguide width, and V is
its normalized V parameter, introduced in Appendix 3. The intensity of the far-field
is the given by

I (�) = I0e
−2�2

�2
0 . (6.111)

As the intensity from the individual waveguides will reduce by moving away
from the central plane, so will their sum, which produces the focal field at an
AWG output. Therefore, changing the wavelength in the input waveguide will
cause the intensity of the output field to change as it physically moves along the
output plane, following an intensity envelope set by the Gaussian individual array
waveguides’ far-field distribution. If we define the nonuniformity of the output
power as the ratio (in decibels) between the intensities of the central and the outer
channel, we have that

Lu = −10 · log(e
2�2

max
�2

0 ) � 8.7 · �2
max

�2
0

, (6.112)

where �max is the angular position of the outermost output waveguide, relative to
the centerline. By setting the maximum acceptable nonuniformity, we can calculate
the maximum dispersion angle. For a router, since the free spectral range is
determined by the number of channels and channel spacing, Lu ≈ 3 dB. Realizing,
from Figure 6.28 that �max = s/Ra , the star coupler’s length will given by

Ra = (Nch − 1) · dr

2�max
, (6.113)

where we have used the knowledge of output waveguide spacing and the number
of channels to compute the maximum value for the s coordinate.
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The finite apperture (star coupler size) will cause part of the input field intensity
to be lost and the sidelobes of the output far field to increase, due to the input
field truncation. Therefore, the maximum aperture size, �a , needs to be detemined
based on the crosstalk and loss specification, using Figure 6.28 (b) adapted for a
particular waveguide platform used. To capture most of the light, the aperture of
the input waveguide needs to be taken as approximately �a = 3 · �0. The num-
ber of arrayed waveguides will also uniquely be determined by the choice of the
aperture size. The number of the waveguides in the array that are required is then
given by

Na = 2�aRa

da
+ 1. (6.114)

Finally, the length difference between the adjacent array waveguides can be
determined from the AWG diffraction Eq. (6.108), since the output waveguide spac-
ing dr and the frequency channel spacing �fch determine the amount of dispersion
ds/dλ = dr/�fch ,

�L = dr · fc · n̄w · da

�fch · n̄FPR · Ra
. (6.115)

To be exact, the value obtained from this expression should be compared with the
value obtained from Eq. (6.105), and the value for the receiver spacing dr can be
adjusted up to exactly meet the phase relationship (and thus have m be an integer).

A number of modifications to this basic design procedure can be made to achieve
polarization independent operation, and a more flattened passband response. Inter-
ested readers are referred to [7] for details.

The key limitation in terms of an AWG performance comes from the introduction
of random phase errors inside the arrayed waveguide grating during fabrication. In
optimized device designs, these phase errors will impact the purity of the spectral
response and define the minimum crosstalk between different channels. In planar
lightwave circuits, phase errors can be corrected after fabrication through individual
waveguide trimming; however, this type of procedure is not practical in active
devices that utilize AWGs.

With all these parameters defined, the design problem is reduced to geometric
layout of the AWG component, and a number of different layout architectures have
been implemented [7], [8]. Due to a large number of wave guides involved, and the
sensitivity of device performance on layout, automated layout tools are generally
needed for lithographic mask design.

Example 6.10 A 1x8 arrayed waveguide grating–based demultiplexer needs to be
designed in Indium Phosphide, to operate with the central wavelength of 1550 nm.
The optical channels that need to be multiplexed are spaced by 100 GHz. The
waveguide structure used is a burried ridge, having a 300 nm quarternary InGaAsP
core burried in InP, with transverse effective index of n̄tc = 3.2477 in the center
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of the waveguide, and n̄tl = 3.2146 in the lateral slices. Arrayed waveguides are
assumed to be 2 μm wide, with the effective index of 3.2381. Input and output
waveguides are 3 μm wide, with the effective index of 3.2421. Assume that the
best lithographic resolution that can be achieved repeatably is 0.7 μm.

Problem: Determine the dimensions of the star coupler, arrayed waveguide length
difference �L and the required number of waveguides in the array, Na .

Solution: Since the loss of the multiplexer will directly depend on the spacing of
the arrayed waveguides, this spacing should be chosen to be as low as possible. With
our limitations of 0.7 μm resolution, we have that da = 0.7 μm + 2 μm = 2.7 μm.

Next, we need to determine the receiver waveguide spacing, from the maximum
crosstalk level specification, in Figure 6.28. The normalized frequency V for the
receiver waveguide can be calculated using parameters from Example 1.1,

V = k0d
(
n̄2

tc − n̄2
tl

) 1
2 = 2π

1.55 μm
3 μm

(
3.24772 − 3.21462) 1

2 = 5.6

For the crosstalk level of −40 dB, based on Figure 6.28, the ratio of the receiver
spacing to waveguide width needs to be dr/w ≈ 1.8. From here, we get the mini-
mum receiver spacing as dr = 3 · 1.8 = 5.4 μm.

Next, we need to calculate the Rowland circle radius and the number of arrayed
waveguides. The angular size of the input beam is, per Eq. (6.110),

�0 = λc

n̄tcwinput
(
0.5 + 1

V −0.6

)√
2π

= 1.55 μm

3.2477 · 3 μm · (0.5 + 0.20)
√

2π
= 0.090 rad.

Using Eq. (6.112), we can determine the maximum dispersion angle assuming that
we can tolerate 3 dB nonuniformity,

�max =
√

Lu · �2
0

8.7
=

√
3 · 0.0902

8.7
= 0.053 rad.

Now, we can calculate the radius of the Rowland circle using Eq. (6.113),

Ra = (Nch − 1) · dr

2 · �max
= 7 · 5.4 μm

2 · 0.053
= 357.95 μm.

The length difference between the waveguides, �L, can be calculated using the
expression 6.115,

�L = dr · fc · n̄w · da

�fch · n̄tc · Ra
= 5.4 μm · 193548.387 GHz 3.2381 · 2.7

100 GHz 3.2477 · 357.95 μm
= 78.60 μm.
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Finally, we can calculate the number of arrayed waveguides, given by the
Eq. (6.114),

Na = 2 · 3�0Ra

da
+ 1 = 2 · 3 · 0.090 · 357.95

2.7
+ 1 = 72.6.

Therefore, 73 waveguides can be chosen.

6.8.2 Echelle Grating based De/Multiplexers and Routers

In the case of an AWG-based device, the functions of optical field radiation and
phase control and reconstruction are performed by three separate funtional ele-
ments: the input star coupler, the arrayed waveguides and the output star coupler.
One way to reduce the footprint of the multiplexer/demultiplexer function would
be to replace the arrayed waveguide grating with a real diffraction step Echelle
grating. In this structure, the single star coupler in a Rowland circle configuration
becomes both the diffracting and the focusing element. This is illustrated in Figure
6.29, where an Indium Phosphide demultiplexer based on a curved grating (CG)
on a Rowland circle is shown. The light from the input waveguide difracts into
the slab region, and it reflects from the grating teeth, which introduce appropriate
phase shift to refocus it onto an output waveguide, which is also located along the

IN

OUT

Echelle grating

(b)

(a )

FIGURE 6.29: (a) A photograph of a waveguide Rowland circle (RC) grating demulti-
plexer. The device contains a curved grating (CG) of the Echelle type, and a polarization
compensator (PC) birefringent waveguide. Reprinted with permission from ETRI Journal,
[9] (b) Schematic illustrating the operation of this demultiplexer. This device represents a
“folded” AWG, where the phase difference in the diffraction equation is introduced by the
curved grating and the relative positions of the input and output waveguides.
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Rowland circle. This particular device implementation also has a polarization com-
pensation region, consisting of a birefringent waveguide, to achieve polarization
independent operation. The number of grating teeth is generally a lot bigger than
the number of arrayed waveguides in an AWG, thus increasing the finesse of the
grating. The teeth are realized using high contrast interfaces. Application of this
demux design to tunable lasers will be discussed in Chapter 8.

6.9 CONCLUSIONS

In this chapter we have introduced perturbation and coupled-mode techniques to
obtain closed-form analytic solutions to relatively complex problems. These prob-
lems are limited only by the requirement that the dielectric perturbation, which
creates a change in propagation constant and/or coupling between different modes,
is small. Thus, the techniques are very powerful in analyzing many important
practical problems. Even in cases where the perturbations are sizable, the tech-
niques are still useful in obtaining approximate results as well as in determining
the dependencies on the various parameters of the problem.

For larger perturbations, where the validity of the perturbation and coupled-mode
approaches are not good, it is generally necessary to attack the entire problem, usu-
ally using some numerical technique. In many cases, however, exact solutions are
possible using purely analytical techniques. For example, the case of the quantum
well placed within a separate-confinement waveguide discussed above, is really a
five-layer waveguide problem, for which analytic solutions exist. In fact, using the
techniques to be introduced in the next chapter, waveguides of many layers can be
analyzed.

In addition, we have dealt with multimode interference, a generalization of the
two mode interference problem, which allows for creation of passive optical light
splitters and couplers, of interest in photonic integrated circuits. Finally, we exam-
ined more passive waveguide-based components, star couplers, arrayed waveguide
and Echelle gratings, from the aspect of their use in diode lasers and active
PICs.
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PROBLEMS

1. A symmetric graded-index slab waveguide has a Gaussian transverse mode
and an effective index of 3.5. Half of its energy is contained in the central
300 nm of the guide at 1.55 μm.

(a) What is �β, if a 150-nm-wide region from the center to one side of the
mode is changed so that the index changes by 0.02?

(b) If the changed region of (a) is only inserted periodically along the waveg-
uide length with a period of λ/2n and a 50% duty cycle, what is κ for the
resulting grating?

(c) How long must the periodically perturbed waveguide section be for a power
reflection coefficient of 0.5?

2. Derive an expression for the effective reflection plane separation from a grat-
ing’s start, Leff , using coupled-mode analysis.

3. Using the coupled-mode analysis, show that Leff is also related to the energy
decay length Lp in a long grating.

4. Using coupled-mode theory for the grating mirror, derive and plot the threshold
modal gain versus the detuning parameter, δ, for a DBR laser that has one
cleaved and one grating mirror. The grating mirror also is terminated in a
cleave with a relative reflection phase of φ. Assume λ = 1.55 μm, no passive
cavity section, an active length of approximately 250 μm, an internal loss
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of 15 cm−1 throughout, a grating κ = 50 cm−1, and that a mode is aligned
with the mirror Bragg condition at a wavelength 1.55 μm. Plot curves for
φ = 0, 90◦, and 180◦ with grating κLg of both 0.5 and 1.

5. Show how a small propagation loss modifies the grating reflection and trans-
mission coefficients. Express the results as the lossless expressions times mul-
tiplicative factors.

6. Give an expression for the threshold condition (characteristic equation) for a
quarter-wave-shifted DFB laser using coupled-mode results. Neglect any facet
reflections.

7. From the coupled-mode characteristic equation of a standard DFB laser with
no facet reflections, calculate for the first two modes the threshold modal gain
〈g〉xy and deviation from the Bragg condition, δL, for

(a) A 1.55 μm InGaAsP/InP DH laser with a κL = 1 and a length L = 400 μm.

(b) An analogous quarter-wave-shifted DFB, as considered in Problem 6.6,
with the same grating and overall length.
Assume the internal modal loss is 20 cm−1. Give the MSR for cases (a) and
(b). Assume ηr = 1, βsp = 10−4, and I = 2Ith .

8. For a passive grating section formed of 1.3 μm bandgap waveguide material
clad by InP with a symmetric triangular grating formed on one side of the
1.3 μm material so that the waveguide’s width varies from 200 nm to 210 nm,
calculate its coupling constant κ using coupled-mode analysis.

9. Use Eq. (6.60) to determine the normalized threshold modal gain, (gth −
αi )Lg , and wavelength deviation from the Bragg condition, δLg , for DFB lasers
with facet reflections. Plot both values versus the phase of facet reflection #2,
φ2, for κLg = 1 and mirror reflection values of

(a) r1 = 0 and |r2| = 0.566,

(b) r1 = 0.566 and |r2| = 0.566, and

(c) r1 = 0.566ejπ/2 and |r2| = 0.566.
If necessary, assume αi = 15 cm−1, Lg = 300 μm, and λ = 1.55 μm. Use
the analytic equations of this chapter.

10. Two identical 3-μm-wide channel waveguides with center indexes 0.04 higher
than the surrounding cladding material (n = 3.5) are formed with their center
axes 20 μm apart. The lateral confinement factors are 40%. It is found that
the lateral field of the first guide has decayed to 10% of its peak value at the
center of the second guide.

(a) What is κ21 = κ12? Approximate integrals, do not calculate exact mode
shapes.

(b) What is the coupling length for 100% energy transfer?

11. One of the waveguides from Examples 6.4 and 6.5 is replaced by a thicker one,
such that its effective index is higher and such that an axial periodic variation of
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its thickness is required for coherent coupling. A rectangular grating of height
0.04 μm is used to provide a thickness that changes from 0.28 to 0.32 μm
periodically. Assume a peak filter wavelength of 1.55 μm, and a relative group
effective index dispersion of �n̄g/�n̄ = 3.

(a) What is the confinement factor and the effective index of this new guide,
neglecting any interactions with the other waveguide?

(b) What is the necessary grating period for coherent coupling?

12. For the structure from the previous example,

(a) What is the grating assisted codirectional coupler optical bandwidth in
nanometers?

(b) If the index of the slab region of the thick guide is now decreased by
�n = 0.01, by how much is the peak filter wavelength shifted?

(c) What are κ12 and κ21 and the coupling length?

13. What is the 3 dB bandwidth of a directional-coupler filter formed by different
width and different index difference guides on InP such that the effective
indexes of both are 3.5 at 1.55 μm, but at 1.50 μm the effective indexes
of the two guides are 3.51 and 3.52, respectively? At 1.55 μm, κ21 ≈ κ12 =
0.01 μm−1.

14. Two three-layer slab waveguides formed of 1.3 μm bandgap InGaAsP/InP are
butt-coupled together such that their center axes are aligned. The left guide is
200 nm thick and the right guide is 400 nm thick. Calculate the power loss in
coupling across the boundary for the fundamental transverse modes at 1.55 μm.
Do the calculation twice, once for coupling left-to-right and once for coupling
right-to-left.

15. Determine the length of a symmetric interference 1x2 MMI splitter operating at
1.55 μm, whose multimode waveguide width is 12 μm. The waveguide index
is 3.185, and the device is clad with InP.

16. A 1 × 16 arrayed waveguide grating based demultiplexer needs to be designed
in Indium Phosphide, to operate with the central wavelength of 1550 nm. The
optical channels that need to be multiplexed are spaced by 100 GHz. The
waveguide structure used is a burried ridge, having a 300 nm quarternary
InGaAsP core burried in InP, with transverse effective index of n̄tc = 3.2477
in the center of the waveguide, and n̄tl = 3.2146 in lateral slices. Arrayed
waveguides are assumed to be 2.2 μm wide, with the effective index of 3.2381,
and input and output waveguides that are 3 μm wide, with the effective index
of 3.2421. Assume that the best lithographic resolution that can be achieved
repeatably is 0.5 μm.

(a) Determine the dimensions of the Star Coupler.

(b) Determine the arrayed waveguide length difference �L.

(c) Determine the required number of waveguides in the array Na .



CHAPTER SEVEN

Dielectric Waveguides

7.1 INTRODUCTION

Thus far, we have managed to introduce quite a bit of material that made use of the
transverse mode function, U , of some dielectric waveguide without knowing much
about its actual form, aside from the brief introduction in Appendix 3. We have
chosen this approach in part to emphasize that for many cases one does not need
to know the details of all the possible transverse modes that might be supported by
some dielectric layer structure. The primary reason has been to maintain a focus on
the active device theme of this text and avoid distractions. In fact, we still do not
intend to give an extremely detailed treatment of dielectric waveguides because that
lies outside the theme of this text. Rather, we wish to introduce several different
approaches to solving dielectric waveguide problems to both complement the field
theory approach in Appendix 3 as well as provide the student with a broader,
and perhaps more intuitive, understanding of the nature of waveguiding in these
structures.

We begin by reviewing the reflection of plane waves that are incident at an
arbitrary angle from a plane dielectric interface as illustrated in Fig. 7.1. The
boundary conditions lead to general expressions for the reflection coefficients of
both TE and TM polarizations. If the medium containing the incident plane wave
has a higher index of refraction than that beyond the boundary, then we find that
total internal reflection is possible. On the incident side of the dielectric boundary,
the incident and reflected plane waves create a standing wave with a standing wave-
ratio that becomes infinite for incident angles beyond the critical angle. Also, in this
case we find that although the reflection coefficient is positive real (has a reflection
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FIGURE 7.1: Illustration of a plane wave incident on a planar boundary. Angle of incidence
is less than the critical angle.

phase of 0◦) for incident angles smaller than the critical angle, it becomes complex
beyond this angle (i.e., has a nonzero reflection phase as well as unity magnitude).
Thus, for angles less than the critical angle, a standing wave maximum occurs at
the boundary, but for incident angles beyond the critical angle the standing wave
maximum moves back from the boundary. In what follows, we quantify the above
observations.

7.2 PLANE WAVES INCIDENT ON A PLANAR DIELECTRIC BOUNDARY

Referring to the nomenclature introduced in Fig. 7.1 and earlier in Chapter 2 and
Appendix 3, we express the incident, reflected, and transmitted fields for the TE
and TM cases as follows:
TE

EEEE i (x , z ) = Ei (0, z )êy ejkix x e−jkz z

EEEE r (x , z ) = Er (0, z )êy e−jkix x e−jkz z (7.1)

EEEE t (x , z ) = Et (0, z )êy ejktx x e−jkz z

TM

HHHH i (x , z ) = Hi (0, z )êy ejkix x e−jkz z

HHHH r (x , z ) = Hr (0, z )êy e−jkix x e−jkz z (7.2)

HHHH t (x , z ) = Ht (0, z )êy ejktx x e−jkz z
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Because the tangential electric fields, EEEE , and magnetic fields, HHHH , must be equal at
x = 0, we have already used the fact that kiz = krz = ktz = β. Also, from this we
have that θr = θi , and Snell’s law, ki sin θi = kt sin θt . As always the propagation
vector components are related by k2

ix + k2
iz = k2

i = k2
1 = k2

0 n2
1 = k2

0 ε1, etc.
In any medium, the magnetic field of a plane wave is related to the electric

field by Maxwell’s curl equation. For the assumed forms of Eqs. (7.1) and (7.2)
we have

HHHH = 1

ωμ
k × EEEE , (7.3)

where μ is the magnetic permeability of the medium. Now, using Eqs. (7.1)
and (7.2) in Eq. (7.3), and applying the boundary condition that the electric and
magnetic fields are continuous at x = 0, we can solve for the ratio of the reflected
to the incident electric fields [1, 2]. For the TE case with equal permeabilities,

Er

Ei

∣∣∣∣
x=0

= rTE = kix − ktx

kix + ktx
, (7.4)

and for the TM case,

Er

Ei

∣∣∣∣
x=0

= rTM =
kix − ε1

ε2
ktx

kix + ε1
ε2

ktx
. (7.5)

For the case illustrated in Fig. 7.1, the index of refraction in region 1 is larger
than that of region 2. Thus, as the incident angle is increased, at some point, kiz

equals k2. This is called the critical angle, θc , defined explicitly using Snell’s law
by sin θc = n2/n1. For larger incident angles, ktx must be imaginary to satisfy

k2
tx ≡ k2

t − k2
tz = k2

t − k2
iz = k2

2 − β2. (7.6)

That is, for kiz > k2, θi > θc , and

ktx = ±j
√

β2 − k2
2 = −jγtx , (7.7)

where the sign of γtx is chosen for a decaying solution in region 2. This situation
is shown in Fig. 7.2.

Plugging Eq. (7.7) into Eq. (7.4), we see that beyond the critical angle,

rTE = kix + jγtx

kix − jγtx
, (7.8)

and (θi > θc)

rTM =
kix + j ε1

ε2
γtx

kix − j ε1
ε2

γtx
(7.9)
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ktx = −jγtx

krx

kt

krki

x

z

k1

k2

kix kiz krz

ktz

θi θr

θt

n1

n2

kiz = krz = ktz = b

FIGURE 7.2: Plane wave incident at dielectric interface with the angle of incidence larger
than the critical angle.

In both cases, we see that the magnitudes are unity, but the reflected wave has a
phase angle, φ. That is, r = |r |ejφ , where from Eq. (7.8) for the TE case,

φTE = tan−1
[
γtx

kix

]
− tan−1

[−γtx

kix

]
, (7.10)

or

φTE = 2 tan−1
[
γtx

kix

]
, (7.11)

where

γtx

kix
=

√
1 − (k2/β)2√
(k1/β)2 − 1

and θi > θc . (7.12)

For the TM mode using Eq. (7.9) one obtains an equation analogous to Eq. (7.11)
in which ε1/ε2 multiplies γtx .

As indicated in Fig. 7.3, the reflection phase angle is zero for incident angles
up to the critical angle, where it begins to increase monotonically toward 180◦.
This results in standing waves with maxima that move away from the boundary
for increasing incident angles, as also indicated. For total reflection there is still
energy in region 2, but it decays exponentially away from the boundary, and there
is no power flow in the x -direction.
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(a) (b)

0x

f

qi = qc
+

qi > qc

leff

p

qiqc

f

p

2

FIGURE 7.3: (a) Illustration of standing waves resulting from plane waves incident at an
angle just slightly larger than (dashed) and significantly larger than (solid) the critical angle.
(b) Plot of reflection phase angle versus the angle of incidence.

The standing waves can be calculated by summing the incident and reflected
waves as given by Eq. (7.1). For a TE wave with θi > θc , Er (0, z ) = Ei (0, z )ejφ .
Therefore,

EEEE i + EEEE r = Ei (0, z )êy [ejkix x + ejφe−jkix x ]e−jβz , (7.13)

or

EEEE i + EEEE r = 2Ei (0, z )êy ejφ/2 cos(kix x − φ/2)e−jβz . (7.14)

Figure 7.3 gives two examples for different φ, illustrating how the peak of the
cosine shifts away from the interface for larger θi .

The separation between the field maximum and the waveguide boundary in
Fig. 7.3 is used to define the effective length leff , which is related to the reflection
phase by

r = |r |ejφ = |r |e−2jkix (−leff ) = |r |e2jkix leff ,

or

2leff = φ/kix . (7.15)

Example 7.1

Problem: A 1.3Q InGaAsP dielectric layer was grown on an InP wafer. A 1.55-μm
TE polarized plane wave is incident at the interface between these two materials,
as illustrated in Fig. 7.2. Determine the phase angle φ and leff for (a) the wave
angle of incidence of θi = 60◦ (b) the wave angle of incidence of θi = 70◦.
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Solution: First, we need to compute the critical angle for this dielectric interface,

θc = sin−1
(

n2

n1

)
= sin−1

(
3.17

3.4

)
= 68.8◦,

where the values for indices were obtained from Table 1.1.
(a) Since the angle of incidence in this case is lower than the critical angle, based

on Fig. 7.3, the reflection angle is φ = 0, and from Eq. (7.15), leff = 0.
(b) In this case θi > θc , and we have total internal reflection. Therefore, there

will be a phase shift associated with the reflection. To calculate this phase, based on
Eq. (7.11), we need to calculate the decay constant ytx and the wave constant kix .

γtx =
√

β2 − k2
2 =

√
(ki sin θi )2 − (k0n2)2 = k0

√
(n1 sin θi )2 − (n2)2

= k0
√

10.208 − 10.049 = 0.399k0.

We also need to calculate the value for kix ,

kix = ki cos θi = 1.163k0.

Finally, we can calculate the reflection phase shift, based on Eq. (7.11),

φTE = 2 tan−1
(

γtx

kix

)
= 2 tan−1

(
0.399

1.163

)
= 0.661

and the effective length,

leff = φTE

2kix
= 0.661

2 · 3.4 · 2π/1.55 μm
= 25.37 nm

7.3 DIELECTRIC WAVEGUIDE ANALYSIS TECHNIQUES

7.3.1 Standing Wave Technique

Now, with the above preparation, we can begin to consider the construction of
a waveguide that makes use of multiple total internal reflections. In Fig. 7.4 a
standing wave resulting from the total internal reflection of a plane wave (such as
is shown in Fig. 7.3) is illustrated. The first maxima occurs a distance leff from
the boundary as discussed above. The dashed lines correspond to symmetry planes
where for the given angle of incidence another boundary identical to the original
one could be inserted without changing the standing wave pattern between the two
boundaries.

We can see that with this construction, we have actually formed a waveguide,
which traps the plane wave at the original incident angle, forcing it to zigzag
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x

z
leff

m = 0

m = 1

m = 2

d2

d1

d0

FIGURE 7.4: Construction of waveguides by inserting a second interface (top cross-hatched
region) at the symmetry point on a given standing wave (i.e., given ray angle). Given standing
wave at left; fundamental (m = 0) and first higher-order mode (m = 1) illustrated to the
right.

indefinitely back and forth so that the net propagation of optical energy is only in
the z-direction, as illustrated in Fig. 7.5. The field has the form given by Eq. (7.14)
between the boundaries and is evanescent in the two outer regions according to EEEE t

in Eq. (7.1), using Eq. (7.7) for ktx .
From Fig. 7.4 the constructed waveguide width is seen to be

d = 2leff + m
λx

2
, (7.16)

where m is the mode number, equal to zero for the lowest-order symmetric mode,
one for the first odd mode, etc., and λx = 2π/kix is the standing wave wavelength

x

z

f

f
d

n2

qi
qi

n1

n2

k1

FIGURE 7.5: Illustration of zigzag ray picture of waveguiding. Each ray of the plane wave
reflects off alternate boundaries with the same angle of incidence and a reflection phase that
provides in-phase addition with other rays propagating in the same direction.
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x
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dn1

n1 > n2 > n3

leff 2

leff 3

n2

n3

FIGURE 7.6: Fundamental mode of an asymmetric waveguide. The ray angle remains the
same throughout, but the phase angle for the top reflection is larger than for the bottom.
(Note the change in index definition in this chapter relative to Appendix 3.)

along the x -direction. Now, using Eqs. (7.11), (7.15), and (7.16), we obtain the
waveguide dispersion relation for the TE modes,

d = φ

kix
+ m

π

kix
= 2

kix
tan−1

(
γtx

kix

)
+ m

π

kix

or

kix d = 2 tan−1
(

γtx

kix

)
+ mπ , m = 0, 1, 2, . . . (7.17)

Equation (7.17) is equivalent to Eq. (11.10), the dispersion relationship derived in
Appendix 3 for the symmetric three-layer slab waveguide. Equation (7.12) expands
γtx/kix in terms of the waveguide propagation constant along z , β. For the TM
modes the result is the same, except ε1/ε2 multiplies γtx .

Using these same techniques the dispersion relationship for a general three-layer
asymmetric guide can be derived. As shown in Fig. 7.6 the two cladding layers
have different indices of refraction. Thus, the reflection phases at the bottom and
top interfaces, φ2 and φ3, and the separations of the standing wave maxima, leff 2

and leff 3, respectively, are different also.
Constructing an asymmetric guide with d = leff 2 + leff 3, and using Eqs. (7.15)

and (7.11), we find the dispersion relationship for the TE modes to be

k1x d = φ2

2
+ φ3

2
+ mπ = tan−1

(
γ2x

k1x

)
+ tan−1

(
γ3x

k1x

)
+ mπ , (7.18)
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where as before,

k1x =
√

k2
1 − β2, γ2x =

√
β2 − k2

2 , γ3x =
√

β2 − k2
3 . (7.19)

The electric fields are given by Eq. (7.14) between the boundaries with φ = φ2,
and Eq. (7.1) in the evanescent regions using Eqs. (7.7) and (7.19) for ktx .

Example 7.2 Using the material from Example 7.1, a slab waveguide was con-
structed by regrowing InP on top of the InGaAsP layer whose total thickness
is d .

Problem: What is the waveguide thickness d that supports the first order mode at
1.55 μm, incident at θi = 70◦?

Solution: Since we are looking for the first order mode, refering to Fig. 7.4, we
expect the mode to have one null, and the waveguide width will be given by
Eq. (7.16), where m = 1. Since all the parameters for the mode (refractive indices,
angle of incidence) are identical to those from Example 7.1, we can use already
calculated values for kix and leff ,

kix = ki cos θi = 1.163k0 = 2π

1.55 μm
1.163 = 4.712 μm−1

and

leff = 25.37 nm.

Using Eq. (7.16), and the relationship for λx = 2π/kix = 1.333 μm, we have that

d = 2leff + m · λx

2
= 50.74 nm + 1 · 1.333

2
μm = 717 nm.

7.3.2 Transverse Resonance

Another way of analyzing a dielectric waveguide is the transverse resonance tech-
nique. This is equivalent to the waveguide construction technique given above and
the field-theory technique given in Appendix 3. As indicated in Fig. 7.7, transverse
resonance means that the transverse round-trip phase must be a multiple of 2π

after a complete cycle of a constituent ray. That is, the fields of an eigenmode
must reproduce themselves after the plane wave components have zigzagged up
and down one complete transverse cycle as the energy propagates down the guide.
This is exactly the same condition as we imposed earlier in determining the modes
of a Fabry–Perot resonator, only here we have generalized the situation to the case
of nonnormal incidence. In other words, the component of the k -vector normal to
the boundaries determines the phase progression along that direction.
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FIGURE 7.7: Waveguide cross section showing variables relevant to a transverse resonance
calculation.

For a transverse mode, we must have transverse resonance, or

e−2jk1x d ejφ2 ejφ3 = e−2jmπ , (7.20)

where the variables are as defined above in Eqs. (7.19) and (7.11). This implies
that

2k1x d − φ2 − φ3 = 2mπ , (7.21)

which is equivalent to Eq. (7.18).
The transverse resonance technique is a relatively simple approach to obtaining

a dispersion relationship for a complex dielectric waveguiding structure. That is,
regions 2 and 3 can contain a number of dielectric interfaces, and using the tech-
niques of Chapter 3, we can calculate the net reflection coefficient from which we
can obtain the reflection phases, φ2 and φ3. Then, Eq. (7.21) can be applied. For a
lossless waveguide, the magnitude of these reflection coefficients must be unity. We
shall later deal with cases where the reflection is slightly less than unity, but where
the optical energy is still relatively well guided aside from a slight propagation
loss.

Cutoff and ‘‘Leaky’’ or ‘‘Quasi Modes’’ The point where the ray angle becomes
sufficiently large (measured from the guide axis, z ) so that some energy is trans-
mitted at one boundary or the other is generally referred to as cutoff. (This is the
point where the angle of incidence no longer exceeds the critical angle.) However,
the optical energy may still continue to propagate with only modest attenuation
since the reflection magnitude at the waveguide walls is still relatively large for
angles near cutoff. The light that leaks out of the waveguide also tends to radiate
in the forward direction so that it may run parallel to the guide for some distance.
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FIGURE 7.8: Illustration of effective index levels for mode numbers, m , in the
(a) symmetric and (b) asymmetric cases. For decreasing frequency (increasing wavelength),
n̄ moves down toward the cutoff levels.

These are some of the key differences between dielectric and metal waveguides, in
which cutoff tends to result in highly attenuated signals, and/or large reflections.

Put in more mathematical terms, cutoff is where φj → 0, or where β → kj , j =
2, 3. In other words, the waveguide propagation constant must always be larger than
either of the cladding plane wave propagation constants. This situation is illustrated
in Fig. 7.8 in terms of the effective index, n̄ = βλ/2π .

For the symmetric guide the dispersion relation, Eq. (7.17), becomes

k1x d |cutoff ≤ mπ , (n2 = n3) (7.22)

from which we can see that the fundamental mode, m = 0, has no cutoff except at
zero frequency, or zero width, d . For the asymmetric guide, the dispersion relation,
Eq. (7.18), becomes

k1x d |cutoff ≤ tan−1
(

γ3x

k1x

)
+ mπ. (n1 > n2 > n3) (7.23)

Here we see that the fundamental mode can be cut off for some finite frequency, or a
small enough waveguide width. In Appendix 3 normalized curves for the dispersive
properties of such waveguides are given. In Fig. 7.9, we plot the effective index
versus normalized frequency for an example asymmetric guide.

Even if the reflection coefficient at one or both waveguide boundaries falls
below unity for some ray angle, it is still possible to satisfy the transverse resonance
condition. The dashed curves in Fig. 7.9 give the dispersion of these “leaky modes”
as the ray angle within the waveguide increases toward being normal to the sidewall
boundaries, where n̄ → 0. Since the reflection phase goes to zero below cutoff,
these leaky modes are basically continuations of the guided mode characteristics,
and they satisfy Eqs. (7.22) or 7.23 for k1x d < k1x d |cutoff , depending upon whether
the guide is symmetric or not. For these cases, the optical energy still circulates in
the transverse direction and builds up via constructive interference just as in any
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FIGURE 7.9: Schematic example of effective index dispersion curves for three lowest-order
modes in an asymmetric slab. Solid curves give effective index for true guided modes. Cutoff
is defined where the modes become leaky. Dotted curves indicate locus of points satisfying
transverse resonance below cutoff. The angle θc3 is the critical angle at the 1–3 interface.
This is not the cutoff angle, which is the critical angle at the 1–2 interface.

Fabry–Perot resonator. Thus, optical energy may still be concentrated about the
guide axis, and it may be transported along the z -direction with only modest loss.
The “modes” of such a structure are usually referred to as leaky or quasi modes,
since the propagating energy in the z -direction does change its magnitude along
the waveguide. Axial modes of a Fabry–Perot laser cavity are an example of such
leaky modes, since there must be mirror transmission for useful output.

Radiation Modes The leaky modes discussed above are really not true modes
but quasi modes as already suggested. Strictly speaking, modes must have uniform
profiles and magnitudes along the z -direction. But the guided modes, obtained
earlier in this chapter or in Appendix 3, do not form a complete set because a
superposition of them cannot in general synthesize an arbitary field. For such a
complete set, we need to consider the “radiation modes,” which can have other ray
angles besides those of the guided and transverse resonant leaky modes.

To construct the radiation modes of some slab waveguide structure as true modes,
we must insert some additional perfectly reflecting boundaries, which can be placed
sufficiently far away in the x -direction so that any arbitrary field profile in the
vicinity of the central waveguide slab can be completely described. Practically
speaking, these inserted boundaries are really more of a mathematically necessary
artifact than something that we actually insert in an experiment. Figure 7.10 shows
the structure to be analyzed.

As can be seen in Fig. 7.10, perfect reflectors are placed on each side of the
waveguide slab a distance l /2 away. Now, the transverse resonance technique can be



7.3 DIELECTRIC WAVEGUIDE ANALYSIS TECHNIQUES 407

(a) (b)

n1d

x

r

n2l/2

l/2

−1

rA

n2

z

FIGURE 7.10: (a) Waveguide cross section illustrating perfectly reflecting planes inserted
at x = ±l/2 to provide for a set of radiation modes. (b) Net reflection from top half, rA,
calculated from the multiple interfaces using kix as the transverse propagation constant.

applied to obtain the dispersion relationship for the radiation modes. To make this
a bit simpler, we calculate the net reflections looking in the positive and negative
x -directions relative to a single reference plane in the center of the waveguide, rA

and rB , respectively. Then, our transverse resonance condition, Eq. (7.20), reduces
to

rArB = 1 = e−2jmπ . (7.24)

For the symmetric case in question, rA = rB , and we refer to the inset in Fig. 7.10
to calculate rA,

rA = re−jk1x d + −(1 − r2)e−jk2x l

1 − re−jk2x l
e−jk1x d . (7.25)

Using Eq. (7.4) for r and inserting Eq. (7.25) into the dispersion relation
Eq. (7.24), we can derive a dispersion relationship good for both even and odd
radiation modes [3],

cot

(
k2x l

2

)
= k1x

k2x
tan

(
k1x d

2
− ψ

)
, ψ =

{
0 even

π/2 odd
(7.26)

Generally, we choose l � d , so that the solutions to the dispersion relationship,
Eq. (7.26), are closely spaced in frequency (or ray angle). This provides a good
basis set that we can use to analyze the propagation of arbitrary optical energy
profiles along z . Actually, the set is only complete for describing fields contained
completely within l . Thus, l must be at least as large as the extent of the field to
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FIGURE 7.11: Schematic examples of even (a) and odd (b) radiation modes constructed by
placing perfect reflectors ±l/2 from either side of the waveguide slab. In these examples,
transverse resonance is approximately satisfied in the waveguide slab as well.

be approximated. In practice, setting l/d>10 is usually sufficient to provide the
basis functions to synthesize arbitrary field profiles concentrated near the central
waveguide.

The field profiles of the radiation modes are standing waves between the outer
mirrors with some variation in magnitude and phase over the waveguide slab region.
Some of the radiation modes may satisfy transverse resonance for the waveguide
interfaces. The fields of this subset will show the expected increase in magnitude
over the waveguide due to the coherent addition of multiple reflections there. As
set up, we find odd and even modes with respect to the waveguide region. That
is, the modes will have either a node or antinode in the center of the waveguide.
Figure 7.11 gives examples.

Figure 7.12 summarizes the location of the radiation modes relative to the guided
modes on an ω − β plot. Radiation modes that satisfy transverse resonance in the
waveguide are shown by the dashed curves. These characteristics are the same as
those of the leaky modes discussed earlier. For finite l , the location of the outer
mirrors must be chosen properly to satisfy both inner and outer boundary conditions
simultaneously.

Multilayer Waveguides The transverse resonance approach used in the last
section for radiation modes can also be applied for the guided modes of multi-
layer waveguides. That is, Eq. (7.24) is always valid, and it can be applied at
the center of a waveguide with any number of dielectric layers. The selection of
the center is actually not critical, rather a convenient reference plane that facili-
tates the subsequent analytical or numerical evaluation of the waveguide dispersion
properties is generally used.

Figure 7.14 shows an example of an m-layer waveguide. The evaluation of rA

and rB can use the techniques developed in Chapter 3 for multilayer reflectors.
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FIGURE 7.12: An ω − β diagram for a symmetric slab waveguide, showing relative loca-
tions of various modes. Slopes of asymptote lines equal the phase velocities of plane waves
in the waveguide slab (c/n1) and cladding (c/n2) regions. Local slopes of modal charac-
teristics give the group velocities. Again, dotted curves give dispersion of radiation modes
that satisfy transverse resonance in the guide.

However, here the axial propagation constant, kz ≡ β, is replaced by the transverse
propagation constant, kx , in all of the calculations. For only a few layers, it is
possible to derive closed form expressions, as for the radiation modes above.
For example, for a five-layer guide, Eq. (3.41) can be applied for both rA and
rB . If many periods of a pair of layers are used, then the grating formulas can
be adapted. That is, Eq. (3.54) can be used for rA and rB , provided again that
appropriate kx s replace the βs.

Example 7.3 Transverse resonance technique can be applied to complex multi-
layer waveguide claddings. To illustrate the use of the method, we are analyzing
a slab waveguide, whose core index is na = 3.253, and whose cladding index is
n1 = 3.17. This is effectively a buried rib waveguide based on the structure from
Example 1.1.

Problem: Applying generalized transverse resonance technique, calculate and plot
the resonance condition (Re(r2

A) and Im(r2
A)) versus the effective index, for the

waveguide width of d = 2.5 μm and the light wavelength of λ = 1.55 μm.

Solution: To solve this problem, we will utilize the transverse resonance condition
as given by Eq. (7.20). Using the transmission matrix theory, we will compute the
reflectivities rA and rB from the center of the waveguide forward, illustrated in
Fig. 7.14. For our case, the resonance condition reduces to

rArB = 1.
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Referring to Chapter 3, and assuming lossless material, we obtain the expressions
for the transmission matrix Tp of a transmission line,

Tp =
[

ejβL 0
0 e−jβL

]

and of an interface reflection Tr ,

Tr = 1

t12

[
1 r12

r12 1

]
.

Since we are looking for the resonances in the transverse direction, we have to
go back to the definition of reflection coefficients given by Eqs. (7.4) and (7.5) to
calculate them, and then use Eq. (3.12) for the transmission coefficient. Therefore,
we have that

r12 =
√

n2
a − n̄2

eff −
√

n2
1 + n̄2

eff√
n2

a − n̄2
eff +

√
n2

1 + n̄2
eff

t12 =
√

1 − r2
12.

From Chapter 3, Table 3.1, we also have that rA = T21
T11

. For our problem, the
composite T matrix that we need to compute is given by

T = TpTr .

Since the effective index is related to the propagation constant β as β = kx =
2π
λ0

√
n2

a − n̄2, we can compute the value for T numerically for each value of β, and
look for the solution of the transverse resonance condition under which Im(r2

A) = 0
and Re(r2

A) = 1. The corresponding plot is shown in Fig. 7.13. We notice that there
are three different modes supported by this waveguide - their effective indices are

neff 1 = 3.179, neff 2 = 3.221 and neff 3 = 3.244.

7.3.3 WKB Method for Arbitrary Waveguide Profiles

In all of what we have discussed so far in this chapter the index of refraction was
constant over some regions, and it jumped abruptly at boundaries there between.
Thus, in each region the assumptions involved in the derivation of the transverse
wave equation (e.g., uniform dielectric constant) were valid, and exact overall
solutions could be found by applying the appropriate boundary conditions.
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FIGURE 7.13: Solution for effective indices of modes supported by the waveguide from
Example 7.3, using transverse resonance method. The plot is showing the real value of r2

A
(dashed), as well as the absolute value of Im(r2

A) (solid).

In many practical cases the index varies continuously over some waveguide
region rather than discontinuously as above. Thus, strictly speaking the transverse
wave Eq. (6.5) is not valid as discussed in Chapter 6. However, in cases where the
dielectric constant varies slowly, so that ∇ε(x , y) is small relative to β, we can still
apply it with reasonably good results. Otherwise, the wave equation retains terms
involving ∇ε(x , y), and it becomes very difficult to solve. Figure 7.15 illustrates a
waveguide formed by a region in which the index varies continuously.

Wentzel, Kramers, and Brillouin have found that good approximate solutions
can be derived in the case of such a slowly varying index profile. Their so-
called WKB approximation involves keeping the form of the uniform-medium
wave equation, but using a plane wave k -vector that can vary transversely. That
is, Eq. (A3.3) becomes

∇2U (x , y) + [k2(x) − β2]U (x , y) = 0. (7.27)

This is the same as Eq. (6.5) where only an x -variation is permitted. Thus, we are
still assuming a uniform waveguide along the z -direction.

The WKB approximation also involves neglecting any backscattering due to the
slowly varying index. For waveguiding we are only interested in rays traveling
roughly perpendicular to the index gradient (or parallel to z ). Thus, even for rela-
tively rapid index changes along x , the ray will only experience a slight gradient.
As might be expected in such cases, the ray would bend, and as we shall see, this
bending is what provides the equivalent of the zigzagging ray of the analogous
three-layer slab guide.
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FIGURE 7.14: Schematic of generalized transverse resonance technique for the determina-
tion of modes in multilayer waveguides.
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FIGURE 7.15: Transverse index and mode variation for a guide in which the index varies
continuously. xA and xB are the ray turnaround points where the transverse mode also has
points of inflection.

To get started, we express the local plane wave propagation constant, k , in terms
of its vector components,

k2
x (x) + k2

z = k2(x), (7.28)

where in this case, the index of refraction and the k -vector vary with x . However,
for a waveguide mode, kz ≡ β ≡ k0n̄ , independent of x . Thus, we can write

kx (x) = k0

√
n2(x) − n̄2. (7.29)
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FIGURE 7.16: Sketch of meandering ray path for the case of a smoothly varying index
with a maximum between the turnaround points, xA and xB . Ray angle with respect to the
guide axis, θz , shown.

The cutoff condition is where n̄ = n2, the highest adjacent cladding index.
The waveguide propagation constant can also be expressed in terms of the ray

angle, θz (x), from which we can solve for this angle, i.e.,

θz (x) = cos−1
[

β

k(x)

]
= cos−1

[
n̄

n(x)

]
. (7.30)

From Eq. (7.30) we see that the ray angle must vary with x , decreasing for decreas-
ing n(x ) until n(x) = n̄ , at which point it is zero. Thus, as indicated in Fig. 7.16, the
ray actually turns around at this point, meandering in a sinusoidal-like path as the
lightwave propagates along z . At the turnaround points, x = xA, xB and k1x (x) = 0.
This is consistent with Eq. (7.29). Thus we have

n(xA) = n(xB ) = n̄ or k(xA) = k(xB ) = β. (7.31)

For x > xB , or x < xA, Eq. (7.29) shows that kx is purely imaginary, indicating
that the field decays away to provide the desired trapping of energy along the z -axis.
The transverse wave Eq. (6.5) also shows that the transverse mode has inflection
points (i.e., ∂U 2(x)/∂x2 = 0) at these turnaround points.

Now, we would like to develop the dispersion relationship or characteristic
equation. For this, the transverse resonance technique quantified by Eq. (7.21) is
used. However, in the present case the round-trip phase across the waveguide is
not simply 2k1x d , but it must be found by integrating kx (x) from xA to xB and
back. That is, Eq. (7.21) becomes

2
∫ xB

xA

kx (x) dx = φ2 − φ3 = 2mπ , (7.32)

where kx (x) is given by Eq. (7.29) and the limits of integration can be expressed in
terms of the effective index, n̄ , or propagation constant, β, using the actual index
variation in Eq. (7.31).
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The remaining problem is to figure out what the φi ’s are. For this we use
the expressions for the reflection coefficient, either Eqs. (7.4) or (7.5) for the TE
or TM modes, respectively. For kix and ktx , we note that at x = xA or xB , the
transverse kx in the present case turns from pure real to pure imaginary according
to Eq. (7.29). Thus, the situation is similar to the abrupt index discontinuity case,
and the reflection coefficients can be expressed as in Eqs. (7.8) and (7.9) with
kix = kx (x

−
B ) {or kx (x

+
A )} and γtx = jkx (x

+
B ) {or jkx (x

−
A )}. That is, referring to Fig.

7.16, at the top turnaround point assuming a TE mode,

rTE (xB ) = kx (x
−
B ) + jγx (x

+
B )

kx (x
−
B ) − jγx (x

+
B )

. (7.33)

Since kx (x → xB ) → 0, and γx (x → xB ) → 0, we must expand them for x±
B , let-

ting the plane wave propagation constant, k(x−
B ) = β + δk , and k(x+

B ) = β − δk .
That is, using their definitions given by Eq. (7.19), we find to first order,

kx (x
−
B ) =

√
k2(x−

B ) − β2 =
√

(β2 + 2βδk) − β2,

and

γx (x
+
B ) =

√
β2 − k2(x+

B ) =
√

β2 − (β2 − 2βδk). (7.34)

Thus,

rTE (xB ) = 1 + j

1 − j
= j , (7.35)

and likewise for the other turnaround point. For the TM mode, γx is multiplied by
ε1/ε2, but this approaches unity for a continuous index variation at the turn around
point. Therefore, for both TE and TM modes, φ2 = φ3 = π/2, and Eq. (7.32)
becomes

2
∫ xB

xA

kx (x) dx = (2m + 1)π , (7.36)

or, using Eq. (7.29),

2k0

∫ xB

xA

√
n2(x) − n̄2 dx = (2m + 1)π. (7.37)

Waveguides with parabolic variation of the dielectric index are an important class
of problems that can be solved using the WKB method. This is illustrated in the
following example.
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FIGURE 7.17: Parabolic dielectric constant variation given by Eq. (7.38).

Example 7.4

Problem: A waveguide consists of a core whose variation of the refractive index
is given by

n2(x) = n2
max

[
1 −

(
x

x0

)2
]

, (7.38)

where we have chosen the origin of the x -axis to be at the maximum of the function.
Applyng WKB theory, solve for the maximum ray excursion for mode m of this
parabolic waveguide.

Solution: The parabolic function, illustrated in Fig. 7.17, is useful only for small
index ranges under the WKB approximation, so that the optical energy must be
well contained within |x | 	 x0.

Plugging Eq. (7.38) into Eq. (7.37) gives

2k0

∫ xB

xA

√
n2

max − n2
max

(
x

x0

)2

− n̄2 dx = (2m + 1)π , (7.39)

and xA = −xB by symmetry. At the integration limits, the argument of the integral
is zero, since n(xB ) = n̄ , or, kx = 0. Therefore, we can solve for xB from Eq. (7.38)
to obtain

xB = ±x0

√
1 − (n̄/nmax)2 = ±x0δ. (7.40)

To make the integral more convenient to solve, we make the change of variables,
x = x0δ sin ϕ, where ϕ does not necessarily have any physical meaning. Then,
performing the integration of Eq. (7.39) using Eq. (7.40), we find the dispersion
relationship

n̄2 = n2
max − (2m + 1)nmax

k0x0
, (7.41)
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and plugging back into Eq. (7.40), the maximum ray excursion for mode m is

xB = ±x0

[
2m + 1

k0nmaxx0

]1/2

. (7.42)

The dielectric constant must continue to vary parabolically according to Eq. (7.38)
over a width somewhat larger than the turnaround point separation, which is given
by twice Eq. (7.42). That is, in most practical examples, it is found that the parabolic
medium width must be four or five times xB for the results to be approximately
valid.

Equation (7.41) from Example 7.4 can be plugged into the transverse wave
equation to obtain an expression for U(x). This exercise shows that the eigenmodes
of this parabolic medium are Hermite–Gaussian functions of the form,

Um(x) = CmHm

(√
2x

w0

)
e−x2/ w2

0 , (7.43)

where Hm(ξ) are the Hermite polynomials and w0 is the 1/e Gaussian spot size.
For reference, the first three Hermite polynomials are

H0(ξ) = 1, H1(ξ) = 2ξ , H2(ξ) = 4ξ 2 − 2. (7.44)

It is also interesting to derive an expression for the ray path illustrated in Fig. 7.16.
By definition,

dx(z )

dz
= kx (x)

β
= kx (x)

k0n̄
. (7.45)

From Eqs. (7.29), (7.38), and (7.40)

kx (x) = k0nmax

√
δ2 − (x/x0)2, (7.46)

and nmax/n̄ = (1 − δ2)−1/2. Using Eq. (7.46) in Eq. (7.45),

dx(z )

dz
= nmax

n̄
δ

√
1 −

(
x

x0δ

)2

, (7.47)

and, again using the convenient change of variables, x = x0δ sin φ, we can integrate
to obtain

x(z ) = x0δ sin

[
nmax

n̄

z

x0

]
. (7.48)
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FIGURE 7.18: Illustration of ray paths in a parabolic medium that originate from a point
source at the origin. Initial ray angle, δ, results in a sine wave of amplitude, xB = x0δ, and
period of approximately 2πx0 (using nmax/n̄≈1).

That is, in a parabolic medium, the rays oscillate around the waveguide axis as
sine waves with a period of 2πx0n̄/nmax. As is the case for the dispersion rela-
tionship, Eq. (7.41), this is an exact solution to the approximate wave equation.
Since n̄ ≈ nmax, note that the ray oscillation period has only a weak dependence
upon the initial ray angle, dx(0)/dz = δ. However, the maximum excursion of
the ray from the guide axis, xB = x0δ, increases in direct proportion. Figure 7.18
illustrates this behavior. The fact that the ray zigzag period along the z -axis does
not change much for various angles also suggests that the propagation constant
does not change for the various possible modes that satisfy the transverse reso-
nance condition. Equation (7.41) shows this small modal dispersion. Clearly, the
parabolically graded waveguide has very different properties from the three-layer
slab guide discussed earlier.

Now if we are interested in the eigenmodes of this parabolically graded waveg-
uide, we can substitute the allowed values for x0δ. That is, using Eqs. (7.40)
and (7.42) in Eq. (7.48), we obtain

x(z ) = x0

√
2m + 1

k0x0nmax
sin

[
nmax

n̄

z

x0

]
. (waveguide eigemode) (7.49)

Thus, only certain discrete ray angles are possible for the eigenmodes, but they still
tend to have nearly the same propagation constant as mentioned above. In many
cases, we may be interested in rays that do not satisfy transverse resonance, so
Eq. (7.48) should continue to be used in these cases.

In the absence of birefringence, the phase fronts of traveling waves are perpen-
dicular to the ray direction. As in the case of the three-layer slab waveguide, the
phase fronts of the constituent rays superimpose to form the net phase fronts or
wave crests of the eigenmode. For negligible gain or loss, the result in both cases
is an eigenmode with plane phase fronts perpendicular to z . For the parabolic
medium, the constituent phase fronts must bend to track the ray path, so they do
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not appear to be plane waves. For the WKB approximation to be valid, however,
these phase fronts must be approximately parallel over distances of a few wave-
lengths in the x - and z -directions. Put another way, the constituent ray angle can
not change appreciably over this distance along the ray.

An example of a practical device that uses a parabolic graded-index waveguide
section is the so-called graded-index rod or GRINROD lens. In this case we are
not really interested in the eigenmodes of the waveguide, but rather how any given
entering rays will propagate and focus after some distance. Although strictly speak-
ing we should always express an entering field as a superposition of the eigenmodes
of a waveguide to track its evolution down the guide, it is possible to use a ray-
tracing approach if the waveguide is large enough. This makes particular sense, if
the propagation distance is small. In the case of the GRINROD then, a pencil-like
beam several wavelengths across, but much smaller than the diameter of the GRIN-
ROD will tend to propagate like a ray path given by Eq. (7.48). The eigenmode
restriction given by Eq. (7.49), which provides for no change in mode cross section
as a function of z , is not used because we really would have a large number of
interfering eigenmodes superimposed to represent such a pencil-like beam.

GRINRODs are really cylinders with a radial index variation, but we can use
our planar analysis to understand how rays will propagate along planes containing
the rod axis (so-called meridional rays). For paraxial rays (small angles), Eq. (7.48)
shows that a ray entering the GRINROD on axis at z = 0 is characterized by a
slope dx(0)/dz ≈ δ ≈ θz (0) ≡ θ0. Thus, we write,

x(z ) = x0θ0 sin(z/x0), (GRINROD) (7.50)

where we already have that the inverse of x0 is a measure of the curvature of the
index-squared profile from Eq. (7.38) and θ0 is the initial ray angle.

GRINRODs are characterized by a pitch, which is really just the ray oscillation
period of 2πx0 for paraxial rays. Thus, a quarter-pitch GRINROD converts any
and all rays entering at angles θ0i at its x − z origin to rays parallel to but spaced
a distance x0θ0i from the z -axis after a quarter oscillation length of πx0/2. That
is, it acts like an ideal lens of focal length πx0/2. Figure 7.18 illustrates this fact.
GRINRODs of any length behave like lenses, but their focusing properties are not
as simple as for the quarter- and half-pitch cases.

7.3.4 2-D Effective Index Technique for Buried Rib Waveguides

All of this chapter thus far has dealt only with slab waveguides in which only
one-dimensional guiding was considered. For most practical applications two-
dimensional guiding, which involves both the transverse (x ) and lateral (y) direc-
tions, is desired. For most of these structures numerical techniques are required
to derive accurate results. An exception is a cylindrical geometry for which it is
possible to derive results for the circularly symmetric modes in analogy to the slab
waveguides discussed above by using cylindrical coordinates in the wave equation.
Here again only one variable (radial) is involved.
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FIGURE 7.19: Example channel waveguide cross sections. (a) Waveguide channel buried
in material of equal index on all sides, e.g., InP cladding over InGaAsP guide at 1.55 μm
measurement wavelength. (b) Waveguide channel on substrate of one index covered with
material of a different index, e.g., 1.3 μm InGaAsP covering 1.55 μm InGaAsP guide on
InP substrate at 1.55 μm wavelength.

To analyze two-dimensional or channel waveguide structures involving two
independent coordinates the approximate effective index technique is sometimes
employed. In Appendix 3, we have already introduced a recipe for obtaining results
using this technique. Here we shall briefly review this technique by means of two
examples. The two waveguide cross sections that are of interest are shown in
Fig. 7.19.

Example 7.5

Problem: Figure 7.19 (a) shows simple buried heterostructure laser, grown on
InP and operating at 1.55 μm, in which the InGaAsP active region, nwgd = 3.55,
is buried in InP by regrowth. Determine the effective index for the fundamental
mode of this waveguide using the effective index method.

Solution: To solve this problem, we shall use the normalized frequency, propa-
gation constant, and asymmetry parameters defined in Eq. (A3.12) of Appendix 3.
We explicitly consider the TE mode, but as discussed in the appendix, for small
index differences we can neglect the differences between the TE and TM modes
in this approximate analysis.

The first step of the effective index technique is to find the transverse effective
index of each lateral region as if they were infinitely wide slab waveguides. In
regions 1 and 3 the material is InP for all x . Thus, the effective index in both is
clearly n̄1 = n̄3 = 3.17. In region 2, we use Eq. (A3.12) to obtain

V2 = 2π

λ
d [n2

II − n2
I ]1/2 = 2π

1550 nm
200 nm[3.552 − 3.172]1/2 = 1.30

and

a2 = 0.
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Using Eq. (A3.14), we can compute the value of the normalized propagation param-
eter b,

b = 1 −
ln

(
1 + V 2

2

)
V 2

2

= 1 −
ln

(
1 + 1.32

2

)
1.32

2

= 0.275

Then, solving for the effective index in the central lateral region, n̄2, we find

n̄2 = [0.275(3.552 − 3.172) + 3.172]1/2 = 3.279.

Now, we have effective indices for each of the three lateral regions, and we can
begin to solve the new lateral effective slab waveguide. Again using Eq. (A3.12),

V = 2π

1550 nm
2000 nm[3.2792 − 3.172]1/2 = 6.796,

and using Eq. (A3.14) again, we have b = 1 −
ln

(
1 + 6.7962

2

)
6.7962

2

= 0.862. Thus, the

net effective index is

n̄ = [0.862(3.2792 − 3.172) + 3.172]1/2 = 3.264.

As discussed in Appendix 3, the net effective index can be used to calculate
the lateral ky in region 2 and the lateral decay constants, γy , in regions 1 and 3;
however, we use n̄2 to obtain the transverse kx and decay constants, γx , in all
regions.

While Eq. (A3.14) gives us better precision for symmetric waveguides, for
assymetric waveguide cases, we would have to use Fig. A3.12 to read the values
for b in function of V .

In the next example, we are considering a case that cannot be solved using
simple 2-D effective index technique approach, but that requires our results from
the perturbation theory.

Example 7.6

Problem: Figure 7.19b shows a buried heterostructure laser operating at 1.55 μm
and grown on InP, whose active region, nwgd = 3.55, is buried by a quarternary
material, nQ = 3.4. Determine the effective index for the fundamental mode of this
waveguide.

Solution: The waveguide structure in this example is a little more interesting, since
this device is grown with a number of different index regions. Because we have
only two different index layers in regions 1 and 3, we have to use a method other
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than calculating the transverse effective index of a three-layer waveguide there. This
would also be true if the guide in these regions were cut off. Certainly, we can go
ahead and calculate the effective index in region 2, then proceed to determine the
transverse mode shape, which will be used for all three lateral regions. This latter
point is a good clue as to how we should calculate the effective index in the outer
regions. That is, we should use the mode shape of the central region to provide the
appropriate index weighting for the outer regions. (In fact, this concept even has
merit in cases where there is guiding in the outer regions, however, it is generally
not used because it is more difficult.)

First, we solve the transverse problem in the central region for this example
waveguide (b). It should be noted that the cladding layer with the largest index
should be chosen as the reference layer—denoted layer III. Otherwise, a will be
negative. Evaluating Eq. (A3.12), we find that

V2 = 2π

1550
300

√
(3.552 − 3.402) = 1.242,

and

a2 = 3.402 − 3.172

3.552 − 3.42
= 1.449.

From Fig. A3.12, we can read off the value for b2 = 0.10, thus obtaining n̄2 =
3.415. The small b indicates that we are approaching cutoff in this asymmetric
guide.

Now, we can again look at the outer lateral regions. The best way to obtain the
transverse effective index there is to use the perturbation formula from Eq. (6.23).
We note that regions 1 and 3 can be constructed from region 2 by reducing the
index of layer II by 0.15. The perturbation formula naturally uses the eigenmode
of region 2, which is exactly what we are looking for. Thus, we proceed with
�nA = −0.15.

After some effort in evaluating the perturbation integrals using kx and γx from
region 2, we find that n1≈3.34.

Then, we proceed to solve the lateral problem in the same fashion and obtain
V = 8.66, a = 0, b = 0.92, and n̄ = 3.409. Thus, we see that the fundamental
mode is very near cutoff. Unfortunately, this is also where the effective index
technique becomes unreliable, since the evanescent fields are expanding rapidly
with slight reductions in the guide’s effective index.

7.3.5 Analysis of Curved Optical Waveguides using Conformal Mapping

Curved optical waveguides are widely used in modern photonic integrated circuits.
In order to precisely analyze their properties, including mode shape and excess
propagation losses due to their curved nature, conformal transformation method
can be used [10]. Conformal mapping allows for curved waveguides to be repre-
sented by corresponding straight waveguides with a modified lateral refractive index
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distribution. The transformation is applied to the solutions of the two-dimensional
scalar wave equation, given by Eq. (A3.3),

∇2U (x , y) + k2(x , y)U (x , y) = 0. (7.51)

New solutions are obtained in the coordinate system u , v, defined with respect to
x and y by the relation

W = u + jv = f (Z ) = f (x + jy) (7.52)

where f is an analytic function. Using Cauchy–Riemann relations, ∂u/∂x = ∂v/∂y
and ∂u/∂y = −∂v/∂x , Eq. (7.51) can be expressed as

∇2U (u , v) +
∣∣∣∣ dZ

dW

∣∣∣∣
2

k2(x(u , v), y(u , v))U (u , v) = 0. (7.53)

The objective of the transformation is to select an f (Z ) that converts curved bound-
aries in the (x , y) plane to straight ones in the (u , v) plane. Using the values and
reference planes as shown in Fig. 7.20, this can be accomplished by selecting

W = f (Z ) = R2 ln
Z

R2
, (7.54)

for which

∣∣∣∣ dZ

dW

∣∣∣∣ = e

u

R2 . (7.55)

The result of this transformation is the waveguide shown in Fig. 7.20, whose walls
are straight, and lie between u = 0 and u = −R2 ln R2/R1. The refractive index of
this structure is a product of Eq. (7.55) and the refractive index in the appropriate
region of the curved waveguide, Fig. 7.21. From our previous analysis of the leaky
modes, it is clear that all the modes of the curved waveguide will radiate on the
outer curve edge, thereby causing radiation losses. These losses can be estimated
numerically or, as shown in Section 7.5, analytically by using an approximate
formulation based upon the loss of the radiating tail.

One other obvious conclusion is that the fundamental mode in a curved
waveguide will be asymmetric, with the mode peak located closer to the outer
edge of the curve. This is illustrated in Fig. 7.20, where numerically computer
fundamental modes are shown for both a straight and a curved waveguide.

Since the fundamental mode of a waveguide bend is asymmetric, the junction
between a straight and a bend waveguide would normally result in the modal
excitation loss, as discussed in Section 14.4. Therefore, the junction between these
waveguide types requires some sort of a modal transition region. This region might
be an adiabatic transition [12], or an abrupt waveguide offset [11].
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FIGURE 7.20: (a) A two-dimensional curved waveguide with radial step index distribution
(b) Conformal transformation that converts the curved waveguide into a straight waveguide,
with a modified lateral refractive index profile (© IEEE 1975. Figure reproduced from
JSTQE, VOL. QE-11, 2, February 1975, page 75).

Example 7.7 To illustrate the use of the conformal mapping method, we are
analyzing a slab waveguide whose core index is na = 3.253, and whose cladding
index is nc = 3.17. The radius of curvature of the center of this waveguide is
R = 600 μm. The waveguide width is w = 2 μm. This waveguide is being mapped
into a straight waveguide with coordinates n and u , and the right boundary of the
waveguide is located at u = 0.

Problem: What is the refractive index profile of the straight waveguide obtained
through conformal mapping?

Solution: Using Eq. (7.55), and the actual index profiles, we have that the left
boundary of the waveguide will be at
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uleft = −
(

R + w

2
ln

R + w
2

R − w
2

)
= −

(
601 ln

601

599

)
μm = −2.0033 μm,

which is really close to the original waveguide’s width of 2 μm.
For −∞ < u < uleft , the refractive index profile will be given by the expression

per Eq. (7.55)

n(u) = nc · eu/(R+w/2) = 3.17 · eu/(601 μm).

For uleft ≤ u < 0, the refractive index profile will be given by the expression

n(u) = na · eu/(R+w/2) = 3.253 · eu/(601 μm).

Finally, for 0 ≤ u < ∞, the refractive index profile will be given by the expres-
sion

n(u) = nc · eu/(R+w/2) = 3.17 · eu/(601 μm).

7.3.6 Numerical Mode Solving Methods for Arbitrary Waveguide Profiles

Many problems cannot be accurately solved by the effective index or WKB tech-
niques. In these cases one generally turns to numerical techniques. Given the
availability of computers and the appropriate software in today’s world, such
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FIGURE 7.21: Fundamental mode profiles of a straight waveguide and a waveguide bend
calculated numerically. The parameters used were: the cladding index ncl = 3.2291, the core
index ncr = 3.2887, the wavelength λ = 1550 nm, the core width w = 3 μm, and the bend
radius R = 800μm. The waveguide bends counterclockwise. As expected, the bend mode is
shifted towards the outside edge of the curve [10].
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FIGURE 7.22: Illustration of finite-difference grid over a buried-rib waveguide.

numerical techniques are fairly easy to employ. The most straightforward numer-
ical solution to the generalized scalar wave Eq. (7.27) uses what is called the
finite-difference technique. As shown in Fig. 7.22, this involves overlaying a grid
of some finite period over the lateral waveguide profile to be solved. The lateral
normalized field U (x, y) will be found at the nodes of the grid by converting the
differential Eq. (7.27) into a set of finite-difference equations specified at the grid
points. The eigenvalue of this set of linear equations will be the effective index of
the mode in question. Thus, we wish to convert the partial differential Eq. (7.27)
into an eigenvalue problem that can be solved by linear algebra, and linear algebra
is easily done on a computer. This is the essence of the finite-difference technique.

The first step in the finite-difference procedure is to appropriately select the
computational window. We wish to limit the size of the domain for computational
efficiency. On the other hand, the domain should be large enough to contain the
field distribution that we want to calculate. The most common approach is to set
the field value to zero on the window boundary. Physical considerations should
help us in determining the optimum window size. After an initial guess, one can
change the window size and check to see if the result is affected. For more accurate
calculations on the window boundaries, appropriate boundary conditions to make
the window transparent can be used [3].

The second step is to discretize the computational window using a grid as
indicated in Fig. 7.22. The grid can be uniform or nonuniform. A nonuniform grid
is useful to appropriately sample strongly guided modes that may still have long
evanescent tails. Variations in both the transverse and lateral dimensions must be
considered. For this introductory treatment, we will assume a uniform grid from
this point onward to keep the math as simple as possible. That is,

x = i�x , i = 0, 1, 2, · · · , I + 1

y = j�y , j = 0, 1, 2, · · · , J + 1 (7.56)
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Before converting the scalar wave Eq. (7.27), we expand the operator ∇2 in rect-
angular coordinates and factor out the free-space plane wave propagation constant
k0 from the linear term. It then can be written in terms of the lateral index profile
n(x, y), and the modal effective index n̄ , as

∂2U (x , y)

∂x2
+ ∂2U (x , y)

∂y2
+ k2

0 [n2(x , y) − n̄2]U (x , y) = 0. (7.57)

Now, we approximate the partial derivatives using the finite differences. This is
accomplished by using a second-order Taylor series expansion of the fields at
adjacent grid points. That is,

U (x + �x , y) = U (x , y) + �x
∂U (x , y)

∂x
+ (�x)2

2
· ∂2U (x , y)

∂x2
+ · · ·

U (x − �x , y) = U (x , y) − �x
∂U (x , y)

∂x
+ (�x)2

2
· ∂2U (x , y)

∂x2
− · · ·

(7.58)

Adding the two and solving for the second partial derivative,

∂2U (x , y)

∂x2
≈ U (x + �x , y) − 2U (x , y) + U (x − �x , y)

(�x)2
, (7.59)

where the higher-order terms can be neglected if the grid is sufficiently small. Of
course, a similar expression can be derived for the second partial with respect to y .

Since we have discretized the space, we only need (or can solve for) the values
of the functions at these points. Thus, using Eq. (7.56) we will denote U (x , y) =
U i

j , U (x + �x , y) = U i+1
j , and U (x − �x , y) = U i−1

j . Then,

∂2U (x , y)

∂x2
= U i+1

j − 2U i
j + U i−1

j

(�x)2
,

and similarly

∂2U (x , y)

∂y2
= U i

j+1 − 2U i
j + U i

j−1

(�y)2
. (7.60)

The scalar wave equation can now be written in discretized form. That is,

U i+1
j − 2U i

j + U i−1
j

(�x)2
+ U i

j+1 − 2U i
j + U i

j−1

(�y)2
+ k2

0 (ni 2

j − n̄2)U i
j = 0. (7.61)

For computational ease, we divide through by k2
0 and introduce the dimensionless

quantities, �X 2 = k2
0 �x2 and �Y 2 = k2

0 �y2. Then, Eq. (7.61) can be written as
the matrix eigenvalue equation,
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FIGURE 7.23: Mode intensity profiles for a (left) surface ridge waveguide (right) deep
ridge waveguide. The details of the waveguide structures are given in the text.

U i−1
j

�X 2
+ U i

j−1

�Y 2
−

(
2

�X 2
+ 2

�Y 2
− (ni

j )
2
)

U i
j + U i

j+1

�Y 2
+ U i+1

j

�X 2
= n̄2U i

j , (7.62)

for i = 0 to I + 1 and j = 0 to J + 1.
As shown in Appendix 16 this finite-difference matrix equation can be solved

numerically for the eigenvalue n̄ , and the field profile U . This involves some matrix
manipulation for compactness and the use of a standard linear matrix-solving
algorithm, which can be found in most basic numerical analysis software packages.
An example problem is also given for clarity. In many cases solutions can be
generated very quickly, once the basic finite difference equations are entered.
Figure 7.23 shows two mode intensity profiles, for a surface ridge waveguide and
a deep ridge waveguide, calculated using the finite-difference technique. These
types of structures were introduced in Chapter 1, Fig. 1.17. In both cases, the 320-
nm-thick 1.4Q waveguide was grown on InP and is clad with 2 μm of InP. Both
ridges are 3 μm wide. For the surface ridge, the height is 2 μm, and the ridge stops
right above the waveguide layer, whereas in the deep ridge case, the waveguide
is 4 μm deep.

One can improve the finite difference technique considering the vector nature
of the fields [4]. Mode matching techniques that result in equivalent networks have
also been developed [5, 6]. Finite-element techniques can also be applied to solve
for vectorial fields [7].

7.4 NUMERICAL TECHNIQUES FOR ANALYZING PICs

7.4.1 Introduction

Numerous photonic integrated circuits cannot be accurately analyzed by simple
analytic techniques. Also, even where analytical techniques are available, numerical
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techniques are oftentimes employed to verify the designs before proceeding to
invest serious effort in making new structures. In fact, numerical techniques are
becoming increasingly available and user-friendly. In Section 7.3.6, we introduced
the finite-difference technique to analyze dielectric waveguides. In this section we
introduce the beam-propagation method (BPM ) to analyze arbitrary waveguide
propagation problems. In particular, we consider a finite-difference BPM as one of
the best approaches. As we shall find it builds upon the finite-difference techniques
developed in Chapter 7 and Appendix 16.

The most rigorous way of handling electromagnetic wave propagation in inte-
grated optics is to solve Maxwell’s equations with appropriate boundary conditions.
However, such PIC structures have certain features that makes this approach very
difficult to implement. The main reason is the large aspect ratio between the propa-
gation distance and the transverse or lateral dimensions of the propagating energy.
The cross section may be contained in a 2 μm × 5 μm window, but the propagation
distance could be centimeters long. Therefore, to establish a fine enough grid for
a boundary-value approach would pose a great challenge for computer memory
and CPU performance. Fortunately, the guided waves in PICs have certain other
properties that allow some approximations to be made. For example, in most cases
the scalar wave equation is sufficient to describe the wave propagation. Second, the
phase fronts of guided waves are nearly planar or their plane wave spectra are quite
narrow. Therefore, they are paraxial. Third, index changes along the propagation
direction tend to be small and gradual in many situations. Hence, as discussed in
Chapter 6, the wave amplitudes change slowly and back reflections are negligi-
ble in these cases. Under these conditions it is possible to reduce the scalar wave
Eq. (6.4) to the paraxial wave equation, which can be written as

2jk0nr
∂ψ

∂z
= ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ k2

0 [n2(x , y , z ) − n2
r ]ψ , (7.63)

where nr is a reference index that describes the average phase velocity
of the wave, and ψ(x , y , z ) = E (z )U (x , y). That is, nr determines the
rapidly varying component of the wave, and ψ includes the slowly varying
amplitude along the propagation direction. Thus for the polarization of interest,
E (x , y , z ) = ψ(x , y , z ) exp[−jk0nr z ]. The index nr must be carefully chosen to
get accurate answers. In guided-wave problems it is usually chosen as the index
of the substrate.

The paraxial wave equation describes an initial value problem as opposed to a
boundary value problem. As a result, one can start with an arbitrary initial wave
amplitude, ψ(x , y , 0), which could be a Gaussian beam formed by a lens, for
example. The resulting amplitude �z away can be found by integrating the paraxial
wave equation over �z . Repeating this procedure, one can find the evolution of the
initial field profile over the photonic integrated circuit. Note that one only needs the
field values at z = 0 to calculate the field values at z = �z . Therefore, there is no
need to store or manipulate the field values at every grid point in the z -direction
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as required in the solution of the boundary-value problem. Thus, BPM is much
more computationally tractable and efficient. Furthermore, all parts of the wave,
including the guided and radiation spectrum, are handled together. So there is no
need for modal decomposition or to neglect the radiation part of the spectrum.
However, since it originates from the paraxial wave equation, back reflections and
wide-angle propagation are not handled.

The initial procedure for BPM involved operator techniques and FFTs [13]. But
recently it has been shown that algorithms that are much more efficient and robust
can be generated by using finite-difference techniques [14]. Due to its significant
advantages only the finite-difference BPM (FD-BPM) will be described here. It
is possible to generate FD-BPM algorithms using implicit or explicit techniques.
In this basic treatment only an implicit algorithm based on the Crank–Nicolson
algorithm [15] will be given. The reader is referred to the literature for discussion
of the explicit FD-BPM [16].

7.4.2 Implicit Finite-Difference Beam-Propagation Method

The basic idea of the implicit finite-difference beam-propagation method (FD-BPM)
is to approximate the paraxial wave Eq. (7.63) using finite-difference techniques
described in Section 7.3.6. This requires choosing a computational window in the
transverse dimension (x, y) as well as choosing a grid in the z -direction. The
computational window must be large enough to contain the desired field distribution
all along the propagation path. However, since radiated fields can always be present,
setting the field values to zero at the boundaries of the computational window
can create difficulties. Since this boundary condition effectively creates a reflecting
boundary, the radiated fields will reflect back and create spurious field distributions.
One way to eliminate this difficulty is to use absorbing boundaries. This is achieved
by introducing an artificial complex index distribution around the computational
window to generate a lossy boundary. The radiated fields are then absorbed before
reaching the edge of the window. In practice, less than 10 mesh points around the
boundary with a complex index tends to be sufficient. Also, the imaginary part
of the index is tapered so as to avoid reflections. Remember to keep the absorber
outside the desired field profile. An alternative approach is to use “transparent
boundary conditions” [16] to avoid the absorbers.

With the computational window and z -grid appropriately chosen, we then have
x = p�x , y = q�y , and z = l�z . The Crank–Nicolson algorithm is chosen since
it is both unconditionally stable and unitary [17]. The reader is warned that a
straightforward implementation of the FD-BPM can lead to an unstable algorithm,
which is not power conserving, thus allowing slight round-off errors to lead to
nonphysical results. With the Crank–Nicolson scheme fields will not diverge or
diminish without any physical reason regardless of the mesh size, �x , �y , or �z .
But accuracy will be lost as the mesh size gets larger.

To convert Eq. (7.63) into the finite-difference form, we let ψ(x , y , z ) = ψ l
p,q ,

and approximate the z -partial on the left side by a forward difference
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to obtain

∂ψ

∂z
=

[
ψ l+1

p,q − ψ l
p,q

�z

]
. (7.64)

The right-hand side involves only x and y derivatives, which are approximated
using the regular finite-difference approximations for second-order partial deriva-
tives given by Eq. (7.59). This is refined by taking the average of the discretization
at z = l�z and z = (l + 1)�z . That is,

∂2ψ

∂x2
= 1

2

[
ψ l+1

p+1,q − 2ψ l+1
p,q + ψ l+1

p−1,q

�x2
+ ψ1

p+1,q − 2ψ l
p,q + ψ l

p−1,q

�x2

]
, (7.65)

∂2ψ

∂y2
= 1

2

[
ψ l+1

p,q+1 − 2ψ l+1
p,q + ψ l+1

p,q−1

�y2
+ ψ l

p,q+1 − 2ψ l
p,q + ψ l

p,q−1

�y2

]
. (7.66)

Also, for the final term,

k2
0 (n2 − n2

r )ψ = k2
0

[
(nl+1

p,q )2 + (nl
p,q )2

2
− n2

r

]
ψ l+1

p,q + ψ l
p,q

2
. (7.67)

For normalization, we divide the whole equation by k2
0 and call k0�z =

�Z , k0�x = �X , and k0�y = �Y . Then substituting Eqs. (7.64) through (7.67)
in Eq. (7.63) and grouping terms with common q indices, we obtain

− ψ l+1
p−1,q

2�X 2
+ [−bψ l+1

p,q−1 + ap,qψ l+1
p,q − bψ l+1

p,q+1] − ψ l+1
p+1,q

2�X 2
(7.68)

= ψ l
p−1,q

2�X 2
+ [bψ l

p,q−1 + cp,qψ l
p,q + bψ l

p,q+1] + ψ l
p+1,q

2�X 2
,

where

b = 1

2�Y 2
,

ap,q = 2jnr

�Z
+ 1

�X 2
+ 1

�Y 2
− 1

2

[
(nl+1

p,q )2 + (nl
p,q )2

2
− n2

r

]
,

cp,q = −ap,q + 4jnr

�Z
.

For p = 1 to P and q = 1 to Q within the computational window, we obtain P × Q
coupled equations at each z step, one Eq. (7.68) for each value of p and q . The
solution to these equations is best handled with matrices. The following reduction
of the equations to matrix form runs parallel to Appendix 16 and assumes the same
zero-field boundary conditions discussed in more detail there.



7.4 NUMERICAL TECHNIQUES FOR ANALYZING PICs 431

We first compact the y-direction into matrix notation by defining a vector that
encompasses y for each x position, p:

ψ1
p =

⎡
⎢⎣

ψ l
p,1
...

ψ l
p,Q

⎤
⎥⎦ . (7.69)

Then, by vertically listing all Q Eqs. (7.68) for a given p, we can group common
p indices into a matrix-difference equation along x :

−Bψl+1
p−1 + Apψ

l+1
p − Bψl+1

p+1 = Bψl
p−1 + Cpψ

l
p + Bψl

p+1, (7.70)

where
B = 1

2�X 2
I,

Ap =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap,1 −b 0 · · · 0 0

−b ap,2 −b 0 0

0 −b ap,3 −b 0
...

... 0
. . . 0

0 0 −b ap,Q−1 −b

0 0 · · · 0 −b ap,Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cp,1 b 0 · · · 0 0

b cp,2 b 0 0

0 b cp,3 b 0
...

... 0
. . . 0

0 0 b cp,Q−1 b

0 0 · · · 0 b cp,Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

and I is the Q × Q identity matrix. If there is no y-direction in the problem of
interest, then ψl

p → ψ l
p , Ap → ap , Cp → cp , B → 1/2�X 2, and Eq. (7.68) reduces

to a simple difference equation along x .
Now writing all P Eqs. (7.70) along x in matrix form, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 −B 0 · · · 0 0

−B A2 −B 0 0

0 −B A3 −B 0
...

... 0
. . . 0

0 0 −B AP−1 −B

0 0 · · · 0 −B AP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψl+1
1

ψl+1
2

ψl+1
3

...

ψl+1
P−1

ψl+1
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 B 0 · · · 0 0

B C2 B 0 0

0 B C3 B 0
...

... 0
. . . 0

0 0 B CP−1 B

0 0 · · · 0 B CP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψl
1

ψl
2

ψl
3

...

ψl
P−1

ψl
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.71)

which we can write symbolically as

Aψl+1 = Cψl with ψl =

⎡
⎢⎣

ψl
1
...

ψl
P

⎤
⎥⎦ . (7.72)

The right-hand side is known since both C and ψ l (the values of the field
at the previous propagation step) are known. To solve for the unknown field
values in the next step we have to solve this set of linear equations. As
we propagate the beam we need to do this at every propagation step. If the
problem is two-dimensional [i.e., if there is only one transverse dimension] A
becomes a tridiagonal matrix. There are very efficient algorithms to solve for
a tridiagonal system of equations [17]. Therefore, it is very advantageous to
convert a three-dimensional problem into a two-dimensional problem using the
effective index approximation, if possible. In the full three-dimensional case it is
generally better to use iterative techniques rather than inversion of matrix A at
each step.

7.4.3 Calculation of Propagation Constants in a z-invariant Waveguide
from a Beam Propagation Solution

The field distribution ψ(x , y , z ) everywhere in a z -invariant waveguide can be
calculated by applying the algorithm represented by Eq. (7.72). In the course
of the propagating beam calculation, one calculates the correlation function,
which is

P(z ) =
∫∫

ψ∗(x , y , 0)ψ(x , y , z ) dx dy . (7.73)

On the other hand, ψ(x , y , z ) can be represented by the superposition of orthogonal
eigenfunctions of the z -invariant waveguide, which is

ψ(x , y , z ) =
∑

n

EnUn(x , y) exp(−jβpnz ), (7.74)
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where Un(x , y) and βpn are the eigenfunction and the propagation constant of
the n th mode as obtained from the paraxial wave Eq. (7.63). In this expansion,
it is assumed that degeneracy does not exist, which is a good approximation for
dielectric waveguides. If Eq. (7.74) is substituted into Eq. (7.73), one obtains

P(z ) =
∑

n

|En |2 exp(−jβpnz ). (7.75)

The Fourier transform of (7.75) is

P(β) =
∑

n

|En |2δ(β − βpn). (7.76)

Thus, one can find the propagation constant, βpn , by numerically calculating the
correlation function, P (z ), Fourier transforming it, and locating the peak in the
Fourier domain. Ideally the accurate determination of βpn can only be done by
infinitely propagating the beam or when the electric field value is known over all
z because only when z extends to infinity will the Fourier transform of Eq. (7.75)
yield Eq. (7.76). However, in practice, one can propagate a beam only a finite
length, hence field values over a certain z -range, or z -window, are known. In
mathematical terms this is equivalent to multiplying Eq. (7.73) with a window
function w(z ), which accounts for the finite length of propagation. Then the Fourier
transform of the correlation function, Pw(z ), becomes

Pw(β) =
∑

n

|En |2L(β − βpn), (7.77)

where the lineshape function for the propagation distance, D , is defined by

L(β − βpn) = 1

D

∫ D

0
exp[j (β − βpn)z ]w(z ) dz . (7.78)

Knowing this lineshape function, the propagation constant can be quite accurately
determined from the spectrum, Pw(β), using curve fitting. In the calculation, the
Hanning window function, w(z ) = 1 − cos[(2πz )/D], is used as is typically done
in the literature. The eigenfunction of the paraxial wave Eq. (7.76) is identical to
that of the original scalar Helmholtz equation. However, the propagation constant
of the Helmholtz equation, βh , is found from that of the paraxial equation, βp ,
using the relation,

βh = k0nr (1 + 2βp/k0nr )
1/2. (7.79)

The details of calculating the peak position from the spectrum are described in [12].
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7.4.4 Calculation of Eigenmode Profile from a Beam Propagation Solution

If both sides of Eq. (7.74) are multiplied by D−1 w(z ) exp(jβz ) and integrated
from 0 to D , we can obtain

ψ(x , y , β) = 1

D

∫ D

0
ψ(x , y , z ) exp(jβz )w(z ) dz (7.80)

=
∑

n

EnUn(x , y)L(β − βpn). (7.81)

Thus, for β = βpi , ψ(x , y , βpi ) can be expressed as

ψ(x , y , βpi ) = Ei Ui (x , y)L(0) +
∑
n =i

EnUn(x , y)L(βpi − βpn). (7.82)

Equation (7.82) shows that the eigenmode profile Ui (x , y) can be determined by
evaluating the integral (7.80) with β = βpi provided that most of the excited power
belongs to the i th mode, which is the mode of interest. In practice, such excitation
can be achieved in most cases for dielectric waveguides. The detailed description
of this method can be found in [19].

7.5 GOOS–HANCHEN EFFECT AND TOTAL INTERNAL REFLECTION
COMPONENTS

In Section 6.2, Eq. (6.13), we have defined the effective width of a waveguide
as means of relating the peak field to the total power in the mode. However,
this effective width also has a physical interpretation, as suggested in Fig. 6.1.
Specifically, while the phase fronts of a wave in the zigzag ray picture bounce
between effective metal planes spaced apart by π/kx , the energy propagating down
the guide effectively bounces off of planes placed at one over the decay length into
each cladding region, giving a total width of deff between bounces. This energy
penetration accounts for the evanescent fields in the cladding layers and results in
an axial shift and time delay of an incident beam before it is reflected off of the
interface. The axial shift is known as the Goos–Hanchen shift and represents a
very real displacement of energy that is observable in the laboratory.

To rigorously derive the Goos–Hanchen shift, LG−H , we must consider the group
characteristics of a spatial wave packet reflecting off of the interface beyond the
critical angle. Fortunately, we can also guess at the result by noting the familiar
relations for phase velocity, ω/β, and energy velocity, dω/dβ. For our reflected
wave, the phase fronts are advanced along z by φ/β, since exp[−jβz ] exp[jφ] =
exp[−jβ(z − φ/β)]. We therefore predict that the energy is advanced or displaced
by dφ/dβ. A detailed wave packet analysis would in fact confirm this prediction.
In other words, the Goos–Hanchen shift is mathematically related to the dispersion
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of the reflection phase angle, φ. Using Eq. (7.11) for the reflection phase of a TE
mode, we can evaluate the derivative to obtain

LG−H = dφ

dβ
= 2 tan θ

γx
. (Goos–Hanchen shift) (7.83)

As shown on the right in Fig. 6.1, this is the same result we would obtain if
the energy had to propagate (transversely) an additional 1/γx before reflecting
back. With a Goos–Hanchen shift on both sides then, the total effective energy
propagation width is just deff defined in Eq. (6.13) or (7.66), as initially assumed.
Also note that the length of the guide required for the energy to make one transverse
round-trip is 2deff tan θ .

Goos–Hanchen effect therefore has a significant impact on the waveguide com-
ponents based on total internal reflection, which will be briefly examined in the
remainer of this section.

7.5.1 Total Internal Reflection Mirrors

Total internal reflection (TIR) mirrors are the most compact elements that can
be used to change the direction of light in waveguides. They utilize a discrete,
high-index contrast air-semiconductor interface to reflect the light off it, rather
than using the deep etch to continuously guide the light in a waveguide bend.
A typical TIR mirror is illustrated in Fig. 7.24a. The light is lauched from an
access waveguide, into a free propagation region, where the light difracts before
hitting the mirror surface. At the mirror output, the reflected light is imaged at
the output waveguide aperture and coupled back into the waveguide mode. The
efficiency and loss of a TIR mirror will depend on carefully tailoring the free
propagation and the mirror surface positions in order to optimize this imaging
into the output waveguide. This is illustrated in Fig. 7.24d. The reflection plane
position will be determined by the Goos–Hanchen shift, and due to the differences
in reflected phase angles (effective waveguide widths) for light waves of different
polarizations, per Eq. (7.11), the optimum reflector position will generally be
different for TE and TM polarized light.

The mirror surface can be planar, or concave, in which case the mirror also acts
as a lens, focusing the reflected light. This is advantageous for large mirror sizes
and low loss mirrors [21]. Mirror losses of less than 0.1 dB per reflection can be
achieved. The surface position, verticality, and depth of the etched mirror surface
are critical to achieving low loss.

Frustrated Total Internal Reflection Beam Splitters Directional coupler and
multimode interference–based light splitters have already been discussed in pre-
vious chapters as very important functional components in PIC realization. Total
internal reflection mirror approach can be used to produce extremely short, submi-
cron scale slot-based light splitters. If two flat TIR mirrors are positioned back to
back, with a narrow slot (index) discontinuity between their faces, light launched
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FIGURE 7.24: (a) Schematic of a total internal reflection mirror. (b) Finite-difference
time domain two-dimensional simulation of the reflection for the fundamental mode at
λ = 1550 nm. (c) Finite-difference time domain two-dimensional simulations for a planar
and concave mirror design. (d) Loss as function of TIR mirror width for the planar and
concave mirror designs. (Reprinted with permission from Dr. Joseph Summers).

into one access waveguide will partially continue its propagation through the slot,
while the remaining light will be reflected, through frustrated total internal reflection
(FTIR). This is illustrated in Fig. 7.25. FTIR can occur even when the angle of
incidence onto the slot exceeds the critical angle, since, as explained in this section,
there will be an evanescent field extending into the slot at the incoming TIR’s inter-
face. If the second interface of the slot is close enough that this decaying field still
has a non-negligible amplitude, then FTIR occurs and a certain amount of the input
power tunnels through the gap and continues to propagate into the opposite waveg-
uide. As the gap width increases, the transmitted optical through the slot decreases
exponentially. One drawback to FTIR splitters is that they have inherent losses,
due to the inability to maximize the reflection and transmission at the same time,
caused by a combination of Goos–Hanchen shift and diffraction effects. Similar to
the TIR mirrors, the performance of these splitters will also critically depend on
the verticality and smoothness of the TIR/slot faces, as well as control of the actual
slot dimensions.
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FIGURE 7.25: (a) Schematic of an FTIR slot based splitter. �inc represents the incident
angle, and the Goos-Hanchen shift is also specified. (b) FDTD simulation showing equal
splitting for an FTIR air slot based splitter at λ = 1550 nm. (Reprinted with permission from
Dr. Janet Chen).

7.6 LOSSES IN DIELECTRIC WAVEGUIDES

7.6.1 Absorption Losses in Dielectric Waveguides

Many dielectric waveguides are implemented using semiconductor alloys that have
a direct bandgap, and they absorb strongly at wavelengths shorter than the corre-
sponding band edge. These types of losses can be avoided by appropriate selection
of alloy composition and operating wavelength. In applications involving photonic
integrated circuits, special integration techniques for implementation of both low
loss dielectric waveguides and active photonic blocks must be used.

Another important loss component in dielectric materials is free-carrier absorp-
tion, caused by the presence of free P and N carriers in the material. Free carrier
absorption can be intraband (where an electron below the Fermi level absorbs a
photon and moves to a free state above the Fermi level) and interband. Typical
bulk losses for N-type material, doped at 1 · 1018 cm−3, are 22 and 4 dB/cm for
GaAs and InP respectively, at 1.5 μm [13]. The greater valence band complexity, as
discussed in Chapter 4, causes significantly higher absorption in P-type III-V mate-
rials, typically 56 dB/cm for 1 · 1018 cm−3 of P doping [13]. The total absorption
loss will depend on the waveguide mode overlap with the P and N doped regions. In
active devices, where P doping is necessary to form a p-n junction, the losses can be
mitigated by minimizing the confinement factor � between P regions and the mode.
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Deep level traps, which cause absorption through similar mechanism to intraband
absorption, can lead to losses of 3.5 and 1 dB in GaAs and InP respectively, at
1.55 μm.

7.6.2 Scattering Losses in Dielectric Waveguides

Rough interfaces on dielectric waveguide boundaries will cause additional losses
through the effect of scattering. The mechanism of scattering losses can be
explained by referring to the ray propagation illustration in Fig. 7.5. As a ray hits
the waveguide interface at an angle that is larger than the critical angle, it reflects
back from the interface. Local roughness at the interface changes the local angle
of incidence, thus changing the phase of the reflected wave, and the evanescent
tail of the mode, as given by Eq. (7.15). This can affect the absorption losses,
as those depend on the overlap of the mode with the absorbing material. If the
local roughness at the interface is such that the angle of incidence is lower than
the critical angle, part of the light will be refracted, and thus lost. The reflected
part of the light is now incident to the next interface with a different angle, and
becomes a radiation mode.

Determining the actual scattering losses from measured roughness values is
a complex problem due to the two-dimensional nature of the waveguide index
distribution, dependence on both amplitude and spatial periodicity of the roughness,
and the difficulty associated with measuring small amplitude roughness.

One simple approach that can be used to simplify the three dimensional problem
is to use effective index method to reduce the waveguide to a two-dimensional
structure. With this approximation, the scattering loss α of a symmetric planar
waveguide is given by [14]

α = σ 2k2
0 kx

β

E 2
S �n2∫
E 2 dx

,

where σ is the interface roughness, �n2 is the difference in refractive indices of the
core and the cladding squared, and E 2

S /
∫

E 2 dx is the normalized optical intensity
at the guide-cladding interface.

A more detailed analysis of the scattering problem indicates that the above
approach, while giving the correct trends and identifying the main parameters
of scattering, can overestimate the scattering losses depending on the actual 3-D
waveguide geometry. More accurate, and complex numerical methods, such is a
volume current method [15], can be used to overcome these limitations.

7.6.3 Radiation Losses for Nominally Guided Modes

There are a few practical situations where lossless guided modes become leaky
modes. One occurs when a waveguide is curved to displace the axis of the guide.
This is very common in practical devices. Another occurs when some cladding
is removed or replaced by higher-index material in a symmetric guide over some
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device region. This creates an asymmetric guide that may be cut off (i.e., leaky). A
different case is an antiguide, which is deliberately constructed to have the largest
index in the cladding regions. In these latter cases, we may want to use the energy
that leaks out; the axis of the guide remains the z -axis, and the optical leak rate
(or propagation loss) can be calculated from the transmission that occurs for a
zigzagging ray at one or both waveguide boundaries. The loss rate per unit length
is the transmission loss divided by the axial length it takes a ray to cycle back and
forth transversely across the guide.

Optical Antiguides and ARROW Waveguides We begin by considering a sym-
metric antiguide as shown in Fig. 7.26. Even though there is partial transmission at
each boundary, the optical energy will be “guided” with relatively low loss provided
transverse resonance is satisfied. Since there is π phase shift at each boundary for
n1 < n2, the transverse resonance condition for the antiguide is

kx d = (m + 1)π. (antiguide) (7.84)

Assuming TE polarization, the transmission at each boundary is given by (1 − r2),
where r is given by Eq. (7.4). A particular ray strikes a boundary once in a distance
�z . Setting kx ≈ k1d/�z in Eq. (7.84), we obtain

�z = 2n1d2

(m + 1)λ
, (7.85)

for paraxial rays (small angles). Assuming the power decays exponentially accord-
ing to P(z ) = P(0)e−αz , we can solve for the attenuation constant as the relative
power change per unit length, which can be approximated by

α = 1

�z

�P

P
= (1 − r2)(m + 1)λ

2n1d2
. (antiguide) (7.86)

z

x

d

n2

Radiation

n1

n2

Δz n1 < n2

FIGURE 7.26: Illustration of radiation at boundaries in an antiguide for which n1 < n2.
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Equation (7.86) gives the attenuation constant for lightwaves propagating in a sym-
metric antiguide. Any coherent addition of the radiated fields has been neglected.
This is valid in most situations where some absorbing or scattering boundary inter-
cepts the radiated field before it has a chance to add along any appreciable length.
The attenuation can be quite high or relatively low depending upon the parameters.
For example, consider a typical case where m = 0, λ = 1 μm, n1 = 3.5, d = 3 μm
and the index difference gives a ray reflection coefficient, r2 = 0.9. Plugging into
Eq. (7.86), we find α = 1.59 cm−1, which is not an extremely large loss for semi-
conductor waveguides. The d used suggests that this would be the lateral waveguide
dimension rather than the transverse in the semiconductor case. For small d , e.g.,
one-tenth of that in the example, the loss would be 100 times larger, and this would
be an extremely high loss.

If multiple boundaries are included with reflections that add in phase for some
wavelength, the net propagation loss can be significantly reduced for a leaky
waveguide. Also, they can operate in a quasi-single mode even for large core
widths, since only a particular ray angle experiences low loss. This can lead
to desirably low vertical diffraction angles at output facets in semiconductor
waveguides. Such “waveguides” have been referred to as antiresonant reflecting
optical waveguides or ARROW’s [8]. Figure 7.27 shows an example of an
ARROW guide.

For low-loss we desire a slab mode with a null at the lower interface. This is
accomplished with a vertical standing wave that has a node at the interface between
the slab and the first high-index reflector layer. If the top surface index difference
is large, then the zigzag ray angle in the slab must be, θ ≈ cos−1(λ/2n1d1). For
the reflection layer of thickness t and index n2 to be in antiresonance for high
reflection,

t ≈ λ

4n2
(2N + 1)

[
1 − n2

1

n2
2

+ λ2

4n2
2 d2

1

]−1/2

, N = 0, 1, 2, . . . (7.87)
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n1
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FIGURE 7.27: ARROW slab guide bounded on its upper surface by a low-index medium
(n0) and on its substrate side by one (or more) higher-index (n2) anti-resonant reflector
layers. After [8]. (Reprinted, by permission, from Electronics Letters).
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The spacing d2 to the second high-index reflector should also be antiresonant to
maximize the net reflection. That is,

d2 = d1

2
(2M + 1), M = 0, 1, 2, . . . (7.88)

Using the transverse resonance recipe of Section 7.3.2 and the technique for cal-
culating radiation loss outlined above, one can rigorously calculate the radiation
loss into the substrate. Figure 7.28 gives an example result for the case outlined in
Fig. 7.27. The reflector layer thicknesses are varied along with the slab thickness
according to the approximate design rules given above.

In addition to having low propagation losses and large fundamental mode size,
ARROW modes are also interesting because of the very low overlap of optical
energy with the first reflecting layer. Thus, it is possible to have an absorbing
reflector layer and still have low waveguide loss. The placement of a null at the
high-loss layer provides a unique way of placing high-loss layers (e.g., gain layers)
immediately adjacent to low-loss guides.

Dielectric Waveguide Bends In this section, we evaluate the radiation losses of
waveguide bends. The case considered is a dielectric waveguides bend at a radius
of R, as indicated in Fig. 7.29. For this problem we use a first-order perturbation
approach in which the unperturbed eigenmode is used in the perturbed problem
to calculate the loss. When this mode enters the bend of radius R, it is assumed
to stay in the center of the guide with its phase fronts along radii from the center
of curvature. From the figure we see that at some radius, xR , the exponential tail
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FIGURE 7.28: Computed radiation loss as a function of slab thickness for the two lowest-
loss TE modes in a double-reflector-layer ARROW at 1.513 μm [8], with n0 = 1.0, n1 =
3.17, and n2 = 3.4. (Reprinted, by permission, from Electronics Letters).
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FIGURE 7.29: Illustration of an eigenmode entering a waveguide bend of radius R so that
the outside tail of the mode must radiate.

of the unperturbed mode must travel faster than the speed of light in the cladding
medium to keep up with the rest of the mode. Clearly, this is not allowed, and we
must assume that the light beyond this radius radiates away into the cladding.

To obtain the value of xR , we note that the local phase velocity is equal to the
radial distance times the angular sweep rate, and that it is assumed to equal the
unperturbed guide phase velocity, ω/β, at the center of the guide (r = R). That is,

vp(r) = r
dξ

dt
= r

1

R

ω

β
. (7.89)

Now, by the criteria we have adopted, vp(R + xR) = ω/k2. Thus,

xR = R(β/k2 − 1). (7.90)

As in the antiguide case, the problem is to determine the fraction of power lost,
�P/P , over some incremental distance, �z , so that an attenuation constant can
be estimated. Again, we shall neglect coherent addition of radiated fields, although
this is generally not a good assumption. For the relative power lost we use the
fraction of power contained in the portion of the mode that radiates (shaded region
in Fig. 7.29). This is a very straightforward integration using the unperturbed mode.

Estimating the effective distance it takes this energy to be radiated out of the
mode is more complex. For this we use a diffraction distance defined as the distance
where the peak power density falls to 1/e of its initial value. This is meaningful
if the diffracting energy keeps the same functional form as it diffracts, for then,
the width of the one-dimensionally diffracting energy in the slab geometry has
increased by e-times in this same distance. It turns out that the Hermite–Gaussian
functions introduced earlier by Eq. (7.43) as the eigenmodes of a parabolic dielec-
tric constant medium also serve as the eigenmodes of free space in the sense that
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they maintain the same functional form laterally, even though their characteristic
width, w, increases. Thus, they become the natural basis set in which to expand
arbitrary excitation field profiles in a uniform medium. This important property
comes about because the Fresnel diffraction integral generates the Fourier trans-
form of a function, and the Hermite–Gaussian functions transform back and forth
to other Hermite–Gaussian functions, reproducing the original function scaled only
in width after some diffraction distance.

Therefore, our procedure for determining the diffraction distance is to expand
our radiating excitation field in terms of Hermite–Gaussian basis functions and
determine the distance, �z , for their width to increase by e-times. Figure 7.30
illustrates this expansion using only the first two Hermite–Gaussian functions. In
the present case the excitation field is a decaying exponential of the form,

Ee(0) = Ae−γx (x−xR ), x > xR , (7.91)

and the basis functions are given by Eq. (7.43). By iteration for best fit we find
that the Gaussian 1/e spot size, w0, must be approximately

w0 ≈ 0.6

γx
. (7.92)

For a freely diffracting Hermite–Gaussian beam the characteristic width, w,
increases from w0 at z = 0 according to [9],

w2 = w2
0

⎡
⎣1 +

(
λz

πnw2
0

)2
⎤
⎦ . (7.93)

Hermite-Gaussian
basis functions

0 x − xRw0

(r = R + xR)

1/gx

FIGURE 7.30: Radiating part of waveguide eigenmode for x > xR . Superposition of the
first two Hermite–Gaussian basis functions can approximate this field. Their characteristic
width determines the diffraction distance.
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Interestingly, this is true for all of the higher-order functions as well as the
fundamental. Thus, we do not have to keep track of different characteristic widths,
and the diffraction problem is completely defined once the excitation problem is
solved.

Setting w/w0 = e in Eq. (7.93) for the desired diffraction length, and using the
estimation for the initial width of Eq. (7.83), we obtain

�z =
√

e2 − 1 · πnw2
0

λ
≈ πn2

λγ 2
x

, (7.94)

where n2 and γx are the refractive index and the unperturbed modal decay constant,
respectively, in the cladding region where the radiation is occurring. It is also
notable that over this distance, �z , the wavefronts of the diffracting Hermite–
Gaussian functions curve significantly, so that a coherent interaction with the planar
phase fronts of the guided mode is inhibited.

Now, we can estimate the attenuation constant, α, from

α = 1

�z

�P

P
=

(
λγ 2

x

πn2

) w

2ηg

∫ ∞

xR

|Ey |2 dx

w

2ηg

∫ ∞

−∞
|Ey |2 dx

. (7.95)

Completing the integrations similarly to the work leading up to Eq. (7.64), we
obtain

α = λγ 2
x

πn2(γx d + 2)
cos2(k1x d/2)eγx d e−2γx (β/k2−1)R . (7.96)

To uncover important analytical dependences and allow plotting of normalized
curves, Eq. (7.96) can be approximated by

α = C1e−C2R .

From Eq. (7.96), it can be shown that C1 ≈ γ 2
x /k2 and C2 ≈ γ 3

x /k2
2 , assuming

weak guiding so that β/k2 ≈ 1 + 0.5(γx /k2)
2. However, more exact calculations

have shown that the second quantity is better estimated by C ′
2 ≈ 2

3γ 3
x /k2

2 . Using
this and the fact that for weak guiding, γx d can be expressed solely in terms of the
normalized frequency, V , introduced in Appendix 3 (i.e., γx d ≈ √

1 + V 2 − 1), we
can generate the normalized plots similar to those given in Fig. 7.31. However, it
is important to note that these calculations do not include the mode mismatch loss
between the straight and curved sections, as discused in one of the previous sections.

The plot in Fig. 7.31 shows normalized radiation losses for a family of different
curved waveguides, of different index contrasts. They were generated numerically
using a combination of the beam propagation method and conformal mapping to
represent the curved waveguides, as discussed in Section 7.3.8. By measuring the
fundamental mode power as function of propagation distance, one can easily extract
the radiation loss coefficient, α, without the need for any approximations.



REFERENCES 445

10–3

10–4

10–5

V = 5 V = 3 V = 2

a
d

R/d

10–6

10–7

10–8

102 103 104(Δn/n) = 0.003

(Δn/n) = 0.01

V = 5 V = 3 V = 2

FIGURE 7.31: Bending loss as a function of bend radius for different normalized frequencies
and index steps. The loss has been calculated using the conformal mapping technique in
conjunction with the beam propagation technique.

REFERENCES

1. Lee DL. Electromagnetic principles of integrated optics . New York: Wiley; 1986.
Chapter 3.

2. Haus HA. Waves and fields in optoelectronics . Englewood Cliffs, NJ: Prentice Hall;
1984. Chapter 2

3. Lee DL. Electromagnetic principles of integrated optics . New York: Wiley; 1986.
Chapter 4.

4. Stern MS. Semivectorial polarised finite difference method for optical waveguides with
arbitrary index profiles. IEE Proceedings J: Optoelectronics 1988;135: 56.

5. Dagli N. Equivalent circuit representation of open guided-wave structures. IEEE J Quan-
tum Electron 1990;26: 90.

6. Peng S-T, Oliner AA. Guidance and leakage properties of a class of open dielectric
waveguides: part I—mathematical formulations. IEEE Trans Microwave Theory Tech
1981;29: 843.

7. Rahman BMA, Davies JB. Finite-element analysis of optical and microwave waveguide
problems. IEEE Trans Microwave Theory Tech 1984;32: 20.

8. Koch TL, Koren U, Boyd GD, Corvini PJ, Duguay MA. Antiresonant reflecting optical
waveguides for III-V integrated optics. Electron Lett 1987;23: 244.

9. Haus HA. Waves and fields in optoelectronics . Englewood Cliffs, NJ: Prentice Hall;
1984. Chapter 5.



446 DIELECTRIC WAVEGUIDES

10. Heiblum M, Harris J. Analysis of curved optical waveguides by conformal transforma-
tion. IEEE J Quantum Electron 1975;11: 75.

11. Marcatili EAH. Bends in optical dielectric guides. Bell Syst Tech J 1969;48: 2103.

12. Heinbach M, Schienle M, Schmid A, Acklin B, Muller G. Low-loss bent connections
for optical switches. IEEE J Lightwave Technol 1997;15: 833.

13. Deri RJ, Kapone E. Low-loss III-V semiconductor optical waveguides. IEEE Journ
Quantum Electronics 1991;27: 626.

14. Tein PK. Light waves in thin films and integrated optics. Appl Opt 1971;10: 2395–2413.

15. Barwicz T, Haus HA. Three-dimensional analysis of scattering losses due to sidewall
roughness in microphotonic waveguides. IEEE J Lightwave Technol 2005;23: 2719.

16. Chung Y, Dagli N. An assessment of finite difference beam propagation method. IEEE
J Quantum Electron 1990;26: 1335.

17. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes, the art of
scientific computing . New York: Cambridge University Press; 1988.

18. Smith GD. Numerical solution of partial differential equations. In: Finite difference
methods . New York: Oxford University Perss; 1985.

19. Chung Y, Dagli N. Analysis of Z-invariant and Z-variant semiconductor rib waveg-
uides by explicit finite difference beam propagation method with nonuniform mesh
configuration. IEEE J Quantum Electron 1991;27: 2296.

20. Hadley GR. Transparent boundary condition for the beam propagation method. IEEE J
Quantum Electron 1992;28: 363.

21. Summers JA, Lal V, Masanovic ML, Dagli N, Blumenthal DJ. Concave low-loss total
internal reflection mirrors in indium phosphide for high fabrication tolerance. Conference
on Lasers and Electro-Optics (CLEO); 2007 May 6; Baltimore.

READING LIST

Lee DL. Electromagnetic Principles of Integrated Optics . New York: Wiley; 1986.
Chapters 3–5.

Haus HA. Waves and Fields in optoelectronics . Englewood Cliffs, NJ: Prentice Hall; 1984.
Chapter 2.

Ebeling KJ. Integrated Opto-electronics . Berlin: Springer-Verlag; 1993. Chapters 2–4.

Yariv A, Yeh P. Optical Waves in Crystals . New York: Wiley; 1984. Chapter 11.

PROBLEMS

1. For TM plane waves incident on a planar dielectric boundary, it is possible
to get total transmission as well as total reflection. This is called Brewster’s
angle. Derive an expression for the incident Brewster’s angle in terms of the
relative dielectric constants of the two media.

2. A plane wave with λ = 0.85 μm in a medium of index 3.5 is incident on
another dielectric medium of index 3.0. The reflection coefficient at the planar
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interface is determined to be 1∠60◦. What is the angle of incidence for TE
polarization? Repeat assuming TM polarization.

3. A symmetric three-layer slab guide has a core region 0.4 μm thick. Its index
is 3.4 and that of the cladding regions is 3.2.

(a) Determine the ray angle for the reflecting plane waves that make up the
fundamental TE guided mode.

(b) What guide width will provide the same ray angle for the first higher-order
odd TE mode?

(c) If the cladding index were changed to 3.0 on one side, what guide width
would be necessary to obtain the same ray angle for the fundamental TE
mode? Assume λ = 1.55 μm.

4. For the waveguide structure as defined in Example 7.2, determine the thickness
d of the waveguide that supports the fundamental mode at 1.55 μm, incident
at 75◦.

5. Plot the effective index versus center layer thickness, d , for 0.1 < d < 0.2 μm
with λ = 1.3 μm for the multilayer slab guide shown in Fig. 7.32. Add dis-
persion curves for any higher order modes as they become lossless.

6. In exciting a 0.3 μm thick GaAs slab waveguide, it seems that much of the
excitation energy goes into radiation modes. In order to expand this excita-
tion in terms of the eigenmodes of the system, perfectly reflecting planes are
assumed to exist at a distance ±30 μm on each side of the slab. The cladding
material is Al0.2 Ga0.8 As and the wavelength is 1.0 μm. Plot the propagation
constant versus mode number for all of the modes.

7. Using the WKB method, determine the effective index versus waveguide base
width for the fundamental mode of the triangular index profile shown in
Fig. 7.33 with 4.0 < d < 1.0 μm. Assume λ = 1.0 μm. Indicate any regions
where the WKB approximation may not be accurate. Also, plot the ray path
for the mode at d = 2.0 μm.
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n1 = 3.0
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z
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FIGURE 7.32: Schematic of multilayer slab waveguide.
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FIGURE 7.33: Triangular index profile waveguide.

8. A quarter-pitch GRINROD is 1 mm in diameter and 2 mm long. The maxi-
mum index in the center is 1.6. If an object is placed 1 mm in front of the
GRINROD, what is the total distance from the object to the image, and what
is the magnification?

9. A pencil-like beam of 1.3 μm light, polarized perpendicular to the plane of inci-
dence, strikes an air interface from a medium of index of 3 at an incident angle
of θi . Plot the shift of the reflected beam center versus θi for 0◦

< θi < 90◦.

10. A graded index slab waveguide has an index profile given by

n2(x) = 3.52

[
1 −

(
x

8.5 μm

)2
]

and it is tested at a wavelength of 0.85 μm.

(a) What are the effective indices for the first three modes?

(b) What are the eigenmode widths (measured between inflection points on
the mode amplitude) for the lowest three modes?

11. For the graded index slab from the previous example,

(a) What are the ray crossing angles on axis, for the three lowest order modes?

(b) A Gaussian beam centered on its axis with a 1/e amplitude half width
of 0.5 μm is now coupled to this guide. Assuming no reflections, what
fraction of this excitation field is coupled to the fundamental mode?

12. What is the loss of the fundamental “leaky mode” that satisfies transverse
resonance for an antiguide consisting of a slab 1.0 μm thick of index 3.2
sandwiched between media of index 3.4? Assume λ = 1.3 μm.

13. In order to fan out from a directional coupler to adjacent fibers, symmetric
S bend waveguide sections are required as shown in Fig. 7.34. Assuming
BH waveguides of 1.3 μm Q-material surrounded by InP for the 1.55 μm
lightwaves, waveguide thicknesses of 0.4 μm and widths of 2.0 μm and bend
radii of Rb to accomplish the total lateral shift of 70 μm, what is the total
excess loss due to the four bend sections between input and output ports?
Rb = 100 μm, 150 μm.
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FIGURE 7.34: Directional coupler with input and output S-bends for fan out to fibers.
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FIGURE 7.35: Rib waveguide cross section.

14. Find the effective index, n̄ , and the field profile, U (x, y), at 1.55 μm of the
fundamental mode of the rib waveguide shown in Fig. 7.35 by numerically
solving the scalar wave equation using the finite-difference technique. Hint :
This is a strongly guiding waveguide, so the computational window boundaries
on which U = 0 can be placed fairly close to the core of the waveguide. In the
initial trial, a 4.8-μm-wide (y-direction) by 2.3-μm-high (x -direction) window
together with a grid size given by �x = 0.1 μm and �y = 0.4 μm should
be sufficient. Place the window to leave 0.25 μm above, 0.65 μm below and
1.4 μm on either side of the high-index rib. For more details see M. J. Robert-
son et al., Semiconductor waveguides: analysis of optical propagation in single
rib structures and directional couplers, IEE Proceedings, Part J, 132(b), (1985).

15. Find the effective index, n̄ , and the 1-D field profile, U (x ), at 1.55 μm
of the fundamental mode of a rib waveguide curve with whose radius
is R = 400 μm. The index of the cladding is 3.19, and the index of the
core is 3.25. Solve numerically, from the scalar wave equation using the
finite-difference technique.

16. Consider the slab guide geometry shown below. The free-space wavelength
is 1.3 μm.
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Choose the computational window as shown in the figure, i.e., 1 μm above
the core in the air and 1.5 μm below the core in the substrate. Introduce
absorbing regions 0.5 μm thick on the boundaries of the computational
window. In the absorbing regions we need to introduce a negative imaginary
part to the actual index distribution. For example, the indices of the absorbers
in the air and in the substrate can be chosen as 1 − j 0.08 and 3.1 − j 0.08
respectively. Now set up a grid such that �x = 1/6 μm. This should result in
18 grid points as indicated in the figure. Excite this geometry at z = 0 with
a Gaussian beam whose profile is given as,

ψ(x , 0) = exp

[
−(x − 10

6 )2

( 1
6 )2

]
,

where x is in micrometers.
This is a Gaussian whose center is located on the lower grid point in

the core, i.e., on the grid point closer to the substrate interface. Using the
FD-BPM propagate this Gaussian 100 μm along the slab. You can choose
nr = 3.1 and �z = 5 μm. At the end of 100 μm compare the resulting field
distribution with the analytical one discretized on the same mesh. In this
case you may find it advantageous to calculate the inverse of the matrix A
once, since the geometry is invariant along the z -direction. You can improve
your accuracy by increasing the number of mesh points and the propagation
distance, but this will increase the computational effort.

17. Using BPM code (a free MATLAB script is available on Wiley’s download
site), calculate the optimum length of a 2-D 1 × 2 MMI splitter, whose
background index is 3.1752 and the core index is 3.2625. This device operates
at 1.55 μm, and the input and output waveguides are 1 μm wide.

perfect conductor

perfect conductor

0.5 μm

0.5 μm

0.5 μm

1 μm

n = 1

n = 3.4

n = 3.1

x

absorbers

0.5 μm absorbers

3 grid points

3 grid points

3 grid points

3 grid points

6 grid points Δx



CHAPTER EIGHT

Photonic Integrated Circuits

8.1 INTRODUCTION

In the last two chapters, we introduced techniques to analyze waveguides and
complex waveguide junctions. In this chapter we shall apply these techniques to
practical examples of photonic integrated circuits (PICs). The purpose is to illustate
the importance of these techniques and generate proficiency in their use, rather than
to give a complete summary of PIC technology. In keeping with the active device
theme of this text, we shall emphasize PICs that are diode lasers of a relatively
complex design, as well as PICs that include diode lasers.

To qualify as a PIC, a device must have at least two distinct functional sections,
with an optical waveguide junction there between. In Chapter 3 a few examples
have already been introduced. For example, Fig. 3.22 shows a three-section DBR
laser with separate gain, modal phase, and Bragg wavelength control electrodes.
Each contacts a section with somewhat different optical waveguide properties and
with a clear optical function.

We shall begin with a brief review of two-and-three section DBR reflective
grating-based multisection laser photonic integrated circuits. The main concepts of
tuning and operation will then be expanded to encompass various widely tunable
laser implementations. In digital communication systems, transmitter signal quality,
power, and chirp are of key interest. As we have discussed in Chapters 2 and 5,
directly modulated lasers have severe limitations in terms of bandwidth and output
signal qualitty. The natural progression in PIC development will then lead us toward
a discussion on externally modulated lasers (EMLs), which decouple the functions
of light sourcing and light modulation and allow for their independent optimization

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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in a more complex PIC. This will lead us to introducing new important PIC building
blocks, modulators, and semiconductor optical amplifiers.

The second part of this chapter will deal with even more functionally advanced
PICs, which generally include both transmitter and receiver functions on the same
chip. Some of these devices, like triplexers, have the potential to be deployed in vast
quantities, in applications like fiber-to-the-home. Optical transceivers, wavelength
converters and optical routing PICs are still more in the research arena, and they
can potentially enable size, weight, power, and cost reduction in future optical
communication systems.

Finally, we will devote a separate section to PICs for optical coherent communi-
cation. Optical coherent communications enable even better utilization of available
capacity for information transport on the existing fiber infrastructure, while simul-
taneously enabling new powerful techniques for transmission impairment control
and mitigation. This is an arena of active research, development, and deployment
for some of the most complex PICs to date.

8.2 TUNABLE, WIDELY TUNABLE, AND EXTERNALLY MODULATED
LASERS

Tunable diode lasers allow for the output wavelength of the laser to be controlled
postfabrication, which makes them attractive in a number of applications, spanning
optical communications, sensing and medical imaging. These laser structures also
form a basis for more complex photonic integrated circuits, such are externally
modulated lasers.

Tunability in semiconductor lasers can be achieved by changing the spectral
response of the mode filter inside the cavity. In this section, we will introduce and
analyze a number of different photonic integrated circuits that are based on tunable
lasers. We will start with the simplest two-section DBR laser structure, introduced
in Chapter 3, and finish with functionally complex widely tunable, externally mod-
ulated lasers and transceivers.

8.2.1 Two- and Three-Section In-plane DBR Lasers

The simplest tunable diode laser is an in-plane, two section DBR laser, illustrated in
Fig. 8.1. It consists of a gain section, a semiconductor distributed grating reflector,
and one waveguide junction between them, forming a simple photonic integrated
circuit.

From discussion in Chapter 3, we recall that the grating provides a frequency-
selective reflection, and that the other reflection comes from the output facet.
Assuming that the transverse waveguide layer is within the i -region of a pin
heterojunction diode, its refractive index can be changed by either applying a
forward current to inject carriers (free-carrier plasma effect) or a reverse bias to
increase the electric field (electro-optic effect). Forward biasing is used more com-
monly, since it introduces lower absorption losses (due to free carrier absorption)



8.2 TUNABLE, WIDELY TUNABLE, AND EXTERNALLY MODULATED LASERS 453

ITUNE
ILASER

P+ InP

n+ InP

(a)

p+ InGaAs

InGaAs/InGaAsP
MQW active

InP Etch
Stop

1st order
corrugation
1.3 μm   g
InGaAsP

1530

1529

1528

1527

1526

1525

1524

1523

1522

1521

W
av

el
en

gt
h 

(n
m

)

1520

1519
0.0 20.0

298 μm Active length

615 μm Active length

40.0

(b)

Tuning current (mA)

60.0 80.0

9.4 nm
8.3 nm

FIGURE 8.1: (a) Schematic of the axial structure of a two-section DBR laser, and (b) output
tuning characteristic versus the tuning current to the grating section. After [1]. (Reprinted,
by permission, from Appl. Phys. Lett.)

as opposed to reverse biasing which triggers the Franz–Keldysh effect, discussed
in the upcoming section on electroabsorption modulators. Thus, the center (Bragg)
frequency of the grating reflector can be tuned in direct proportion to the index
change.

The laser is controlled by biasing each of the sections independently: the gain
section for laser gain, and the mirror section for Bragg wavelength control. How-
ever, each electrode will also influence at least another aspect of laser operation:
for example, shifting the grating index will also change the effective length of
the cavity, thus moving the cavity modes, as well as the center frequency of the
grating. The mode locations will move only slightly along with the grating tuning
according to the fraction of the mode volume that resides in the grating. As the
grating current is adjusted, the filter will move across the mode comb, alternately
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selecting axial modes. Its center wavelength, λB , tunes according to

�λB

λB
= �n̄gr

n̄gr
, (8.1)

where n̄gr is the effective index in the grating. A given mode will lie at the grating’s
Bragg frequency only at one point near the middle of its selection during this
tuning of the grating filter. The frequency spacing between selected modes at these
points is

�f = c

2[(n̄a)g La + (n̄gr )g Leff ]
, (8.2)

where (n̄a)g and (n̄gr )g are the group indices in the active and mirror sections.
Figure 8.1 illustrates an actual experimental example of such a two-section dis-
cretely tunable DBR.

To allow the cavity modes to be shifted independent of the DBR mirror’s center
frequency, thus achieving continuous tuning, a third, phase section, needs to be
incorporated into a DBR laser. Figure 8.2 shows a general three-section DBR laser:
one each for gain, mode phase shifting, and shifting of the frequency-selective
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FIGURE 8.2: Three-section DBR. (a) Laser schematic; (b) effective cavity that determines
mode spacing and tuning characteristics; (c) sketch of relative spectral characteristics of the
cavity filter, gain, and modes along with currents that predominately affect the specified
element.
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mirror. In this structure, we can move the mode comb along with the grating filter by
simultaneously applying a current to the phase-shift section to achieve continuous
tunability over some wavelength range. Because this section only encompasses a
portion of the mode volume, we expect that the index change here will have to be
larger than in the grating. Specifically, we desire the wavelength of the mode, λm ,
to be the same as the Bragg wavelength of the DBR mirror, λB , for best modal
purity (best MSR). For this ideal continuous wavelength tuning, the relative change
in wavelength of the mode should equal the relative change in the grating’s Bragg
wavelength, or

�λm

λm
= �λB

λB
= �n̄gr

n̄gr
. (8.3)

Using Eq. (3.76) we can then solve for the required change in index of the phase
shift region to accomplish this alignment,

�n̄p

n̄gp
= �λm

λm

(
1 + n̄gaLa

n̄gpLp

)
− �n̄a

n̄ga

n̄gaLa

n̄gpLp
. (8.4)

Thus, to obtain continuous single-mode tuning in the three-section DBR, the pri-
mary tuning signal is applied to adjust the index of the grating, and then a secondary
signal is derived to adjust the phase shift region to satisfy Eq. (8.4). In prac-
tice, it is not necessary to measure all the independent parameters in Eq. (8.4) to
derive the desired tracking signal. This is because the output power experiences
a local maximum when this ideal alignment is obtained because the cavity loss
is minimized there. Thus, a simple feedback loop can be constructed that senses
the output power and adjusts the signal to the phase control electrode to locate
a local maximum. Figure 8.3 illustrates one simple control loop design that has
been demonstrated. In principle, this feedback loop could be internal to the laser
package.

To accomplish the ultimate goal of a tunable laser with only two control inputs—
one for power level and another for wavelength—the second independent feedback
loop in Fig. 8.3 is added to control the current to the gain section so that a given ref-
erence current from a power-monitoring detector is maintained. This latter feedback
loop is already commonly applied to most lasers in lightwave systems environments
to level the output power. In practice, control curcuits tend to be somewhat more
complex than suggested by the figure.

Two- and three-section DBR lasers require a cleaved facet to operate properly.
In addition the output power of a properly designed two-and-three section DBR
laser will be larger from the cleaved facet. This represents a complication in terms
of using these DBR laser embodiments as integrated sources in more complex
PICs. One solution to this problem is to apply a high reflection coating on the
cleaved facet [1]. Another solution is to utilize a four section DBR laser, where
another DBR mirror is added to replace the reflection from the facet. In a four-
section DBR laser, the Bragg wavelength tuning is accomplished by tuning both
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FIGURE 8.3: Circuit that uses first-order feedback to set the power level and a primitive
AFC to lock the mode wavelength to the Bragg wavelength of the grating, an alignment
where a local maximum in output power exists.

mirrors. Although not very commonly used in standard DBR lasers, this approach
represents a basis for widely tunable laser designs to be discussed in the next
section.

The maximum possible tuning range of a DBR laser is limited by the maxi-
mum amount of index change, Eq. (8.1), to around 8 nm for 1550 nm operation.
Therefore, techniques to extend the tuning range by modifying the DBR laser
design have been developed, and a number of widely tunable diode lasers have
been commercialized. These devices will be discussed in more depth later in this
section.

Example 8.1 We are designing a tunable two-section 1.55 μm InGaAs/InP DBR
(a gain region with a cleave at one end and passive grating at the other), Fig. 8.1,
whose axial mode spacing is 50 GHz. A four-quantum-well offset gain region with
characteristics as given by Fig. 4.31 is used. The waveguide of bandgap wavelength
1.25 μm is clad by InP, as illustrated in Fig. 8.2. The product of transverse and
lateral confinement factors is found to be 6%. The grating region is formed by
removing the quantum wells and etching a fundamental-order triangular sawtooth
grating with a peak-to-peak depth of 50 nm on the top side of the remaining 0.3 μm
quaternary waveguide. It is desired to tune the output over 12 of the axial modes.
We are using a BH waveguide whose width is 3 μm. The active region injection
efficiency is 0.8, and the internal loss along the entire device length is 10 cm−1.
The grating length needs to be selected to give a power reflection of 70% in the
absence of loss.
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Problem: (a) Determine the grating and gain region lengths. (b) Determine the
threshold current and the differencial efficiency.

Solution: (a) We first need to determine the necessary grating length. The net
power reflection gives us the value for κLg , and κ can be calculated from the
waveguide geometry. For the passive grating region we will first calculate the
effective index and the effective waveguide width using Appendix 3 material
and an interpolated index of n1 = 3.37 from Table 1.1 for the waveguide slab:
V = k0d

√
3.372 − 3.172 = 1.39, b = 0.300, and n̄ = 3.231. Also, the transverse

k -vector and decay constants are kx = 3.879 μm−1, and γx = 2.539 μm−1, respec-
tively. Thus, from Eq. (6.13), deff = 1.088 μm.

The grating coupling constant can be found from Eq. (6.55), using G = 8/π2

for a sawtooth pattern and a = 25 nm,

κ = Gk0a
n2

1 − n̄2

2n̄deff
= 8/π225 nm

3.372 − 3.2312

2 · 3.231 · 1.088 μm
= 0.0107 μm−1.

From r2
g = 0.70 ≈ tanh2 κLg , we determine the grating length as Lg = 113 μm.

Also, we can calculate the grating mirror effective length, Leff = 0.5(tanh κLg )/

κ = 39.1 μm.
For 50 GHz mode spacing, we use Eq. (8.2) to find LDBR ,

LDBR = La + Leff = c/(2n̄g�f ) = 789 μm

Subtracting the grating penetration depth, Leff , the active length becomes La =
LDBR − Leff = 789 μm − 39.1 μm = 749.9 μm.

(b) The threshold modal gain �gth is

�gth = αi + αm = 10 cm−1 + 1

0.0789 cm
ln

1√
0.32 × 0.70

= 19.48 cm−1.

Therefore, gth = (750/710)(1/0.06)19.48 cm−1 = 342.85 cm−1. From Fig. 4.31,
we have that Jth = 150 A/cm2 per well. For four wells, Jth = 600 A/cm2. Then,
Ith = wLaJth/ηi = 16 mA. The differential efficiency for the cleaved end # 1 is

ηd1 = F1ηi
αm

�gth
= 0.4F1.

The fraction coupled out end # 1 is,

F1 = t2
1

(1 − r2) + r1
rg

(1 − r2
g )

= 0.77,

giving the total differential efficiency of ηd1 = 30.8%.
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8.2.2 Widely Tunable Diode Lasers

The fundamental limit in the tuning range of DBR lasers, set by the maximum
amount of index shift achievable, needs to be overcome by a change in the laser
mirror design. A number of different techniques for implementation of widely tun-
able diode lasers have been proposed and commercialized. A majority of techniques
rely on the ability to generate mirror reflectivity spectra consisting of a number of
coarsely spaced reflectivity peaks, a reflectivity comb. From basic Fourier analysis,
we know that a periodic function in the time domain will produce a comb function
in the frequency domain. This principle forms the basis for sampled grating DBR
mirrors, one of the first, and most widely commercially deployed implementations.
Thus, in the next section, we will first analyze widely tunable sampled grating
DBR lasers, and then we will discuss other device variations based on the same
principle of operation. Then we will provide an overview of other key PIC laser
implementations.

Sampled Grating and Other Extended Tuning Range DBR Lasers Sampled
grating DBR lasers build on the principles of basic four-section DBR designs. The
key difference is that the amplitude or the phase of the gratings in the front and
rear mirrors are periodically modulated. The simplest form of modulation is blank-
ing, which leaves the mirrors consisting of a number of short grating patches, or
bursts, followed by blank areas of waveguide. This periodic spatial modulation
creates a corresponding reflection spectrum with periodic maxima in the frequency
domain. A lateral cross section of an SGDBR laser, with relevant sampled mir-
ror dimensions is shown in Fig. 8.4. To gain a better understanding of how the
spectra are produced in frequency domain, let us examine a special case of weak
reflections in a very long grating with very short grating bursts, and a grating
period 
. This is illustrated in Fig. 8.6. For a continuous grating with period 
,
the Fourier space image is a delta function, centered around the grating Bragg
frequency 1/
. To obtain a sampled grating in real space, we need to multi-
ply the continuous grating with a sampling function, consisting of a number of
periodic rectangular sampling windows of width Z1. The Fourier space image of
this sampling function is a sampling comb, with the spacing between the peaks

Front mirrorBack mirror Phase Gain

p-doped

n-doped

Z0
Z1

D

FIGURE 8.4: Sampled grating DBR laser axial cross-section illustration, with relevant
dimensions for the sampled mirror defined. Note that the dimensions are not to scale.
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defined by the inverse of the distance between adjacent sampling windows Z0.
In real space, this multiplication provides a sampled grating, whose burst length
Z1 is determined by the sampling window length, and whose burst spacing is
determined by the distance Z0. To obtain the frequency response of the sampled
grating in Fourier space, we need to convolve the grating and sampling function
Fourier responses, a delta funtion and a sampling comb, since this convolution cor-
responds to the operation of multiplication in real space. Therefore, the resulting
spectrum will be a sampling comb whose components are still spaced by 1/Z0 in
frequency space, but which is centered around the position of the original grating
delta function, 1/
. The envelope of the reflectivity spectrum is determined by the
grating burst length and shape—introducing a phase modulation inside the grat-
ing burst allows us to modify the envelope function from a parabola to a hat-top
type.

For a finite-length grating, the reflection coefficient for each peak in the comb
of reflection maxima has the same form as the unsampled grating (i.e., Eq. (6.48));
however, in this case the total reflection spectrum is composed of a superposition
of these reflection components, one for each peak (reflection order) of the comb.
Also, the coupling constant, κp , and the normalized propagation constant, σp , are
functions of the duty factor of the sampling function, Z1/Z0, and the peak (or
order) number, p, in the comb of reflection peaks. For simple periodic blanking of
a grating, the coupling constant is given by

κp = κg
Z1

Z0

sin(πpZ1/Z0)

(πpZ1/Z0)
e−jπpZ1/Z0 , (8.5)

where κg is the coupling constant for the continuous, unsampled grating, Z1 is the
length of the grating burst, and Z0 is the sampling period. From Eq. (6.48) the
reflection coefficient for one of the reflection orders is

rp = −jκ∗
p tanh[σpLg ]

σp + j δp tanh[σpLg ]
, (8.6)

where

σp =
√

|κp |2 − δ2
p ,

δp = 2πn

λ
− j

α

2
− π



− πp

Z0
,

and α is the net propagation power loss. The net total sampled-grating reflection
coefficient is

rg =
∑

p

rp . (8.7)
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FIGURE 8.5: (a) Example front (solid) and back (dotted) sampled grating DBR mirror
spectra calculated using S and T matrix formalism. The grating parameters are: for the front
mirror, 5 bursts, 9 cm−1 loss, Z0 = 68.5 μm and Z1 = 4 μm; for the back mirror, 10 bursts,
9 cm−1 loss, Z0 = 61.5 μm and Z1 = 6 μm. (b) Measured output spectrum from an SGDBR
laser. Note that all the widely tunable Vernier effect based lasers discussed in this chapter
will have similar spectra with similar performance.
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FIGURE 8.6: Sampling of a continuous grating is accomplished by multiplying it by a
sampling function. In the Fourier domain, the delta function spectrum of the continuous
grating is replicated into a comb.

In Eq. (8.7), we should only use the largest rp at any wavelength in the summa-
tion to be consistent with the assumptions of the coupled-mode formalism, which
only considers one Fourier order at a time.

More accurate reflectivity spectra can be obtained using S and T matrix models
for sampled grating mirrors. An example of calculated reflection spectra for two
sampled grating mirrors that could be used as a low reflectivity front mirror and
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a high reflectivity back mirror is shown in Fig. 8.5(a). The mirror parameters are
given in the caption of the figure.

Example 8.2 A 1550 nm sampled-grating DBR mirror has been implemented
using a passive waveguide consisting of a 1.3Q μm bandgap InGaAsP material,
350 nm thick. The passive waveguide modal loss is 5 cm−1. The injection effi-
ciency is 0.7 for both active and tuning sections. The grating burst length in
the mirror is Z1 = 5 μm, coupling coefficient κ = 300 cm−1, and the mirror has
NB = 10 bursts with a sampling period of Z0 = 50 μm.

Problem: (a) Determine the spatially averaged coupling constant for this mirror.
(b) Determine the effective length of this mirror. (c) Determine the maximum
reflectance of this mirror. (d) Determine the full-width at half maximum (FWHM)
of the reflectance peaks for this mirror. (e) Determine the wavelength spacing
between peaks in this mirror. (f) What is the overall FWHM envelope bandwidth
of this mirror?

Solution: (a) Since the mirror is sampled, the reflections along the mirror are
distributed, yielding a burst reflection every Z0 − Z1. Therefore, we can calculate
a spatially averaged coupling constant κ̄ ,

κ̄ = Nburst · Lburst · κ

Lmirror
,

where Lmirror = (Nburst − 1) · Z0 + Lburst = 455 μm.
Applying this to our mirror design, we have that

κ̄B = NB · Z1 · κ

(NB − 1) · Z0 + Z1
= 10 · 5 · 300

9 · 50 + 5
cm−1 = 32.97 cm−1.

(b) The effective back mirror length can be obtained from Eq. (3.63),

Leff = 1

2κ̄B
tanh κ̄B Lmirror = 1

2κ̄B
tanh κ̄B · ((NB − 1) · Z0 + Z1)

= 1

2 · 32.97 cm−1
tanh(32.97 cm−1 · 455 μm) = 137 μm.

(c) First, we can determine the lossless value of the mirror reflectance (power
reflectivity), using Eq. (3.55), and realizing that the total reflection from a lossless
sampled mirror will be equal to the reflection of a continuous grating whose length
is equal to the sum of the burst lengths. Thus, we have that

R′
B = |r ′

B |2 = tanh2 κNB Z1 = tanh2(300 · 10 · 5 · 10−4) = 0.819.

To incorporate the losses into the mirror reflectance, using the material from
Chapter 3, we use the effective length of the sampled mirror, and Eq. (3.61),
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to get

RB = R′
B · e−2αi Leff = 0.819 · e−2·5·0.0137 = 0.7144.

(d) Using the Eq. (3.57) for full width at half maximum of a DBR, we have
that

�λFWHM = λ2

2 · n̄g Leff

3.76

π
= 1.552 μm2

2 · 3.8 · 2 · 137 μm

3.76

π
= 2.761 nm

(e) The wavelength spacing between the peaks will be determined by the sam-
pling period Z0, as the resonant cavity is formed between each set of adjacent
bursts. Using the expression for mode spacing, Eq. (2.32), we have that

�λpeak = λ2

2 · n̄g Z0
= 1.552 μm2

2 · 3.8 · 50 μm
= 6.32 nm

(f) The bandwidth of the envelope is determined by the length of the burst, and
we calculate it using the expression for mode spacing again, Eq. (2.32),

�λenv = λ2

2 · n̄g Z1
= 1.552 μm2

2 · 3.8 · 5 μm
= 63.22 nm

Sampled-grating DBR lasers are four-section devices that utilize two DBR
mirrors generally sampled at different periods Z0 and with different burst lengths
Z1. By sampling the gratings at different periods, reflection maxima with different
wavelength periods are created in each mirror. Thus, as shown in Fig. 8.5, if a
particular reflection maximum from one mirror is aligned with one in the second
mirror, the others will be misaligned, and the product of the two reflectivities,
which determines the cavity loss, will only have one large maximum. Based on
our side-mode supression ratio analysis from Chapter 3, this ensures that the laser
will still be a good single-frequency laser with very good MSR. Once the two
mirror peaks are aligned, if both mirrors are tuned together and the mirror peaks
are kept in alignment at all times, we will be changing the Bragg frequencies
continuously, and we will get ∼8 nm of continuous single-mode tunability. Tuning
the phase electrode will ensure optimum alignment between the cavity mode and
the mirror peaks, optimizing the side mode suppresion ratio and output power.

If the index of one sampled mirror is tuned differently from the other, we will
be changing the Bragg wavelegth of that mirror and moving the whole spectral
comb, and adjacent maxima of the two mirrors will successively line up. We refer
to this differential adjustment to obtain alignment of different reflection maxima
as channel changing, whereas the above joint adjustment of the two mirrors is
fine tuning. If we wish to have full wavelength coverage, the channel spacing
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between mirror reflection maxima should be less than the fine-tuning range of
∼8 nm. Since the periodicities of the maxima may be only slightly different, only
a relatively small differential index change is necessary to switch channels. Thus,
with a differential effective index change of less than ∼0.1%, it is possible to
switch the alignment point across many different reflection maxima channels. As
can be seen, this sliding-scale action is very similar to the function of a vernier
scale. Figure 8.5b gives a typical experimental output spectrum for an SGDBR
laser design. Large SMSR is obtained, with spectral features attributed to other
mirror burst visible in the scan. Large tuning ranges with very good side mode
suppression are a characteristic of these lasers. The output power depends on the
tuning range selected and can be independently controlled through integration with
a booster semiconductor optical amplifier, discussed later in this Chapter [2]. This
device is currently being marketed and deployed [3].

Several different variations of sampled grating DBR laser design are shown in
Fig. 8.7. All these designs yield devices with excellent side mode suppresion ratio,
and operating spectra similar to the example shown in Fig. 8.5. The devices in part
(a) and part (b) of the figure are a three section DBR laser and a sampled grating
DBR laser based on amplitude modulated DBR mirrors, respectively.

Figure 8.7 (c) shows another two mirror DBR device, a digital supermode DBR
laser [4]. The back mirror on this device can be either an amplitude or a phase-
modulated DBR mirror. A phase modulated mirror can be engineered to have
a flat mirror reflectivity envelope, compared to a sampled grating DBR mirror,
thus keeping the threshold condition more constant over the wide tuning range.
The front mirror consists of a continuously chirped DBR grating, over which is
placed a series of independent contact pads. The front grating, when not tuned,
does not provide enough reflectivity for lasing to occur. With proper biasing of
different front mirror electrodes, several short grating sections can be aligned in
the frequency domain, producing a total reflectivity which is sufficient to allow
lasing and good side mode supression for the laser. Differential tuning between
mirrors is accomplished by biasing different sections of the front mirror and enables
a large tuning range. Tuning in between mirror peaks is accomplished by tuning
both mirrors simultaneously. The phase section again is used to align the cavity
mode to the mirrors and thus maximize the SMSR. This device is currently being
marketed and deployed [5].

Part (d) of the figure illustrates the design and operation of a superstructure
grating DBR laser [6]. This type of device utilizes two phase-modulated DBR
mirrors, but its tuning mechanism is identical to that of an SGDBR laser.

8.2.3 Other Extended Tuning Range Diode Laser Implementations

In the remainder of this section, we will examine other, non purely DBR tuning
based widely tunable laser implementations. A number of these devices also utilize
Vernier effect to increase the tuning range.
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FIGURE 8.7: (a) Three-section DBR laser. Tuning is accomplished by biasing of the DBR
mirror to set the wavelength, and the phase section to align the cavity mode to the mirror
and thus maximize the SMSR. (b) Sampled grating DBR laser, using two amplitude mod-
ulated DBR mirrors. Tuning between supermode peaks in each mirror is accomplished by
differentially tuning one mirror versus the other. Tuning in between mirror peaks is accom-
plished by tuning both mirrors simultaneously. The phase section is used to align the cavity
mode to the mirrors and thus maximize the SMSR. (c) Digital supermode DBR laser, using
one sampled DBR mirror and one multisection phase-modulated grating mirror. Differential
tuning between mirrors is accomplished by biasing different sections of the front mirror.
Tuning in between mirror peaks is accomplished by tuning both mirrors simultaneously. The
phase section is used to align the cavity mode to the mirrors and thus maximize the SMSR.
(d) Superstructure grating DBR laser, using two phase-modulated DBR mirrors. The tuning
mechanism is identical to that of an SGDBR laser. The phase section is used to align the
cavity mode to the mirrors and thus maximize the SMSR. Note that the dimensions on these
drawings have been distorted to enable depiction of necessary details.
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Example 8.3 A 1550 nm sampled-grating DBR laser has been implemented
using an offset quantum-well gain region, grown on top of a common passive
waveguide. The passive waveguide consists of a 1.3 μm bandgap InGaAsP mate-
rial, 350 nm thick, as described in Example 8.2. The gain region incorporates
7-7 nm thick InGaAs quantum wells, separated by 7 nm thick 1.3 μm barrier
material. The active region transverse confinement factor is 4.3%, and the waveg-
uide transverse confinement factor is 60.33%. The material gain within each well
can be approximated by g = 650 ln(J /60) cm−1, where J is the current density
per well given in A/cm2. The injection efficiency is 0.7 for both active and tun-
ing sections. The active section average modal loss is 15 cm−1, and the passive
section modal loss is 5 cm−1. We assume that the tuning sections are tuned by
current injection, that the recombination is radiative with B = 0.5 · 10−10 cm3/s
in the Q-material, and that the mode effective index and material loss change by
�n̄/� = −0.01 · �N and �α = 5 cm−1�N , respectively, for the increase in car-
rier density given in units of 1018 cm−3. The mode effective index is 3.25. The
SGDBR laser has the gain section of Lg = 500 μm, the phase tuning section length
is Lp = 75 μm. The grating burst length in both mirrors is Lb = 5 μm, and the cou-
pling coefficient is κ = 300 cm−1. The ridge width is 3 μm. The back mirror has
10 bursts with a sampling period of ZSB = 50 μm (same as that in Example 8.2),
while the front mirror has 3 bursts with a sampling period of ZSF = 40 μm.

Problem: (a) What is the laser threshold current and differential effiency for no
tuning current? (b) What is the axial mode spacing? (c) How much current is
required on the back mirror to move from one mirror peak alignment to the next
(assuming the center peaks are aligned at some wavelength)?

Solution: The waveguide and the grating coupling constant for this example are
the same as those used in the previous example, which will allow us to use some
of the results and expressions while solving this problem.

(a) To solve for the threshold modal gain, we use the effective mirror model. For
the back mirror, from Example 8.2, we already have that r ′

B = √
R′

B = 0.905 and
LeffB = 137 μm. For the front mirror, since this mirror is short and weak, we can
compute its effective length as LeffF = 1

2 (LB + 2 · ZSF ) = 42.5 μm. Additionally,
the lossless reflectivity for the front mirror is

r ′
f = tanh κNB · LB = tanh(300 · 3 · 5 · 10−4) = 0.422.

The total cavity length is given by Lc = Lg + Lp + LeffF + LeffB = (500 + 75 +
42.5 + 137) μm = 754.5 μm. The average internal loss is given as

〈αi 〉 = αip · (Lp + LeffF + LeffB ) + αia · Lg

Lc

= 5 · 254.5 + 15 · 500

754.5
cm−1 = 11.627 cm−1,
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and the mirror loss is

αm = 1

Lc
ln

1

r ′
f · r ′

B

= 1

754.5 μm
ln

1

0.422 · 0.904
= 12.77 cm−1.

From here, we can compute the differential efficiency,

ηd = ηi
αm

αm + αi
= 0.7

12.77

24.40
= 0.37.

This differential efficiency is from both ends, but most of the light will be coming
out of the front mirror, since its reflectance is much lower.

The threshold current can be calculated from the modal gain of the laser. First,
we need to take into account that the total confinement factor is � = LA

LC
· �xy =

500
754.5 · 0.043 = 0.0285. Now, we can calculate the threshold current,

Ith = Nw · w · Lg
1

ηi
60 A/cm2 e

αi +αm
�·650 cm−1

= 7 · 3 · 500 · 10−8 μm2 1

0.7
· 60 A/cm2 · e

24.40
0.0285·650 = 33.60 mA.

(b) The axial mode spacing, per effective mirror model, is

�λmode = λ2

2 · n̄g · Lc
= 1.552 μm

2 · 3.8 · 754.5
= 0.4 nm.

(c) In Example 8.2, we have calculated the wavelength spacing between peaks
of the back mirror, �λpeakB = 6.32 nm. By analogy, for the front mirror, the peak

spacing will be given by �λpeakF = λ2

2·n̄g ZSF
= 1.552 μm2

2·3.8·40 μm = 7.90 nm. Starting from
the center peaks that are aligned, in order to align the next set of peaks, we need
to tune the back mirror by �λ = �λpeakF − �λpeakB = 1.58 nm. From Eq. (3.75),

�n̄bgd = n̄gd
�λ

λ
= 3.25 · 1.58

1550
= 0.00331.

This corresponds to a carrier concentration change of �N = �n̄gd
�wgd ·0.01 = 5.52 ·

1017 cm−3. Finally, we can calculate the tuning current required to produce this
carrier concentration,

Ibm = q · V · B · (�N )2

ηi

= 1.6 · 10−19 · 0.007 · 500 · 7 · 3 · 10−12 · 0.5 · 10−10 · (6.42 · 1017)2

0.7
mA

= 2.16 mA.
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Y-branch SGDBR Laser A Y-branch SGDBR laser utilizes a Mach-Zehnder
interferometer based cavity, enhanced with two sampled grating DBR mirrors to
yield Vernier response required for wide tunability. A schematic of a Y-branch
SGDBR laser [8] is shown in Fig. 8.8. A gain and a phase section are followed
by a 1 × 2 MMI splitter. Each output waveguide of the splitter contains a sampled
grating DBR mirror, with a unique sampling period. The reflections from the two
gratings are added together (as opposed to multiplied in an SGDBR laser). Still,
the tuning principle remains the same: large wavelength hops can be achieved by
differentially tuning the two SGDBR mirrors, and the continuous tuning in between
can be accomplished by concurrent tuning of both mirrors. This is illustrated in
Fig. 8.8. The two phase controls are required since there is a need to control both
the relative phases of the two reflections, and the absolute phase of combined
reflections to satisfy the phase condition at a given wavelength. The additive effect
of the reflections leads to better supression of the first side modes, compared to the
multiplicative effect used in other modulated DBR lasers. However, none of these
lasers are limited in performance by the low SMSR. This device is currently being
marketed and deployed [9].

Double Ring Resonator (DRR) Widely Tunable Lasers A single ring resonator
structure was introduced as an example in Chapter 6. Its periodic output transfer
function is suitable for use in the filter sections in tunable lasers. By cascading two
ring resonators of different dimensions, we will obtain two different free spectral
ranges in the responses, which can be exploited using the Vernier effect again, to
achieve wide tunability in a laser. One such double ring resonator (DRR) laser is
shown in Fig. 8.9. It consists of a gain and a phase region coupled to a set of
two ring resonators, which are terminated by the back facet [10]. The rings are
coupled to the bus waveguides through deeply etched MMI couplers. Only when
two filters are aligned, light is reflected back from the back facet, thus the laser
can be tuned by controlling the resonance frequencies of the ring resonator filters.
In a stand-alone DRR tunable laser, the output is coupled from the facet following
the gain region. To enable integration with other components, while optimizing the
thermal frequency drift, a version of the DRR tunable laser with a front etched gap
mirror has been implemented, which is used to define the laser cavity between the
cleaved back facet and the front etched mirror [10].

Right reflector

Left reflector

Differential phase

Common
phase

Gain
Front
facet

MMI

R
*

R
*

FIGURE 8.8: (left) Schematic layout of the modulated grating Y-branch laser [8] (right)
Tuning principle of the Y-branch laser.
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FIGURE 8.9: (left) Photograph of a fabricated DRR tunable laser, consisting of a gain
section, phase section, and two microring resonators with different free spectral range (right)
Superimposed tuning spectra. (© IEEE 2009, [10].)

To understand how the Vernier effect works in this case, we will expand the
results from the ring resonator Example 6.6 in Chapter 6, to calculate the S21

parameter of the DRR.

Example 8.4

Problem: For a ring resonator-based mirror structure consisting of two rings whose
lengths are Lr1 and Lr2, calculate the overall reflection coefficient S11, and the
effective mirror length Leff . The length of the input waveguide is L1, the length
of the second interconnecting waveguide is L2 and the length of the waveguide
connecting the second output to the facet is L3. The facet reflection coefficient is
rb . The schematic of this double ring resonator configuration is shown in Fig. 8.10.

Solution: In this double ring resonator configuration, at resonance, the normalized
field couples into the first ring resonator and then couples out of it, coupling in
and out of the second ring resonator, and reflecting from the facet, back through
the whole structure. The field at wavelengths that do not couple into both of the
resonators are lost. Using the material from Chapter 3 and Chapter 6, we can
obtain the total response of this structure through a combination of Mason’s rule
and scattering matrix theory. First, we note that the structure at hand consists of
two ring resonators in series, terminated by a reflection. The total S21 parameter for
the two ring structures in series, calculated between the input into the waveguide
leading into the ring 1 and the output from the ring 2, will be given as a product of
the individual S21 parameters. We also note that the rings are reciprocal structures.

Furthermore, we can easily calculate the S11 parameter for the whole dual ring
and reflector structure by noting that from the definition of the scattering parameter
S11, S11 = b1

a1
, and that a1 = b2 · rb at the output of ring 2. Therefore,

S11 = S21−1 · S21−2 · rb · S21−2 · S21−1 = rb · (S21−1 · S21−2)
2,

where S21−2 includes the propagation of the field from the ring output to the
reflection point.



8.2 TUNABLE, WIDELY TUNABLE, AND EXTERNALLY MODULATED LASERS 469

Lr2

Lr1

rb

a1

L3

L1

L2

b1

FIGURE 8.10: A double ring resonator structure used in the Example 8.4.

Converting the ring structure into a signal flow diagram with feedback (which
we again leave as an excercise to the reader), and using Mason’s rule, we have
that for the ring 1,

S21−1 = (jc)2 · e−j β̃L1 · e−j β̃Lr1/2

1 − (1 − c2) · e−j β̃Lr1
.

Therefore, based on our analysis, the S11 parameter for the total system is

S11 = rb ·
(

(jc)2 · e−j β̃L1 · e−j β̃Lr1/2

1 − (1 − c2) · e−j β̃Lr1

)2

·
(

(jc)2 · e−j β̃(L2+L3) · e−j β̃Lr2/2

1 − (1 − c2) · e−j β̃Lr2

)2

.

To determine the effective mirror length for this structure, Leff , we start with the
definition of effective length, Leff = − 1

2
∂φ

∂β
. We need to determine the total phase

of the S11 parameter. We are going to assume that the waveguides are lossless,
which will make the propagation constant β̃ = β real.

At the resonance, which is where the two rings need to operate when producing
a reflection required for the laser, βLr1 = βLr2 = 2π . For small deviations in the
wavelength (β), the expression for the phase of S11 can be linearized.

The tangent of the angle of the first factor within the paranthesis, in the denom-
inator of the S11 is given as

tan φ1 = (1 − c2) sin(βLr1)

1 − (1 − c2) cos(βLr1)
.
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In the small angle approximation, we have that tan φ1 ≈ φ1, and that sin(βLr1) ≈
βLr1 and cos(βLr1) ≈ 1. Therefore,

φ1 = 1 − c2

c2
βLr1.

Similarly,

φ2 = 1 − c2

c2
βLr2.

Squaring the exponential phase term, and bringing it into the numerator will
double these two angles, and change the sign on them. Therefore, the total phase
of S11 is given by

φ(S11) ≈ −2β

(
L1 + L2 + L3 + Lr1

2
+ Lr2

2
+ Lr1 · 1 − c2

c2
+ Lr2 · 1 − c2

c2

)
.

Finally, the expression for the effective length of this mirror element is

Leff = −1

2

∂φ

∂β
= L1 + L2 + L3 + (Lr1 + Lr2)

(
2 − c2

2c2

)
.

Grating-Coupled Sampled Reflector (GCSR) Laser As discussed in Chapter 6,
directional couplers can become wavelength filters if the two coupled waveguides
are dissimilar. Also, the percentage of tuning can be larger than the fractional index
change, so a laser with a tuning range, �λ/λ > �n̄/n̄g , can be constructed. One
difficulty with these devices is that the bandwidth of the filter also tends to become
large as the tuning range is increased. Thus, it can be difficult to construct lasers
with both large tuning range and adequate side mode suppression ratio.

Grating-Coupled sampled reflector (GCSR) based laser is a historically impor-
tant four-section widely tunable laser device, shown in Fig. 8.11. While one of the
laser cavity filters is again implemented using a sampled grating mirror, the other
filtering element consists of a grating assisted coupler. The structure contains two
waveguide layers, and the role of the grating coupler is to, in a wavelength selec-
tive fashion, couple the mode between the bottom layer, where the gain region is

Gain
400 μm

Sampled mirror
900 μm

p-InP

Coupler
600 μm

Phase
150 μm

n-InP

FIGURE 8.11: A grating-coupled sampled reflector laser schematic.
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located, to the top layer, where the phase electrode and the sampled grating mirror
are implemented. The lasing wavelength is controlled by current injection into the
coupler region and the SGDBR mirror. The phase electrode is used to achieve con-
tinuous fine tuning, in the same fashion as in other three- and four-section DBR
tunable lasers. Wide tunability with these devices has been achieved, as well as
performance required for commercial deployment. Using Eq. (6.101), we can relate
the mode spacing of such laser, �λm , to the FWHM of the grating filter, �λ1/2,

�λm

�λ1/2
= 1

1.6F

Lc

LT
, (8.8)

where LT is the total effective cavity length experienced by the laser mode. That
is, the right side of Eq. (8.8) is the reciprocal of the number of modes under
the filter’s passband. As the tuning enhancement factor F is increased, so are
the number of included axial modes. Fortunately, only a fraction of these modes
near the passband center are important in the spectrum of a laser. Comparing the
central mode to the next adjacent mode, an approximate analytic expression can
be derived [12] for the mode suppression ratio (MSR),

MSR = 2Pout

�ωυg nsp�gth ln(1/R)

(
Lc

LT

1

F

)2 LT

LT − Lc
. (8.9)

Here, we observe a quadratic dependence on the coupler length and inverse tuning
enhancement.

The main drawback of this laser design was in their fabrication process com-
plexity, where multiple growth and regrowth steps were required [11]. The fol-
lowing example illustrates the key concepts related to GCSR laser design and
operation.

Example 8.5 A grating coupled sampled reflector laser consists of a 500-μm-
long gain section, followed by a a 500-μm-long grating section, a 75-μm-long phase
section, and a 500-μm-long sampled grating mirror. Since the scope of this example
is a GCSR laser, we are given the penetration length for the SGDBR mirror,
Leff = 151 μm, as well as the FWHM for the central peak, �λ1/2SGDBR = 1.05 nm.
The front mirror is an uncoated cleaved facet. The GACC bottom waveguide has
the same phase and group index values as for the gain section (3.4/4.0), while the
top has the same index values as the SGDBR passive sections (3.3/3.8). Assume
the GACC is designed with a coupling coefficient appropriate for full coupling
over its 500 μm length.

Problem: (a) What is the GACC coupling coefficient for full coupling over its
length? (b) What is the GACC tuning enhancement facetor, F? (c) What is the
GACC filter FWHM wavelength bandwidth? (d) What is the axial cavity mode
spacing �λm , and how many cavity modes are within �λ1/2 of the back mirror?
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(e) What is the maximum index tuning in the coupler region required to achieve a
full 50 nm tuning range?

Solution: (a) The coupling constant can be computed from Eq. (6.83),

κc =
(

2

π
500 μm

)−1

= 31.4 cm−1.

(b) From the definition of the tuning enhancement factor, Eq. (6.44),

F = n̄g1

n̄g1 − n̄g2

= 3.8

3.8 − 4.0
= −19

(c) The FWHM filter bandwidth has been defined in Eq. (6.101),

�λFWHM = 0.8 · F

n̄g1 · Lc
λ2 = 0.8 · 19

3.8 · 500 μm
(1.55 μm)2 = 19.2 nm

(d) The cavity consists of the full lengths of the gain region, coupler, phase section,
and the penetration length of the SGDBR mirror. Since the top and the bottom
waveguides have different group indices, we need to take into account that the
lasing mode propages through the phase section, SGDBR mirror and one half of
the coupler length in the top waveguide, and the gain section and one half of
the coupler length in the bottom waveguide. Thus, we have that LT = 500 μm +
500 μm + 75 μm + 151 μm = 1226 μm,

�λm = λ2

2(n̄g1(Lg + 1/2 · Lc) + (n̄g2(Leff + 1/2 · Lc + Lp)

= 1.552

2 · ((4.0 · 750) + (3.8 · 476)
· 103 nm = 0.250 nm

Therefore, a total of
�λ1/2SGDBR

�λm
= 4.20 cavity modes will be within the back mirror

peak.
(e) Due to the tuning enhancement produced the grating coupler filter, the

required index tuning range will be reduced, and wide tunability will be possible.
Given that �λ/λ = F · �n̄

n̄g1
we have that

�n̄ = n̄g1 · �λ

λ
· 1

F
= 3.8 · 50

1550
· 1

19
= 0.00645

Arrayed Waveguide Grating-Based Multiwavelength Lasers In wavelength
division multiplexed optical communication systems, only discrete wavelengths
on a determined grid are used for data transmission. Therefore, a laser that can
emit on a number of these discrete wavelengths (simultaneously or one at a time)
would be useful. This multifrequency laser can be implemented by using an arrayed
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waveguide or curved Echelle grating as the cavity filter element. One way to achieve
single mode operation is to introduce a gain block into each of the grating’s output
waveguides. Two different laser implementations, using this principle and different
diffraction gratings are illustrated in Figures 8.12 and 8.13. [13] By biasing each of
the individual gain blocks, their emission will be filtered according to the grating’s
transfer function, and with proper feedback and amount of gain, lasing at channels
defined by the demultiplexer design will occur. Each channel is controlled by its
own gain block, therefore, simultaneous lasing on multiple wavelengths is possible.
In addition limited tuning of the lasing wavelength for an individual channel is
possible, through thermal or index tuning of the grating elements. Additional gain
blocks can be added to boost the laser output power, as shown in the case of
the widely tunable grating cavity laser in Fig. 8.13, and the laser output can be
modified to support monolithic integration with other elements [24, 23].
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FIGURE 8.12: (left) A schematic of an arrayed waveguide grating-based laser, where the
lasing modes are selected by providing gain into a particular channel of the demultiplexer.
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8.2.4 Externally Modulated Lasers

In Chapter 5, we discussed frequency response of directly modulated semiconductor
lasers. To overcome the distortion, extinction, chirp, and bandwidth limitations
of direct modulation, it is desirable to apply the modulation external to the laser
cavity, utilizing a separate on-chip modulator component. Figure 8.14 illustrates the
maximum transmission distance based on the chirp α parameter of the modulated
signal source at 10 Gbps. For directly modulated lasers, we expect the α parameter
to be between 3 and 9, allowing for transmission over up to 15 kilometers with
2 dB of power penalty. On the other hand, in an externally modulated laser, with
an intensity modulator, the value of the α parameter can be reduced to close to 0,
allowing for transmission over around 95 kilometers.

Externally modulated lasers (EMLs) represent one of the more important PICs
that have been developed and commercially deployed. External modulator place-
ment allows for separate optimization of the modulator, higher modulation band-
width, and better modulated signal quality and integrity. Throughout the operation,
the laser is operated in the CW regime and can be optimized for the highest out-
put power and SMSR, without regard for its modulation bandwidth. The laser in
an EML can be a narowly tunable laser, like a DFB or multimirror DBR laser,
or a widely tunable laser, such as the SGDBR or a DS-DBR laser. Any laser
structure can be used, as long as the front mirror is lithographically defined. As
shown in Fig. 8.15, in an EML we again have at least three functional waveg-
uide sections butted together. The modulator section can be designed to modulate
the intensity, the phase of the laser signal, or both, depending on the type of
optical link. Phase change induced intensity modulation, using interferometric mod-
ulator structures, allow for tailoring of the modulated signal chirp and achieving
low negative α parameter values, therefore maximizing the transmission distance
(120 kilometers for α between −0.5 and −0.7 to precompensate for the dispersion
of standard optical fiber. Initially, we will focus on the these intensity modulated
EMLs, whereas phase modulation will be discussed later in a separate section on
coherent systems.
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Electroabsorption Modulators Electroabsorption modulators are technologically
the simplest semiconductor external modulator structure to implement. It consists
of a straight section of waveguide, with an active region of slightly larger bandgap
energy than the photon energy of the lightwave to be modulated. The active
region can consist either of bulk or quantum well material and in its very basic
implementation, the waveguide itself can be used as the active region. The appli-
cation of a reverse bias field lowers the absoption edge and leads to increased
absorption of the incoming light. Detailed experimental investigation of the absorp-
tion edges and coefficients as function of wavelength and reverse bias are shown
in Fig. 8.16, for both bulk and quantum-well-based modulator active regions. The
effect of band shift with reverse bias is more pronounced for a quantum well
modulator active region.

In a bulk modulator, the application of a reverse bias field lowers the absorption
edge via the Franz–Keldysh effect, which, as indicated in Fig. 8.17, describes
the electron–hole excitation with below-bandgap photons due to the possibility
of lateral carrier tunneling with an applied electric field. It can equivalently be
understood in terms of the extension of carrier wavefunctions into the forbidden
gap when the field is applied.

The reduction in required photon energy for ionization, �E/q , is given by the
product of the applied electric field, E , and the effective tunneling distance, �x .
Tunneling is important at distances up to several nanometers, and electric fields
of ∼2 − 3 × 105 V/cm are easily applied in PIN structures. Thus, a lowering of
the absorption edge by E �x ∼ 10 meV (or increasing the absorption wavelength
∼10 nm near 1.3 μm) is obtainable. As a result, the attenuation constant for a given
wavelength within several nanometers of the absorption edge can be increased from
a few cm−1 to well over 100 cm−1 for a few volts applied in practical PIN DH
waveguides. For a desired modulation ratio, P0/Pin , and available change in modal
loss, 〈�αFK 〉, the required modulator length is given by

Lm = 1

〈�αFK 〉 ln
P0

Pin
. (8.10)

Modulator lengths ∼300 μm are typical for practical lumped Franz–Keldysh mod-
ulators. Another important design consideration is that the zero field loss, 〈α0〉, must
be sufficiently small so that the available output power is not reduced too much.
This restricts just how close the operating wavelength can be to the unperturbed
absorption edge.

In the quantum-well case, the absorption is primarily due to excitonic effects.
Excitonic effects, where holes and electrons due to their spatial overlap bind, were
discussed in Chapter 4. This effect of absorption with reverse bias inside quantum
wells has been dubbed the quantum-confined Stark effect (QCSE), to emphasize
the different physics involved. As can be seen, the primary difference with the
quantum-well absorption edge is that it is much sharper. As a result, larger field
effects are possible over a narrow wavelength range. However, because the effect
is more confined to the proximity of the absorption edge, devices using it require
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well-defined wavelengths and are more temperature sensitive as compared to bulk
Franz–Keldysh effect devices.

Although both bulk and quantum-well-based externally modulated lasers have
been implemented and introduced as commercial products, the QCSE devices tend
to be a more popular choice. One such device, designed for uncooled operation, is
shown in Fig. 8.18, consisting of a DFB laser integrated with a multiquantum well
electroabsorption modulator.

For higher speed of operation, greater than 40 GB/s, traveling wave modulator
designs need to be used—where the group velocity of the electrical modulation
signal is matched to that of the optical signal.
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FIGURE 8.18: Schematic of a monolithically integrated modulated laser and electroabsorp-
tion modulator. The laser is a 400 μm long DFB, and the 100 μm long multiple quantum
well modulator is quantum confined Stark effect based. This EML is designed for uncooled
operation, and the spectra at different temperatures, and eye diagrams at 85◦ are shown. (©
IEEE 2009, [17].)

Example 8.6

Problem: An electroabsorption modulator section in an EML needs to be designed
so that the device has a peak power of 5 mW and an ON/OFF ratio of 10 : 1, with
a 2 V peak-to-peak applied modulation. The characteristics of the modulator region
are given by reference [16], its width is 0.3 μm, the confinement factor is � = 0.66,
and the residual loss αi = 10 cm−1. Determine the length of the modulator.

Solution: To determine the characteristics of the modulator, we need to use
Eq. (8.15) with absorption numbers from [16]. First, we need to assume a
zero-bias built-in voltage of 0.8 V for a relatively heavily doped PIN structure.
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With the modulation swing of 2 V, the internal modulator field varies between
0.8 V/0.3 μm and 2.8 V/0.3 μm. From Ref. [16], for 1.45 μm bandgap material
at 1.55 μm, we obtain �αFK = 140 cm−1. Using Eq. (8.10), we have

Lm = 1

0.66 · 140 cm−1
ln(10) ≈ 250 μm.

With a 10 cm−1 residual loss, the net ON-loss in the modulator is 1.1 dB. Thus,
we must get 6.4 mW out of the laser mirror to get 5 mW to the output facet.

Mach-Zehnder Interferometer Modulators Although an electroabsorption-
based modulator represents the simplest design choice for an externally modulated
laser, its performance in terms of signal extinction ratio, output chirp, and
required bias voltage is not suitable for all optical transmission applications. A
better alternative in this case is a Mach-Zehnder interferometer-based modulator
structure, which exploits the phase difference between the two branches of the
modulator to interfere the signal at the output, and thus produce an amplitude
modulated signal at the output. A Mach-Zehnder modulator (MZM) structure
is illustrated in Fig. 8.15. The phase in the modulator branch can be controlled
through a bias voltage or current, and the output transfer function is a sinusoidal
curve in the ideal case.

In semiconductors, there is generally also some absorption change as well with
the bias. The device can be biased to destructive interference at low reverse voltage
bias, which allows it to overcome the insertion loss limitations of the EAMs while
achieving high extinction ratio through interference. Finally, the chirp of this type
of device can be tailored by design to be in the low negative values, and this allows
for maximizing the transmission distance, as illustrated in Fig. 8.14. To maximize
the bandwidth, traveling-wave electrode implementations can be used in MZMs
as well. The efficiency and further bandwidth improvements are possible through
different drive and biasing schemes, such as: push-pull, in which case one branch
of the interferometer is driven with the data signal, and the other simultaneously
with a negative of the data signal, and series push-pull, in which case we utilize
a single drive voltage, but the electrodes of the two branches are connected in
series, effectively reducing the capacitance in half, and thus doubling the maximum
possible bandwidth.

Integration of MZMs with a laser source on the same chip requires implemen-
tation of light splitters, combiners, and curved waveguides. Great care needs to be
taken to minimize the back reflections into the laser cavity. The first widely tunable
EML implementation, consisting of a sampled grating DBR laser and a Mach-
Zehnder modulator, is shown in Fig. 8.19. This device utilized a series push-pull
modulator implementation, and it has been successfully commercialized.

Example 8.7 A Mach-Zehder modulator has been fabricated in InP, in a surface
ridge platform, with an undoped 1.42Q InGaAsP waveguide. The branch waveguide
cross section is shown in Fig. 8.20: the ridge width is 3 μm, the ridge height is
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FIGURE 8.20: Cross-section of the Mach-Zehnder modulator from Example 8.7.

2 μm, and the modulator length is 250 μm. The undoped (I) waveguide thickness
is h = 350 nm, its refractive index 3.45, and it is located on top of an N-doped
buffer layer and an N-doped substrate. The top P metal pad is located on top of a
2-μm-high, low dielectric constant εr = 2.65 material, whose role is to reduce the
pad capacitance. The pad area for bonding is Spad = 50 · 50 μm2. The modulator
is terminated with a 50 � resistor, which is bonded in parallel with the modulator
onto a ceramic carrier.

Problem: What is the estimated modulator bandwidth?

Solution: The maximum bandwidth will be determined by the overall capacitance
and resistance of the modulator,

f3db = 1

2πRC
.

In our case, we will assume that the resistance will be set by the termination
resistor. As a very simple model for the capacitance, we will only include two
major contibuting components, as illustrated in Fig. 8.20: the reverse-biased PIN
junction capacitance and the bonding pad capacitance. Both of these capacitances
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can be modeled using the parallel plate capacitor model. In an ideal PIN diode, the
depletion region exists almost completely within the intrinsic region. This depletion
region is much larger than in a PN diode, and almost constant-size, independent of
the reverse bias applied to the diode. For the pad capacitance, the bottom electrode
of the capacitor will be formed by the N-doped semiconductor. For a more precise
model, we would also need to include the fringing capacitance effects dependent
on the electrode/modulator geometric ratios, and the reverse bias dependence in
the PIN juction capacitance [18].

The PIN junction capacitance is given by

CPIN = ε0εwgd
L · w

h
= 8.85 · 10−14 F/cm · 11.90

250 · 3 μm2

0.35 μm
= 0.225 pF.

The pad capacitance is given by

Cpad = ε0εr
Spad

h
= 8.85 · 10−14 · F/cm · 2.65

2500 μm2

2.35 μm

= 0.025 pF

Finally, the maximum bandwidth of this modulator is

f3db = 1

2πRC
= 1

2π · 50� · 0.25 pF
= 12.70 GHz.

This result overestimates the bandwidth somewhat, since we have not taken into
account the fringing capacitance from the P electrode.

8.2.5 Semiconductor Optical Amplifiers

Semiconductor optical amplifiers (SOAs) are optical active regions in a semicon-
ductor that are used without any optical feedback, unlike the gain regions in
semiconductor lasers. An optical signal launched into the input of an SOA will
experience gain through stimulated emission, as explained in Chapter 2. In addi-
tion optical noise, caused by the spontaneous emission, will be added to the signal
and amplified through stimulated amplification while propagating through the SOA.
The lack of optical feedback and carrier clamping will allow for a larger fraction
of carriers to recombine through spontaneous emission.

Stand-alone SOA devices exist as commercial products. From the photonic inte-
gration perspective, these amplifier blocks have become indispensable in complex
PICs, since they enable increased output power, and signal preamplification and the
ability to control the output power levels from individual transmitters by altering
it external to the cavity.

Oftentimes, for fabrication ease, an SOA block is realized in the same gain
material as that in the laser. Thus, the optical gain bandwidth of an SOA should
be as large as the laser’s gain material. In fact, depending on how the amplifier
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section is biased, it may be possible to have an even larger optical bandwidth than
the laser. This fact can be appreciated by reviewing the example gain spectra given
in Chapter 4.

The gain of a semiconductor amplifier of length L is given by

G0 = e�g(N )L, (8.11)

where � is the confinement factor and g is the material gain for the given pumping
level.

As the input (or output) power level of the amplifier becomes relatively large,
amplifier saturation sets in. When the stimulated emission term becomes com-
parable to the other carrier recombination terms in the carrier rate equation, the
carrier density and, hence, the gain will decrease with increasing optical power.
Substituting for the photon density using Eq. (2.38), the carrier rate equation
becomes

dN

dt
= ηi I

qV
− N

τ
− g

P�xy

wdhν
. (8.12)

At low optical powers in the steady state, N = N0 = ηi I τ/(qV ), and over some
bias range we can approximate the gain by g = a(N − Ntr ). Therefore, the
steady-state gain can be written as g0 = a[ηi Iτ /(qV ) − Ntr ]. Then, solving for
the steady-state carrier density and gain for higher optical powers where the
stimulated emission term must be included, we obtain

N = ηi I τ

qV
− g

P�xyτ

wdhν
, (8.13)

and

g = g0

1 + P/Ps
, (8.14)

where

Ps = wdhν

a�xyτ
. (8.15)

For quantum-well separate-confinement waveguide amplifiers typical values lead
to Ps ∼ 1 − 20 mW.

Now, to get the net amplifier response, we must integrate over the length of the
gain region using

dP

dz
= gP . (8.16)
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Inserting Eq. (8.14) into Eq. (8.16) and performing the integration over a length L,
we obtain an implicit relation for the large-signal gain, G = P(L)/P(0) = Po/Pin ,

G = G0 exp

[
−G − 1

G

Po

Ps

]
, (8.17)

where G0 = exp(gL) is the unsaturated gain for Po 
 Ps . From this we can derive
the output saturation power, Pos , where the gain has fallen to half of G0,

Pos = G0 ln 2

G0 − 2
Ps . (8.18)

Thus, we note that Pos is slightly smaller than Ps . The saturation power can be mod-
ified by changing the optical confinement of the active region—lower confinement
leads to higher output saturation power.

Another issue with the semiconductor optical amplifiers is the broadband spon-
taneous emission level. Although it is easy to keep the spectral density level low,
the integrated spontaneous energy can be comparable to the energy at the desired
output wavelength if the input signal level is not large. Careful spatial filtering
can be used to eliminate out-of-band spontaneous energy, but there is still the
inherent spontaneous emission into the mode of interest. It can be shown [25] that
the noise figure, FA = (SNR)in/(SNR)out must be ≥ 2nsp , the population inversion
factor introduced in Chapter 4. In fact, a quantitative measure of this spontaneous
emission relative to the gain can be obtained from the details in Chapter 4. The min-
imum noise figure is increased further by internal loss, αi , and any facet reflections.
Neglecting the facet feedback, we can write the noise figure as [25],

FA = 2nsp

(
g

g − αi

)
= 2

f2(1 − f1)

f2 − f1

(
g

g − αi

)
. (8.19)

Typically, FA ∼ 5 dB in semiconductor amplifiers. In direct detection systems, the
amplified spontaneous emission will cause additional noise terms to appear in
the receiver, due to signal-spontaneous and spontaneous-spontaneous beating. To
minimize those factors, reflection of the SOA’s interfaces has to be reduced, cavity
length and lossed minimized, and injection level maximized [19]. It is interesting to
note that in the case where the SOAs are used to boost the laser output power, the
stimulated emission in the SOA overtakes the spontaneous emission and removes
the carriers before they can recombine spontaneously, thus significantly reducing
the added noise to the laser signal.

For PICs containing optical receivers, polarization independent SOAs are of
interest. In that case, the SOA structures need to be tailored carefully, so that
the combination of the difference in optical confinement between a TE and a TM
mode, and the gain between two polarizations yield low polarization dependence.
Straining the active region, as discussed in Chapter 4, is often used as an approach
in this situation.
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8.2.6 Transmitter Arrays

One of the key performance metrics for EMLs is their maximum data modulation
rate. One way to increase the amount of data being transmitted by a single EML
chip is to realize a WDM array of EMLs on a single photonic chip. The advantages
of this approach, enabled by photonic integration, are in the reduced module cost
and overall footprint per transmitted bandwidth.

An example of a 40-channel transmitter PIC is shown in Fig. 8.21. This chip
consists of 40 individual EML transmitters, which are all coupled to a single out-
put using an AWG multiplexer. An EML branch consists of a DFB laser with
and EAM modulator, as well as a power flattening SOA, and two power monitor
photodiodes—one behind the DFB laser and one after the modulator. To achieve
multiplexing, each DFB laser is tuned to a separate wavelength. Also shown in
the figure are the L-I curves for all 40 lasers, as well as the eye diagrams for all
channels, which were used to characterize the device performance. A photonic IC
of this level of integration represents the current state of the art; however, it is to
be expected that more advanced and densely integrated devices will come in the
future.

8.3 ADVANCED PICS

In the last section, we focused our attention on the photonic ICs that generate
light. The transmitter array PIC shown in Fig. 8.21 is used to send information
on multiple optical channels in the same optical fiber. At the receiving end, an
optical receiver of similar complexity is required. This PIC is shown in Fig. 8.22.
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It consists of an SOA preamplifier followed by an AWG demultiplexer, an array of
40 photodiodes, which are followed by transimpedance amplifiers, and additional
electronic circuitry needed to recover the information from the optical domain.

In this section, we wish to move beyond just tunable laser and externally modu-
lated laser PICs, or simple and arrayed optical receivers, to even more functionally
complex active photonic ICs that also may incorporate all these and other func-
tions in a single integrated device. We start this section by introducing the basics
of photodetectors, one of the key new ingredients, and then we examine examples
of transceivers, triplexers and active optical switches.

8.3.1 Waveguide Photodetectors

The role of an optical receiver is conversion of an optical signal back into the
electrical domain, where transmitted data recovery is performed. The key photonic
component of every optical receiver is a photodiode, which utilized the photoelec-
tric effect to convert incoming photons back into the electrons. Photodiodes have
become important building blocks for contemporary photonic integrated circuits,
for realization of preamplified receivers and complex receiver arrays, as illustrated
in Fig. 8.22, as well as transceivers and triplexers, which will be discussed in the
next section.

The photocurrent of photodetector is directly proportional to the incident optical
power,

Ip = R · Pin (8.20)

where R is the responsivity of the photodetector. Another key figure of merit for
a photodetector is quantum efficiency η, which represent the ratio in number of
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electrons generated per number of incident photons, per unit time,

η = Ip/q

Pin/hν
= R

hν

q
. (8.21)

Responsivity increases with the wavelength increase, since more photons are
present for the same optical power. In a good photodiode, the goal is to absorb all
the photons, such that the quantum efficiency can approach 100%. Depending on
the absorption coefficient α of the photodiode material, its thickness or length L
will be determined by the minimum acceptable quantum efficiency, since

η = Pin − Pt

Pin
= Pin − Pin · e−αL

Pin
= 1 − e−αL, (8.22)

where Pin is the input optical power, and Pt is the transmitted optical power at the
output of the photodiode’s active region. Although stand-alone avalanche photo-
diodes allow for maximum receiver sensitivities, the vast majority of photodiodes
used today in photonic ICs are based on a simpler, reverse biased PIN structure.

The speed of response of a photodiode will be determined by its resistance,
capacitance, as well as the carrier transit time, which depends on the thickness
of the photodiode active region. An illustration of the evolution of photodiodes
from a simple vertical design to several waveguide-based structures is shown in
Fig. 8.23. Historically, the photodetectors were designed as top illuminated struc-
tures, as shown in Fig. 8.23(a). For higher bit-rate operation, 10 Gbps and beyond,
waveguide photodiode structures, (c)–(d) have become necessary, since they allow
for overcoming of bandwidth limitations imposed by the responsivity maximiza-
tion requirements and finite drift times in vertical structures. In addition waveguide
photodiodes are a natural match for planar integration, as they utilize a planar
waveguide, which is most often adjacent to the absorbing layers.
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FIGURE 8.23: Illustration of (a) normal incidence, (b) edge coupled waveguide, (c) tapered
evanescently coupled waveguide, and (d) multimode input waveguide evanescently coupled
photodiodes. (Reprinted by permission from Elsevier, [28].)
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Simple edge coupled diodes suffer from large coupling losses, which reduce
their external quantum efficiency, and thus limit their power handling capabilities
to the maximum optical intensity, which does not degrade the input facet. Therefore,
evanescently coupled waveguide photodiodes were developed, and they allow for
about four times higher diode saturation currents. This coupling technique enables
simple integration of optical spot size converters, which significantly improves the
external coupling efficiency. The maximum bandwidth of all these structures can
be further extended via implementation of traveling wave electrodes, which match
the velocity of propagation of the electric and optical wave.

Another fundamental limitation of optical receiver performance in general is the
noise introduced into the signal in the process of its conversion from optical into
the electrical domain. The amount of noise will directly determine the minimum
input power into the receiver that can be detected with a sufficiently low bit error
rate.

Thermal noise, result of random motion of electrons at any finite temperature,
dominates as a noise source and generally limits the performance in practical direct
detection systems based on PIN photodiodes. Shot noise is another noise mecha-
nism important in photodiodes. It is a consequence of photon–electron conversions
occuring at random, discrete times. Shot noise becomes important for large photo-
diode input powers, as in coherent systems, which are the last topic of this chapter,
where it dominates. In that case, an order of magnitude lower optical powers is
required to achieve the same bit error rate, compared to a thermal noise dominated
receiver [26]. This higher receiver sensitivity is one of the key features of coherent
receivers and systems in general.

Photodetectors with high bandwidths and high saturation power are of particu-
lar interest for shot-noise limited operation and in optical transceiver and receiver
applications, as their photocurrent swing is used to electrically drive optical mod-
ulators. With high optical powers, in a PIN structure, slowing of the response is
observed due to a large space charge created inside the active region, which effec-
tively reduces the reverse bias field, and consequently increases the carrier transit
time. A very popular way to realize high power, high bandwidth photodiodes
involves uni-traveling carrier (UTC) photodiode epitaxial structure designs [27].
Band diagrams of a UTC-PD and a conventional PIN-PD are schematically shown
in Fig. 8.24. The absorption region in a UTC-PD is a narrow-gap, p-type layer, sur-
rounded by a diffusion blocking layer and by a wide bandgap collector. The holes,
which move with much lower velocity, are quickly captured by the p-contact,
whereas electons are swept accross the collector in a strong drift current. This
unique design enables the use of UTC photodiodes in a variety of high-speed
applications, at bit rates of several hundred gigahertz.

Example 8.8 Parameters of a waveguide photodetector need to be determined
for operation at 1550 nm, 1 Gbps, and with quantum efficiency of η = 90%. The
overlap between the waveguide and the absorption layer is �xy = 5%, the absoption
coefficient of the active region is α = 5000 cm−1, and the capacitance of the
waveguide under reverse bias can be taken to be approximately 1 f F/μm. The
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photodiode is followed by a FET amplifier stage, connected to the photodiode
through a load resistor RL.

Problem: (a) Determine the length of this waveguide photodiode. (b) Determine
the value of the load resistor RL. (c) Determine the voltage at the FET gate for an
input power of 1 μW.

Solution: The waveguide detector design involves a trade-off of its quantum effi-
ciency and capacitance, since both increase with length. Receiver sensitivity, which
depends on the load resistance, is inversely proportional to the capacitance, since
the load resistor must be chosen to provide enough bandwidth to receive the high-
est frequency components of the data. The required detector length for a desired
quantum efficiency, ηD , is given by

LD = 1

�xyα
ln

1

1 − η
= 1

0.05 · 5000
ln

1

1 − 0.9
cm = 92.12 μm,

For an RC -limited receiver the bandwidth is equal to the bit rate, B (i.e., a
receiver bandwidth twice the highest fundamental frequency component in the
data). The required load resistor, RL, is

RL = 1

2πBCD
.

The capacitance for this length of the waveguide under reverse bias is 92 fF. Thus,
for a data rate of 1 Gbps, the load resistor value is,

RL = 1

2πBCD
= 1

2π(109/s)(92 · 10−15 F)
= 1.73 k�.

From the expression for responsivity, the value of the photocurrent is given by

Ip = eη

hν
Pin = 0.9 · 1.55

1.240 μm
1 μA = 1.125 μA.

For a FET amplifier front end, the received signal is proportional to the signal
voltage on the gate. This voltage is equal to the detector photocurrent, Ip , times
this load resistance. For an input optical power of Pi , we have

VG = IpRL = 1.95 mV.

8.3.2 Transceivers/Wavelength Converters and Triplexers

Integration of transmitter and receiver functions on a single chip is the next log-
ical progression in PIC development. It follows the development of related fiber
optic subsystems, where transceivers and transponders, consisting of transmitter and
receiver photonics and neccessary electronic circuitry, are a key building blocks for
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(a ) (b)

FIGURE 8.24: Band structure of (a) uni-traveling carrier and (b) conventional PIN photo-
diodes. (Reprinted by permission from Elsevier, [28].)

optical networks of all scales. In the fiber-to-the-home market, more cost-effective
triplexer devices are used for similar purpose.

Tunability in such devices remains key, due to the need to address the wave-
length space offered through wavelength division multiplexing. Increasingly, wave-
length routing is being used in optical networks to manage traffic and connections.
Although most of the current networks are optical link based, where a particular
laser in the network remains tuned to the same wavelength for extended periods of
time (minutes to hours), it is envisioned that in the future more of the switching and
routing functions in the optical networks will be pushed into the physical layer. This
type of solution could reduce the overall switching power/per bit required for traffic
processing (due to higher communication line rate that optic provides relative to
electronics), reduce the footprint of switching equipment through high-density pho-
tonic integration, as well as allow for better network utilization, by more efficiently
combining optical packets from different sources in wavelength and time domain.
To satisfy these new network functionalities, fast wavelength switching, tuning,
and ability to copy optical data packets from one wavelength to another quickly
(wavelength conversion) and efficiently become critical. In this context, a term of
tunable wavelength converter is used in literature, for a device that allows data to be
transferred from an input wavelength to a tunable output wavelength without pass-
ing the signal through electronics. Functionally, a tunable wavelength converter is
identical to an optical transceiver and represents an optically controlled optical gate.

As an example of a tunable transceiver/wavelength converter PIC, we are show-
ing a photocurrent-driven device, Fig. 8.25. This device consists of a widely tunable
SGDBR laser, followed by a booster SOA, monolithically integrated with a trav-
eling wave electroabsorption modulator (TW-EAM). The EAM is driven by on
on-chip preamplified optical receiver, consisting of a couple of input SOAs, fol-
lowed by a high-speed photodiode. The electrode is shared between the photodiode
in the receiver and the TW-EAM, and the electrical signal generated by the detected
photocurrent is used to modulate the output of the tunable laser and thus generate
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FIGURE 8.25: A widely tunable monolithic transceiver/wavelength converter, consisting of
an SGDBR laser based traveling wave EML, monolithically integrated with a preamplified
receiver in InP [40].

an output signal on a different wavelength. Electrical termination for the travel-
ing wave modulators is also integrated on chip. This particular device design was
demonstrated to operate up to 40 Gbps data rate, and its appeal is in the ability
to work over a range of input and output wavelengths and bandwidths, with small
footprint, and without a filter to reject the original input signal [40]. One issue is
the receiver’s polarization sensitivity, which can be addressed through use of some
of the approaches discussed earlier in this chapter.

Tunable transceivers and wavelength converters can be combined with optical
routing elements, such is an AWGR discussed in Chapter 6, to produce even more
complex optical functions on a single chip. An example of high density integration
of optical switching and routing functions on a single chip in indium phosphide
is shown in Fig. 8.26. This device consists of an array of eight widely tunable
wavelength converters, which are connected to an 8 × 8 arrayed waveguide grating
router. Therefore, an optical signal from any of the eight inputs can be optically
routed to any of the eight outputs, by properly selecting the operating wavelength of
the input laser. The device was named MOTOR, as in Monolithic Tunable Optical
Router [41].

The wavelength converter design used in this device is based on a sampled
grating DBR laser monolithically integrated with a differential Mach-Zehnder inter-
ferometer SOA design [42]. The input signal is split on chip into two separate
waveguides, and one of the waveguides is delayed relative to the other. The inter-
ferometer is normally off, with no light coming out. The first input pulse disturbs
the balance of the interferometer, and opens the output. The amplitude of the second



8.4 PICS FOR COHERENT OPTICAL COMMUNICATIONS 491

Power Monitors Power Monitors Power MonitorsMZI SwitchAttenuators Absorber

Delay Line PreamplifierSOAs Booster SOAs MZI SOAs Phase Shifter

Output # 7
1549nm→1560.2nm

Output # 4
1547nm→1556.5nm

Output # 1
1546nm→1552.1nm

Output # 2
1546nm→1553.4nm

Output # 3
1553nm→1543.9nm

Output # 5
1549nm→1557.6nm

Output # 6
1545nm→1552.1nm

Output # 8
1546nm→1550.8nm

FIGURE 8.26: (a) A photograph of the Monolithic Tunable Optical Router chip (MOTOR),
consisting of eight widely tunable, differential Mach-Zehnder interferometer SOA based
wavelength converters, integrated with an 8 × 8 arrayed waveguide grating router. (b) Details
of different functional blocks of tunable wavelength converters. (c) Open 40 Gbps eye
diagrams for a single device input, shown at all eight output ports [41].

pulse is adjusted in a way that it closes the interferometer. This differential arrange-
ment allows for overcoming of the limit to the carrier lifetime processes [43], and
operation at 40 Gbps for this particular device.

Due to complexity of functions required in the MOTOR chip, several different
waveguide implementations were used: highly confining waveguides in the delay
lines, surface ridge waveguides in the wavelength converter sections, and low-
loss buried rib waveguides in the AWGR sections. The experimental results, eye
diagrams of the routed signal at eight different outputs, are also shown in the figure.

A related device to an optical transceiver is a triplexer, which is widely used in
passive optical networks, including the highest volume fiber-to-the-home markets.
A triplexer operates by sending the information on one wavelength (generally,
1310 nm) and receiving the information on a different wavelength (1490 nm). An
example of a monolithically integrated triplexer in InP is shown in Fig. 8.27. This
device contains a spot size converter, which simplifies and improves the coupling
into a fiber, a wavelength sensitive light splitter, which separates the 1310 nm from
the 1490 nm, and, on the receiver side, a wavelength selective absorber followed
by a PIN receiver, and on the transmitter side, a DFB laser with a back side power
monitor. In this particular implementation, the full device is realized using a single
epitaxial growth, with a number of sucessive etch steps.

8.4 PICS FOR COHERENT OPTICAL COMMUNICATIONS

Meeting the demand for optical bandwidth through simple wavelength division
multiplexing is going to be a continuing challenge in the future. Introduction of
new and expanded services, such as HD-TV, IP-TV, on-line video streaming appli-
cations, social networking, computerized stock trading and 3D-TV, will continue
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FIGURE 8.27: A monolithic triplexer chip in InP, consisting of a DFB laser transmitter at
1300 nm with a back-side power monitor (BSPM), a broadband photodiode (BPD), preceeded
by a wavelength selective absorber (WSA), and a wavelength splitter/combiner, followed
by a spot-size converter. (Part reprinted, by permission from [44].)

to maintain the extreme 100x bandwidth increase/decade slope [45]. To make bet-
ter use of available bandwidth in optical fibers, we are now looking to improve
the spectral efficiency (SE) of transmitted signals—the net bits/s of data rate per
Hz of communication channel bandwidth, or more simply the channel rate/channel
spacing ratio. This is being done with advanced (vector) modulation formats and
coherent detection, making digital optical communication systems resemble much
more the radio frequency systems. In the next sections, we will discuss the basics
of optical coherent communication systems and some of the latest developments
and anticipated future PICs in this arena.

8.4.1 Coherent Optical Communications Primer

Coherent optical communications rely on digital modulation, a term used in radio,
satellite, and terrestrial communications to refer to modulation in which digital
states are represented by modification of carrier amplitude, frequency, and phase
simultaneously or separately. A common name for this arbitrary carrier phase and
magnitude modulation is vector modulation. Different modulation states are rep-
resented with components of the electric field vector on the complex plane, using
in-phase and quadrature (I-Q) constellation diagrams, illustrated in Fig. 8.28 for
three different modulation formats. In optical communication systems, the fre-
quency of the carrier (laser wavelength) is usually fixed; thus we only need to
consider the phase and magnitude changes. The unmodulated carrier is then the
phase and frequency reference, aligned along the I axis, and the modulated signal
is interpreted relative to the carrier. Q represents the quadrature (90◦ out of phase)
component. A discrete point, modulation state on the I-Q diagram, can be repre-
sented by vector addition of a specific magnitude of the in-phase carrier with a
specific magnitude of the quadrature carrier.



8.4 PICS FOR COHERENT OPTICAL COMMUNICATIONS 493

Q

I

Q

I

Q

I

(a)

(b)

(c)

FIGURE 8.28: (a) Amplitude modulation (on-off keying) based noncoherent system with
direct detection (b) Differential phase shift keying based coherent system with self-homodyne
detection, without the need for a local oscillator (c) Quadrature phase shift keying coherent
system with intradyne coherent detection, using a local oscillator matched in frequency and
phase to the input signal.

Figure 8.28 illustrates some of the unique, commonly used vector modulation
based links. The first link, part (a), utilizes simple binary amplitude modulation, the
most widely exploited, noncoherent modulation format in optical communications
to date. On the I-Q diagram, the field vector changes its amplitude from 0 to the
maximum amplitude, along the I axis, as binary digital signals are translated into a
stream of light pulses. The transmitter in this case is a simple amplitude modulator,
and the detection of the signal is achieved through direct detection, as shown in
the link schematic.

Link (b) represents the next level of sophistication—a simple coherent system,
in which the amplitude of the signal remains constant, but the phase of the carrier
is differentially changed by π in between bits, to reflect the change in adjacent bit
value. To detect this type of signal, one approach is differential detection, where
the signal is interfered with a delayed version of itself to produce an amplitude
response at the receiver. No local oscillator is required in the receiver in this case.
This system is limited to a particular bit rate, as it relies on exactly one bit delay
for signal detection. Note that the receiver consists of two photodiodes that are
connected in series, forming a balanced receiver, examined later in this section.

Figure 8.28c illustrates a more complex and flexible system, where the carrier
phase is modulated to one of four possible values—thus the name of this type
of modulation is quadrature phase shift keying (QPSK). The advantage of this
approach is in the fact that with the same bit rate as on-off keying, we can transmit
twice the amount of information, since with each detected symbol (1 out of 4
possible phase values), we can recover two bits of information, a major benefit of
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vector modulation and coherent systems. The transmitter for this modulation format
is relatively simple, consisting of two nested Mach-Zehnder phase modulators,
which are delayed by 90◦ with respect to one another, allowing independent I
and Q component modulation. The main complexity results from the receiver,
where the incoming signal needs to be phase matched, locked and mixed with a
local oscillator laser. In addition the signals in the receiver need to be mixed and
delayed properly, so that both the I and the Q signal components can be extracted
independently, in the two sets of balanced receivers shown in the schematic. Any
changes in phase of the incoming signal, caused by the laser phase noise, need to
be tracked and neutralized in the receiver. A number of different techniques can be
used to accomplish this. Optical phase-locked loops use optical feedback to control
the phase of the local oscillator laser [46], showing promise for low power, simple
implementation of true coherent receivers. Digital signal processing can be used to
perform real time phase tracking and control as well, at the expense of electronic
chip sophistication and power consumption [47].

Although these three examples show the progression from simple, noncoherent
amplitude modulated system, through a differentially modulated coherent system
to a true I-Q coherent system, it is important to emphasize that many other differ-
ent vector modulation formats and links are possible and used: differential QPSK,
where the phase changes to one of four states are recorded only when the adjacent
bit changes; or quadrature amplitude modulation (QAM), where both the ampli-
tude and the phase of the sum I and Q components are changed, resulting in a
multitude of points on the constellation diagram, and further improvement of spec-
tral efficiency, up to the fundamental limit imposed by the fiber dynamic range
to around 10 bits/s per Hz of bandwidth. Finally, additional doubling in spectral
efficiency for each of the coherent links can be accomplished by multiplexing two
signals onto two degenerate orthogonal polarizations of an optical fiber, creating a
polarization-multiplexed link.

It is interesting to note that coherent technology was being widely explored in the
1980s because of its promise of increased transmission distance due to improved
receiver sensitivity. Er-doped fiber amplifiers (EDFAs) had not been developed
at the time, and wavelength division multiplexing (WDM) was expensive due to
repeater cost and complexity (de-multiplexing, optical-electrical conversion, ampli-
fication, electrical demultiplexing to a lower data rate, regeneration, multiplexing
back up, electrical-optical conversion, and multiplexing into optical fiber).

Coherent approaches have promised to double the repeater separation, and allow
placing of the WDM channels closer together because the channel filtering could
be done by a fixed IF filter in the RF-domain after heterodyne down-conversion by
tuning the optical local oscillator (LO), much as in a radio. Bulk optical heterodyne
receivers were quickly found to be very difficult to make due to stablity issues.
Thus, some efforts were initiated to explore the possibility of monolithic integration
of PICs for coherent communications. However, the invention of erbium doped fiber
amplifiers and inexpensive, AWG-based multiplexers and demultiplexers channeled
the development toward modern WDM systems for much of the 1995–2010 time-
frame. The need for improving the spectral efficiency of transmission in the future
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has led to renewed interest and intense research on optical coherent systems, as
well as to the recent first deployment of this technology.

8.4.2 Coherent Detection

The entire concept of optical coherent systems is inspired by radio and microwave
communications, where phase-modulated, coherent links are the mainstream tech-
nology. The key idea behind coherent detection is to combine the input signal
coherently with a locally generated continuous optical field (local oscillator) at
the receiver and before the signal is detected, as shown in Fig. 8.29. This action
achieves two effects: It amplifies the detected signal through mixing, allowing
improved receiver sensitivity, and it enables the demodulation of phase and ampli-
tude/phase modulated signals, which is not possible through direct detection. This
is a key enabler for achieving improved spectral efficiency in a coherent link.
Taking the time harmonic field at the detector generated by a local oscillator
EEEE LO (x , y , z , t) = êi ELO U (x , y)ej (ωLO t−�LO ), and mixing it with a time harmonic
field of the input signal, EEEE IN (x , y , z , t) = êi EIN U (x , y)ej (ωIN t−�IN ), we can obtain
the response of the photodetector keeping in mind that its current is proportional
to the number of photons, and thus intensity of the electric field,

I (t) = RK (EEEE LO + EEEE IN )∗ · (EEEE LO + EEEE IN ) =
= PLO + PIN + 2

√
PLO PIN cos((ωIN − ωLO )t ± �IN ∓ �LO ). (8.23)

Here, we have used K as the constant of proportionality between the optical power
and the electric field intensity. From Eq. (8.23), we can draw two important con-
clusions. First, the time variation of the photodetector current will be caused by the
time variation of the relative phase terms of the input and local waves, as well as
on the frequency difference between the two waves, the third term in the equation.
For high bit rate optical coherent systems, we are primarily interested in the case
of homodyne detection, where ωIN = ωLO . Thus, phase modulation can be easily
detected since it is being converted into amplitude modulation by this scheme.
Second, the photocurrent detected is proportional to 2

√
PLO PIN , which enables us

to amplify the input signal by using a high-power local oscillator. This allows us
to operate a coherent receiver in the shot noise limited regime, thus improving the
optical receiver sensitivity.

8.4.3 Coherent Receiver Implementations

A couple of different coherent receiver architectures, for differential and regular
detection were described in Fig. 8.28. The most basic coherent receiver implemen-
tation, as illustrated in Fig. 8.29, consists of simple building blocks that can be
realized as a PIC—a laser, light coupler, a photodiode and passive waveguides.
A higher performance implementation, also illustrated in a historic example shown
in Fig. 8.30 uses a balanced receiver pair on the detection side. The local oscillator
signal and the input signal are mixed inside a 2 × 2 coupler element, and detected



496 PHOTONIC INTEGRATED CIRCUITS

Photodiode

Local oscillator
laser

Input

2x1

FIGURE 8.29: An illustration of the principle of coherent detection—the input signal is
mixed with a local oscillator signal into a photodiode.
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FIGURE 8.30: Schematic diagram of a MQW balanced heterodyne receiver photonic inte-
grated circuit, containing a continuously tunable LO, a low-loss buried-rib parallel input
port, an adjustable 3 dB coupler, and two zero-bias MQW waveguide detectors. (Reprinted,
by permission, from [29].)

by two individual photodiodes, connected in series. With this photodiode config-
uration and the phase differences introduced by the optical coupler, it is possible
to easily obtain an output signal which will be given by the difference of the two
photocurrents-thereby canceling out the current contributions and the intensity of
noise from the local oscillator, and adding the photocurrents resulting from the
signal modulation. This type of architecture therefore allows for complete rejection
of the CW signal, and conversion of phase modulation into amplitude modulation.



8.4 PICS FOR COHERENT OPTICAL COMMUNICATIONS 497

Ideally, the local oscillator would be a widely tunable laser, allowing for realization
of a tunable coherent receiver.

The first photonic IC with a coherent balanced receiver implementation, shown
Fig. 8.30, includes all the optical components of a coherent receiver: an integrated
local DFB oscillator laser, a 3 dB coupler, and a balanced detector pair. The
preamplifier shown in this example can be used to compensate for the coupling
and waveguide losses.

An example of a high speed, integrated I-Q receiver in InP, is shown in Fig. 8.31.
This device consists of two input waveguides, a 90◦ hybrid implementation using a
4 × 4 MMI coupler, and two balanced photodiode pairs. The optical hybrid allows
for mixing of the local oscillator L and the input signal S , and for balanced detection
of both the in phase I and the quadrature Q components of the input signal. This is
accomplished through precise phase control in signal splitting, which results in the
following signal combination at each of the photodiodes from top down, assuming
that the signal is coupled to the top input waveguide: L + S , L − S , L + jS and
L − jS . The outputs from two balanced receiver pairs will be 2S and 2jS , the
in-phase and quadrature components of the input signal.

A more elaborate concept PIC implementation of a polarization multiplexed
receiver, which includes two full I-Q receivers integrated with a local oscilla-
tor, and which could be used in polarization multiplexed optical links, is shown
in Fig. 8.32. This concept pol-muxed receiver has two inputs, assuming that the
polarization splitting is occuring outside of the chip. The polarization multiplexed
signal results in two constellation diagrams, one on each polarization, as illustrated
in the figure. Integration of polarization demultiplexing elements on this PIC is
possible as well, in which case the chip would have a single input. In addition as
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FIGURE 8.31: An integrated I-Q receiver in InP (a) Receiver architecture schematic, show-
ing two inputs, a 90◦ hybrid implementation using a 4 × 4 MMI coupler, connected to two
balanced photodiode pairs; a device photograph on the bottom. (b) Results of receiver oper-
ation at 50 Gbps, showing the bit error rate and constellation diagrams as function of optical
signal to noise ratio. (© IEEE 2010, [48].)
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FIGURE 8.32: Schematic of a polarization multiplexed, balanced coherent I-Q receiver,
with an integrated widely tunable local oscillator laser and two complete I-Q receivers, one
for each polarization. Although this schematic shows two separate inputs for two separate
polarizations of light, with the assumption that polarization demultiplexing is done outside
of the PIC, integration of polarization demultiplexing elements on the chip is possible as
well, in which case the chip would have a single input. A QPSK pol-muxed constellation
diagram is shown on the right.

with other PIC-based devices further parallel integration into device arrays is pos-
sible. The key issue with tunable laser integration for coherent receiver purposes
is that of sufficiently narrow linewidth and low phase noise, one of the topics of
ongoing research.

8.4.4 Vector Transmitters

As discussed in one of the previous sections, arbitrary vector modulation can be
generated using the combination of both amplitude and phase modulation. One
popular way to accomplish this task is to use the nested Mach-Zehnder modulator
structure shown earlier in Fig. 8.28c. Because this structure assigns the I axis to
one MZM and the Q axis to a second MZM, it can modulate the resultant vector to
any (I,Q) point in the plane of the I-Q diagram. For QPSK modulation, four equal
amplitude (I-Q) points are accessed. A 10-wavelength transmitter PIC utilizing
this type of nested I-Q Mach-Zehnder structure for QPSK modulation is shown in
Figure 8.33 [49, 50]. Polarization multiplexing is implemented in this example to
double the transmission rate, requiring a pair of identical nested I-Q MZ structures
for each of the 10 DFB lasers on the chip. The constellation diagrams in the figure
illustrate the four constellation points accessed by each of the 20 IQ modulators.
Each individual I and Q MZ modulator is running at 14.25 Gbps, but as discussed
in Section 8.4.1, with QPSK modulation, we double the amount of information
transmitted (by effectively combining the I and Q signals in phase quadrature)
resulting in 28.5 Gbps per IQ modulator. This chip utilizes DFB lasers for the light
source, but one could imagine replacing them with the widely tunable variety. It is
easy to envision that in the future, widely tunable EML vector transmitters will be
developed. As with coherent receivers, the key issue with tunable laser integration
for coherent transmitter purposes is that of achieving sufficiently narrow linewidth
and low phase noise.
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FIGURE 8.33: (a) Photograph of the active block of a 10-wavelength PM-QPSK transmit-
ter PIC, utilizing nested IQ Mach-Zehnder modulator EML devices, (b) schematic layout
of PIC illustrating the TE and TM-to-be duplicate sets of modulators, AWGS, and out-
put waveguides, to support polarization-multiplexed operation through off-chip polarization
beam combining, (c) schematic of TE/TM nested IQ MZ modulator section of one wave-
length showing RF and DC controls, and (d) IQ constellation diagrams for all 20 QPSK
data streams, each IQ stream running at 28.5 Gbps for an aggregate 570 Gbps transmission
capability across the 10 wavelengths. Reprinted by permission from [49, 50].
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Polarization-insensitive high-contrast GaAs/AlGaAs waveguide modulator based on the
Franz-Keldysh effect. IEEE Photonics Tech Lett 1993;5: 1386.

35. Boyd GD, Livescu G. Electro-absorption and refraction in Fabry-Perot quantum well
modulators: a general discussion. Optical and Quantum Electron 1992;24: S147.

36. Huang TC, Chung Y, Coldren LA, Dagli N. Field-induced waveguides and their appli-
cation to modulators. IEEE J Quantum Electron 1993;29: 1131.



502 PHOTONIC INTEGRATED CIRCUITS

37. Koch TL, Koren U, Gnall RP, Chao FS, Hernandez-Gil F, Burrus CA, Young MG,
Oron M, Miller BI. GaInAs/GaInAsP multiple-quantum-well integrated heterodyne
receiver. Electron Lett 1989;25: 1621.

38. Feit MD, Fleck JA Jr. Computation of mode properties in optical fiber waveguides by
a propagating beam method. Appl Opt 1980;19: 1154.

39. Feit MD, Fleck JA Jr. Computation of mode eigen functions in graded-index optical
fibers by the propagating beam method. Appl Opt 1980;19: 2240.

40. Dummer MM, Klamkin J, Tauke-Pedretti A, Coldren LA. A bit-rate-transparent mono-
lighically integrated wave-length converter. 34th European Conference on Optical Com-
munication, 2008 Sept 21–24; 2008. p 1–4.

41. Nicholes SC, Masanovic ML, Jevremovic B, Lively E, Coldren LA, Blumenthal DJ.
The world’s first InP 88 monolithic tunable optical router (MOTOR) operating at
40 Gbps line rate per port. Conference on Optical Fiber Communication; 2009 Mar
22–26. p 1–3.

42. Vikrant L, Misanovic ML, Summers JA, Fish G, Blumenthal DJ. Monolithic wave-
length converters for high-speed packet-switched optical networks. IEEE Journal of
Selected Topics in Quantum Electronics 2007;13(1): 49–57.

43. Masanovic ML, Lal V, Summers JA, Barton JS, Skogen EJ, Rau LG, Coldren LA, Blu-
menthal DJ. Widely tunable monolithically integrated all-optical wavelength converters
in InP. Journal of Lightwave Technology 2005;23(3): 1350–1362.

44. Tolstikhin VI, Moore R, Pimenov K, Logvin Y, Wu F, Watson CD. One-step growth
optical tranceiver PIC in InP. 35th European Conference on Optical Communication;
2009 Sept 20–24. p 1–2.

45. Coldren L, Nicholes S, Johansson L, Ristic S, Guzzon R, Norberg E, Krishna-
machari U. High performance InP-based photoic Ics—a tutorial. IEEE Journal of Light-
wave Technology . Forthcoming.

46. Johansson LA, Krishnamachari U, Ramaswamy A, Klamkin J, Ristic S, Chou H-F,
Coldren LA, Rodwell M, Bowers JE. Linear coherent optical receivers. 2010 Confer-
ence on OFC/NFOEC; 2010 Mar 21–25. p 1–3.

47. O’Sullivan M. Expanding network application with coherent detection. National Fiber
Optic Engineers Conference; 2008.

48. Bottacchi S, Beling A, Matiss A, Nielsen ML, Steffan AG, Unterborsch G, Umback A.
Advanced photoreceivers for high-speed optical fiber transmission systems. IEEE Jour-
nal of Selected Topics in Quantum Electronics 2010;16(5): 1099–1112.

49. Corzine SW, Evans P, Fisher M, Gheorma J, Kato M, Dominic V,Samra P, Nilsson A,
Rahn J, Lyubomirsky I, Dentai A, Studenkov P, Missey M, Lambert D, Spannagel A,
Muthiah R, Salvatore R, Murthy S, Strzelecka E, Pleumeekers JL, Chen A, Schnei-
der R, Nagarajan R, Ziari M, Stewart J, Joyner CH, Kish F, Welch DF. Large-scale InP
transmitter PICs for PM-DQPSK fiber transmission systems. IEEE Photonics Technology
Letters 2010;22(14): 1015–1017.

50. Evans P, Fisher M, Malendevich R, James A, Studenkov P, Goldfarb G, Vallaitis T,
Kato M, Samra P, Corzine S, Strzelecka E, Salvatore R, Sedgwick F, Kuntz M, Lal V,
Lambert D, Dentai A, Pavinski D, Behnia B, Bostak J, Dominic V, Nilsson A, Tay-
lor B, Rahn J, Sanders S, Sun H, Wu K-T, Pleumeekers J, Muthiah R, Missey M,
Schneider R, Stewart J, Reffle M, Butrie T, Nagarajan R, Joyner C, Ziari M, Kish F,
Welch D. Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit



PROBLEMS 503

(PIC) operating at 112 Gb/s per wavelength. Optical Fiver Communication Conference,
Post Deadline Paper PDPC7; 2011 March.

READING LIST

Coldren LA. Lasers and modulators for OEICs. In: Dagenais M, Crow J, Leheny R, editors.
Integrated optoelectronics . New York: Academic Press; 1994.

Ebeling KJ. Integrated opto-electronics . Berlin: Springer-Verlag; 1993. Chapters 12 and 13.

Koch TL, Koren U. Photonic integrated circuits. In: Dagenais M, Crow J, Leheny R, editors.
Integrated opto-electronics . New York: Academic Press; 1994.

Kaminow I, Li T, Willner AE. Optical fiber telecommunications V A: components and sub-
systems . 5th ed. Amsterdam: Elsevier; 2008.

PROBLEMS

These problems may draw from material in previous chapters and appendices.

1. Design a tunable two-section 1.55-μm InGaAsP/InP DBR (a gain region with
a cleave at one end and a passive grating at the other) which has output fre-
quencies equally spaced by 100 GHz when the index of the grating is tuned.
Assume a 4-quantum-well gain region with characteristics as given by Fig. 4.31
with quaternary barriers of bandgap wavelength 1.25 μm. This active region is
placed on top of a 0.25-μm waveguide also of 1.25 μm bandgap material and
all clad with InP. (You must determine the confinement factor, effective index,
etc.) The grating region is formed by removing the quantum wells and etching
a fundamental-order triangular sawtooth grating with a peak-to-peak depth of
30 nm on the top side of the remaining 0.25 μm quaternary waveguide. This
again is coated with InP. It is desired to tune the output over eight of the axial
modes (spaced by 100 GHz). Assume a BH waveguide width of 1.5 μm, an
internal loss of 10 cm−1 along the entire device length, an internal carrier injec-
tion efficiency of 70%, and provide a grating length to give a power reflection
of 50% in the absence of loss.

(a) Determine the grating and gain region lengths.

(b) Plot the power out of the cleaved end versus current into the gain section.

(c) Plot the output frequency deviation versus the current injected into the
grating assuming both radiative and Auger recombination in the 1.25 μm
bandgap Q-material.

2. Design a 1.55 μm DFB laser with an integrated amplifier used as a modulator.
The DFB laser is a quarter-wave-shifted design with each grating half having
κL = 0.7. Its total length is 400 μm. The active region consists of four quantum
wells in a separate-confinement waveguide as described by the gain curve of
Fig. 4.31, and the transverse confinement factor is found to be 6%. This active
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region is the same throughout, and there is no significant gap between the
laser section and the amplifier section. Assume ideal AR coatings on the output
facets, an internal efficiency of 70%, and an internal loss of 15 cm−1 throughout.
The laser is biased to output 3 mW cw into the amplifier section. We desire the
amplifier-modulator to operate as fast as possible, to have a 10 dB optical on/off
ratio, and to have an on-level output of 10 mW.

(a) Determine the length and width of the amplifier (same width for laser—-
cannot exceed 5 μm for single lateral mode).

(b) Determine the total laser current and the on/off level currents to the ampli-
fier.

(c) What is the maximum modulation data rate?

(d) Can the modulation rate be improved for different laser and modulator
biases?

3. It is desired to design a quarter-wave-shifted 1.55 μm DFB with a maximum
overall power efficiency (power out/power in) at an output power of 10 mW.
(Assume a series resistance that scales inversely with active area, which equals
10� at an area of 100 μm2. Estimate the junction voltage by the approximate
quasi-Fermi level separation.) At 300 K, we assume a gain as determined by
Fig. 4.31, a transverse confinement factor of 6%, an internal efficiency of 70%,
an internal loss of 15 cm−1, and a κ = 50 cm−1. However, we also empiri-
cally decrease the gain curve and the internal efficiency by 1% for each 1◦C
temperature rise. We assume that the thermal impedance can be estimated by
Eq. (2.69) with a substrate thickness, h = 100 μm and effective thermal con-
ductivity ξ = 0.68 W/cm-◦C. Assume lateral cladding is InP.

(a) What length and width is optimum?

(b) Plot the resulting L–I curve.

4. For the sampled grating DBR laser from Example 8.3,

(a) How much current is required on the phase section to tune from one axial
mode to the next (assuming a pair of mirror peaks are aligned at some
wavelength)?

(b) Assuming that the central mirror peaks and an axial cavity mode are aligned
at zero current, what currents are required on the back mirror, the front
mirror and the phase section to continuously tune the laser output by exactly
1 nm.

(c) What are the laser threshold current and differential efficiency for tuning
currents of both mirrors and the phase section sufficient to change all of the
modal indices by 0.005?

5. It is desired to design a 1.55-μm grating assisted codirectionally coupled laser
with a tuning enhancement factor of F = 15 and a maximum MSR at an output
of 5mW. We assume a gain characteristic as in Fig. 4.31, a transverse gain region
confinement factor of 6%, an internal efficiency of 70%, nsp = 1.2, ng1 = 4, an
internal loss of 15 cm−1 in the active and passive sections of the top guide, an
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internal loss of 5 cm−1 in the lower guide, a design for 100% guide-to-guide
coupling, and an active region length of 300 μm. Also, the operating current
density in the active region is limited to 8 kA/cm2.

(a) What is the corrugation period in the coupler?

(b) What is the required κ for 100% coupling?

(c) What is the optimum coupler region length for maximum MSR?

(d) Plot the L–I characteristic for a 3-μm active region width from the left
facet when the coupler is tuned for alignment of a mode with its filter peak.

6. For the GCSR laser from Example 8.5, the internal loss in the gain section is
15 cm−1, and the passive tuning sections have a loss of (5 + 5000�n̄/n̄g cm−1),
where �n̄/n̄g is the relative modal index change due to carrier injection tuning.
What are the threshold current and the differential efficiency for:

(a) no tuning?

(b) for max tuning—required for full wavelength coverage up to 50 nm?

(c) Plot the P-I curves for no tuning and maximum tuning cases.

7. For the Mach-Zehnder modulator from Example 8.7, determine the maximum
length of the electrode to achieve 25 GHz modulation bandwidth?

8. We wish to optimize the design of a sampled-grating DBR laser for a tun-
ing range of 50 nm to around 1550 nm operating wavelength range. The back
mirror, phase section, and gain section have already been designed. We need
specify the design of the front mirror for maximum power out at 5 kA/cm2

into the gain electrode, and verify the characteristics of the design for the
desired 50-nm tuning range. The waveguides are all 2 μm wide, and lateral
current spreading can be neglected. The common passive waveguide thickness
is 400 nm in all sections. The internal loss in the gain section is 15 cm−1 above
threshold, and the passive tuning sections (both mirrors and phase) have a loss
of (5 + 5000�n̄/n) cm−1, where �n̄/n is the relative modal index change due
to carrier injection tuning. �n/n is also limited to 0.5% in all tuning sections.
The phase and group modal indices are 3.3 and 3.8 in the passive sections, and
3.4 and 4.0 in the gain section, respectively.

The back mirror consists of: 10 grating bursts (samples), 50 μm burst (sam-
pling) period, 5 nm burst length, 300 cm−1 grating coupling constant (within
burst) and internal (injection efficiency) of 70%.

The phase section is 75 μm long.
The gain section is 500 μm long, contains 5 QWs characterized by Fig. 4.31,

the net transverse/lateral confinement factor for the 5 QWs 5%, and the internal
efficiency 70%.

The front mirror has the same grating coupling constant and burst length as
back mirror.

(a) What is the back mirror peak power reflection magnitude, R1, at Bragg with
no tuning, and with maximum tuning?
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(b) What is the FWHM, �λ1/2, of a back mirror reflection peak?

(c) What is the wavelength spacing �λp between the back mirror reflection
peaks?

(d) At what wavelength deviation from the Bragg does the peak reflection enve-
lope fall to 0.5 R1?

(e) What is the grating sampling period in the front mirror for the desired 50-nm
tuning range with the given maximum in �n/n = 0.005?

(f) What is the magnitude of the front mirror reflection, R1, for maximum power
out at 5 kA/cm2 into the gain section terminal, assuming no tuning currents?
How many sampling periods are desired in the front mirror?

(g) What is the axial cavity mode spacing? How many modes are within the
FWHM width of the back mirror?

(h) What is the threshold current and differential efficiency for (1) no tuning?
(2) maximum tuning required for full wavelength coverage up to 50 nm?

(i) Plot the P–I curves for no tuning and max tuning cases.

(j) Sketch superimposed front and rear mirror reflection spectra indicating
widths and spacings as well as mode locations. Is the design good? (Good
MSR, reasonable performance at all wavelengths, etc.) How could it be
improved?

9. The ring-resonator mirror laser, shown in Fig. 8.34 has the following parame-
ters: circumference of ring 1 (including couplers and phase shifters) is 300 μm;
circumference of ring 2 (including couplers and phase shihers) is 400 μm; length
of each gain section is 300 μm; length of each phase section is 75 μm; total
length of straight guides between couplers is 450 μm (includes space between
elements); length of each coupler is lc = 50 μm; cross coupling of each coupler
is −j 0.5 · e−j β̃·lc . Assume symmetry where necessary, and neglect reflections at
the ends of the straight waveguides.

(a) Assuming zero current to the gain and phase sections, what is the transfer
function from the straight guides at plane A to B through the couplers and
ring 2 (i.e., SBA)? Give an analytical expression, and then evaluate it with
the numbers given both on and off of a ring resonance.

Coupler

Coupler

Coupler

Coupler

RING 1 RING 2Phase 1 Phase 2

Phase 3Gain 1

Gain 2

A

B

FIGURE 8.34: Ring resonator mirror laser.
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(b) What is the resonance spacing in each of the two rings, again assuming zero
current to the gain and phase sections.

(c) Assuming current to the gain sections for lasing, what is the axial laser
mode spacing?

(d) Plot and label superimposed spectra of the ring resonances with the laser
mode locations.

(e) Assuming a pair of ring resonance peaks are aligned at zero phase currents,
how much cunent is required on the phase section in ring 1 (phase 1) to
move its resonances so the next resonance peaks align (i.e., vernier tuning
between the resonances of the two rings)?

(f) Assuming a pair of resonance peaks and a laser cavity mode are aligned
with zero phase currents, what currents are required on phase 1, phase 2,
and phase 3 to continuously tune the laser output by exactly 1 nm?

(g) What is the laser threshold current and differential efficiency out of one of
the four output guides for no tuning currents?

(h) What is the laser threshold current and differential efficiency (from one
output) for tuning currents on all phase sections sufficient to change all of
the modal indices by 0.005?

(i) Assuming aligmnent of a resonance of the two rings and a laser cavity
mode, estimate the MSR for (1) the adjacent laser cavity mode, and (2) the
laser cavity mode nearest the partial overlap of the adjacent resonances of
the rings.



APPENDIX ONE

Review of Elementary
Solid-State Physics

A1.1 A QUANTUM MECHANICS PRIMER

A1.1.1 Introduction

In quantum mechanics, the properties and motion of particles are defined in terms
of a wave (or state) function, �; its magnitude squared gives the probability den-
sity of finding a particle at some point in time in a volume element dV. Or, put
another way, the density of particles at some point in space is proportional to
�∗�. Note that

∫
�∗� dV = 1, for properly normalized state functions, since the

probability of the particle being somewhere is unity. In our case we are interested
in both electrons and photons as particles. For photons this description is roughly
equivalent to standard electromagnetic theory where the wavefunction is analo-
gous to a normalized electric field. Maxwell’s equations give the description of
photon fields. In this appendix we shall focus more specifically on the properties
of electrons.

In quantum mechanics, measurements are limited in accuracy by the uncertainty
principle, �x�px ≥ �/2, where px is the momentum in the x -direction. (In electro-
magnetic theory the equivalent statement is that �x�kx ≥ 1/2.) The expected (or
mean) value of some observation is calculated by operating on the wavefunction
with the operator, A, corresponding to the observable, a . The operation to obtain
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© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

509



510 REVIEW OF ELEMENTARY SOLID-STATE PHYSICS

the mean value is analogous to a standard weighted average,

〈a〉 =
∫

�∗A� dV , (A1.1)

where a is a possible observation of the operator A. In many cases the operator
simply multiplies the observable variable, in others it is more complex, such as
momentum, p, where it is −i�∇.

The motion of particles is governed by Schrödinger’s equation,

−�
2

2m
∇2� + V � = i�

∂�

∂t
, (A1.2)

where m is the particle’s (e.g., electron) mass, V is the potential energy operator
(same as observable), and (−�

2/2m)∇2 is the kinetic energy operator (= p2/2m).
Together, these two form the overall energy operator, the so-called Hamiltonian.
The state function can be expressed as the product of space-dependent and time-
dependent factors, �(r , t) = ψ(r)w(t). If we substitute into Eq. (A1.2) and divide
by ψw, we obtain a function on the left that only depends on r and a function on
the right that only depends on t . Thus, to be valid for all r and t , each side must
equal a constant, E :

−�
2

2m

∇2ψ

ψ
+ V = i�

w

∂w

∂t
= E . (A1.3)

From this we immediately have

w(t) = Ce−i (E/�)t , (A1.4)

from which we can identify E = �ω, where ω is the radian frequency of oscillation.
For the time-independent part,

−�
2

2m
∇2ψ + Vψ = Eψ. (A1.5)

The general solution for a uniform potential can be written as the sum of two
counterpropagating plane waves,

ψ(r) = Aeikz + Be−ikz , (A1.6)

where

k2 = 2m

�2
(E − V ), (A1.7)

is found by substituting back into Eq. (A1.5).
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A1.1.2 Potential Wells and Bound Electrons

Electrons are confined by some potential depression in most situations. The most
fundamental example is the atom, where electrons are bound by the confining poten-
tial of the positively charged nucleus. For the simple case of the hydrogen atom,
V (r) = −q2/[4πε0r], and analytic solutions to Schrödinger’s time-independent
Eq. (A1.5) can be found. However, for atoms with higher atomic numbers and
many electrons, only numerical solutions are possible. Nevertheless, the electron
always experiences some sort of confining potential.

When solids are formed from these atoms, the more weakly bound electrons near
the exterior of the atom are significantly influenced by the attractive potential of
neighboring atoms. In fact, in covalently bonded solids, the outer valence electrons
are shared by many atoms, and they develop wavefunctions that extend throughout
the crystal. In such cases, the details of the original atomic confining potential are
lost. Thus, we shall not dwell on that problem unduly. Rather, we shall investigate
the properties of an electron in a simple rectangular potential well to develop the
concepts of confined wavefunctions and discrete energy levels common to atoms.

It will later be shown that by coupling together a series of such wells, a periodic
potential is formed that leads to electronic properties very similar to those in real
crystals. Thus, we can learn much about the properties of electrons in solids by
taking this course. As is well known, one of the key results is that electrons in solids
can behave much like free electrons with plane wave solutions and a parabolic E–k
relationship as illustrated by Eq. (A1.7). However, they appear to have an effective
mass, m∗, that is different from the free electron mass. Also, this effective mass
approximation is usually limited to relatively low kinetic energies. Finally, we shall
consider quantum-confined structures that include heterostructures to form much
larger potential wells than for a single atom. Nevertheless, the mathematics is very
similar, and we will be able to apply much of what we develop in this section.

First, consider the one-dimensional potential well of width l shown in Fig. A1.1.
The simplest method of solution is to recognize that there are three separate regions
of uniform potential, where the solution to Schrödinger’s equation will have the
form of Eq. (A1.6). Then, if we assume that the effective electron mass is the same
in all regions, we can develop a complete wavefunction by requiring that the
value and slope of the constituent solutions in each of the three regions match at
the boundaries. That is, we would not expect any discontinuity in the probability
density function. Looking for bound solutions, for which E < V0, we can rewrite
the general solution Eq. (A1.6) in each region. In the central region II,

ψII =
{

A cos kx (symmetric solutions)
A sin kx (antisymmetric solutions),

(A1.8)

where k2 = 2mE/�
2. In region III,

ψIII = Be−γ x , (A1.9)
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FIGURE A1.1: One-dimensional potential well for electron confinement.

where γ 2 = 2m(V0 − E )/�
2. In region I, ψI = Beγ x , but by symmetry, we only

need to use the single boundary condition at x = l/2 between regions II and III.
At x = l/2, we have that ψII = ψIII and ψ ′

II = ψ ′
III. For the symmetric solutions,

this gives

A cos

(
kl

2

)
= Be−γ l/2, (A1.10a)

and

Ak sin

(
kl

2

)
= Bγ e−γ l/2. (A1.10b)

Dividing Eq. (A1.10a) by Eq. (A1.10b), we obtain the characteristic equation,

k tan

(
kl

2

)
= γ. (A1.11)

Similarly, for the antisymmetric solutions, we obtain

k tan

(
kl

2
− π

2

)
= γ , (A1.12)

where cot x = − tan(x − π/2) has been used to illuminate the similarity between
the symmetric and antisymmetric characteristic equations.

The electron energy, E , appears on both sides of these characteristic equations
via k and γ , implying that only discrete values of E will satisfy the requirement that
the wavefunction and its derivative be continuous across the boundaries. Because
the tangent function is periodic, multiple solutions can be found for E , leading to
a discrete set of wavefunctions that satisfy the boundary conditions.
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FIGURE A1.2: Energy levels and wavefunctions of one-dimensional potential well. Three
bound solutions illustrated.

Figure A1.2 shows the first few wavefunctions drawn schematically on their
respective energy levels over the potential well for reference. These clearly rep-
resent bound solutions. There are solutions with E > V0 but they are not bound,
and their wavefunctions extend to ±∞. An interesting property of all the solutions
is that they must be orthogonal. That is, if we multiply one wavefunction by the
complex conjugate of another and integrate over all space, the integral must be
zero. If the wavefunctions are normalized so that the integral of the product of a
wavefunction times its own complex conjugate is unity, then the wavefunctions
would be orthonormal.

To determine the bound solutions, we need to solve the characteristic equations.
For infinitely large V0, such that the wavefunction goes to zero at the boundaries
(i.e., ψ(l/2) = 0), the characteristic equation for both symmetric and antisymmetric
cases becomes simply

kl

2
= nπ

2
, n = 1, 2, 3, . . . (A1.13)

where odd (even) quantum numbers correspond to symmetric (antisymmetric)
states. The corresponding discrete energy levels in terms of the quantum numbers
are

En = n2E∞
1 , (A1.14)

where

E∞
1 = �

2k2
1

2m
= �

2π2

2ml2
= 3.76(m0/m)(100 Å/l)2 in meV.
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When V0 is reduced from infinity, the discrete energies can still be found using
(A1.14), however, the quantum numbers in this case are no longer simple integers,
but are real numbers that we will refer to as nQW . For example, if V0 = 25E∞

1 , the
infinite-barrier integer quantum numbers n = 1, 2, 3, 4, 5 become nQW = 0.886,
1.77, 2.65, 3.51, 4.33.

To calculate nQW for an arbitrary V0, we need to solve the characteristic equations
given in Eqs. (A1.11) and (A1.12). Using Eq. (A1.14), combined with the defini-
tions for k and γ given below Eqs. (A1.8) and (A1.9), the characteristic equations
can be conveniently normalized:

tan
[π

2
nQW

]
= 1

nQW
[n2

max − n2
QW]1/2 (symmetric) (A1.15)

tan
[π

2
(nQW − 1)

]
= 1

nQW
[n2

max − n2
QW]1/2 (antisymmetric) (A1.16)

where

nQW ≡
√

En

E∞
1

and nmax ≡
√

V0

E∞
1

. (A1.17)

These equations can be solved graphically by plotting both the left-hand side (LHS)
and the right-hand side (RHS) as a function of nQW . Figure A1.3 illustrates this
procedure for four different values of V0.

RHS

0 1 2 3

nQW

4 5 6

LHS

V0

n = 2 n = 3 n = 4 n = 5 n = 6

30=
10

3
1

2nmax

n = 1

FIGURE A1.3: Graphical solution to Eqs. (A1.15) and (A1.16). The intersections between
the LHS and RHS of the equations yield the possible values of nQW for a given nmax (or
equivalently V0). The odd (even) quantum numbers displayed next to each tangent curve
correspond to the LHS of the symmetric (antisymmetric) characteristic equation.
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Note that only a finite set of quantum numbers exist for a given potential barrier,
V0. The normalized variable, nmax when rounded up to the nearest integer, yields the
largest number of bound states possible for a given V0. For example, with V0 =
3E∞

1 , from Eq. (A1.17), we find that nmax = √
3 ≈ 1.73. Thus, only two bound

states are possible under these circumstances. This is perhaps demonstrated more
clearly by plotting the possible nQW as a continuous function of nmax. Figure A1.4
gives all possible solutions for nmax ≤ 6 (which covers nearly all practical ranges
of interest). Note that all quantum numbers approach their integer limit as nmax

increases toward infinity. In addition, the quantum numbers cease to satisfy the
equations (indicated by the open circles) when a given quantum number approaches
the integer value of the next lowest state. The lowest quantum number can be

6

5

4

3

2

1

0

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

0 1 2 3
nmax

nmax

n Q
W

 –
 (

n
–1

)

n = 1 state
n = 2

n = 3

n = 4

n = 5

n = 6

n Q
W

4 5 6

FIGURE A1.4: Plot of quantum numbers as a function of the maximum allowed quantum
number that is determined by the potential height, V0. The quantum numbers are related to
V0 and E through Eq. (A1.17). The lower plot gives a close-up view of the curves (which
have been shifted vertically to fit on the same scale).
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approximated to within ±1% using the following formula:

nQW ≈ 2

π
tan−1 [

nmax
(
1 + 0.6nmax + 1)]. (A1.18)

A1.2 ELEMENTS OF SOLID-STATE PHYSICS

A1.2.1 Electrons in Crystals and Energy Bands

Electrons in crystals experience a periodic potential originating from the regularly
spaced wells at the lattice ions. Figure A1.5 gives a schematic picture along one
dimension of such a lattice. As predicted in Chapter 1, when NA atoms are coupled
in such a manner, each atomic energy level of the constituent atoms splits into
a band of NA discrete levels. However, this splitting is only significant for the
uppermost energy levels where the two atoms interact.

There are several approaches that have been applied to solve this problem. The
Kronig–Penney model approximates the actual periodic potential of Fig. A1.5 by
a square wave potential, then uses the single rectangular well solution above as a
starting point. However, the result is a complex transcendental equation that must be
solved numerically. A second approach, which provides better closed-form analytic
solutions, is the coupled-mode approach of Feynman et al. [1]. For accuracy some
fairly complex functions need to be evaluated, but by leaving them in general form,
we can still get a good picture of the nature of the solutions.

The first step is to go back to Schrödinger’s equation and consider a possible
general solution for a perturbed system, such as the atom that has been placed into
a crystal. The isolated atom had a set of orthonormal wavefunction solutions just
as we obtained for the rectangular potential well. When we perturb the original

x

E

a Lattice
ions

Net confining
potential

Potential well of
isolated atom

yk

yj

FIGURE A1.5: Schematic of net potential variation along a one-dimensional crystal lattice.
Wavefunctions of nominally bound (ψj ) and free (ψk ) electron states are illustrated.
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potential, a new set of orthonormal wavefunctions will exist. But now it may be
impossible to solve Schrödinger’s equation. It is common to use a superposition
of the original set of orthonormal functions to express the new solutions. We
shall use this kind of “normal mode expansion” later when we discuss optical
solutions.

In the present case we let

� =
∑

j

wj (t)ψj (r), (A1.19)

plug into Eq. (A1.2), multiply by ψ∗
k , and integrate. Then, we have

∑
j

wj (t)
∫

ψ∗
k H ψj dV = i�

∑
j

dwj

dt

∫
ψ∗

k ψj dV , (A1.20)

where the Hamiltonian, H = [(−�
2/2m)∇2 + V ], in which V includes the pertur-

bation. Since the original basis functions are orthonormal, the last integral is zero1

unless j = k . Using the shorthand notation,

Hkj ≡
∫

ψ∗
k H ψj dV , (A1.21)

we finally have

i�
dwk

dt
=

∑
j

Hkj wj . (A1.22)

This is the desired coupled-mode equation, which is independent of the spatial
variables. It illustrates that the probability density will flow back and forth among
the various original states as a function of time to form the new states. Note
that with k = j in Eq. (A1.21) we have the equation to determine the expected
value of energy for that original wavefunction—the eigenvalue E that we have
been evaluating previously. Thus, the diagonal terms in the Hkj matrix are these
energy eigenvalues for the respective unperturbed states. The off-diagonal terms
represent the coupling strength between the various states. They determine the
magnitude of the energy splitting experienced by some original state. It is also
important to realize that for most of what we are doing here we do not have to
know the actual form of the wavefunctions or even the magnitudes of the matrix
elements, Hkj . Experimental measurements are usually used to determine the actual
values.

Our first example is that of coupling just two identical atoms together. For suffi-
ciently weak coupling, we can approximate the effect on a particular state by using
only the basis function for that state from each atom in the summation. (Clearly,
for vanishingly small coupling, these give the exact solution.) Then, Eq. (A1.22)
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FIGURE A1.6: One-dimensional lattice of coupled atoms to derive energy bands using the
coupled-mode approach.

can be expanded into two coupled-mode equations:1

i�
dw1

dt
= H11w1 + H12w2,

i�
dw2

dt
= H21w1 + H22w2.

(A1.23)

Letting the energy of the state in question H11 = H22 = E0, the coupling energy
H12 = H21 = �E , and then, assuming solutions wj (t) = Cj exp(−iEt/�) and plug-
ging into Eq. (A1.23), we obtain a characteristic equation from which we must have

E = E0 ± �E . (A1.24)

Thus, the original energy level at E0 for the isolated atom has split into two levels
spaced equally on either side by the magnitude of the off-diagonal matrix element,
�E . This same process for NA atoms leads to NA levels spaced symmetrically
about the original level.

Now we are ready to illustrate how energy bands are formed when a large
number of atoms are coupled together in a crystal. First we consider a simple one-
dimensional crystal. Figure A1.6 illustrates a row of atoms spaced by a distance a ,
similar to the situation of Fig. A1.5.

Our first approximation will be to neglect the perturbation from all atoms except
nearest neighbors. Then we can consider a general atom, the k th atom, which can
represent every atom in this long chain. From Eq. (A1.22), taking H11 = Hkk = E1

and H12 = Hkk ± 1 = �E ,

i�
dwk

dt
= �Ewk−1 + E1wk + �Ewk+1. (A1.25)

Again letting wj (t) = Cj exp(−iEt/�) and plugging into Eq. (A1.25), we obtain
a characteristic expression,

ECk = E1Ck + �E [Ck−1 − Ck+1]. (A1.26)

1Actually, in some important cases of interest, ψk and ψj may include basis functions of laterally
displaced atoms to better approximate the perturbed solution. Thus, for some terms in the summation
the integral is only small rather than identically zero.
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However, since the subscript k corresponds to the general lattice location, xk , and
the neighbors are at xk ± a , we can rewrite Eq. (A1.26) letting Ck ⇒ C (xk ) and
Ck±1 ⇒ C (xk ± a). Then, we have a difference equation in terms of the spatial
variable x . This is solved by letting C (xk ) = K exp(ikxk ). Finally plugging in this
assumed solution,

Eeikxk = E1eikxk + �E [eik(xk − a) + eik(xk + a)],

or,

E = E1 + 2�E cos ka. (A1.27)

Equation (A1.27) indicates that in this infinite one-dimensional crystal a continuum
of energy values between E = E1 ± 2�E is allowed. This is the familiar energy
band that solid-state and semiconductor engineers are always referring to. (A later
section of this appendix will remind us that for finite crystals, the discrete levels
in any real situation really are very closely spaced.)

This same development of bands happens for all of the higher-lying energy
levels when atoms are bonded together to form crystals. Thus, the next higher-
lying band at energy E2 also splits into a band due to nearest-neighbor coupling
energy �E ′. Therefore, it provides a new band with E ′ = E2 + 2�E ′ cos ka , where
in direct bandgap semiconductors, the sign of �E ′ is reversed. Also, the over-
lap of wavefunctions is larger for the higher lying energy levels. Thus, accord-
ing to Eq. (A1.21), the coupling energy is larger, and the bands become wider.
Figure A1.7 illustrates these two bands. As indicated, one period of the plot is
sometimes referred to as a Brillouin zone. Since the curves repeat themselves for
larger k -values, we usually need concern ourselves only with the first Brillouin
zone.

In semiconductors all states of all bands up to the valence band are full, and in
the next higher-lying band, called the conduction band, they are empty at T = 0 K.
We could imagine that Fig. A1.7 represents the conduction and valence bands of
a direct bandgap semiconductor such as GaAs or InP. The potentials affecting
electrons in such semiconductors are a little more complicated than described by
this simple example, in which only nearest-neighbor interactions are considered. So,
the E–k plots are not perfect sine waves. Also, in these materials the valence band
actually divides into two bands called the light-hole and heavy-hole bands. These
originate because of the asymmetric wavefunctions involved, and the difference
in overlap that can occur for different relative orientations when Eq. (A1.21) is
evaluated.

For a real three-dimensional crystal with lattice constants a , b, and c, the same
procedures can be carried out using a three-dimensional version of Eq. (A1.22)
with coupling coefficients �Ex , �Ey , and �Ez , and a three-dimensional envelope
wavefunction,

w(x , y , z , t) = e−iEt/�ei (kx x+ky y+kz z ), (A1.28)
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FIGURE A1.7: Energy bands created by a one-dimensional chain of coupled atoms. Two
bands resulting from two original discrete states are shown.

to obtain

E = E1 + 2�Ex cos kx a + 2�Ey cos ky b + 2�Ez cos kz c. (A1.29)

The real situation is still more complex than the first-order calculation resulting in
Eq. (A1.29). Figure A1.8 illustrates the actual band structure for both GaAs and
InP along the 〈100〉 and 〈111〉 directions.

A1.2.2 Effective Mass

Near the top of the valence band and near the bottom of the conduction band it is
sometimes possible to approximate the shape of these E–k extrema by parabolas.
In these cases the concept of an effective mass is useful, and simple expressions
for the density of states are possible. However, the concept of an effective mass
has also been extended to limited regions within nonparabolic bands where the
parabolic approximation is still valid.

To determine an expression for the effective mass and show that the parabolic
band is desired, we follow a semiclassical approach in which we calculate the
acceleration of an electron in a solid under the force of an applied electric field.
The force qEEEE on a particle may be classically expressed as the time rate of change
of its momentum, p. Quantum mechanically p = �k . Thus, the force is

F = qEEEE = �
dk

dt
. (A1.30)
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FIGURE A1.8: Band structure of GaAs and InP. The conduction band as well as the heavy-
hole, light-hole, and split-off valence bands are labeled by, c, hh, lh, and so, respectively.
(Reprinted, by permission, from K. J. Ebeling, Integrated Optoelectronics, Springer-Verlag,
1993.)

The velocity of particles is defined by their group velocity, vg = dω/dk =
(1/�) dE/dk , which shows the proportionality of velocity to the slope of the E–k
characteristic. Since the acceleration, acc., is the time derivative of the velocity,
we can write

acc. = dvg

dt
= dvg

dk

dk

dt
= 1

�

d2E

dk2

dk

dt
. (A1.31)

Dividing Eq. (A1.30) by (A1.31), and defining an effective mass, m∗ = F/acc.,
we obtain

m∗ = �
2

d2E/dk2
. (A1.32)

Thus, for parabolic bands, as observed for uniform potentials (e.g., Eq. (A1.7)),
the electron will move much like a free particle, but with an effective mass, m∗,
related to the curvature of the band. For nonparabolic bands, m∗ is not constant
and the local slope and curvature of the E–k relationship must be used to obtain
the velocity and acceleration of a particle with energy E .
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A1.2.3 Density of States Using a Free-Electron (Effective Mass) Theory

We just learned above that an electron in a crystal can behave much like a free
electron moving in a region of uniform potential if it is at a point on the E–k
diagram that is parabolic. This is a remarkable result, since we know that the
potential within a crystal is very nonuniform. Nevertheless, this revelation allows
us to treat some very complex problems. For example, if we consider a crystal of
finite dimensions, dx , dy , dz , we can more or less ignore the crystal lattice potential
which is periodic on the scale of the lattice constant a , provided that dj � a
(Fig. A1.9). But, we must use a different effective mass as determined by the
curvature of the E–k diagram.

By considering electron energies near band extrema, where the E–k curve tends
to be parabolic, we can now consider reusing some of the same physics that we
developed in Section A1.1.2 for electrons in very simple potential wells that had
uniform potential regions. That is, we can now find the states in finite pieces of
crystal or pieces with potential wells created by double heterostructures as described
in Chapter 1. The simplest case is when the potential barriers are large so that we
can assume that the bound wavefunctions go to zero at the boundaries. Then, from
Eqs. (A1.13) and (A1.14), we have

E = �
2k2

2m∗ = �
2

2m∗ [k2
x + k2

y + k2
z ], (A1.33)

where we have included all three dimensions for completeness and assumed that
the effective mass is the same in all directions. Applying the boundary conditions
for a large barrier, kj dj = nj π ,

E = �
2π2

2m∗

[(
nx

dx

)2

+
(

ny

dy

)2

+
(

nz

dz

)2
]

. (A1.34)
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FIGURE A1.9: Potential plot for crystal (or quantum-well) of thickness d . The dashed well
is an approximation to the actual potential.
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From Eq. (A1.34) we note that we have an energy state for each (nx , ny , nz ) set
of quantum numbers. To determine the size of the energy spacing between states,
we can evaluate the coefficient, �

2π2/2m0 = 376 meV-nm2, where we have used
the free electron mass rather than the effective mass. In GaAs the electron mass,
m∗ = 0.067m0, so we should use 15(376) = 5640 meV-nm2 for the coefficient in
the conduction band. From this we can see that the energy separation between
states is quite small. For example, for a cube with dj = 1 μm, the difference in
energy between the first two states, E (211) − E (111) ≈ 17 × 10−3 meV. Since
kT ≈ 26 meV at room temperature, we see that this energy difference is less than
one thousandth of a kT. On the other hand, for a cube with dimensions dj ∼ 10 nm,
this energy difference is ∼ 170 meV, or more than 6kT at room temperature.

From the above, we conclude that for dimensions dj � 1 μm, quantum effects
are not going to be very noticeable at room temperature, and the E–k diagram
can be treated as describing a continuum of states. We shall refer to this as the
bulk regime. On the other hand for dj < 100 nm, the discreteness of the energy
levels indicated in Eq. (A1.34) must be considered. We shall refer to this as the
quantum-confined regime.

Even though the states may be very closely spaced in the so-called bulk regime,
we still need to be able to count them to determine the carrier density and the energy
to which they would have to be filled for a given carrier density. In the smaller
structures, we again need an effective method of counting states. The method
commonly used is to define a density of states, ρ, which when integrated over
some range gives the number of states in that range. The density of states can
be expressed in terms of a number of variables (e.g., E, p, or k ) in a number of
different coordinate systems. If Ns is the number of states up to some point, we
can generally state that

Ns(u) = V
∫ u

0
ρ(u) du , (A1.35)

where u is the desired variable and V is the volume. Once we have this definition,
we can then state that

ρ(u) du = 1

V
dNs(u). (A1.36)

It should be realized that ρ(u) du can be defined and used regardless of the size
regime in which we find ourselves. For the smaller structures, we find that it
contains discontinuities and even impulse functions, but it is still a good function.

To determine ρ(u) du for the various cases of interest, we follow a standard
procedure: (1) determine the number of states by calculating the volume in state
or n-space, Ns(n); (2) substitute for the desired variable, n = f (u), which gives
Ns(u); and (3) apply Eq. (A1.36) to get the desired ρ(u) du . A few examples are
useful for future reference.

For the first example, we consider bulk dimensions, a spherical coordinate sys-
tem, and energy as the variable. Spherical coordinates imply that we are considering
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a spherical state space. Equation (A1.34) is written in rectangular coordinates, but
as stated after it, each set of quantum numbers, or each volume element in n-space,
represents a state that can be occupied by an electron. Figure A1.10 illustrates this
n-space. The first step is to calculate the volume Ns(n)

Ns(n) = 4
3πn3 · 2 · 1

8 . (A1.37)

The first factor just gives the standard expression for volume. However, we must
multiply by 2, since two states actually exist at each allowed energy because of
spin degeneracy. And only positive quantum numbers are allowed, so we have the
factor of 1

8 . Now, for the second step, we use Eq. (A1.34) in spherical coordinates,
(identical to Eq. (A1.14)), solve for n in terms of E , and plug back into Eq. (A1.37):

Ns(E ) = π

3

(
2m∗Ed2

�2π2

)3/2

. (A1.38)

For the third step, we now apply Eq. (A1.36), and use V = d3, without loss of
generality

ρ(E ) dE = 1

2π2

[
2m∗

�2

]3/2

E 1/2 dE . (A1.39)
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FIGURE A1.10: State space or n-space in spherical coordinates. Each block corresponds to
a particular state and has unit dimensions.



A1.2 ELEMENTS OF SOLID-STATE PHYSICS 525

Equation (A1.39) is our final result. It will be of much use in calculating carrier
densities, gain, and other quantities associated with bulk active regions in lasers.

For the second example, we consider bulk dimensions, rectangular coordinates,
and momentum as the variable. Then, the volume in n-space is, Ns(n) = 2nx ny nz .
The momentum in each direction, j , is

pj = �kj = �πnj

dj
= hnj

2dj
. (A1.40)

Solving for nx , ny , and nz , and plugging into Ns(n), we get

Ns(px , py , pz ) = 2

(
2

h

)3

px py pz (dx dy dz ). (A1.41)

Applying Eq. (A1.36) to (A1.41) gives the desired density of states,

ρ(px , py , pz )dpx dpy dpz = 2

(
2

h

)3

dpx dpy dpz . (A1.42)

The density of all states with a given momentum, ρ(p), can be obtained from
this result by setting dpx dpy dpz = 4πp2dp/8. The factor of 8 is required because
(A1.42) defines the density of standing wave states, ρSW (px , py , pz ), which do not
distinguish between positive and negative values of momentum. Hence, the den-
sity is limited to the first quadrant. We can also define a density of plane wave
states, ρPW (px , py , pz ), which can travel in any direction. Using periodic boundary
conditions, we have kj = 2πnj /dj instead of kj = πnj /dj , but now we consider
both positive and negative values of nj as unique states. In three dimensions
then, ρPW (px , py , pz ) = ρSW (px , py , pz )/23, and is distributed over all quadrants
of momentum space. So for ρPW (px , py , pz ), we can set dpx dpy dpz = 4πp2 dp. In
either case, we obtain ρPW (p) = ρSW (p) = 8πp2/h3, from which we also obtain
ρ(k) = (k/π)2 (since ρ(k) dk = ρ(p) dp).

For the third example, we consider a quantum well (small dimension in one
direction), cylindrical coordinates, and energy as the variable. We shall let dx be
the small dimension. As always the energies are given by Eq. (A1.34), but we
need to develop a density of states for the y–z plane, which will be summed for
each nx . Figure A1.11a gives a plot of the energy, E , relative to the kx − kz plane
for a quantum-well region using Eq. (A1.34). The lowest-lying states for nx = 1
and 2 are labeled by the quantum numbers (nx , ny , nz ). Since dx is small, there
are no states near k = 0. Figure A1.11b replots the energy versus kz (or ky ) in a
two-dimensional graph for clarity. In part (a) only positive kx and kz are shown.

Now to determine the density of states for this quantum well, we start with the
disk of Fig. A1.12 and determine Ns(n). The volume of the unit height disk in the
first quadrant, multiplied by 2 for spin, is

Ns(nyz ) = π

2
(n2

y + n2
z ). (A1.43)
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FIGURE A1.11: (a) Three-dimensional E–k plot showing discrete jumps in kx due to small
dx . (b) Projection perpendicular to the kz axis.

ny

nz
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FIGURE A1.12: Two-dimensional state space that occurs for each nx in a quantum well.

Using the y and z terms from Eq. (A1.34) for Eyz and (n2
y + n2

z ), letting
d2 = (d2

y + d2
z ), and assuming that the effective masses are the same in y and z ,

Ns(Eyz ) = m∗d2

π�2
Eyz . (A1.44)

Again, we apply Eq. (A1.36) and recognize that this density of states is for nx = 1.
Thus, generally

ρ(E ) = 1

dx

∑
nx

m∗

π�2
H (E − Enx ), (for QW) (A1.45)
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FIGURE A1.13: Density of states for an infinite-barrier quantum well and bulk material. If
the barrier is not infinite, the quantum-well energies decrease slightly. If desired, the density
of state plateaus can be decreased by using an effective dx = d∗

x (a different one for each
state) so that the extrema continue to intersect the bulk characteristic.

where nx and E are related by Eq. (A1.14) with l = dx , and H (E − Enx ) is the
Heaviside unit step function.

Figure A1.13 compares the densities of states for the bulk and quantum-well
active regions, Eqs. (A1.39) and (A1.45), respectively. As can be seen the bulk
curve forms an envelope for the steps of the quantum-well case, which correspond
to the energies where the quantum numbers are (nx , 1, 1).
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APPENDIX TWO

Relationships between Fermi
Energy and Carrier Density
and Leakage

A2.1 GENERAL RELATIONSHIPS

In Appendix 1 the groundwork of energy bands and densities of states within
these bands was outlined. Here we attempt to understand how carriers fill these
states in semiconductors. This will allow us to relate the carrier density to the
ranges of energies that must be occupied. They key missing element is the state
occupation probability, f(E), at energy E . For a large density of states, this function
is equivalent to the fraction of states occupied at energy E . For particles in solids
the relevant function is the Fermi–Dirac distribution,

f (E ) = 1

e(E−EF )/kT + 1
, (A2.1)

where the energy EF is called the Fermi level. This probability distribution is one-
half at E = EF and closely approaches unity for E a few kT below EF , and zero for
E a few kT above EF . In fact, for E a few kT on either side of EF , the asymptotic
approach to these limits is exponential. These regions are sometimes referred to as
the Boltzmann tails, since they imitate the classical Maxwell–Boltzmann distribu-
tion. At T = 0 K, f(E) is essentially a step function, stepping from unity to zero at
E = EF .

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Now, we can write the carrier density, N , as the integral over energy of the
density of filled states in the conduction band,

N =
∫

ρc(E )f (E ) dE , (A2.2)

and similarly, we can write the hole density, P , as the integral of the density of
unfilled states in the valence band,

P =
∫

ρv(E )[1 − f (E )] dE , (A2.3)

where ρc(E ) and ρv(E ) are the density of states (per unit volume per unit energy)
in the conduction and valence bands, respectively. Figure A2.1 gives schematics of
the density of filled and unfilled states versus electron energy in the conduction and
valence bands, respectively, for a bulk semiconductor under nonequilibrium condi-
tions at T = 0 K and 300 K. Figure A2.2 gives analogous plots for a quantum well.

In both cases we have only shown the heavy-hole band in the valence band.
In reality, the light-hole band also is a significant part of ρv(E ), and some of the
holes occupy states there. The light-hole band is a little less important in quantum
wells because of the separation of the lighthole band from the heavy-hole band at
the finite kx where the lowest energy is found.

Equations (A2.2) and (A2.3) give a relationship between the carrier densities
and the Fermi level, EF , for a known density of states. As a very simple example
consider a quantum well at T = 0 K with an electron density of N . In this case the

(a) (b)

EFc

EFv

E

r

EFc

EFv

r

E

FIGURE A2.1: Density of filled states in the conduction and valence bands of a bulk
semiconductor under nonequilibrium conditions at (a) T = 0 K and (b) T = 300 K. Under
nonequilibrium conditions, such as when a current is flowing, separate Fermi functions and
quasi-Fermi levels, EFc and EFv , are used for the electrons and holes, respectively.
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(a) (b)

EFc

EFv

E

r

EFc

EFv

r

E

FIGURE A2.2: Density of filled states in the conduction and valence bands of a quantum
well under nonequilibrium conditions at (a) T = 0 K and (b) T = 300 K.

step-like Fermi function merely sets the limits of integration from the first allowed
state, E111 to EF as shown in Fig. A2.2(a). From Eqs. (A1.45) and (A2.2), and
assuming we do not approach nx = 2, we have

N = m∗

π�2dx
(EF − E111). (A2.4)

Thus, we can solve for EF as

EF = E111 + π�
2dx

m∗ N . (QW; nx = 1; T = 0 K) (A2.5)

At finite temperatures, the Fermi function is no longer a simple step function, and
we must use the general form Equation (A2.1) inside the integral. This makes the
integration more complex, but using a quantum-well density of states function,
the integral still has a closed-form solution. Repeating the calculation at finite
temperature, we have

N = 1

dx

∑
nx

m∗

π�2

∫ ∞

Enx 11

dE

e(E−EF )/kT + 1
, (A2.6)

where H (E − Enx ) in Eq. (A1.45) has shifted the lower integration limit. Mak-
ing the substitution u = exp[−(E − EF )/kT ], allows the integration to be readily
performed. Then, for the situation of Fig. A2.2b,

N = kTm∗

π�2dx

∑
nx

ln
[
1 + e(EF −Enx 11)/kT ]

. (QW) (A2.7)

For nx = 1 and (EF − E111) � kT , note that Eq. (A2.7) reduces to Eq. (A2.4).
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A2.2 APPROXIMATIONS FOR BULK MATERIALS

Unfortunately, the finite-temperature calculation for carrier density is not as simple
using a bulk-like density of states function, as in Fig. A2.1b. The general form for
the carrier density in bulk material is given by

N = 1

2π2

(
2m∗

�2

)3/2 ∫ ∞

Ec

√
E − Ec

1 + e(E−EF )/kT
dE , (A2.8)

where Ec is the conduction band edge. Defining v = (EF − Ec)/kT and y =
(E − Ec)/kT , we can write the integral in a more normalized form:

N = Nc
2√
π

∫ ∞

0

√
y

1 + ey−v
dy ≡ Nc

2√
π

F1/2(v), (A2.9)

Nc ≡ 2

(
m∗kT

2π�2

)3/2

= 2.51 × 1019 ×
[

m∗

m0

]3/2

×
[

T

300 K

]3/2

cm−3, (A2.10)

where F1/2(v) is known as the Fermi–Dirac integral of order 1/2 (referring to the
y1/2 in the numerator), and Nc is the “effective” density of states in the conduction
band. For v � 0 (in other words, for EF � Ec), the 1 in the denominator can be
neglected reducing the Fermi function to the Boltzmann exponential limit, allowing
the integral to be evaluated in closed-form. The result reduces to

N ≈ Nce(EF −Ec )/kT . (bulk, Boltzmann limit) (A2.11)

For larger v, other approximation techniques must be used. Tables A2.1 and A2.2
summarize various approximations to the Fermi–Dirac integral (and their range of
validity) which have been formulated over the years (see Blakemore [1] for an
overview). The first table finds N in terms of v, whereas the second table finds v

in terms of N .
The error associated with the various approximations listed in Table A2.1 are

plotted in Fig. A2.3. The Boltzmann limit discussed earlier is valid for large nega-
tive v, but quickly begins to overestimate the carrier density as v approaches zero
(that is, as EF approaches the band edge). At the other extreme, the Sommerfeld
expansion (which essentially determines the zero-temperature carrier density with
correction terms added to account for the finite-temperature smoothing of the Fermi
function) can be used to determine the Fermi–Dirac integral for large positive v.
The first-order terms of the Boltzmann and Sommerfeld limits are plotted in (a).
As can be observed, the two limits fail to cover the range −2 < v < 5. Unger [2]
introduced a function z , which led him to a useful expansion of the Fermi–Dirac
integral for small v. The fractional error of the Unger expansion is plotted in
(b). The multiple curves are plotted using the second-order expansion coefficient
as a curve-fitting parameter. Increasing a2 from its true value of ∼0.14645 to
0.15 to 0.1537 reveals the trend toward reducing the initial hump in the curve
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TABLE A2.1: Summary of Approximations for Carrier Density N = Nc
2√
π

F1/2(v)

Range Over Which
Formal Name Mathematical Expression Fractional Error∗ < 1%

Fermi–Dirac
Integral

F1/2(v) =
∫ ∞

0

√
y

1 + ey−v
dy

v ≡ (EF − Ec)/kT

y ≡ (E − Ec)/kT

exact definition

Boltzmann
approximation

F1/2(v) ≈
√

π

2
ev v < −3.5

Unger
approximation

F1/2(v) ≈
√

π

2
z [a1 + a2z + · · ·]

a1 = 1

a2 = 1

2

(
1 − 1√

2

)
≈ 0.146 45

z ≡ ln(1 + ev)

1st order
(a2 = 0)

2nd order
(a2 = 0.146 45)

2nd order
(a2 = 0.15)

v < −2.7

v < 1.7

v < 7.6

Sommerfeld
approximation

F1/2(v) ≈ 2

3
v3/2[a1 + a2v

−2 + · · ·] 1st order (0) v > 11

a1 = 1 2nd order (1.233 7) v > 2.9

a2 = π2

8
≈ 1.2337 2nd order (1.3) v > 1.7

Modified
Sommerfeld
approximation

F1/2(v) ≈ 2

3
z 3/2

[
1 + π2

8
z −2 + · · ·

]

z ≡ ln(1 + ev)

1st order (0)

2nd order (1.233 7)

v > 11

v > 3

Global
approximation
(one of many)

F1/2(v) ≈ [(1.3 + 0.3x)F p
L

+(0.76 + 0.24x)F p
H ]1/p

error <0.06%
−∞ < v < ∞

FL =
√

π

2
z note that

FH = 2

3
z 3/2 z → ev

(v � 0)
x → −1

p = 3 + x − 0.19e−(v−3.25)2/8

x ≡ tanh(0.8(v − 2.7)) z → v
(v � 0)

x → 1
z ≡ ln(1 + ev)

∗error ≡ |F1/2 − Fcalc|/F1/2
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TABLE A2.2: Summary of Approximations for Fermi Level v = f (N/Nc)

Range Over Which
Formal Name Mathematical Expression Abs Error∗ < 0.04†

Inverse
Fermi–Dirac
integral

v = F−1
1/2[F1/2(v)]

= F−1
1/2

[√
π

2
N /Nc

]
≡ f (r)

exact definition

v ≡ (EF − Ec)/kT , r ≡ N /Nc

Boltzmann
approximation

v ≈ ln r v < −2.1

Joyce–Dixon
approximation

v ≈ ln r + A1r + A2r2 + · · · 1st order v < 2.1

A1 = 1/
√

8 2nd order v < 4.2

A2 ≈ −4.950 09 × 10−3 3rd order v < 5.6

A3 ≈ 1.483 86 × 10−4 4th order v < 6.8

A4 ≈ −4.425 63 × 10−6

Padé
approximation

v ≈ ln r + A1r K1 = 4.7
+[K1 ln(1 + K2r) − K1K2r] error <0.0004 v < 9.8

K1 ≈ 4.7 ↔ 5.2 K1 = 4.9

K2 = √
2|A2|/K1 error <0.02 v < 18.8

A1, A2 as defined above K1 = 5.2

error <0.1 v < 28

Inverse second-order
Unger
approximation

v ≈ ln

{
exp

[
1

2a2
(
√

1 + 4a2r − 1)

]
− 1

}
(a2 = 0.146 45) v < 2.8

(a2 = 0.15) v < 7.4

Inverse first-order
Sommerfield
approximation

v ≈
(

3
√

π

4
r

)2/3

v > 20

Nilsson’s global
approximation

v ≈ ln r

1 − r2
+ fH

1 + (0.24 + 1.08fH )−2

fH =
(

3
√

π

4
r

)2/3

error < 0.006
−∞ < v < ∞

∗error ≡ |v − vcalc|, † �EF ≈ ±1 meV @ RT.
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(a) Limiting forms of F1/2(υ) (c) Modified limiting forms

(b) Fractional error (low limit functions) (d ) Fractional error (low & high)

0.001

0.01

0.1

1

10

100

−10 −5 0 10 15 20

F
er

m
i-d

ira
c 

in
te

gr
al

|F
1/

2 
− 

F
ca

lc
|/F

1/
2

|F
1/

2 
− 

F
ca

lc
|/F

1/
2

υ

Boltzmann
Limit :

Sommerfeld
Limit :

10−5

10−4

10−3

10−2

10−1

100

101

−10 −5 0 10 15 20
υ

a2 =    

0.1573
0.15
0.14645

Unger 2 

Boltzmann Unger 1 

Boltzmann
Unger 2 

Unger 1 

MSF 1 

MSF 2 

Global

π
2

eυ

π
2

z

υ3/22
3 z3/22

3

u ≡ (EF − Ec)/kT z ≡ ln(1 + eυ)

5
0.001

0.01

0.1

1

10

100

−10 −5 0 10 15 20

F
er

m
i-d

ira
c 

in
te

gr
al

υ
5

5
10−5

10−4

10−3

10−2

10−1

100

101

−10 −5 0 10 15 20
υ
5

FIGURE A2.3: (a) Plot of Fermi–Dirac integral along with first-order limits for low and
high v. (b) Fractional error of Boltzmann and first- and second-order Unger approxima-
tions. (c) Modified first-order limits using the z function substitution introduced by Unger.
(d) Fractional error of Boltzmann, first- and second-order Unger, first- and second-order
modified Sommerfeld (MSF), and global approximations. (There is little difference between
the error in the Sommerfeld and modified Sommerfeld expansions.)

at the expense of increasing the error elsewhere. Note that with a2 = 0.15, the
Unger expansion provides an error less than ∼ 1% for v as large as 7 (actually
the initial jump dips below 1% when a2 = 0.151, but there is something to be
said for round numbers). What this means is that EF can penetrate 7kT into
the conduction band and the Unger approximation will still provide an accurate
estimate of the carrier density. Higher-order terms in the Unger expansion can
also be used but they do not significantly increase or extend the accuracy of the
approximation.

For some applications it is desirable to know the Fermi function for values
of v even larger than the Unger approximation is capable of handling. For these
situations, one could switch to the second-order Sommerfeld expansion, but it
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would be advantageous to have a single expression to cover the entire range of v.
One could think of constructing a global approximation by bridging the two limiting
approximations. However, the Sommerfeld expansion is unfortunately invalid for
v ≤ 0. For the purpose of constructing a global approximation, we can substitute z
for the two limiting forms given in (a). The resulting expressions are plotted in (c).
Note that the “modified” limiting forms are better behaved than the limiting forms
in (a). The global approximation given in Table A2.1 bridges the gap between
these “modified” limits [3]. The overall expression for the global approximation is
a bit complicated, but it does get the job done—it approximates the Fermi–Dirac
integral to within 0.06% over the entire range of v, as shown in (d), with excellent
convergence on either side of the “trouble area.”

Table A2.1 found N in terms of v. However, oftentimes we know the carrier
density, and would like to determine the Fermi level. This requires calculating the
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FIGURE A2.4: (a) Plot of Fermi–Dirac integral along with various orders of Joyce–Dixon
(JD) approximations and the second-order Unger approximation. (b) Comparison of the
absolute error of these approximations. (c) Absolute error of Nilsson’s global approxima-
tion. (d) Absolute error of the Padé approximation for different values of the adjustable
parameter, K1.
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inverse of the Fermi–Dirac integral. Various approximations used to achieve this
are summarized in Table A2.2. Of these, the Joyce–Dixon approximation [4] is
perhaps the most well known. Its popularity stems from the fact that it simply adds
correction terms to the Boltzmann approximation, which is useful for the analytical
description of semiconductor devices. The Unger approximation appears in this
list as well. In fact, one very attractive feature of the second-order Unger approx-
imation is that it is invertible [5]! Figure A2.4 plots the various approximations
for comparison. In (a) we see that the even-order Joyce–Dixon series expansions
diverge rapidly for v > 10, while the odd-order terms remain well-behaved. The
Unger expansion actually tracks the exact solution better than any of the Joyce–
Dixon expansions. However, (b) reveals that the absolute error for the second-order
Unger expansion is larger than the higher-order Joyce–Dixon expansions for small
v. To extend the range, Nilsson [6] constructed a global inverse approximation
by attempting to bridge the inverted Boltzmann and Sommerfeld expansions. The
error in his global approximation is shown in (c). While the absolute error remains
low, the convergence on either side of the “trouble area” is not particularly strong.

The Padé approximation [7] shown in (d) is a variant of the Joyce–Dixon approx-
imation, which avoids the highly divergent properties associated with the even-order
Joyce–Dixon series. The Padé approximation is by far the most accurate approx-
imation for v < 10 with K1 set to 4.7. One nice feature of this approximation is
that it is adjustable. For example, to extend the range one can sacrifice accuracy
slightly by increasing K1 up to a maximum of 5.2 (beyond which the error becomes
very large).

At this point, we can see that the number of approximations available for the
Fermi–Dirac integral allow us to determine the relationship between carrier density
and Fermi level in bulk material to a very good degree of accuracy. In fact, it could
be argued that the quantum-well Fermi level is more difficult to calculate than the
bulk Fermi level because the summation in the expression for quantum-well carrier
density Eq. (A2.7) prevents one from inverting the equation.

A2.3 CARRIER LEAKAGE OVER HETEROBARRIERS

In double heterostructures the band diagrams shown in Figs. A2.1 and A2.2 for
the bulk and quantum-well active layers are not valid for energies greater than the
band offsets between the active and cladding materials. That is, once carriers fill
to the top of the barrier they are free to diffuse into the cladding regions. At finite
temperatures shown in parts (b) of these figures, the carriers in the high-energy
tails would ideally extend to energies above the barriers. Thus, in practice there is
a “carrier leakage” out of the active region, which results in a leakage current as
the carriers diffuse away. With increased temperatures the fraction of carriers in
the high-energy tail as well as the carrier leakage current will increase.

Figure A2.5 is a plot of the carrier distribution for an electron density of
2 × 1018 cm−3 in a GaAs active region clad by AlGaAs for which the net effective
barrier height is 0.3 eV. The horizontal axis is the electron spectral density
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FIGURE A2.5: Room temperature electron energy versus the electron spectral density in
the conduction band of GaAs with a total integrated density of N = 2 × 1018 cm−3. The
leakage density, Nlk , above the 0.3 eV AlGaAs barrier is shaded [8]. The total effective
barrier height (EB − Ec) includes residual band bending under forward bias as well as the
conduction band discontinuity, �Ec .

ρc(E )f (E ). To calculate the density of electrons above the barrier, Nlk , indicated
by the shaded region, we integrate the electron spectral density from the top of the
effective barrier (which also includes any residual band-bending effects). Thus, as
in Eq. (A2.2), but beginning the integration at EB rather than Ec , we obtain

Nlk =
∫ ∞

EB

ρc(E )f (E ) dE , (A2.12)

or for a bulklike density of states,

Nlk = 1

2π2

(
2m∗

�2

)3/2 ∫ ∞

EB

(E − Ec)
1/2

1 + exp[(E − EFc)/(kT )]
dE . (A2.13)

For the assumed barrier height of EB = 0.3 eV, and for a Fermi level to yield
a total density N = 2 × 1018 cm−3 carriers from Eq. (A2.2), one finds that Nlk =
3.4 × 1014 cm−3 at room temperature as shown in Fig. A2.5.

Some of these high-energy electrons will escape the active region and diffuse
into the p-cladding material as illustrated in Fig. A2.6. The fraction that actually do,
however, involves a number of factors. For example, some electrons approaching
the cladding barrier will be reflected even though they have sufficient energy to
pass over the barrier (it is much like photons being reflected off of a dielectric
interface). For a simple potential step the reflection coefficient is not significant,
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FIGURE A2.6: Schematic band diagram of a double heterostructure showing electron energy
distribution in the active layer and leakage current.

dropping below 50% for electrons with energies just 3% greater than the barrier.
However, specially designed cladding layers can reflect a much higher portion of
the high-energy electrons.

Another factor to consider is that in a thermal distribution, the electron velocities
are randomly distributed in all directions (with just a slight preference toward the
direction of the current flow). Therefore only a fraction of the high energy electrons
are even moving toward the p-cladding barrier. Finally, some electrons that make
it into the p-cladding layer will diffuse right back into the active region. Thus, we
must consider the flow of electrons in both directions. Thermionic emission theory
can be used to estimate the maximum supply rate of electrons to the p-cladding
layer by calculating the average thermal velocity of high-energy electrons directed
toward the barrier. However, the tricky part is determining how many might be
flowing back.

An alternative approach to studying the detailed flow of electrons across the
barrier is to simply assume that the electron populations on both sides of the
barrier are in thermal equilibrium such that we can match the quasi-Fermi levels
across the barrier. If we assume this to be the case, then in the Boltzmann limit,
the electron population at the edge of the p-cladding layer is given by

Np0 = Nce(EFc−EB )/kT . (assuming EFc |act = EFc |clad) (A2.14)

This estimate of the actual leakage carrier density that establishes itself in the p-
cladding layer is typically 20% to 30% of the value suggested by Eq. (A2.13). It
also reveals the strong exponential dependence of the leakage carrier density, and
eventually, the carrier leakage current on temperature.

Once we know the electron density at the edge of the p-cladding layer, we can
estimate the electron leakage current by assuming that the electrons diffuse away
transversely into the p-cladding material as minority carriers with an assumed initial
density Np0 and a diffusion length Ln . Taking the x = 0 origin to be at the barrier
on the p-side (opposite side from which they were injected), the distribution of
electrons in the p-type cladding layer can then be written as

N (x) = Np0e−x/Ln , (A2.15)
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where we can express Ln = √
Dnτn , with τn being the minority carrier lifetime and

Dn being the diffusion constant in the p-cladding material. From the Einstein rela-
tionship, kT/q = D/μ, we can use the measured mobility to estimate the diffusion
constant.

Assuming that any residual electric field would have a negligible effect, and
also assuming a sufficiently thick p-layer, the associated diffusion current of the
leakage electrons (neglecting the sign) is given by

Jn |x=0 = qDn
dN

dx
= qDn

Np0

Ln
= qLn

Np0

τn
. (A2.16)

The last form shows that the diffusion current is equivalent to the recombination
of a uniform carrier density spread over one diffusion length. For the example of
Fig. A2.5 with N = 2 × 1018 cm−3 and EFc − Ec = 79 meV, we find that a 0.3 eV
barrier yields Np0 = 8.5 × 1013 cm−3 from Eq. (A2.14) using the Nc of GaAs for
simplicity (for AlGaAs, Nc is slightly larger and might need to include other con-
duction band minima depending on the x value). For Ln = 5 μm and τn = 5 ns,
we obtain Jn ∼ 1.4 A/cm2 at room temperature. For holes a similar leakage cur-
rent will exist. For P = 2 × 1018, we have Ev − EFv = −28 meV. Assuming a
net barrier of 0.25 eV and using Nv,hh + Nv,lh of GaAs for simplicity, we calcu-
late Pn0 = 1.4 × 1014 cm−3. For Lp = 1 μm and τp = 5 ns, we find that the hole
leakage current at the other barrier is Jp ∼ 0.5 A/cm2.

Since typical laser threshold current densities are at least a few hundred A/cm2,
we conclude that for this high barrier GaAs/AlGaAs example, carrier leakage is not
significant at room temperature. However, in material systems that do not have the
luxury of large heterobarriers (for example, 630–680 nm emission AlInGaP), carrier
leakage can be much more of a problem in view of the exponential dependence on
barrier height through Np0 in Eq. (A2.14). Carrier leakage also increases rapidly
with temperature, such that even lasers with relatively high barriers can be affected
at high temperatures. Finally, if the cladding material has a high defect density, the
reduced minority carrier lifetime can lead to high carrier leakage currents even for
a small Np0.

If the resistance in the p-cladding is substantial, an electric field will assist
electron diffusion away from the active region, enhancing the leakage rate. If we
include this as well as the existence of a contact (which is assumed to be a region
of zero lifetime) a distance xp away, it can be shown that a more general expression
for the electron leakage current results [9]:

Jn = qDnNp0

[√
1

L2
n

+ 1

L2
nf

coth

√
1

L2
n

+ 1

L2
nf

xp + 1

Lnf

]
, (A2.17)

where

Lnf ≡ 2kT

q
· σp

Jtot
.
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σp is the conductivity of the p-cladding region, and Jtot is the total diode current
density. In analogy with the diffusion length, we can think of Lnf as the drift
length, which decreases with increasing total current (as the electric field in the
cladding increases). For low currents and high p-type conductivity, Lnf � Ln , and
the carrier leakage current is dominated by the diffusion component considered
above. However, for high currents and/or low p-type conductivity in the cladding,
it is possible for Lnf � Ln , in which case the carrier leakage current becomes dom-
inated by the drift component, which increases with the total current in addition to
increasing with Np0. More specifically, if Lnf � Ln , xp , then Jn → qμnNp0Jtot/σp .
The double dependence on injection level leads to a higher sensitivity to temper-
ature, which can be severe in lasers with low heterobarriers [9]. If the contact is
placed close to the active region such that xp � Ln , Lnf , then the current reduces
to Jn → qDnNp0/xp , becoming independent of both drift and diffusion lengths.
Finally, it should be realized that for either xp → 0 or Lnf → 0, the carrier leakage
current does not really go to infinity but becomes limited by the rate at which carri-
ers can be supplied to the cladding region (it becomes thermionic emission-limited
rather than drift-diffusion-limited).

So far we have been considering a simple double heterostructure laser for which
the active region fills the entire waveguide. In quantum-well lasers, the active region
is restricted to the width of the well(s). Thus, carrier leakage has two meanings
in this case. Carriers can leak into the separate confinement waveguiding layers as
well as leaking out of the entire SCH waveguide region into the doped cladding
layers. Carrier populations in the SCH regions lead to recombination that can be
approximated using Eq. (A2.16) with the diffusion length replaced by the width of
the SCH region, or

JSCH = qLSCH
NSCH

τn
. (A2.18)

For LSCH = 1500 Å, and τn = 5 ns, we find JSCH ∼ 50 A/cm2 per 1017 cm−3 of
carrier density. This highlights the importance of maintaining low carrier popula-
tions in the waveguide regions of the laser. Of course, depending on the material
quality of the SCH regions, the carrier lifetime may be longer or shorter affecting
the carrier leakage current accordingly.

In Chapter 2, we introduced an effective recombination rate per unit active
volume for carrier leakage, Rl . In terms of the total carrier leakage current, Jl =
Jn + Jp + JSCH, we can define

Rl = Jl

qd
, (A2.19)

where d is the active region thickness. If lateral carrier leakage is important then it
should also be added to Rl with the lateral active width replacing d in Eq. (A2.19).
For example, in ridge lasers carriers are free to diffuse laterally since no hetero-
barrier exists. This lateral diffusion component of Rl is discussed in Chapter 4.
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A2.4 INTERNAL QUANTUM EFFICIENCY

We would finally like to consider how carrier leakage affects the internal quantum
efficiency, ηi , introduced in Chapter 2. In practice, ηi is defined as the fraction of
current above threshold which results in stimulated emission, or ηi (I − Ith) = Ist .
The output power is then P0 = (hν/q) · η0Ist , where η0 is the optical efficiency
of the laser cavity introduced in Chapter 5. This gives P0 = (hν/q) · ηi η0(I − Ith).
The slope of the PI curve is related to ηi η0, from which ηi can be extracted
experimentally. This above-threshold definition of ηi is slightly different than the
one given in Chapter 2; however, the two definitions are the same if ηi is not a
function of current beyond threshold.

If we specify the total current as the stimulated current plus the sum of n various
other components (i.e. spontaneous, Auger, leakage, etc.), such that I = Ist + ∑

In

and Ith = ∑
In ,th , then we can expand 1 − ηi and rearrange to obtain

ηi = Ist

I − Ith
= 1 −

∑
(In − In ,th)

I − Ith
. (A2.20)

In this form we clearly see that any currents that clamp at threshold along with the
carrier density do not contribute to a reduction of ηi . This point is often misun-
derstood in the laser community. The common mistake made is to set ηi = Irad/I ,
where Irad is the radiative current in the active region. This definition originates
from the concept of radiative efficiency in an LED and has nothing to do with the
laser performance above threshold. To demonstrate this point, consider a laser in
which 90% of the current at threshold is Auger current, while the rest is spontaneous
emission current in the active region (there is no leakage current). Because both
Auger and spontaneous currents clamp at threshold (i.e. In = In ,th ), Eq. (A2.20)
reveals that we can still have ηi = 100% even though the radiative efficiency near
threshold is only 10%. The true radiative efficiency in this case does not approach
100% until the stimulated emission current becomes much larger than threshold.

The main question is which currents do contribute to a reduction of ηi ? The
simple answer is those that continue to increase above threshold. Now because the
carrier density, N , in the active region clamps at threshold, all currents that depend
monotonically on N should have no effect on ηi , including Rsp , Rnr , as well as
carrier leakage out of the active region, Rl (since Np0 defined in the last section
should in principle clamp along with N ). However, the clamping of the modal gain
(which is what really clamps) does not always result in a complete clamping of
the carrier density in all of the various regions of the laser.

For example, there is always some small compression of the gain with increased
photon density (see Chapter 5), which requires additional carriers to restore the
threshold modal gain. Also, spatial hole burning of the carrier density profile by
the optical mode can result in even larger changes in the local carrier density. These
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second-order effects can allow Rsp , Rnr , and Rl to increase above their threshold
values, reducing ηi according to Eq. (A2.20). However, these effects are typically
not very significant.

The more important factor to consider is the incomplete clamping of carrier
densities in the surrounding regions, NSCH and Np0, defined in Section A2.3. For
example, one model of the SCH-quantum well pn-junction suggests that carriers in
the well couple to a second carrier pool in the SCH region which is not clamped
at threshold, but related to the well carriers through a set of capture lifetimes
(see Chapter 5). The carrier density in the SCH region and corresponding current
defined in Eq. (2.19) can therefore increase with injected current above threshold,
while the gain remains fixed in the quantum well [10].

From another point of view, there is no guarantee that the quasi-Fermi levels in
the SCH and cladding regions clamp along with the quasi-Fermi levels in the active
region at threshold. As a result, recombination rates away from the active region can
potentially reduce ηi , if significant carrier populations exist there and if the quasi-
Fermi levels in those regions remain unclamped or only partially clamped above
threshold. Unfortunately, realistic modeling of the extent of clamping throughout
the lasing junction is a very complex undertaking. Thus, the extent to which such
effects contribute to a reduction of ηi is hard to predict. Experimental values for
ηi are commonly in the range of 70% to 80% but can often be as low as 40% or
as high as 95%.

In Chapter 2, we specifically assume that the leakage rate of carriers out of the
active region, Rl , depends monotonically on the carrier density in the active region.
This is assumed mainly to highlight the fact that in principle, carrier leakage does
not affect the internal quantum efficiency. In view of the preceding discussion,
this may not always be the case since some carrier leakage currents may clamp
or partially clamp and others may not. In any case, only the amount of leakage
beyond threshold, Rl − Rl ,th , reduces ηi . For leakage currents that partially clamp
at threshold, this value will typically be much smaller than that suggested by the
magnitude of Rl itself.

We can modify the derivation in Chapter 2 to include these effects by first
expanding ηi (I − Ith) in Eq. (2.36) into (I − IL) − (Ith − IL,th) = (I − Ith) −
(IL − IL,th), where IL is the current leakage which does not generate carriers in
the active region (see Fig. 2.2). Then by adding recombination terms Rl − Rl ,th

for carrier leakage and similarly for all other recombination rates, we can use
Eq. (A2.20) to reduce the carrier density rate equation back to Eq. (2.36), with
the new ηi encompassing all currents that do not clamp at threshold.

Finally, it is interesting to note that even if the carrier density clamps everywhere,
the drift carrier leakage defined in Eq. (A2.17) will continue to increase above
threshold due to its dependence on the total current density. Therefore, if drift
carrier leakage is significant, it can lead to a noticeable reduction of ηi , even for a
fixed Np0 above threshold.
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APPENDIX THREE

Introduction to Optical
Waveguiding in Simple
Double-Heterostructures

A3.1 INTRODUCTION

Starting from Maxwell’s equations a wave equation (sometimes referred to as the
Helmholtz equation), which is very analogous to Schrödinger’s equation, can be
derived:

∇2EEEE = με
∂2EEEE

∂t2
, (A3.1)

where ε is the dielectric constant and μ is the magnetic permeability. In this
derivation it is assumed that ε is uniform in space, and both μ and ε can be complex,
although for the semiconductor materials of interest, μ ≈ μ0. The imaginary part
of ε includes the gain or loss that can occur in these materials. We are searching
for time-harmonic fields propagating in the z -direction, so we try

EEEE (x , y , z , t) = êi E0U (x , y)ej (ωt−β̃z ), (A3.2)

as a solution to Eq. (A3.1). The unit vector êi gives the polarization. E0 has units of
volts, U(x,y) has units of per unit length, and it is usually assumed to be normalized
such that ∫ |U (x , y)|2 dA = 1. Plugging Eq. (A3.2) into (A3.1) and factoring out
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common terms, we find that the transverse amplitude function, U(x, y), must satisfy

∇2U (x , y) + [
ñ2k2

0 − β̃2]U (x , y) = 0, (A3.3)

where the square of the index of refraction ñ2 = ε/ε0, the free-space propagation
constant, k2

0 = ω2μ0ε0 = (2π/λ)2, and both ñ and the propagation constant in
the z -direction, β̃, are complex. Expanding β̃ = β + jβi , we see from the form
of Eq. (A3.2) that β = ω/vp , where vp is the velocity of a phase front, or the
phase velocity. We can also introduce an effective index of refraction, n̄ , so that
β = k0n̄ = ωn̄/c = 2π n̄/λ. In Chapter 2 we modeled how βi contains the gain
and internal loss terms in a laser.

A3.2 THREE-LAYER SLAB DIELECTRIC WAVEGUIDE

As shown in Fig. A3.1, the double heterostructure used in diode lasers provides
a three-layer slab configuration in which each layer has a different index. More
generally, in lasers we may be interested in regions where the index varies both
transversely and laterally. Thus, we might modify Eq. (A3.3) to give

∇2U (x , y) + [ñ2(x , y)k2
0 − β̃2]U (x , y) ≈ 0. (A3.4)

However, as indicated by the ≈ symbol, this now only approximately satisfies
Maxwell’s equations, since our derivation assumed that ε (and therefore n) was
uniform in space.

In the current one-dimensional slab case, we can obtain an exact solution by
solving Eq. (A3.3) for uniform n in each of the three regions and then matching
the boundary conditions at the interfaces. By noting that the ratio of the real to
the imaginary part of the index is very large in all practical cases of interest, we
can replace β̃ by β, with some assurance that the mode shape, U(x, y), will not be

nI

nIII

I

III

x

y

d/2

−d/2

U(x)

II nII

FIGURE A3.1: Schematic of a three-layer slab waveguide. Indices are assumed to be uni-
form in the z -direction.
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significantly in error. We shall still use Eq. (A3.2) to include the gain or loss in
the propagating mode.

The solution procedure is very similar to how we solved for the confined states
of the electron in a one-dimensional rectangular well in Appendix 1. Indeed, there
is no difference in the form of the wave equation for the transverse electric field,
Eq. (A3.3), and the time-independent Schrödinger’s equation, Eq. (A3.5). Thus,
the solutions will have the same form if the boundary conditions are analogous.
As we shall see, they are analogous for the TE modes, which are polarized in the
y-direction, but a little different for the TM modes, which are polarized in the
x -direction.

A3.2.1 Symmetric Slab Case

For a symmetric three-layer slab guide (nI = nIII), we follow the solution given in
Appendix 1 for a one-dimensional potential well very closely. In the central region,
we assume solutions of the form,

UII(x) =
{

A cos kx x(symmetric solutions)

A sin kx x(antisymmetric solutions)
. (A3.5)

In region I,

UI(x) = Be−γ x . (A3.6)

After substituting Eqs. (A3.5) and (A3.6) into (A3.3) with n = nII and nI, respec-
tively, we find that

k2
x = k2

0 n2
II − β2, (A3.7)

and

γ 2 = β2 − k2
0 n2

I .

In region III, UIII = Beγ x , but by symmetry in this case (nI = nIII), we only need
to use the single-boundary condition at x = d/2 between regions II and I.

For the TE modes at x = d/2, we have that UII = UI and U ′
II = U ′

I . These
conditions derive from the requirements that both the tangential electric and
magnetic fields, respectively, are equal at the boundary. For the symmetric
solutions, this gives

A cos
kx d

2
= Be−γ d/2, (A3.8)

and

Akx sin
kx d

2
= Bγ e−γ d/2. (A3.8)
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Dividing Eq. (A3.8) by Eq. (A3.8a), we obtain the characteristic equation,

kx tan
kx d

2
= γ. (A3.9)

Similarly, for the antisymmetric solutions, we obtain kx cot kx d/2 = −γ . Both can
be included in a characteristic equation by recognizing the π/2 shift between the
tan and cot functions. That is, after substituting for kx and γ from Eqs. (A3.7) and
using β = k0n̄ ,

k0 d

2
[n2

II − n̄2]1/2 = tan−1
(

n̄2 − n2
I

n2
II − n̄2

)1/2

+ (m − 1)
π

2
, (A3.10)

where m = 1, 2, 3, . . . for the fundamental and higher-order modes. For the TM
modes, the continuity of the tangential electric and magntic fields at the boundaries
results in an additional factor of (n2

II/n2
I ) on the right side of Eq. (A3.9) and inside

the brackets of the tan−1 function in Eq. (A3.10).
The solution to this transcendental equation is done graphically as was done

for confined electrons in Appendix 1 and illustrated in Fig. A1.3. As might be
expected, the results are analogous for this symmetrical slab case.

A3.2.2 General Asymmetric Slab Case

To add additional generality to the present case, we can repeat the preceding pro-
cedures for an antisymmetric three-layer slab waveguide. That is, (n1 �= nIII). For
the TE modes, we find that the characteristic equation, Eq. (A3.9), becomes

tan kx d = (γI/kx ) + (γIII/kx )

1 − γIγIII/k2
x

, (A3.11)

where γI and γIII are the decay constants in the upper and lower cladding regions,
respectively, defined as in Eq. (A3.7). Equation (A3.11) also can be solved graphi-
cally, but it is convenient to define a normalized frequency, V , propagation parame-
ter, b, and asymmetry parameter, a , in order to display the results. These normalized
parameters are defined as follows:

V ≡ k0 d(n2
II − n2

III)
1/2,

b ≡ n̄2 − n2
III

n2
II − n2

III

, (A3.12)

and

a ≡ n2
III − n2

I

n2
II − n2

III

.
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Figure A3.2 gives plots of the normalized propagation parameter as a function of
the normalized frequency for a range of normalized asymmetry parameters.

For TM modes we can use Figure A3.2 with some small error due to
the neglected dielectric constant ratio that should multiply γI and γIII in the
dispersion relationship. The error becomes vanishingly small in weak dielectric
guides.

An approximative expression for the fundamental mode of a symmetric slab
waveguide that links the normalized frequency V with the propagation parameter
b is given by

b = 1 −
ln

(
1 + V 2

2

)
V 2

2

. (A3.13)
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FIGURE A3.2: Normalized propagation parameter vdrsus normalized frequency for a range
of asymmetries for the first three TE modes. After Kogelink and Ramaswamy [1]. (Reprinted,
by permission, from Applied Optics.)
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A3.2.3 Transverse Confinement Factor, �x

The transverse confinement factor for the three-layer slab waveguide is defined as
the fraction of the optical energy that is contained in the active slab region. As
derived in Appendix 5, Eq. (A5.13), this fraction can be approximated as (neglect-
ing n/n̄)

	x =

∫ d/2

−d/2
|U (x , y)|2 dx

∫ ∞

−∞
|U (x , y)|2 dx

. (A3.14)

For the symmetric case (a = 0), we can use Eqs. (A3.7) and (A3.5) in Eq. (A3.14)
to get

	x = 1 + 2γ d/V 2

1 + 2/γ d
. (A3.15)

For the fundamental mode with relatively small index differences, Eq. (A3.15) can
be approximated by

	x ≈ V 2

2 + V 2
. (A3.16)

Figure A3.3 compares the approximate formula to the exact confinement factor
(neglecting n/n̄) for several values of nIII.
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FIGURE A3.3: Comparison between the exact confinement factor (solid curve) and the
approximate formula (Eq. (A3.25); dashed curve) for several values of the cladding index
as a function of the guide thickness for the fundamental slab mode.
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A3.3 EFFECTIVE INDEX TECHNIQUE FOR TWO-DIMENSIONAL
WAVEGUIDES

As indicated in Chapters 1 and 2, practical diode lasers usually employ
waveguiding in the lateral y-direction as well as the transverse x -direction. These
are referred to as either two-dimensional or channel waveguides. After Eq. (A3.4)
it was suggested that exact analytic solutions to this two-dimensional problem
depicted in Fig. A3.4 are impossible. The problems arise in matching the lateral
boundary conditions for all values of x .

In the limiting case of very strong index discontinuities at the active–cladding
interfaces, the field within the active region will fall to zero at the boundaries, and
the boundary conditions can be met around the perimeter. That is, for symmetric
modes in region II-2 (the active region),

U (x , y) = U0 cos kx x cos ky y , (region II-2) (A3.17)

and for antisymmetric modes, sine functions replace the cosines. Including both
in sequence, the boundary conditions give kx d = πmx and kyw = πmy , where the
mj s are the respective mode numbers (mj = 1 is the first symmetric mode in either
direction, mj = 2 is the first antisymmetric mode, etc.). Thus, the general solution
for the symmetric modes is

Umx my (x , y) = U0 cos
πmx x

d
cos

πmy y

w
. (
n → ∞) (A3.18)

Unfortunately, we cannot make the large index discontinuity assumption in most
cases. (However, a semiconductor–air interface is sufficiently large to neglect fields
outside the semiconductor provided it is thicker than a few wavelengths.) Thus, we
must employ some other approximation. The most common of these is the effective
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FIGURE A3.4: Waveguide cross section perpendicular to the z -direction. The transverse
and lateral directions are divided into regions I, II, and III and 1, 2, and 3, respectively.
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index technique. This technique involves a sequential solution to the problem of
Fig. A3.4. It is most accurate when the transverse slab mode solutions in regions
1, 2, and 3 are nearly the same, and when w/d 
 1.

The effective index technique is the limiting form of a rigorous technique to
match the fields in the lateral direction for all values of x along the interfaces
between regions 1, 2, and 3 at y = ±w/2 illustrated in Fig. A3.4. This rigorous
technique uses a superposition of the simple (uniform-y) slab mode solutions along
x derived in Section A3.2 to express the overall channel waveguide mode shape
in each of the three lateral regions. To be completely rigorous, a complete set of
slab modes along x must be used in each region (including the radiation modes)
to accurately synthesize any arbitrary mode shape. Another consideration is that
all components of the channel waveguide mode must propagate along z with the
same phase velocity, or the same propagation constant, β.

To adjust the β’s of the various slab modes in the expansion to the same value,
we must add a y-component to the propagation direction. For example, if βm is
the propagation constant solution of the m th slab mode, and β is the propagation
constant along z , then for a slab mode propagating along z , βm = β (as we assumed
earlier). Now, if we tilt the propagation direction slightly toward y , then β2

m =
β2 + k2

ym . Thus, kym can be used to make up the difference between the fixed β

and each slab mode’s βm . For each slab mode in region 2, we therefore define
kym =

√
β2

m2 − β2, which produces cosine and sine profiles along y (for βm2 > β).
In regions 1 and 3, we anticipate that β > βm1, βm3 so we define γym1 =

√
β2 − β2

m1
and γym3 =

√
β2 − β2

m3
. This yields the familiar evanescent decaying solutions

along y in these regions.
Adding the y profiles to each of the slab mode solutions along x , we can now

express the overall channel waveguide mode as a weighted sum of the slab modes
within each lateral region:

E1(x , y) =
∑

m

Bm1Um1(x)eγym1y ,

E2(x , y) =
∑

m

Ae
mUm2(x) cos kymy +

∑
m

Ao
mUm2(x) sin kymy ,

E3(x , y) =
∑

m

Bm3Um3(x)e−γym3y .

Bm1, Ae
m , Ao

m , and Bm3 are the weighting or expansion coefficients, which are
adjusted to accurately synthesize the overall channel waveguide mode in each of
the lateral regions. Um1(x), Um2(x), and Um3(x) are the transverse mode shapes
of the mth slab mode in regions 1, 2, and 3.

The final task is to match the boundary conditions at the planes between regions
1 and 2, and 2 and 3 using E1, E2, and E3. If the electric field is predominantly
polarized along x (TM transverse mode), the matching of the tangential electric
and magnetic fields is to a good approximation equivalent to matching Ex and
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∂Ex/∂y at each boundary (we neglect the small Ez and Ey components). If the lat-
eral waveguide is symmetric, we can define laterally symmetric and antisymmetric
solutions, which require matching at only one boundary. For the symmetric solu-
tions, we can set Bm1 = Bm3 ≡ Bm , Ao

m = 0, and Ae
m ≡ Am . Matching these fields

and their y-derivatives at the y = w/2 boundary yields

∑
m

AmUm2(x) cos
kymw

2
=

∑
m

BmUm3(x)e−γymw/2, (A3.19)

and

∑
m

AmUm2(x)kym sin
kymw

2
=

∑
m

BmUm3(x)γyme−γymw/2, (A3.19a)

where

k2
ym = β2

m2 − β2 and γ 2
ym = β2 − β2

m3. (A3.19b)

βm2 and βm3 are the mth slab mode propagation constant solutions in regions 2 and
3, respectively. The Am and Bm expansion coefficients can only satisfy Eqs. (A3.19)
and (A3.18) at all values of x for discrete values of β, which yield the guided
mode solutions of the overall channel waveguide.

If the electric field is instead predominantly polarized along y (TE transverse
mode), as is more commonly the case, the matching of the tangential electric
and magnetic fields across the y = w/2 boundary is approximately equivalent to
matching εEy and ∂Ey/∂y . Thus for TE transverse modes, the dielectric constant
ratio ε3(x)/ε2(x) should appear on the right side of Eq. (A3.19a). This factor
however can often be ignored without introducing much error.

To solve Eq. (A3.19), we need to have as many equations as there are expansion
coefficients. If M modes are included in the summation in region 2, and M modes
in region 3, then there are 2M unknown coefficients overall, and two equations at
each x location. To get enough equations along the lateral boundary then, we must
evaluate the lateral boundary conditions at M values of x . The resulting system
of equations can be solved uniquely only when the determinant of the matrix
formed by the factors multiplying each expansion coefficient goes to zero. The
zero crossing can be found numerically by scanning the value of β across some
appropriate range. As already suggested, if the transverse slab mode shapes in the
adjacent lateral regions are similar, only a few slab modes are required to give
good results.

The effective index technique results when we use only one transverse slab mode
of region 2 and region 3 to approximate the channel waveguide field. Because only
one unknown coefficient exists in each region (two total), we only need to evaluate
the boundary conditions at one point along x (usually at x = 0). In this limit,
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Eqs. (A3.19) and (A3.18) reduce to Eqs. (A3.8) and (A3.8), used earlier to solve
for the one-dimensional slab modes. Thus, the solution to the lateral guide problem
becomes identical to the transverse slab guide problem, except that Eq. (A3.19)
replace Eq. (A3.7), or βm2 replaces kII and βm3 replaces kIII (= kI). More generally,
the effective index of the slab mode in each lateral region is used in place of the
index of the medium in the normalized parameters defined in Eq. (A3.12).

In summary, the solution sequence for the effective index technique is as follows:

1. Three-layer slab problems are first solved across the smallest dimension
(x -direction in Fig. A3.4) using nI, nII, nIII, as if the regions were uniform in
the other longer (y) dimension. This is repeated in each of the three lateral
regions listed in Fig. A3.4 to produce n̄1, n̄2, and n̄3. The effective index
in the central (# 2) region is used for the transverse kx and γx in the final
solution.

2. The three effective indices thus obtained (n̄1, n̄2, and n̄3) are now used in a
new three-layer slab problem for the other (y) direction. The result is a final
effective index for the two-dimensional problem. This is used for the lateral
ky and γy . The net axial propagation constant, β, thus, as always satisfies

[k0nII]
2 = k2

x + k2
y + β2. (A3.20)

This effective index technique can be applied relatively easily by successive use
of Fig. A3.2. Although this figure is strictly only for TE modes, it can be approx-
imately used for TM modes if the index differences are small. The thinner trans-
verse dimension determines the designation of TE or TM. The second half of the
effective index procedure is really dealing with the opposite polarization from
the first. However, if the indices are similar, the difference in the solution is
negligible.

The overall solutions for the symmetric modes of U (x, y) are identical to
Eq. (A3.17) within the active region, region II-2. In region I-2 the y-dependent fac-
tor remains the same, but the x -dependent factor becomes a decaying exponential
like Eq. (A3.6). That is,

U (x , y) = U0 cos
kx d

2
e−γx (x−d/2) cos ky y , (region I-2) (A3.21)

where γx comes from the first step and ky comes from the second step in the
effective index technique. Note that the magnitude has been matched to the solution
in region II-2. For region II-3, the solution in the x -direction remains from the first
step and the lateral decay is found from the second step,

U (x , y) = U0 cos
kyw

2
(cos kx x)e−γy (y−w/2). (region II-3) (A3.22)

The functional forms of U (x, y) in other regions should now be obvious.
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The lateral confinement factor 	y can be approximated by the lateral equivalent
to Eq. (A3.16). That is,

	y ≈ V 2
l

2 + V 2
l

, (A3.23)

where, Vl = k0w(n̄2
2 − n̄2

3 )1/2.

A3.4 FAR FIELDS

The waveguide field profiles given above are assumed to be uniform along the
length of the laser as long as the cross section of the guide remains uniform. At
the output facet this field emerges from the laser waveguide and diffracts freely
into the surrounding dielectric (usually air). In most applications it is desirable to
capture this output light into some other waveguide or detector. The amount of
light actually captured depends on the size and shape of the beam at the cross
section of the capturing object among other things. Thus, it is useful to predict the
field profile as it extends beyond the output facet.

In diffraction theory we refer to the field emitted from the laser weaveguide
as the near field and the diffracted field some distance away as the far field. The
transition occurs at roughly w2/λ, where w is some characteristic full width of the
near-field pattern. In a real index-guided waveguide, the wavefronts are planar as
they approach the emitting facet. They remain approximately planar in the near
field, but begin to show noticeable curvature in the transition to the far field. After
some distance into the far field, the wavefronts approach a spherical shape with a
radius of curvature measured from the center of the emitted mode at the facet where
the wavefronts are planar. The narrowest, planar wavefront location is termed the
beam waist in Gaussian mode theory. Figure A3.5 describes the generation of the
far field by the emitted near field.

To determine the far-field pattern, UF , a distance R and angle θR from the origin
as defined in Fig. A3.5, we consider each amplitude increment of the near-field
pattern, U (x, y), to be a radiating point source. Each point source or “spherical
wavelet” then propagates a distance r to contribute a far-field element, dUF . The
total far-field amplitude at any given point is found by coherent addition of all
wavelet contributions. The field of each spherical wavelet a distance r away from
its source and weighted by the near-field amplitude within the increment dx dy can
be written as

dUF = dx dy U (x , y)
e−jkr

r

[
j

λ
cos θr

]
, (A3.24)

where k = 2π/λ and θr is the angle between r and the z -axis (if the medium
outside the laser is not air then λ → λ/n). The added factors in square brackets
are mathematical refinements to the intuitive wavelet concept originally conceived
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by Huygen. These factors introduced later by Fresnel (as well as Rayleigh and
Sommerfeld) allow Huygen’s principle to be applied to a wide range of scalar
diffraction problems with excellent accuracy. The most significant of these terms
is the obliquity factor, cos θr , which adds a directivity pattern to each spherical
wavelet (it accounts for the reduced apparent area of each incremental emitter
when viewed off-axis).

If x , y � R for all x and y in which U (x, y) has significant amplitude, we can
approximate the distance from the increment to the measurement point as

r ≈ R − x sin θx − y sin θy , (A3.25)

where θx and θy are the angles measured from the z -axis toward the x - or y-axis,
respectively. Since the phase factor is the most sensitive, we should use Eq. (A3.25)
in the exponent of Eq. (A3.24). However in the denominator, we can set r ≈ R
and also θr ≈ θR . With these far-field approximations, we can sum over all wavelet
contributions by integrating Eq. (A3.24) over the near-field emission plane to obtain

UF (θx , θy ) = j cos θR

λR
e−jkR

∫∫
U (x , y)ejk sin θx x ejk sin θy y dx dy , (A3.26)

with cos θR = cos θx cos θy/(1 − sin2 θx sin2 θy )
1/2.

x
θR

x sin θR

z

x

R

rdx

x

dUFU(x, y)

θR

FIGURE A3.5: Illustration of near-field pattern, U (x, y), and far-field element, dUF , a
distance R from the facet at the waveguide axis in the x-z plane.
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Concentrating on a single axis by setting θy = 0, and taking the magnitude
squared, we arrive at the angular power spectrum in the far field,

|UF (θx )|2 = cos2 θx

λ2R2

∣∣∣∣
∫

U (x)ejk sin θx x dx

∣∣∣∣
2

, (A3.27)

where U (x) ≡ ∫
U (x , y) dy . First of all we see that the far-field intensity drops as

1/R2, like a spherical wave. In addition, for small angles where sin θx ≈ θx and
cos θx ≈ 1, we observe that UF (θx ) and U (x ) are Fourier transform pairs. In this
approximation then, the far-field angular spectrum is just the Fourier transform of
the near field, suggesting that a narrow emitting aperture (i.e., waveguide) leads
to a wide angular distribution in the far field, and vice versa. For larger angles, the
Fourier transform relationship breaks down, but the inverse relationship between
the near-field and far-field beam width remains qualitatively valid.

With in-plane lasers, the transverse waveguide width is usually much smaller
than the lateral width. This causes the transverse far-field pattern to have a much
larger angular spread than the lateral far-field pattern. However, as long as U (x,y)
is real (i.e., has planar wave fronts), the far-field wavefronts will be spherical from
the constant exp[−jkR] factor in Eq. (A3.26). In other words, even though the
emitted power distribution is asymmetric, the output beam is not astigmatic. Thus,
the emitted beam can be easily collimated into planar wavefronts with a simple
spherical lens. However, the intensity pattern will be elliptical. To correct for this,
the collimated beam can be refracted through a wedge with nonparallel planar
surfaces to elongate one axis. The result is a circular collimated beam, but the
procedure is rather inconvenient. With VCSELs, the transverse and lateral guide
widths are usually the same, producing nice circular output beams in the far field.
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APPENDIX FOUR

Density of Optical Modes,
Blackbody Radiation, and
Spontaneous Emission Factor

A4.1 OPTICAL CAVITY MODES

Figure A4.1 shows an optical cavity with dimensions dx , dy , and dz . If we assume
that the reflection coefficient at each boundary is real, then for each component of
the propagation constant, kj , the boundary condition for resonance is

2kj dj = 2mj π , (A4.1)

where j = x , y , or z , and mj is the respective mode number. This follows from
the fact that the electric field of a resonant mode must replicate its phase after
traversing a round-trip in the cavity. Thus, considering all three components, the
magnitude of the propagation constant for some resonant mode of the cavity is
given by

|k|2 = π2

[(
mx

dx

)2

+
(

my

dy

)2

+
(

mz

dz

)2
]

, (A4.2)

where |k| = ωn/c.
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k

kz

kx

ky
dy

dz

dx

z

x

FIGURE A4.1: Optical cavity showing dimensions dx , dy , and dz , and a superimposed
k -vector decomposition for an optical mode.

Now just as in the case of electronic states, we wish to calculate the density
of optical states or modes. The reasons are much the same. We would like to
know the number of optical modes within some energy range, and rather than
laboriously counting mode numbers, we would prefer to integrate a density of
states. The process and the results are much the same, for there is little difference
in concept between the electronic wavefunction and the normalized optical electric
field. They both satisfy similar wave equations and boundary conditions as reviewed
in Appendices 1 and 3.

However, there is one major difference between photons and electrons. Whereas
only one electron can occupy an electronic state (after doubling the possible energy
levels because of spin), an unlimited number of photons can occupy the same optical
mode (again, after we have doubled the number of allowed k -values because of
polarization). That is, there is no Pauli exclusion principle for photons. Thus, after
we calculate the number of photon modes, we still have to determine how many
photons occupy each mode to get the total number of photons.

Following the same procedure outlined after Eq. (A1.36), we now proceed to
calculate the number of optical modes per unit volume per unit frequency. (We
could do energy, E = hν, but let’s have a little variety). As in Appendix 1 we
shall first consider bulk dimensions, a spherical coordinate system, but switch to
frequency as the variable. The first step is to calculate the volume, Ns(m), in mode
number space as depicted in Fig. A1.10. Analogous to Eq. (A1.37), we determine
the volume of the sphere, multiply by 2 for the two polarization states and divide
by 8 to allow only positive mode numbers,

Ns(m) = 4
3πm3 · 2 · 1

8 . (A4.3)
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Now, in spherical coordinates, k2 = (2πν)2/(c/n)2 = π2m2/d2, where n is the
index of refraction, m2 = m2

x + m2
y + m2

z , and we have let d2 = d2
x = d2

y = d2
z .

Solving for m(→ 2 dnν/c) and plugging into Eq. (A4.3),

Ns(ν) = π

3

(
2 dn

c

)3

ν3. (A4.4)

Finally, we apply Eq. (A1.36) (set ρ0(ν) dν = (1/V )(dNs/dν)dν), and use V = d3

to obtain

ρ0(ν)dν = 8π

c3
n2ngν2 dν, (A4.5)

where we have defined a group index, ng = [n + ν(∂n/∂ν)], since the index of
refraction can be frequency dependent.

If the dimensions of the optical cavity become small, say dj ≤ 10λ, the modes
will not be so closely spaced, and it is advisable to use Eq. (A4.2) to count the
modes within some range of wavelengths or frequencies. This situation is analogous
to the electronic “quantum box.” Because the states are widely spaced, the density
of states just becomes a series of delta functions as each state is encountered. If
only one dimension is small, we again have a similar situation to the quantum well
for electrons as discussed in Appendix 1.

A4.2 BLACKBODY RADIATION

Equation (A4.5) gives us the desired density of optical states, but as mentioned
above, any number of photons can occupy these states, so we need another piece
of information to determine the photon density per unit frequency. One interesting
boundary condition that can be applied to give a photon density is thermal equi-
librium. In this case we can use the Maxwell–Boltzmann distribution to give the
occupation probability of the optical states as a function of frequency. Maxwell–
Boltzmann statistics dictate that a state with energy E will have a probability
exp(−E/kT ) of being occupied under thermal equilibrium at temperature T . Thus,
we can calculate an average energy per state, 〈E 〉, by taking a weighted average of
the possible energies and their probability of occupation. Because light is quantized
into photons of energy hν, the allowed energies are Ej = jhν, j = 0, 1, 2, . . . . So
we take the sum of allowed energies multiplied by the occupation probabilities and
normalize this by dividing by the sum of the probabilities. That is,

〈E 〉 = 0e−0 + hνe−hν/kT + 2hνe−2hν/kT + · · ·
1 + e−hν/kT + e−2hν/kT + · · · . (A4.6)

Summing the infinite series and dividing, we get the average energy in each mode,

〈E 〉 = hν

ehν/kT − 1
. (A4.7)
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The blackbody radiation density, W(ν)dν, is now found by multiplying Eq. (A4.5)
by Eq. (A4.7). That is, the equilibrium energy per unit volume per unit frequency
is equal to the number of modes per unit volume per unit frequency times the
average energy per mode under thermal equilibrium. Thus,

W(ν) dν = ρ0(ν)hν

ehν/kT − 1
dν = 8πn2ng hν3/c3

ehν/kT − 1
dν. (A4.8)

A4.3 SPONTANEOUS EMISSION FACTOR, βSP

The spontaneous emission factor can be obtained from the density of optical modes
per unit volume per unit frequency, Eq. (A4.5), by integrating over the cavity
volume and the bandwidth of the spontaneous emission to find the number of optical
modes that must contain the total spontaneous emission. Usually, it is assumed that
the coupling to all modes is the same, so the reciprocal of this number of relevant
modes is just the fraction of energy going into each mode, βsp . Initially, making
this assumption, the number of cavity modes in a bandwidth 	νsp is found by
integrating Eq. (A4.5) from ν to ν + 	νsp to be

Nsp = Vc
8π

c3
n2ngν2	νsp , (A4.9)

where Vc is the cavity volume. Taking the reciprocal and using 	νsp/ν = 	λsp/λ,

βsp = 
cλ
4

8πVn2ng	λsp
, (A4.10)

where 
c = V /Vc , and V is the active region volume. For typical values of param-
eters, βsp ∼ 10−5 to 10−4.

But the assumption that the spontaneous emission is uniformly distributed among
the various cavity modes within 	λsp is generally not true. In real devices, the
emission spectrum follows a more bell-shaped curve as a function of both frequency
and wavelength. If the mode of interest falls at the peak of the emission spectrum,
then (A4.10) should be modified by setting 1/	λsp → (peak)/(area), where the
area represents the total area under the emission spectrum, or the total emission
rate. For example, if the emission spectrum follows a Lorentzian lineshape, we
can set (peak)/(area) = (2/π)/	λsp,FW , where the FW implies the full-width at
half-maximum. Thus, an additional factor of 2/π should appear in Eq. (A4.10).
For more complicated lineshapes, the ratio (peak)/(area) will be related to 1/	λsp ,
but the exact prefactor will depend on the specific lineshape.

Additional considerations involve the strength of the mode’s wavefunction
within the active region. The fraction of spontaneous emission represented by
(A4.10) refers to the modal spontaneous emission rate, which must account for
the overlap of the mode of interest with the active region. In Appendix 5 we show
how such modal averages are taken. We have intentionally set 1/Vc = 
c/V in
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Eq. (A4.10) to emphasize this modal averaging process. One interesting conse-
quence of this substitution is that if the active region is very thin, and the mode
for which we wish to calculate βsp has a null at this point, then 
c ≈ 0, from
which it follows that βsp ≈ 0 as well. This would not be obvious if we had simply
used 1/Vc in Eq. (A4.10).

Equation (A4.10) represents the semiclassical version of the spontaneous emis-
sion factor. In Chapter 4, a more useful version of the spontaneous emission factor
derived from quantum mechanical considerations will be introduced. The quantum
version is more general and simpler to evaluate.
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APPENDIX FIVE

Modal Gain, Modal Loss, and
Confinement Factors

A5.1 INTRODUCTION

Within a laser cavity the gain and loss are not uniform throughout the volume
occupied by the optical modes of interest. In fact, the gain region typically occupies
only a few percent of the volume occupied by the optical modes, and the material
absorption loss is typically very different in different regions of the cavity. Thus,
we must develop some sort of overlap factor, which gives the net gain or loss
provided to an optical mode.

To be completely general, let’s define the localized material gain as a function
of all three dimensions of space: g(x, y, z ). To provide the net effect of g(x, y, z )
on the mode as a whole, a properly weighted average of the gain distribution
must be taken throughout the entire cavity volume. Now from Chapter 4, we know
that the gain varies according to the stimulated emission rate, which in turn is
proportional to the square of the electric field. Thus, it seems reasonable to use the
electric field pattern, E (x , y , z ), of the appropriate resonant mode as our weighting
function. The standard definition of a weighted average from classical or quantum
mechanics leads then to the following definition of modal gain:

〈g〉 =

∫
E ∗(x , y , z )g(x , y , z )E (x , y , z ) dV∫

|E (x , y , z )|2 dV
. (A5.1)
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Before applying this result to typical laser structures, it is instructive to examine a
little more carefully the appropriateness of this somewhat ad hoc definition.

A5.2 CLASSICAL DEFINITION OF MODAL GAIN

To rigorously determine the appropriate weighting function to be used in defining
the modal gain or loss experienced by a waveguide mode, we turn to a classical
description of gain and loss in the cavity. If we define wE (x , y , z ) as the energy
density throughout the cavity, then gain and loss per unit time can be associated
with the time rate of change of this local energy density, dwE /dt . For example, if
dwE /dt < 0 at some point in the cavity, energy is being generated locally, which
indicates the presence of gain in the material. Integrating dwE /dt over the entire
cavity then allows us to determine the total energy generation rate. Defining the
modal gain per unit time as the fractional generation rate of energy, we have

〈G〉 ≡ 1

WE

dWE

dt
=

∫
dwE /dt dV∫

wE dV
, (A5.2)

where WE is the total energy in the cavity. To check that this classical definition is
in agreement with what we know from Chapter 2, we can express the total energy
in terms of the photon density using WE = hνNpVp . Equation (A5.2) then reduces
to the familiar rate equation, dNp/dt = 〈G〉Np where 〈G〉 = vg 〈g〉 and 〈g〉 is the
modal gain (written explicitly as �g in Chapter 2).

Equation (A5.2) is a rigorous classical definition of the modal gain per unit time.
We now wish to express this definition in terms of the electric fields of a given
waveguide mode. It can be shown using a variant of Poynting’s theorem (which
makes use of slowly time-varying phasors) that dwE /dt is related to the local field
strength through the imaginary part of the dielectric constant, εi . The exact relation
(assuming μ = μ0) is given by

dwE

dt
= 1

2ωε0εi EEEE · EEEE *, (A5.3)

where EEEE is the electric field vector. Equating the imaginary parts of the dispersion
relation, k̃2 = ω2μ0ε0ε̃, we find that ε0εi = k(x , y , z )g(x , y , z )/ω2μ0 where g ≡
2 Im{k̃}. Decomposing the total field into the two counterpropagating fields within
the cavity, EEEE +(x , y , z ) and EEEE −(x , y , z ), the preceding relation then becomes

dwE

dt
= 1

2 (kg/ωμ0)|E + + E −|2. (A5.4)

For notational convenience, it is to be understood that if the electric field vector
has more than one component, then |E |2 implies EEEE · EEEE ∗. This expression can be
used in the numerator of Eq. (A5.2). Now we need to replace the denominator.
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To relate the total energy in the cavity to the electric fields, we start by writing
down an integral relationship between the energy density and the Poynting vector
taken over any cross-sectional area of the cavity:

vg

∫
wE dA = 1

2 (β/ωμ0)

∫
[|E +

T |2 + |E −
T |2] dA. (A5.5)

On the left-hand side, the group velocity of the mode, vg , converts the integrated
energy density to total power flowing through the cross-section. On the right-hand
side, the sum of forward and backward time-averaged Poynting vectors defines the
local power density, which when integrated also yields the total power flowing
through the cross-section. We have written the Poynting vectors explicitly in terms
of the transverse electric field components and the effective propagation constant
of the mode, β.

To determine the total energy, we need to integrate Eq. (A5.5) over the length
of the cavity, which we take as the z -direction. To include possible axial variations
in the waveguiding structure, we let vg → vg (z ) and β → β(z ). Moving vg (z ) to
the right-hand side, integrating over z , and setting dA dz → dV, we obtain

∫
wE dV =

∫ 1
2β(z )/ωμ0

vg (z )
[|E +

T |2 + |E −
T |2] dV . (A5.6)

Using Eqs. (A5.4) and (A5.6) we can write 〈G〉 in terms of the electric fields. We
can then use the group velocity in the active waveguide to convert the modal gain
per unit time to modal gain per unit active length: 〈g〉 = 〈G〉/vga . Setting k = nk0

and β(z ) = n̄(z )k0, we finally obtain

〈g〉 =

∫
gn|E + + E −|2 dV∫

vga

vg (z )
n̄(z )[|E +

T |2 + |E −
T |2] dV

. (A5.7)

If the material gain, g , is dependent on the polarization of the electric field (which
is true in quantum-well and quantum-wire active materials), then the numerator
should be written more precisely as gx |Ex |2 + gy |Ey |2 + gz |Ez |2 (where each field
component represents a sum, E +

i + E −
i ).

It is interesting to note that the energy generation rate in the numerator of
Eq. (A5.7) includes coherent effects such as standing waves, while the denomina-
tor does not. This is because gain in a medium is obtained specifically through
interactions with the electric field. Hence, the energy generation rate in the cavity
is concentrated at the peaks of the electric field standing wave pattern. The stored
energy, on the other hand, exists in both the electric and magnetic fields continu-
ally shifting back and forth between them. As a result, the time-averaged energy
distribution is independent of the standing wave pattern.

When there are no axial variations in group velocity or propagation constant,
we can simplify Eq. (A5.7) by setting vga/vg (z ) = 1 and pulling n̄ out of the
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integral:

〈g〉 =

∫
ḡ |E + + E −|2 dV∫

[|E +
T |2 + |E −

T |2] dV
, where ḡ = g

n

n̄
. (A5.8)

By defining an effective material gain, ḡ , in our weighted average (which is found
by replacing the index with the effective index in the expression for gain given
in Chapter 4), the rigorous definition of modal gain can be made to resemble our
initial guess Eq. (A5.1). In fact, for TE modes that have no longitudinal electric
field components, the correspondence is exact (aside from the incoherent sum in
the denominator). For TM modes that do have longitudinal electric fields, there is
still a slight difference between (A5.8) and (A5.1). For laser applications, the mode
of interest is typically a TE mode which is very well confined to the active region,
implying that n̄ ≈ n , and hence ḡ ≈ g . As a result, it is quite common to simply use
Eq. (A5.1) with the real material gain, g , in defining the modal gain. This procedure
typically introduces little error. To be completely rigorous, however, Eq. (A5.8) (or
Eq. (A5.7) if there are axial variations in the waveguiding structure) should be used.

A5.3 MODAL GAIN AND CONFINEMENT FACTORS

Figure 2.6 illustrates a laser cavity in which the gain region intersects the optical
mode over some portion of its width and length. Figure A5.1 gives a slightly more
detailed version of a typical laser cavity. The i th component of the electric field
in such a cavity can be written as

Ei (x , y , z ) = Ui (x , y)
√

2 cos βz , (A5.9)

where Ui (x , y) is the normalized transverse electric field profile, derived in
Appendix 3 for a three-layer slab, and β(= 2π/λz ≡ 2π n̄/λ) is the z -component
of the propagation constant k . In writing (A5.9), we have neglected the imaginary
part of β, and hence are ignoring the growth of the fields in the cavity (see

w
aic

L

y

x

d

La

Lp
aip

aia

g

FIGURE A5.1: General laser cavity with active and passive axial sections.
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Section A5.5). The simple cosine function also indicates that an infinite standing
wave ratio has been assumed in the z -direction. Such a situation will actually
exist only over ranges in the cavity where the two counterpropagating waves are
equal in magnitude (see Fig. A5.3). For a cavity with large mirror reflectivities
(r > 0.9), such as in a vertical cavity laser, this range extends over the entire
cavity. For a laser with low mirror reflectivities (r > 0.2), an infinite standing
wave ratio exists only over a small portion of the cavity. In either case, if the
axial (z -direction) integration is over many wavelengths, the contribution from
this factor averages out.

If we assume that the group velocity and propagation constant are the same
(or very similar) in both active and passive sections then we can use Eq. (A5.8)
to define the modal gain. Plugging Eq. (A5.9) into Eq. (A5.8) and considering the
e+jβz and e−jβz components of the cos βz separately in the denominator, we obtain

〈g〉 =

∫∫∫
xyz

ḡ(x , y , z )|U (x , y)|22 cos2 βz dx dy dz

L
∫∫
xy

|U (x , y)|2 dx dy
. (A5.10)

We have dropped the i subscript on the transverse field pattern, assuming that
only one electric field component exists. If U (x, y) is normalized, the denominator
integral will be unity. However, we shall carry it along to include cases where it
is not normalized.

In applying Eq. (A5.10) to the laser cavity in Fig. A5.1, a few further assump-
tions are usually made. For in-plane lasers, the gain can be assumed to be constant
within the active region, which has transverse thickness d , width w, and length
LA. Therefore, the gain can be removed from the integral, replacing the limits of
integration by these dimensions. Assuming the origin to be in the center of the
active region, and also resetting ḡ = gn/n̄ (where n is the refractive index of the
active material), we have

〈g〉 = g
n

n̄

∫ La/2

−La/2

∫ w/2

−w/2

∫ d/2

−d/2
|U (x , y)|22 cos2 βz dx dy dz

L
∫∫
xy

|U (x , y)|2 dx dy
. (A5.11)

The integration over x and y yields a transverse confinement factor �xy and a
transverse modal gain, 〈g〉xy = �xy g , which defines the incremental rate of growth
of the fields in the active section (aside from any losses present). The integra-
tion over z gives an axial confinement factor �z and the overall cavity modal
gain:

〈g〉 = �z 〈g〉xy = �xy�z g , (A5.12)
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FIGURE A5.2: (a) Transverse confinement factor for a typical three-layer slab waveguide
versus normalized waveguide thickness. (b) Enhancement factor vs. normalized active length
(where n̄ is the effective index of the guide). The insets display the standing wave pattern
in the cavity and its overlap with the active material.

where

�xy = n

n̄

∫ w/2

−w/2

∫ d/2

−d/2
|U (x , y)|2 dx dy

∫∫
xy

|U (x , y)|2 dx dy
, (A5.13)

�z = 1

L

∫ La/2

−La/2
2 cos2 βz dz = La

L

[
1 + sin βLa

βLa

]
. (A5.14)

The ratio n/n̄ in Eq. (A5.13) is usually close to unity and is typically neglected.
The axial confinement factor can be further separated into a fill factor, �fill = La/L,
and an enhancement factor, �enh = 1 + sin(βLa)/βLa , such that �z = �fill�enh.
Figure A5.2 plots the one-dimensional transverse confinement factor, �x , for a
symmetric three-layer slab waveguide geometry (with and without n/n̄), and �enh

in general.

A5.4 INTERNAL MODAL LOSS

Equation (A5.7) with g replaced by αi gives the correct expression for the inter-
nal modal absorption loss, 〈αi 〉. Unfortunately, it does not simplify quite as much
as the modal gain, even if it is taken as constant within certain regions. This
is because the passive loss has a value everywhere, unlike the gain. However,
because we have already defined the transverse and axial confinement factors,
we can still construct an abbreviated form for the modal loss for this particular
case, if we assume that the loss is constant within the active and passive chan-
nel waveguide regions as well as in all of the surrounding cladding material. We
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take the respective loss values as αia , αip , αic , as labeled in Fig. A5.1. Then using
Eq. (A5.13) we can define transverse modal averages within both active and pas-
sive sections as

〈αi 〉a
xy = �xyαia + (1 − �xy )αic ,

〈αi 〉p
xy = �xyαip + (1 − �xy )αic , (A5.15)

The complete modal average over the entire cavity (assuming the group velocity
is similar in both sections) is then found using Eq. (A5.14):

〈αi 〉 = �z 〈αi 〉a
xy + (1 − �z )〈αi 〉p

xy . (A5.16)

Combining these equations, we obtain:

〈αi 〉 = �αia + �xy (1 − �z )αip + (1 − �xy )αic , (A5.17)

where the cavity confinement factor, � = �xy�z . In some cases, the modal loss
expression can become even more complicated than listed here. For example,
the P and N cladding regions on either side of the active region may have
different losses. Furthermore, in separate confinement lasers (including quantum-
well lasers), there are additional waveguide (barrier) layers that have different
losses than the active and cladding materials. In these cases the transverse con-
finement factor must be calculated for every layer that has a unique loss value.
In VCSELs, the loss is often a function of the axial direction. In such cases,
the axial confinement factor for the internal loss must be calculated by inte-
grating Eq. (A5.14), including αi (z ) as well as additional axial variations of the
standing wave pattern such as an exponential decay into a distributed Bragg reflec-
tor, as considered in Chapter 3. Because the exact form for modal loss is very
cavity-specific, we will continue to refer to cavity modal loss as 〈αi 〉 in most
expressions.

A5.5 MORE EXACT ANALYSIS OF THE ACTIVE/PASSIVE SECTION CAVITY

Sections A5.3 and A5.4 make two simplifying assumptions in defining the vari-
ous axial averages: (1) the propagation constant β in Eq. (A5.9) is purely real,
and (2) the group velocities in the active and passive sections are the same.
In this section we will remove these two assumptions. However, to retain rela-
tively simple expressions we must assume that no reflections exist at the active-
passive interface. For this case, n̄|ET |2 is preserved across the interface, and
multiple bounces in the cavity are eliminated. Standing wave effects are also
ignored since the following analysis applies primarily to in-plane lasers. How-
ever, footnotes are provided to indicate where standing wave effects would alter
the result. We will first examine the axial confinement factor and then describe
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the threshold condition and differential efficiency more carefully than considered
in Chapter 2.

A5.5.1 Axial Confinement Factor

If we include the growth of the fields within the active section (i.e., we allow β to
be complex in Eq. (A5.9), the axial confinement factor (neglecting coherent effects)
is no longer equal to the simple geometric fill factor, La/L. This can understood
by examining Fig. A5.3, which illustrates the power flowing back and forth in a
laser cavity assuming the active section provides net gain and the passive section
provides loss. The area under the power flow curves divided by the group velocity
in each section is proportional to the total energy in the cavity. From the figure it
is evident that the fractional area contained in the active section is nontrivial when
the fields display exponential growth and decay characteristics.

To determine the fractional energy contained in the active section (i.e., the axial
confinement factor), we need to integrate the power curves along z . The functional-
ity of each curve is provided in Fig. A5.3. Performing the integrations (neglecting
coherent effects) and weighting the area in each section by the group velocity in

R2 (= R3e−2αipLp)

z = 0z = − La z = Lp

1 exp z
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⋅ ln 1 exp

1
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FIGURE A5.3: Illustration of power flow in a laser cavity with active and passive sections,
assuming no reflections at the active–passive interface. R2 defines the effective power
reflectivity of the passive mirror (R3) as seen by the active section at z = 0. The mag-
nitudes of each power curve at the interfaces are indicated relative to the power level at the
crossing point inside the active section. The functionality of each curve is also provided.
In the active section, the threshold condition is used to express the net growth rate as:
〈g〉xy − 〈αi 〉a

xy → ln(1/
√

R1R2)/La . In the passive section, the definition of R2 is used to
express the decay rate as αip ≡ 〈αi 〉p

xy → ln(
√

R3/R2)/Lp .
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accordance with Eq. (A5.7), the axial confinement factor becomes1

�z =
P1+P2

ln
√

1/R1R2
La/vga

P1+P2
ln

√
1/R1R2

La/vga + P2−P3
ln

√
R3/R2

Lp/vgp

, (A5.18)

where

Pi ≡ 1√
Ri

−
√

Ri = relative power out mirror i . (A5.19)

Equation (A5.18) is equivalent to �z = W a
E /WE , where W a

E is the total energy
within the active section. If the passive section has no loss, then the second term in
the denominator (i.e., W p

E normalized to the power at the crossing point) reduces
to (1/

√
R3 + √

R3)Lp/vgp .
Typically the net transverse modal gain in the active section (i.e., 〈g〉xy − 〈αi 〉a

xy )
is larger than the loss in the passive section 〈αi 〉p

xy , implying a larger bowing of
the power flow curves and hence a larger reduction of the area under the curves in
the active section. As a result, the fill factor tends to be smaller than the geometric
fill factor. However, the more linear the curves are, the more Eq. (A5.18) resem-
bles the geometric fill factor. For example, linear curves imply low gain or high
mirror reflectives. If we set Ri = 1 − Ti and examine the limits as R1, R2, R3 → 1,
we find that Pi → Ti , ln[1/R1R2] → T1 + T2, and ln[R3/R2] → T2 − T3. The axial
confinement factor in this limit reduces to:

�z → n̄gaLa

n̄gaLa + n̄gpLp
. (roughly linear growth/decay) (A5.20)

This limiting form is convenient to use even though it usually overestimates the
axial confinement factor slightly. Note that the lengths are weighted by the group
index. For monolithic active and passive sections, the group index does not vary
much, and the group indices can be cancelled out of the expression. However, if an
external cavity is coupled to a laser, then n̄gp → 1 and the inclusion of the group
indices becomes important.

To include reflections at the active–passive interface in the derivation of the
axial confinement factor, one must determine the power distribution throughout the
entire cavity and then calculate the fraction of energy contained in the active section.

A5.5.2 Threshold Condition and Differential Efficiency

With the axial confinement factor defined, we can now determine the threshold
condition and differential efficiency of the active/passive section cavity shown in
Fig. A5.3. The threshold condition can be found by setting the energy generation

1If the active section is very short, Eq. (A5.18) can be multiplied by �enh as defined in Eq. (A5.14) to
approximately account for standing wave effects.
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rate equal to the loss rates created by absorption and power coupled out of the
cavity (i.e., P1 + P3). From Eqs. (A5.2) and (A5.12) we can write the total energy
generation rate per unit time as �z vga〈g〉xy WE . Defining a similar term for the
absorption losses per unit time and dividing by the total energy WE , we obtain

�z vga〈g〉xy = �z vga〈αi 〉a
xy + (1 − �z )vgp〈αi 〉p

xy + P1 + P3

WE
. (A5.21)

The last term corresponds to the fractional mirror loss per unit time. Alternatively,
by following the power curves through one round-trip of the cavity similar to the
procedure outlined in Chapter 2 (see Section 2.5 and Eq. (2.23)), we obtain the
more standard version of the threshold condition:

〈g〉xy La = 〈αi 〉a
xy La + 〈αi 〉p

xy Lp + ln
1√

R1R3
. (A5.22)

With this version, if we divide by L we obtain �z = La/L regardless of any expo-
nential field growth in the cavity or differences in group velocity between the active
and passive sections.2 In contrast, �z in Eq. (A5.21) is the actual axial energy con-
finement factor (A5.18). The two versions of the threshold condition are equivalent
but appear different because the former equates the total generation and loss rates,
whereas the latter simply equates the accumulated exponential growth and decay
factors. So while the latter version Eq. (A5.22) is more convenient to use, it lacks a
one-to-one correspondence with the generation and loss rates of the active/passive
section laser.

For example, the (1/L) ln
√

1/R1R3 term in Eq. (A5.22) is usually associated
with the mirror loss. However, with Eq. (A5.21) we can identify the true mirror
loss rate per unit active length as: αm = (P1 + P3)/(vgaWE ). Using Eq. (A5.18) to
set WE = W a

E /�z , the true mirror loss becomes3

αm = P1 + P3

P1 + P2

�z

La
ln

1√
R1R2

. (A5.23)

With no passive section, αm → (1/La) ln
√

1/R1R2. Thus, the mirror loss deviates
from the standard definition only with the addition of a passive section. With
no loss in the passive section, P2 = P3, R2 = R3, and αm → (�z /La) ln

√
1/R1R3.

With high mirror reflectivities and similar group velocities, �z → La/L. Combining
these restrictions we recover the standard definition: αm → (1/L) ln

√
1/R1R3. In

2In very short active sections, a more careful round-trip analysis including reflections at the active-
passive interface(s) created by the gain discontinuity would yield �enhLa/L instead of La/L.
3For very short active sections where standing wave effects are important, �z = �enhW a

E /WE so that
�z → �z /�enh in the expression for the true mirror loss. In other words, standing wave enhancements
to the gain do not affect the mirror loss.
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a VCSEL which typically has small losses and high mirror reflectivities, αm →
1
2 (T1 + T3)/(La + Lpvga/vgp).

Because �z 	= La/L, we also know that the total generation rate is not exactly
〈g〉xy La/L and the total absorption loss rate is not exactly 〈αi 〉a

xy La/L + 〈αi 〉p
xy Lp/L

as one is tempted to conclude from Eq. (A5.22). This observation has no effect
on the threshold value of 〈g〉xy since both Eqs. (A5.21) and (A5.22) predict the
same value. However, it does become important when defining the differential
efficiency, which involves the ratio of these terms. Using Eqs. (A5.12) and (A5.23),
the differential efficiency of the active/passive section cavity becomes

ηd = ηi
αm

〈g〉 = ηi
ln

√
1/R1R2

〈g〉xy La

P1 + P3

P1 + P2
= ηi ηdaηdp , (A5.24)

where

ηda = ln
√

1/R1R2

〈g〉xy La
= ln

√
1/R1R2

〈αi 〉a
xy La + ln

√
1/R1R2

, (A5.25)

ηdp = P1 + P3

P1 + P2
= (1 − R1)/

√
R1 + (1 − R3)/

√
R3

(1 − R1)/
√

R1 + (1 − R3e−2αip Lp )/
√

R3e−αip Lp
. (A5.26)

The active and passive section efficiencies, ηda and ηdp , were expanded using
Eqs. (A5.22) and (A5.19) with R2 = R3e−2αip Lp .

To more clearly see the high mirror reflectivity limit, we can rewrite Eq. (A5.26)
using hyperbolic definitions and algebraic manipulations to obtain

ηdp = sinh 1
2 [ln

√
1/R1R3]

sinh 1
2 [〈αi 〉p

xy Lp + ln
√

1/R1R3]

cosh 1
2 [ln

√
R1/R3]

cosh 1
2 [〈αi 〉p

xy Lp + ln
√

R1/R3]
. (A5.27)

For R1, R3 → 1, R1 ∼ R3, and αipLp � 1, we can replace the sinh functions by
their arguments and set the cosh functions to one, which gives

ηdp ≈ ln
√

1/R1R3

〈αi 〉p
xy Lp + ln

√
1/R1R3

, (A5.28)

and

ηdaηdp ≈ ln
√

1/R1R3

〈αi 〉a
xy La + 〈αi 〉p

xy Lp + ln
√

1/R1R3
. (A5.29)

In this limit, the differential efficiency reduces to the ratio one would assume using
the standard threshold condition Eq. (A5.22).
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Another consideration is the fraction of power out of each facet. With ri = √
Ri

and Pi = (1 − r2
i )/ri from Eq. (A5.19) we quickly find that

F1 = P1

P1 + P3
= (1 − r2

1 )/r1

(1 − r2
1 )/r1 + (1 − r2

3 )/r3
, (A5.30)

F3 = P3

P1 + P3
= (1 − r2

3 )/r3

(1 − r2
1 )/r1 + (1 − r2

3 )/r3
. (A5.31)

When F1 is multiplied by t2
1 /(1 − r2

1 ) and F3 is multiplied by t2
3 /(1 − r2

3 ) to account
for possibly lossy mirrors, we obtain the same expression (3.30) as derived in
Chapter 3. Thus, the fraction of power out is not affected by the lossy passive
section.

In practice, �z does not usually deviate substantially from the geometric fill
factor. As a result, the terms comprising the standard version of the threshold con-
dition (A5.22) usually represent reasonable approximations to the generation and
loss rates, implying that the differential efficiency is usually well approximated
by Eq. (A5.29). It is for this reason that we prefer to use the simpler more intu-
itive Eqs. (A5.22) and (A5.29) throughout this book. However, there are certain
situations where Eq. (A5.29) fails to predict the differential efficiency accurately.

For example, with R1 = 0.1 and R3 = 1, the approximate differential efficiency
(A5.29) is within 5% of the exact Eq. (A5.26) for αipLp ≤ 1. For uncoated facets
(R1 = R3 = 0.3), it overestimates the exact value by ∼10% for αipLp = 0.5, and
∼30% for a larger loss of αipLp = 1. For R1 = 1 and R3 = 0.1, the overestimate
is close to 25% for αipLp = 0.5, and is almost 60% for αipLp = 1. In general, the
approximation gets worse for smaller values of R3 and larger values of αipLp , but is
not significantly affected by the value of R1. Hence, for αipLp ≤ 0.5 and R3 ≥ 0.3,
the approximate differential efficiency (A5.29) is generally fairly accurate.

It should be noted in closing this section that if there are reflections at the
active–passive interface, then �z and all dependent expressions will be different
than given here.

A5.6 EFFECTS OF DISPERSION ON MODAL GAIN

Finally we would like to consider parenthetically the effects of material and waveg-
uide dispersion on the modal gain. Equation (A5.8) reveals that 〈g〉 ∝ 1/n̄ . Physi-
cally, this dependence reflects the fact that the effective index controls the angle at
which plane waves bounce down the guide (see Chapter 7). The smaller the effec-
tive index, the more bounces the plane waves make per unit length. As a result, the
mode effectively “sees” more active material per unit length, which shows up as
an enhancement in the modal gain per unit length. In other words, waveguide dis-
persion slows down the mode, allowing more stimulated transitions to be acquired
into the mode per unit length. Thus, the modal gain per unit length is enhanced
by waveguide dispersion. As for material dispersion, we find that (A5.8) contains
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no dependence on the overall group velocity, implying that 〈g〉 is independent of
material dispersion.

The gain per unit time defined by 〈G〉 = vg 〈g〉, is inversely related to the group
effective index since 〈g〉 is independent of n̄g . Now because n̄g > n in most cases,
we conclude that waveguide and material dispersion reduce the modal gain per
unit time. The waveguide dispersion component of n̄g is roughly compensated
by the 1/n̄ implicit in 〈g〉. Neglecting waveguide dispersion, we still find that
〈G〉 is compromised by material dispersion. Physically this occurs because the
local energy density in a dispersive medium is ∝ ng n|E |2 (where ng is the group
index associated with material dispersion exclusively). Thus, an increase in the
group index for a given energy density compromises the electric field strength,
which reduces the local stimulated emission rate. The result is a reduced modal
gain per unit time in the cavity. The modal gain per unit length does not suffer
this consequence because as ng increases, the wave moves slower, allowing more
stimulated transitions to be acquired per unit length. The reduction in field strength
and the slowing down of the mode offset each other, leaving the modal gain per
unit length independent of material dispersion, as concluded above.



APPENDIX SIX

Einstein’s Approach to Gain and
Spontaneous Emission

A6.1 INTRODUCTION

Equation (2.14) gives us the relationship between gain and the stimulated recom-
bination rate,

Rst = vg gNp . (A6.1)

As shown in Fig. 1.6, the net stimulated rate Rst = R21 − R12, is the stimulated
emission less the stimulated absorption of photons. Thus, we wish to calculate Rst ,
from which the gain, g , can be obtained. As also suggested in Chapters 1 and 2,
the stimulated emission and absorption rates depend on the number of available
electronic states and their probability of occupation in both the conduction and
valence bands for the transitions to occur. The unknowns are the multiplicative
rate constants. Once these are determined, we can calculate Rst and the gain, g .

Einstein gave us a technique to calculate these rates without delving too deeply
into the details of the stimulated emission physics. His technique is to determine the
desired rate constants under a particular set of boundary conditions. Once obtained,
however, these constants are generally applicable to other situations. As shown in
Fig. A6.1, the medium of interest is placed in a closed cavity, which has neither
inputs nor outputs, and held under thermal equilibrium. Then, a dynamic balance
equation can be set up that expresses the desired rates in terms of the equilibrium
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Infinitesimal
sampling
window

FIGURE A6.1: Schematic of an arbitrary closed cavity with negligible energy in or out.
Contents must be in thermal equilibrium.

optical energy density, W(ν). Since this is known (from Appendix 4), the rate
constants can be determined.

In this situation we must include all carrier recombination mechanisms in writing
a dynamic balance equation. The nonradiative rates generate heat, which is naturally
taken into account in this closed system. By one means or another, they must
saturate in equilibrium. Thus, in equilibrium, for a pair of energies, E2 and E1, in
the conduction and valence bands, respectively, we have

dNp

dt
= 0 = R21 + Rsp,21 − R12, (A6.2)

where the first two terms represent electrons recombining by either stimulated or
spontaneous processes, respectively, and the last term represents electrons being
generated by stimulated absorption. The 21 subscript on Rsp distinguishes this
two-level spontaneous rate from the net recombination between two bands in a
semiconductor as we have considered elsewhere. We could summarize Eq. (A6.2)
by saying that the downward transition rate (i.e., conduction to valence band) must
equal the upward transition rate.

The equilibrium occupation probability at some temperature is given by the
Fermi function introduced in Appendix 2

fi = 1

e(Ei −EF )/kT + 1
, (A6.3)

where i = 1 or 2 for the involved transition energies in the valence or conduction
bands, respectively. That is, f2 ≡ fraction of states filled at E2, and f1 ≡ fraction of
states filled at E1. Figure A6.2 illustrates the various energy levels for reference.
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EFc (nonequilibrium)

EFv (nonequilibrium)

FIGURE A6.2: Energy versus momentum schematic illustrating a transition between two
energy states in the conduction and valence bands, respectively. Quasi-Fermi levels for both
equilibrium and nonequilibrium carrier densities are also illustrated.

In Appendix 1, we also defined a density of states, ρ(E ), to describe the distri-
bution of states in a band. The number of states are equally distributed in k -space,
but by integrating ρ(E ) over some energy range, the number of states in that range
is obtained. As shown in Figure A6.2, the radiative recombination of an elec-
tron and hole involves states in the conduction and valence bands with the same
k -vector. That is, both energy (E21 = hν21) and momentum (�k-electron ≈ �k-hole)
conservation must be satisfied. (As discussed in Chapter 4, the photon momentum
is negligible.) Thus, we can consider the density of state pairs, or a reduced density
of states, ρr (E21), in calculating emission at E21 from electron-hole recombina-
tion. We shall explicitly derive ρr (E21) for parabolic bands to obtain an analytic
expression, however, the concept is entirely general.

With reference to Fig. A6.2 and using the results of Appendix 1, we can express
the transition energy difference, E2 − E1 = E21 as

E21 = Eg + �
2k2

2m∗
c

+ �
2k2

2m∗
v

= Eg + E ′ m
∗
v + m∗

c

m∗
v

, (A6.4)

where E ′ = �
2k2/2m∗

c for parabolic bands. For relatively thick active regions
(bulk), we found from Eq. (A1.39) in Appendix 1 that

ρ(E ′) dE ′ = 1

2π2

[
2m∗

c

�2

]3/2

(E ′)1/2 dE ′. (A6.5)
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Solving for E ′ from Eq. (A6.4), and forming dE ′, we have

E ′ = m∗
v

m∗
c + m∗

v

(E21 − Eg ),

dE ′ = m∗
v

m∗
c + m∗

v

dE21. (A6.6)

Finally, plugging Eq. (A6.6) into Eq. (A6.5), we obtain the desired reduced density
of states,

ρr (E21) = 1

2π2

[
2m∗

r

�2

]3/2

(E21 − Eg )1/2, (A6.7)

where m∗
r = m∗

c m∗
v /(m∗

c + m∗
v ).

A6.2 EINSTEIN A AND B COEFFICIENTS

The general approach of Einstein was to assign rate constants to the three radia-
tive processes appearing in Eq. (A6.2), with the assumption that these rates must
be proportional to the carrier density. These were written empirically as Rsp,21 =
A21N2, R21 = B21 W(ν)N2, and R12 = B12 W(ν)N1. Generally speaking, the A rate
constant is associated with spontaneous processes, whereas the B rate constants
are associated with stimulated processes and hence are weighted by the radiation
spectral density, W(ν), which was introduced in Appendix 4. In Einstein’s day,
most radiative transitions of interest took place between atoms with very isolated,
sharp energy levels. The carrier densities therefore referred to the density of atoms
with electrons in either energy level 1 or 2. In the current context, we must inter-
pret these definitions somewhat differently because in semiconductors, the energy
levels are neither isolated nor sharp.

To deal with the continuous nature of energy states in semiconductors, we restrict
our attention to a differential population of state pairs existing between E21 and
E21 + dE21. Using the reduced density of states function derived earlier, the differ-
ential population available for producing downward transitions becomes

dN2 = f2(1 − f1) · ρr (E21) dE21, (A6.8)

where dN2 ≡ number of state pairs per unit volume between E21 and E21 + dE21

available to interact with photons near E21, in which the upper state is full and the
lower state is empty. Similarly, the differential population available for producing
upward transitions becomes

dN1 = f1(1 − f2) · ρr (E21) dE21, (A6.9)
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where dN1 ≡ number of state pairs per unit volume between E21 and E21 + dE21

available to interact with photons near E21, in which the lower state is full and the
upper state is empty.

Another factor we must consider in semiconductors is that the states in ρr (E21)

have a finite lifetime due to collisions with other electrons and phonons. As a result,
a given differential population can actually appear over a small range of energies
and thus interact with photons spanning some narrow energy range, �E21. The
probability of finding this population at energies away from E21 is characterized
by some lineshape function, L (E − E21), which has a full-width half-maximum
(FWHM) �E21 and is centered at E21 as shown in Fig. A6.3. The longer the
lifetime of a given state, the narrower the spread in energy �E21, and hence, the
more chance there is of finding the state pair at E21.

A direct consequence of the finite state lifetime is that when we consider inter-
actions between our differential population and photons of a given energy, hν, we
must somehow account for the fact that the population only spends a fraction of
its time at that photon energy. In other words, we must weight our differential
population by the probability of finding that population between photon energies
hν and hν + h dν, which is given by L (hν − E21) h dν. The differential population
“seen” by photons at energy, hν, therefore becomes

dN2 → dN2 · L (hν − E21) h dν,
dN1 → dN1 · L (hν − E21) h dν.

(A6.10)

These are the forms for N1 and N2 that we must use when analyzing semiconductors.
With our differential populations defined, we can now make use of Einstein’s

A and B coefficients. The differential downward transition rates created by our
differential dN2 population can be written as

dR21 + dRsp,21 =
∫

[dN2W(ν)B21 + dN2A21]L (hν − E21) h dν. (A6.11)

The integral over photon frequency is necessary to include contributions that W(ν)

makes over the full range of energies that dN2 is spread over.

(E – E21)

2

pΔE21

E21 E

(state with longer lifetime)

ΔE21

FIGURE A6.3: Plot of lineshape function versus transition energy. We require that it
be normalized so that its area equals one (the state must exist somewhere!). (The peak
probability shown assumes a Lorentzian distribution.)
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The differential transition rates on the left-hand side of (A6.11) have units of
[volume−1time−1]. The population density, dN2, has units of [volume−1]. There-
fore, the spontaneous recombination rate constant, A21, has units of [time−1] and
is often expressed as an inverse spontaneous lifetime, 1/τsp . In atomic systems,
A21 does represent the inverse of the spontaneous lifetime of energy level 2. How-
ever, in the present context, A21 is associated with the spontaneous lifetime (which
we will denote as τ 21

sp ) of only the differential population, dN2, and is not equal
to the entire band-to-band spontaneous lifetime, τsp . Later we will determine the
relationship between the two-level lifetime τ 21

sp and τsp . For the stimulated term,
we note that W(ν) represents the optical energy per unit volume per unit fre-
quency. Therefore, the units of the stimulated recombination rate constant, B21, are
[(volume × frequency)/(energy × time)].

The differential upward transition rate created by our differential dN1 population
can be written as

dR12 =
∫

[dN1W(ν)B12]L (hν − E21) h dν, (A6.12)

where B12 is the stimulated generation rate constant and has the same units as B21.

A6.3 THERMAL EQUILIBRIUM

Einstein’s approach allows us to relate the three rate constants appearing in
Eqs. (A6.11) and (A6.12) in a straightforward manner. Under thermal equilibrium,
we can set (A6.11) equal to (A6.12) according to (A6.2), which we assume
holds for differential rates as well as the integrated rates. To remove the
integrals over photon frequency, we note that equilibrium blackbody radiation
is broadband and varies little over typical linewidths, �E21, associated with the
lineshape function. This allows us to treat the lineshape as a delta function, or
hL (hν − E21) → δ(ν − ν21). In other words, we simply evaluate all terms under
the integral at ν21. The balance equation then reduces to

dN2W(ν21)B21 + dN2A21 = dN1W(ν21)B12. (A6.13)

Rearranging, we obtain

dN2

dN1
= W(ν21)B12

W(ν21)B21 + A21
. (A6.14)

Alternatively, from Eqs. (A6.8) and (A6.9), using (A6.3) and E21 = hν21, we find
the simple result

dN2

dN1
= f2(1 − f1)

f1(1 − f2)
= e−hν21/kT . (A6.15)
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Setting Eq. (A6.15) equal to (A6.14) and solving for W(ν21), we obtain

W(ν21) = A21/B21

(B12/B21)ehν21/kT − 1
. (A6.16)

From Appendix 4, the blackbody radiation formula that defines the spectral density
of photons under thermal equilibrium is given by

W(ν21) = ρ0(ν21)hν21

ehν21/kT − 1
. (A6.17)

Comparing Eq. (A6.16) with Eq. (A6.17), we see that both can be true for all
temperatures only if the following two equalities hold:

B12 = B21, (A6.18)

A21 = ρ0(ν21)hν21 · B21. (A6.19)

Equation (A6.18) reveals that stimulated emission and stimulated absorption are
truly complementary processes associated with the same rate constant. Perhaps
more significantly, Einstein’s approach establishes a fundamental link between
stimulated and spontaneous emission processes through Eq. (A6.19). Thus, by ana-
lyzing the system under thermal equilibrium, Einstein’s approach allows us to
reduce the three differential rate constants to one independent constant, B21. We
could have designated A21 as the independent constant, however, too often this
leads to the incorrect conclusion that B21 is inversely dependent on the density of
optical modes, ρ0(ν21). More correctly, we should view B21 as the rate constant
of a single optical mode, and A21 as this rate constant multiplied by the equiv-
alent spectral density that induces spontaneous emission into the full density of
optical modes near ν21. It is interesting to note that the equivalent spectral density,
ρ0(ν21)hν21, implies one photon per optical mode. In Chapter 4, more insight into
this observation is gained through a quantum mechanical perspective.

A6.4 CALCULATION OF GAIN

Now that we have established the connection between the three rate constants,
we can leave the closed-system, thermal-equilibrium environment and proceed to
calculate the gain for a monochromatic radiation field under nonequilibrium con-
ditions. Under forward bias, the Fermi level in the active region splits into two
quasi-Fermi levels to reflect the nonequilibrium electron and hole densities. The
splitting corresponds roughly to the applied voltage. The nonequilibrium carrier
densities are then calculated from

N =
∫

ρc(E )fc(E ) dE ≈ P =
∫

ρv(E )[1 − fv(E )] dE , (A6.20)
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where we have assumed N ≈ P because of negligible doping in the active region.
The factors, ρc(E ) and ρv(E ), refer to the densities of states in the conduction
and valence bands, respectively. Also, fc(E ) and fv(E ) are the Fermi functions, in
which EF is replaced by the quasi-Fermi levels, EFc and EFv , for the conduction
and valence bands, respectively.

To calculate the gain we turn to Eq. (A6.1) which allows us to relate the gain to
the net stimulated emission rate. However, we must keep in mind that contributions
to the gain at a particular frequency of radiation, ν0, will come from many dif-
ferential populations distributed roughly over energies comparable to the lineshape
width, �E21. The gain contributed by each population can be written as

dg(hν0) = dRst

vg Np

= 1

vg Np

∫
W(ν)B21[dN2 − dN1]L (hν − E21) h dν. (A6.21)

The second equality is obtained by setting dRst = dR21 − dR12 and using
Eqs. (A6.11) and (A6.12) with B12 = B21. For a monochromatic field, W(ν) →
hν0Npδ(ν − ν0), where the strength of the delta function is equal to the energy
density of the field and ν0 is the frequency of the wave. With this substitution, the
integral reduces to evaluating all photon frequency-dependent factors at ν0, and
we are left with

dg(hν0) = hν0

vg
hB21[dN2 − dN1]L (hν0 − E21). (A6.22)

The appearance of the lineshape function reminds us that the further away the
differential population is in transition energy from the photon energy, the less
contribution it makes to the gain at that frequency.

The total gain at hν0 is found by integrating dg over all existing populations of
state pairs which might possibly interact with the field. Expanding the differential
populations in Eq. (A6.22) using Eqs. (A6.8) and (A6.9), simplifying the Fermi
factors, and integrating over all possible transition energies, we obtain

g(hν0) = hν0

vg
h

∫
B21ρr (E21)(f2 − f1)L (hν0 − E21) dE21. (A6.23)

If the energy-dependent factors, B21ρr (E21)(f2 − f1), are slowly varying compared
to the lineshape function, then we can set L (hν0 − E21) → δ(hν0 − E21) and the
gain expression reduces to

g21 ≈ hν21

vg
hB21ρr (E21)(f2 − f1), (�E21 → 0) (A6.24)

where E21 is evaluated at the photon energy of interest (i.e., g21 ≡ g(hν0 =
E21)).



A6.4 CALCULATION OF GAIN 587

Equation (A6.23) is the central result of this section. It reveals that the gain is
directly proportional to the rate constant B21, the reduced density of states, and
the Fermi probability factors. It is immediately apparent from Eq. (A6.24) that to
achieve positive gain, we must create enough electrons and holes to allow f2 > f1.
This places a condition on the quasi-Fermi levels, which reduces to the requirement
that the quasi-Fermi level separation be larger than the incident photon energy, or
�EF > hν0. Chapter 4 considers these issues in more detail.

To fully evaluate the gain, we still need to determine the rate constant, B21.
In lasers that use atomic transitions, a measurement of the spontaneous emission
linewidth of a given transition can allow us to estimate A21 if the broadening of
the line is dominated by the spontaneous emission lifetime, τsp = 1/A21. With this
information, B21 can readily be determined using Eq. (A6.19). Thus, with Einstein’s
approach and this one simple measurement, the description of gain and spontaneous
emission in atomic systems is completely self-contained.

Unfortunately the situation is not so simple in semiconductors since the sponta-
neous emission spectrum represents a superposition of transitions from all of our
differential populations. The resulting broad emission spectrum prevents us from
isolating the linewidth of just one differential population, and therefore prevents
us from evaluating A21 (and hence, B21) via direct experiment. The approach that
must be followed in semiconductors is to estimate the transition rates using other
more in-depth theories and then relate the resulting expressions back to B21 and
A21. Chapter 4 details the theory required to evaluate the transition rates explicitly
from a more fundamental quantum mechanical analysis. An explicit expression for
B21 will be presented there.

We can alternatively express the gain in terms of the spontaneous rate constant,
or the two-level lifetime, τ 21

sp = 1/A21. Using Eq. (A6.19) in Eq. (A6.24), the gain
takes the form

g21 = A21

ρ0(ν21)

h

vg
ρr (E21)(f2 − f1)

= λ2
0

8πn2τ 21
sp

hρr (E21)(f2 − f1), (A6.25)

where we have set ρ0(ν21) = 8πn2/λ2
0vg according to Eq. (A4.5), with λ0 ≡ c/ν21.

Although this expression is equivalent to Eq. (A6.24), it is very deceptive for two
reasons.

First of all, a common mistake in the literature is to equate τ 21
sp with the band-to-

band spontaneous lifetime, τsp , incorrectly linking the gain with the carrier lifetime.
In fact, some go even further by linking A21 with the overall spontaneous emis-
sion bandwidth (analogous to atomic transitions)—a procedure that is completely
misguided in semiconductors, but nevertheless encouraged by writing the gain in
terms of A21.

The second problem is that when written in this way, one might conclude that the
gain varies inversely with the optical mode density. Only on more careful inspection
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does one realize that implicit in the two-level lifetime, τ 21
sp , is an inverse dependence

on the mode density (i.e., the higher the mode density, the shorter the lifetime).
As a result, the product ρ0(ν21)τ

21
sp (and hence the gain) becomes independent of

the optical mode density—a conclusion that is obvious from Eq. (A6.24). Reduced
optical mode densities possible in very small VCSEL structures (or “microcavities”)
have lead some researchers to conclude using Eq. (A6.25) that the gain is increased
as a result—again, a conclusion which is misguided. For these reasons, Eq. (A6.24),
which more appropriately defines the gain in terms of the single-mode stimulated
rate constant, B21, is preferable.

Another issue we need to resolve is whether we should use Eq. (A6.24) or
the more complex Eq. (A6.23) to evaluate the gain. The time between collisions
for electrons in typical semiconductors is on the order of 0.1 ps, which leads to a
FWHM of �E21≈14 meV (assuming a Lorentzian lineshape). At room temperature,
this bandwidth is small enough that we can assume f2 − f1 to be roughly constant.
Furthermore, B21 does not have a strong energy dependence. Therefore, our main
concern lies with ρr (E21). In “bulk” active regions, ρr (E21) varies as E 1/2 and the
rate of change can be neglected in comparison to the bandwidth of the lineshape
function. In other words, at room temperature, Eq. (A6.24) can generally be used
with bulk active regions.

For quantum wells, the reduced density of states can be found by using the
reduced mass in Eq. (A1.45). It is zero up to the first allowed energy states in the
conduction and valence bands where nz = 1, i.e., (Ec1 − Eh1). There it abruptly
increases to

ρr (hν21) = m∗
r

π�2 d
, E21 > (Ec1 − Eh1), (A6.26)

where it remains constant up to the point where nz = 2. There it again increases
by the same amount. Thus, it violates the assumptions about being slowly varying
over the bandwidth �E21 made between Eq. (A6.23) and Eq. (A6.24). Therefore,
we must use Eq. (A6.23). Unfortunately, the actual lineshape function is not well
established. A Lorentzian is often used, but the results are somewhat nonphysical;
so other, more complex functions have been developed to better fit the experimental
data. The simple Lorentzian with an FWHM of �E21 takes the form

L (E − E21) = 2/π�E21

1 + 4(E − E21)2/�E 2
21

. (A6.27)

The integration of Eq. (A6.23) with Eq. (A6.27) will smooth the discontinuities
in ρr (E21) that exist in quantum-well (as well as quantum-wire and box) lasers.
However, the plateau gain levels obtained by inserting Eq. (A6.26) in Eq. (A6.24)
will be correct, as long as we are >�E21 away from a step edge. The numerical
gain calculations in Chapter 4 illustrate this behavior more quantitatively.

A common feature of all active materials (regardless of the lineshape broadening
or reduced dimensionality) is that the gain increases from an initial unpumped
absorption level given by g21(f2 = 0, f1 = 1), to a transparency gain value given
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N

Approx

f2 = 1,               f1 = 0

f1 = 1,  f2 = 0

Ntr ( f2 = f1)

g21

FIGURE A6.4: Illustration of gain versus carrier density. Straight-line approximation valid
over limited ranges.

by g21(f2 = f1), finally approaching a saturation level of g21(f2 = 1, f1 = 0)

(equal in magnitude to the unpumped absorption level) as more and more carriers
are injected into the active region. In Fig. A6.4 we schematically illustrate this
characteristic.

In Chapter 4 we shall find that this characteristic can be well approximated by
a logarithmic function; however, for many situations only a small portion of the
curve near and somewhat above the transparency point is of interest. In these cases,
a straight-line approximation is often very useful. That is,

g21 = a(N − Ntr ), (A6.28)

where a is the differential gain, ∂g/∂N , and Ntr is the transparency carrier
density.

A6.5 CALCULATION OF SPONTANEOUS EMISSION RATE

In creating a given amount of gain in the semiconductor by increasing dN2 relative
to dN1, we unfortunately end up creating a large amount of spontaneous emission
over a relatively broad range of frequencies. This section deals with developing the
relation for the spectrum of spontaneously emitted photons, which when integrated
allows us to determine the total number of spontaneous photons being generated
per second.
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We start by defining the spontaneous emission within a small energy interval to
be Rhν

sp (hν) h dν, where Rhν
sp is the emission rate per unit energy per unit volume

occurring at hν. As with the gain, we need to sum over all differential populations to
determine the emission rate at a single frequency. The probability of dN2 appearing
at hν is given by L (hν − E21) h dν. Weighting dN2 by this factor, multiplying by
the spontaneous rate constant, A21, and integrating over all state pairs, we obtain

Rhν
sp (hν) h dν =

∫
A21[L (hν − E21) h dν] dN2. (A6.29)

Canceling out h dν on both sides, and expanding dN2, we arrive at the desired
result:

Rhν
sp (hν) =

∫
A21ρr (E21)f2(1 − f1)L (hν − E21) dE21. (A6.30)

Equation (A6.30) reveals that the spontaneous emission spectrum is smoothed in
the same manner as the gain spectrum discussed earlier. It is interesting to note
that while we must have E21 > Eg to have a nonzero reduced density of states,
it is possible for hν < Eg since L (hν − E21) can be nonzero for hν − E21 < 0.
Thus, spontaneous emission can actually be observed at energies ≈ �E21/2 below
the bandgap. This reflects the uncertainty in the energy of states at the band edge,
which results from the finite lifetimes of electrons in those states.

Again if A21ρr (E21)f2(1 − f1) is slowly varying compared to the lineshape func-
tion, then we can set L (hν − E21) → δ(hν − E21), and Eq. (A6.30) simplifies to

R21
sp ≈ A21ρr (E21)f2(1 − f1), (�E21 → 0) (A6.31)

where we have defined R21
sp ≡ Rhν

sp (hν = E21) in analogy with g21. Comparing R21
sp

to g21 given in Eq. (A6.24), it is interesting to note that the two are quite similar.
In fact, we can express the spontaneous emission at E21 in terms of the gain at E21

as follows:

R21
sp = vg

h2ν21

A21

B21

f2(1 − f1)

(f2 − f1)
g21 = 1

h
ρ0(ν21) · vg nspg21, (A6.32)

where we have made use of the relation between the rate constants expressed in
Eq. (A6.19). We have also introduced the population inversion factor, which is
defined as

nsp = f2(1 − f1)

(f2 − f1)
= 1

1 − e(hν21−�EF )/kT
. (A6.33)

The popular usage of the sp subscript originates from the fact that nsp was initially
referred to as the spontaneous emission factor, but was later changed to eliminate
conflict with βsp , which is also defined as the spontaneous emission factor. We
now refer to nsp as the population inversion factor because it is the semiconductor
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laser equivalent to the ratio N2/(N2 − N1) encountered in atomic laser physics. In
atomic systems, when N2 − N1 > 0, the population is said to be inverted, the ratio
N2/(N2 − N1) is positive, and optical gain is achieved. Similarly, when nsp > 0, a
population inversion is established in the semiconductor, indicating a net optical
gain.

If the quasi-Fermi level separation in the semiconductor is known, then using
Eq. (A6.32), we can determine the spontaneous emission rate if we know the
gain, or we can determine the gain if the spontaneous emission rate is known. In
Chapter 4 a more thorough investigation of this fundamental relationship between
spontaneous emission and gain is provided.

Now we wish to determine the total spontaneous emission rate, Rsp , by integrat-
ing (A6.30) over all photon energies:

Rsp =
∫

Rhν
sp (hν) h dν

=
∫∫

A21ρr (E21)f2(1 − f1)L (hν − E21)dE21 h dν

≈
∫

A21ρr (E21)f2(1 − f1)

[∫
L (hν − E21) h dν

]
dE21

=
∫

A21ρr (E21)f2(1 − f1) dE21 =
∫

R21
sp dE21. (A6.34)

The third equality is found by inverting the order of integration and pulling out
all terms not dependent on the photon frequency. The approximate sign is used
here because A21 is not completely independent of photon frequency (A21 ∝ ν,
from Eq. (A6.19) with ρ0(ν) ∝ ν2 and B21 ∝ ν−2; see Chapter 4). However, in
comparison to L (hν − E21), this dependence can be neglected. The integral in
brackets then reduces to unity, which leads to the fourth equality. In other words,
the lineshape broadening has no effect on the total spontaneous emission rate, and
we can simply integrate over the simplified R21

sp defined in (A6.31).
Setting A21 = 1/τ 21

sp and Rsp = N /τsp in (A6.34), we can define the total spon-
taneous lifetime in terms of the local spontaneous lifetime through the following
nontrivial relation:

τsp ≡ N

[∫
1

τ 21
sp

ρr (E21)f2(1 − f1) dE21

]−1

(A6.35)

Generally speaking, the term in brackets will tend to go as N 2 due to the double
dependence on the quasi-Fermi levels (f2 related to N and 1 − f1 related to P ).
As a result, the total spontaneous lifetime typically follows a 1/N dependence as
assumed in Chapter 2.

In performing actual calculations of the total spontaneous emission rate, it is use-
ful to replace A21 with the single-mode rate constant, B21. Doing this, Eq. (A6.34)
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becomes

Rsp =
∫

B21hν21ρ0(ν21)ρr (E21)f2(1 − f1) dE21. (A6.36)

Thus, we see that the spontaneous emission rate includes both optical and electronic
density of states functions.

By reducing the cavity size to dimensions on the order of the emission wave-
length in the material, it is in principle possible to significantly alter the optical
mode density, which allows us to actually alter the spontaneous emission rate.
An active field of research that studies these microcavity effects is attempting to
reduce the spontaneous emission rate substantially. The motivation for this lies in
the following relation:

Rsp = ηi ηr
1

qV
. (A6.37)

That is, the total spontaneous emission rate represents the number of carriers lost
to spontaneous recombination per second and can therefore be equated with the
radiative portion of the injected current. By minimizing Rsp , researchers hope to
minimize the threshold current of certain types of lasers. In particular, VCSELs
represent excellent candidates for such experiments due to their scalable geometry.

In concluding this appendix, it is useful to appreciate that the carrier density, the
optical gain, and the radiative current in the active region can all be calculated from
the quasi-Fermi levels using Eqs. (A6.20), (A6.23), (A6.36), and (A6.37). Thus,
EFc and EFv completely determine all relevant parameters under nonequilibrium
conditions. Furthermore, by invoking charge neutrality, we can find EFc for a given
EFv using (A6.20), reducing the entire problem to one independent parameter. In
other words, we can obtain gain versus current, gain versus carrier density, or
current versus carrier density, by scanning EFv over the appropriate ranges. The
linear relationship of gain to carrier density, and the quadratic relationship of current
to carrier density discussed in Chapter 2 represent approximations to the more
rigorous nontrivial relationships derived in this appendix.

READING LIST

Verdeyen JT. Laser electronics . 2nd ed. Englewood Cliffs, NJ: Prentice Hall; 1989.
Chapters 7 and 11.



APPENDIX SEVEN

Periodic Structures and the
Transmission Matrix

A7.1 INTRODUCTION

Distributed Bragg reflectors (DBRs) are important in many laser applications
because (1) they can provide extremely high reflectivities, and (2) they can be used
as frequency-selective filters. If the dielectric stack is completely periodic, the entire
reflection spectrum can be determined exactly. If the dielectric stack is not perfectly
periodic, then for practical purposes, only the peak reflectivity can be determined
analytically. The main portion of this appendix deals with periodic stacks, first at
the Bragg frequency to obtain the peak reflectivity, and then away from the Bragg
frequency to determine the entire reflection spectrum. Correspondence is then made
between the exact analysis and approximate Fourier and coupled-mode analyses.
Finally, nonperiodic dielectric stacks are considered at the Bragg frequency.

A7.2 EIGENVALUES AND EIGENVECTORS

We begin with a homogeneous dielectric slab as shown in Fig. A7.1. Dividing
up the slab into half-wave segments, we can assign normalized magnitudes to the
forward- and backward-propagating fields at the i th plane:

ei ≡
[

Ai

Bi

]
. (A7.1)

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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n2

Am

em ei e1 e0

A0

B0Bm

Λ =   0 /2n2

FIGURE A7.1: Propagation of fields through a uniform dielectric slab of index n2, with ref-
erence planes placed at half-wavelength intervals. Arrows indicate the phase of the forward
and backward waves.

Here ei is defined as a two-component field vector, comprised of a forward wave
of normalized amplitude, Ai , and a backward wave of normalized amplitude, Bi .

Now because the planes are spaced by a half-wavelength, the phases of the
waves must change by π as we move from one plane to the next, and therefore
ei+1 = −ei . We can also express this relation in terms of the half-wave phase delay
transmission matrix introduced in Chapter 3:

ei+1 = [Tλ/2]ei = ejπ ei . (A7.2)

Thus, the transmission matrix of a half-wave segment operating on any field vector
is reduced to a multiplicative constant. The field at the input can be related to the
field at the output as follows:

em = [Tλ/2]me0 = ejmπe0. (A7.3)

Thus, the input fields are simply equal to the output fields times the multiplicative
constant taken to the mth power, from which the reflection and transmission through
the structure can be immediately obtained.

For more complex dielectric structures, the T-matrix, which relates the fields at
one plane to the fields at the next, is reduced to a multiplicative constant for only
two specific field vectors. However, it can be shown that these two field vectors can
be weighted and added to construct any desired field vector. In mathematical terms,
the two fields are referred to as eigenvectors, and the corresponding multiplicative
constants are the eigenvalues of the transmission matrix. For a reciprocal matrix
with T11T22 − T12T21 = 1, the product of the eigenvalues of the two eigenvectors
equals unity, allowing us to express them in the following manner:

[T]e+ = e+ξ e+ and [T]e− = e−ξ e−. (A7.4)
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Here e+ and e− represent the two distinct eigenvectors of the T-matrix, and e±ξ are
the corresponding eigenvalues. Written in exponential form, ξ plays the role of a
propagation constant. However, the “propagation” we are referring to is from plane
to plane, indicating that ξ is more appropriately defined as the discrete propagation
constant relating the field vector at one plane to the field vector at the next. For
a uniform slab with planes spaced by half-wavelengths, Eq. (A7.2) reveals that
ξ = jπ . In complex dielectric structures, Re{ξ} �= 0, and e+ and e− grow and
decay as we propagate through the stack.

By writing out the equations implicit in Eq. (A7.4), we can solve for the
eigenvalues and eigenvectors, or the eigensystem in terms of the T-matrix
components:

[
T11 T12

T21 T22

] [
A±
B±

]
= e±ξ

[
A±
B±

]
, (A7.5a)

e±ξ = 1
2 (T11 + T22) ±

√
1
4 (T11 + T22)

2 − 1, (A7.5b)

A±
B±

= T12

e±ξ − T11
= e±ξ − T22

T21
. (A7.5c)

The eigenvalues are found by moving all terms in Eq. (A7.5a) to the left, setting
the resulting determinant to zero, and applying T11T22 − T12T21 = 1 to simplify
the square root term. For the eigenvectors, only the ratio of the two components
is relevant (the absolute magnitude can be chosen arbitrarily). The two versions of
A/B in Eq. (A7.5c) are found using the upper and lower equations in Eq. (A7.5a),
respectively.

A7.3 APPLICATION TO DIELECTRIC STACKS AT THE BRAGG
CONDITION

By filling roughly half of each segment defined in Fig. A7.1 with a different dielec-
tric or index, n1, we arrive at the quarter-wave distributed Bragg reflector introduced
in Chapter 3, as indicated in Fig. A7.2. From Eq. (3.44), the T-matrix coefficients
of one period of this structure at the Bragg condition are symmetrical such that
T11 = T22, T21 = T12, and T 2

11 − T 2
21 = 1. These relations simplify the eigensystem

considerably:

e±ξ = T11 ± T21 and
A±
B±

= ±1. (A7.6)

A convenient choice for the two eigenvectors is

e+ =
[

1
1

]
and e− =

[
1

−1

]
. (A7.7)
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FIGURE A7.2: Forward and backward waves in a grating reflector.

Now getting back to our objective, we want to know the input fields in terms of the
output fields of the stack. Assuming no incoming wave from the right (B0 = 0),
we can write the field vector at plane 0 as

e0 =
[

1
0

]
= 1

2 (e+ + e−). (A7.8)

To determine the field vector at plane 1, we apply the T-matrix to e0, which upon
encountering the two eigenvectors is reduced to the two eigenvalues. Repeated
application of the T-matrix allows us to determine the field vector at the i th plane:

ei = [T]i e0 = 1
2

(
e+iξ e+ + e−iξ e−

) =
[

cosh iξ
sinh iξ

]
. (A7.9)

The forward and backward wave components of the field vector are drawn accord-
ing to Eq. (A7.9) at each plane in Fig. A7.2. Physically, the index discontinuities
are feeding power from the forward to the backward wave, causing the forward
wave to decay into the stack and the backward wave to grow from zero at the
output.

It is apparent in Fig. A7.2 that the more periods there are, the closer the back-
ward and forward wave are in magnitude at the input, and the higher the reflectivity
of the stack. Evaluating Eq. (A7.9) at the mth plane and taking the reflected to
incident amplitude ratio, we obtain

rg = Bm

Am
= tanh mξ , (A7.10)

or with r1 = tanh ξ = T21/T11 (= the reflectivity of one period), we can write

rg = r1meff where meff ≡ tanh mξ

tanh ξ
. (A7.11)
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Thus, the total reflectivity is just the reflectivity of one period times some effec-
tive number of mirror periods seen by the incident field, meff. As m → ∞, meff

saturates to a value of meff → 1/ tanh ξ ≈ 1/ξ (for small ξ ). From a physical view-
point, the forward wave decays approximately exponentially into the mirror, and
hence effectively “sees” only 1/ξ periods.

To further quantify the reflectivity, we must evaluate the discrete propagation
constant. This is accomplished using Eqs. (3.44) to set T11 = −(1 + r2)/t2 and
T21 = −2r/t2, where r is the reflectivity of the 2–1 interface, and t2 = 1 − r2.
With these substitutions, we have

eξ = T11 + T21 = −[(1 + r)/t]2 = n2/n1. (A7.12)

The first relation reduces to −(1 + 2r) for small interface reflectivities. Solving
for the discrete propagation constant, we find ξ ≈ jπ + 2r . In addition to the
phase shift seen with the homogeneous slab, there is a real part to the discrete
propagation constant, which is responsible for the attenuation of the incident wave.
The attenuation per unit length in this small r limit is just 2r/�, or two reflections
per half-wavelength—an intuitive result, indeed. Plugging the latter equality of
(A7.12) into (A7.11), we find that the effective number of mirror periods at the
Bragg frequency becomes

meff = tanh [m ln(n2/n1)]

tanh [ln(n2/n1)]
. (A7.13)

To determine the reflectivity, we expand (A7.10) into exponential form, and use
(A7.12) for eξ :

rg = (n2/n1)
m − (n2/n1)

−m

(n2/n1)m + (n2/n1)−m
= 1 − (n1/n2)

2m

1 + (n1/n2)2m
. (A7.14)

As m approaches infinity, this ratio approaches one, with larger differences in the
index accelerating the convergence (see Problem A7.1). In the last section of this
appendix, we will develop a more generalized version of (A7.14), applicable to
more general quarter-wave stacks at the Bragg condition.

A7.4 APPLICATION TO DIELECTRIC STACKS AWAY FROM THE BRAGG
CONDITION

The preceding analysis corresponded to the quarter-wave stack at its peak reflec-
tivity, where all interface reflections add in phase. With the thickness of each layer
being exactly one quarter-wavelength, the T -matrix reduced considerably allow-
ing us to simplify the description of the eigensystem. In the more general case
away from the Bragg condition, T11 �= T22 and T21 �= T12, and the eigensystem
becomes more complex. Rather than repeat the procedure for this more general
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case (see Problem A7.2), we will explore an alternative approach, which involves
determining the overall grating matrix in terms of the single-period T-matrix.

We can relate the grating matrix to the eigenvectors and eigenvalues of the
single-period T-matrix as follows:

[Tg ]e± = [T]me± = e±mξ e±. (A7.15)

This equation reveals that the eigenvectors of the grating matrix, Tg , are in fact
the same as the eigenvectors of the single period T-matrix, with the correspond-
ing eigenvalues taken to the mth power. As a result, from the first equality in
Eq. (A7.5c), we can set

Tg12

e±mξ − Tg11
= T12

e±ξ − T11
. (A7.16)

Subtracting the minus version of this equation from the plus version, we immedi-
ately obtain: Tg12 sinh ξ = T12 sinh mξ . If we now add the minus version to the plus
version, we find: (sinh mξ)(cosh ξ − T11) = (sinh ξ)(cosh mξ − Tg11). Solving for
the grating matrix coefficients, we obtain

Tg11 = sinh mξ

sinh ξ
T11 − sinh mξ cosh ξ − cosh mξ sinh ξ

sinh ξ
,

Tg12 = sinh mξ

sinh ξ
T12.

(A7.17)

Identical relations exist for Tg22 and Tg21 using the second equality in Eq. (A7.5c).
The overall reflectivity is then simply given by Tg21/Tg11, which becomes

rg = Tg21

Tg11
= T21/T11

1 − sinh(m − 1)ξ

T11 sinh mξ

, (A7.18)

where we have used the identity,

sinh mξ cosh ξ − cosh mξ sinh ξ = sinh(m − 1)ξ.

While Eq. (A7.17) provides us with the reflectivity of the grating, it is lacking in
the sense that it does not provide us with any feel for how the reflectivity changes
with frequency. Approximate expressions for rg characterize the frequency depen-
dence using the detuning parameter, δ = β − β0, introduced in Chapter 3. Toward
this end, we define a generalized detuning parameter, which is characterized by
the asymmetry in the diagonal matrix coefficients:

� ≡ j
T22 − T11

T22 + T11
. (A7.19)
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In the low interface reflectivity limit near the Bragg frequency, � → δ� = π(ν −
ν0)/ν0 (see Eqs. (3.44) with no loss).

In order to use � in Eq. (A7.17), we first replace every sinh x function with
(cosh x )(tanh x ). The tanh x functions can then be replaced with the effective
number of mirror periods, meff = tanh mξ/ tanh ξ , and we are left with only cosh
x functions. By adding the plus and minus versions of Eq. (A7.5b), we can set

cosh ξ = 1

2
(T11 + T22) = T11

1 + j�
= T22

1 − j�
. (A7.20)

The latter equalities make use of Eq. (A7.19). Using cosh ξ = T11/(1 + j�) for
Tg11 and Tg21, and cosh ξ = T22/(1 − j�) for Tg22 and Tg12, Eqs. (A7.17) trans-
form into

Tg11 = (1 + jmeff�) cosh mξ ,

Tg21 = T21

T11
meff(1 + j�) cosh mξ ,

(A7.21)

and

Tg12 = T12

T22
meff(1 − j�) cosh mξ ,

Tg22 = (1 − jmeff�) cosh mξ.

(A7.22)

Using Eq. (A7.21) to define the grating reflectivity, rg = Tg21/Tg11, we obtain

rg = r1meff
1 + j�

1 + jmeff�
, (A7.23)

where r1 = T21/T11, the reflectivity of one period.
In this version of rg , the frequency dependence is more clearly visible. For

example, at the Bragg frequency, � → 0 and Eq. (A7.23) reduces immediately to
Eq. (A7.11). For small deviations from the Bragg condition, we can expand the
denominator to first order in � to obtain

rg ≈ r1meff[1 − j (meff − 1)�] ≡ r1meff[1 − j 2δLeff]. (A7.24)

The latter equality, being the first-order expansion of e−j 2δLeff , suggests that we can
approximate the reflection phase deviation by a simple propagation delay associated
with some effective length, or penetration depth. For small interface reflectivities
near the Bragg frequency, � ≈ δ�, meff � 1, and Leff ≈ 1

2 meff�. A more rigorous
analysis which evaluates the exact phase slope at the Bragg frequency reveals that

Leff ≡ −1

2

dφm

dδ

∣∣∣∣
δ=0

= 1

2
meff�

[
1

1 + r2
− 1

2meff

]
, (A7.25)

where meff is evaluated at the Bragg condition, and r is the interface reflectivity.
For small r , meff becomes large and the term in brackets reduces to unity.
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Problem A7.3 examines the penetration depth concept applied to the energy
distribution and absorption loss of a grating at the Bragg frequency. It is shown
there that in the small r , large m limit, we can again set Leff = 1

2 meff�. Leff is equal
to half the effective number of mirror periods seen by the field because the energy
distribution and power go as the field squared, decaying twice as fast as the field.

To completely specify the grating reflectivity, we need to define explicit relations
for r1, �, and meff in terms of the matrix coefficients developed in Chapter 3. In
Eqs. (3.44), two phase factors are used: φ± = β̃1L1 ± β̃2L2. With no loss, we can
use Eq. (3.48) to set φ+ = π + δL and φ− = 0, where δ ≡ β − β0, and β is the
average propagation constant of the grating defined in Eq. (3.46). For a lossless
DBR, Eqs. (3.44) become

T11 = − 1

t2
(ejδ� + r2), T22 = − 1

t2
(e−jδ� + r2),

T21 = − r

t2
(ejδ� + 1), T12 = − r

t2
(e−jδ� + 1).

(A7.26)

From these relations we can immediately determine r1 and �:

r1 = T21

T11
= 2r

cos(δ�/2)e−jδ�/2

1 + r2e−jδ�
, (A7.27)

� = j
T22 − T11

T22 + T11
= sin δ�

cos δ� + r2
. (A7.28)

To help determine the eigenvalues and meff, we have

1

2
(T11 + T22) = − 1

t2
(cos δ� + r2), (A7.29)

√
1
4 (T11 + T22)

2 − 1 = 1

t2
[2r2(1 + cos δ�) − sin2 δ�]1/2. (A7.30)

Using these relations in Eq. (A7.5b), we can calculate both ξ and meff. The reflection
coefficient is now completely defined in terms of fundamental grating parame-
ters: m , r = (n2 − n1)/(n2 + n1), t = √

1 − r2, and δ� = (β − β0)�, where 1/β =
1
2 [1/β1 + 1/β2].

A7.5 CORRESPONDENCE WITH APPROXIMATE TECHNIQUES

In this section, we examine how the exact reflectivity reduces to common approx-
imate expressions. We will consider two limiting cases. The first approximation
involves neglecting r2 and higher terms, while retaining all terms related to δ�. In
this case, the reflectivity reduces to the Fourier limit. The second approximation
involves retaining terms up to r2 and limiting the frequency deviation to (δ�)2

terms. In this case, the reflectivity reduces to the coupled-mode limit considered in
Chapter 6.
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A7.5.1 Fourier Limit

To analyze the grating reflector using Fourier analysis, we send an impulse function
into the stack and track the resulting distribution of reflected impulse functions in
time. Such an analysis gives us the impulse response of the grating. The Fourier
transform of the impulse response should then correspond to the reflection spec-
trum. While this approach in principle is exact, in practice, the infinite number of
impulse functions which appear back at the input after repeated bounces within
a multilayer stack makes this approach mathematically intractable in the general
case. However, if the interface reflections are small, any impulse functions which
make double bounces or more before returning to the input will have negligi-
ble magnitude and can be ignored. In this limit, only a small uniform burst of
impulse functions will return (assuming the transmission through each interface
does not reduce the magnitude of the impulse). This square-shaped envelope of the
impulse response when Fourier transformed leads to a sin x/x type reflection spec-
trum. It is this functionality we would like to reproduce using the exact expression
(A7.23).

To approximate the simplified Fourier analysis, we neglect all but linear terms
in r , simulating the single-bounce approximation. However, the frequency varia-
tion we retain completely, since this is accurately determined using the Fourier
approach. With these approximations, (A7.27) and (A7.28) simplify to

r1 ≈ 2r cos(δ�/2)e−δ�/2,

� ≈ tan δ�.
(A7.31)

The discrete propagation constant and the effective number of mirror periods found
using (A7.29) and (A7.30) in (A7.5b) and (A7.11) simplify to

1
2 (T11 + T22) ≈ − cos δ�,

√
1
4 (T11 + T22)

2 − 1 ≈ j sin δ�,

e±ξ ≈ − cos δ� ± j sin δ� = ejπ e∓jδ�, (A7.32)

meff = tanh mξ

tanh ξ
≈ tan mδ�

tan δ�
.

In the Fourier limit, the discrete propagation constant becomes simply the phase
delay between mirror periods including detuning effects, jπ ∓ j δ�.

Using these approximations in the expression for reflectivity (A7.23), we obtain

rg ≈ 2r cos(δ�/2)e−δ�/2 tan mδ�

tan δ�
.

1 + j tan δ�

1 + j tan mδ�
. (A7.33)

To reduce this expression to the Fourier limit, we move the cosines in the
first fraction to the second fraction and convert the entire second fraction to
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exponential form. We then assume that the phase deviation across one period can
be expanded to second order, such that cos(δ�/2) ≈ 1 and sin δ� ≈ δ�. The
accumulated phase deviation, mδ�, across the entire grating may be large, so we
leave this in general form. With m� = Lg (the length of the grating), Eq. (A7.33)
reduces to

rg |Fourier = 2mr
sin δLg

δLg
e−jδLg [(m−1/2)/m]. (A7.34)

This result is exactly the result we would obtain from a simplified single-bounce
Fourier analysis, revealing the characteristic sin x/x spectral dependence of weakly
reflecting gratings. The m − 1/2 term in the phase factor results from our definition
of Lg which places the output reference plane one half-period beyond the last
reflection of the grating.

A7.5.2 Coupled-Mode Limit

The coupled-mode approach discussed in Chapter 6 analyzes the grating by solving
the wave equation assuming the waves are sufficiently slowly varying that second-
order derivatives of their magnitude can be neglected. This restriction implies
that the interface reflectivities must not be too strong and amounts to neglecting
terms higher than r2. Because the coupled-mode approach includes r2 terms, it is
much more accurate than the Fourier approach for strongly reflecting gratings near
the Bragg condition. Another fundamental approximation of coupled-mode theory
involves retaining only those Fourier components of the index variation which
effectively couple forward- and backward-going waves at the Bragg condition.
Away from the Bragg condition, other Fourier components of the index variation
begin to contribute to the coupling between forward and backward waves. With
these contributions neglected, we would expect that the coupled-mode approach
is only good over a limited frequency range, in contrast to the Fourier approach.
Therefore, to reproduce the coupled-mode approximation, we will limit the fre-
quency deviation to (δ�)2.

Proceeding as before, we retain terms up to r2 and (δ�)2, neglecting all others.
We also neglect all products between r and δ�. Equations (A7.27) and (A7.28) in
this case simplify to

r1 ≈ 2r ≡ κ�,

� ≈ δ�.
(A7.35)

Here we have introduced a new variable, κ ≡ 2r/�, which in coupled-mode theory
represents the coupling per unit length between the forward and backward waves.
For the square wave profile analyzed here, the coupling constant, κ , is just equal
to two reflections per grating period. We will use κ in place of r for the rest of
this section.



A7.6 GENERALIZED REFLECTIVITY AT THE BRAGG CONDITION 603

The discrete propagation constant and the effective number of mirror periods
found using (A7.29) and (A7.30) in (A7.5b) and (A7.11) simplify to

1
2 (T11 + T22) ≈ −(1 + (κ�)2/2 − (δ�)2/2),√
1
4 (T11 + T22)

2 − 1 ≈ [(κ�)2 − (δ�)2]1/2 ≡ σ�,

e±ξ ≈ −(1 ∓ σ� + (σ�)2/2) ≈ ejπ e∓σ�, (A7.36)

meff = tanh mξ

tanh ξ
≈ tanh mσ�

σ�
.

For consistency with coupled-mode notation used in Chapter 6, we have introduced
another new variable, σ ≡ √

κ2 − δ2. The discrete propagation constant is simply
jπ ∓ σ�, to second order in σ�. Within the stopband (|δ| < κ), σ = Re{ξ/�} and
we can interpret it as the decay constant per unit length.

Using the approximations contained in (A7.35) and (A7.36), the general expres-
sion for reflectivity (A7.23) reduces to

rg |coupled-mode = κ

σ
tanh σLg

1

1 + j
δ

σ
tanh σLg

. (A7.37)

In deriving this result, we have neglected j� in the numerator in comparison
to one, and set m� = Lg . Equation (A7.37) is equivalent to the coupled-mode
result, Eq. (6.48), aside from the −j phase factor listed there, which arises from a
difference in the choice of input reference plane (see Chapter 6 for details).

A7.6 GENERALIZED REFLECTIVITY AT THE BRAGG CONDITION

The analysis described earlier assumes that the overall grating matrix can be rep-
resented by the single-period T-matrix taken to the mth power. The disadvantage
of this approach is that it assumes the grating is completely periodic with only two
alternating index layers. In practice, the input and output layers usually have dif-
ferent refractive indices from those comprising the alternating layers of the grating.
More generally, there might be a situation where many of the layers within the
grating itself are different. In this section we would like to generalize the results
of Section A7.3 to include such nonperiodic gratings. Unfortunately, this type of
analysis is not possible away from the Bragg condition, so we focus our attention
on determining the reflectivity at the Bragg frequency.

Breaking the grating down into its fundamental components, we find that there
are three types of matrices we need to consider: (1) high-to-low interfaces (ref-
erenced from left to right), (2) low-to-high interfaces, and (3) quarter-wave phase
delays. Denoting these by THL, TLH , and Tλ/4, we would like to consider their
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effect on the following vectors:

e+ =
[

1
1

]
and e− =

[
1

−1

]
. (A7.38)

Using Table 3.3, it can be shown that

[THL]e+ = e+s e+, [THL]e− = e−s e−

[TLH ]e+ = e−s e+, [TLH ]e− = e+s e− (A7.39)

[Tλ/4]e+ = j e−, [Tλ/4]e− = j e+

where for the i th interface

si = 1

2
ln

[
nHi

nLi

]
. (A7.40)

nHi is the high index of the i th interface, and nLi is the low index. From Eqs.
(A7.39), we see that e+ and e− are actually the eigenvectors of both THL and TLH ,
suggesting that si is just the discrete attenuation constant of the i th interface. For a
quarter-wave delay, e+ and e− are not the eigenvectors, however, Tλ/4 does trans-
form one into the other. In Problem A7.4 the reader is asked to verify these relations.

Equations (A7.39) are all we need to propagate through any structure comprised
of index discontinuities and multiples of quarter-wave segments. We are specifically
interested in a grating whose index layers follow an HLHL sequence and are each
a quarter-wavelength thick. We begin by expanding the output field vector using
Eq. (A7.8). Propagating through the first half-wavelength of the structure, assuming
interface 0 is high-low, and interface 1 is low-high, we obtain

[TLH ][Tλ/4][THL][Tλ/4]e0 = [TLH ][Tλ/4][THL][Tλ/4] 1
2 [e+ + e−]

= [TLH ][Tλ/4] j 1
2 [e−s0e− + e+s0 e+]

= − 1
2 [e−(s1+s0)e+ + e+(s1+s0)e−]. (A7.41)

Thus, the s parameters of the two interfaces simply add together. Continuing the
above procedure through N interfaces to the input, and taking the ratio of the
reflected to incident wave amplitudes, we find

|rg | = tanh
N∑
0

si , (A7.42)

where N is the number of quarter-wave layers in the grating. Using Eq. (A7.40)
for si , we can alternatively express the reflectivity as

|rg | = 1 − b

1 + b
where b =

N∏
0

[
nLi

nHi

]
. (A7.43)
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If nL and nH do not change throughout the grating, and there are N = 2m quarter-
wave layers with nL0/nH 0 = 1 (see Fig. A7.2), then b = (nL/nH )2m , and (A7.43)
reduces to the more limited (A7.14) derived earlier.

The tools developed here can also be applied to dielectric structures which may
have half-wavelength spacings, as well as to structures which do not follow the
HLHL alternating sequence (antireflection coatings are an example of this). The
interested reader is invited to compare this method to the method discussed by
Corzine, Yan, and Coldren (see reading list), which analyzes a wider range of
dielectric structures using essentially the same approach.

READING LIST

Corzine SW, Yan R-H, Coldren LA. A tanh substitution technique for the analysis of abrupt
and graded interface multilayer dielectric stacks. IEEE J Quantum Electron 1991;27:
2086.

Babic DI, Corzine SW. Analytic expressions for the reflection delay, penetration depth, and
absorptance of quarter-wave dielectric mirrors. IEEE J Quantum Electron 1992;28: 514.

Yeh P. Optical waves in layered media . New York: Wiley; 1988.

PROBLEMS

1. Design the grating mirrors of a VCSEL which meet the following require-
ments:

(i) The output coupler mirror must be as close to 99% peak power reflectivity
as possible.

(ii) The back reflector must be greater than 99.9% peak power reflectiv-
ity. Specify the mirror designs including number of periods and layer
thicknesses for two material systems:

(a) Al0.2 Ga0.8As/AlAs alternating layers, which provide a peak reflectivity
at 0.87 μm

(b) InP/InGaAsP(1.3 μm) alternating layers, which provide a peak reflectiv-
ity at 1.55 μm

Table 1.1 may be helpful in establishing the proper design. For the back
reflector, assume the grating terminates in the higher index material on both
sides. For the output coupler, assume that one side terminates in the higher-
index material, and that the other side terminates in air (in your output coupler
design, take care to ensure that the index follows the HLHL ordering sequence
required for proper phasing of the reflected waves). Include a schematic of
the index profile for all finished mirror designs.

If the region between the two mirrors of the VCSEL is one optical wave-
length thick, how long would it take to grow both the shortwavelength and
long-wavelength VCSELs assuming a typical growth rate of 1 μm/hour? Can
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you comment on the benefits of either the short- or long-wavelength material
systems from this perspective?

2. Derive the general expression for the grating reflectivity, Eq. (A7.23), using
the techniques developed in Section A7.3. Specifically:

(i) Determine the eigenvectors using the second version of Eq. (A7.5c).

(ii) Expand the output vector in terms of the two eigenvectors.

(iii) Propagate the fields to the input plane.

(iv) Evaluate the reflected to incident amplitude ratio.

In defining the eigenvectors you may find it useful to set e±ξ = T11(1 ±
tanh ξ)/(1 + j�) and T22 = T11(1 − j�)/(1 + j�) (however, if you do use
these relations, verify that they are indeed correct).

3. The concept of a penetration depth not only applies to the linear phase devia-
tion of the grating near the Bragg condition, but also to the energy distribution
and absorption loss of the grating at the Bragg frequency.

(a) The energy penetration depth can be defined as the depth at which the
incident energy taken as constant into the mirror is equal to the total
energy integrated over the grating length. Setting the incident energy
times the energy penetration depth equal to the summation of energy
throughout all periods, we have

(A∗
mAm + B∗

mBm)Le
eff =

m∑
i=1

(A∗
i Ai + B∗

i Bi )�. (A7.44)

Here the total energy in each period is approximated by the energy density
at the left edge times the thickness of one period. This will be a good
approximation if � is small compared to the length of the stack (m is
large).

Using Eq. (A7.9) for Ai and Bi at the Bragg frequency, show that the
energy penetration depth can be approximated by

Le
eff = tanh 2mξ

2ξ
�. (A7.45)

Hint : The summation can be approximated with an integral by setting
� → dz and i� → z .
Show that this expression is equivalent to 1

2 meff� in the small r , large
m limit.

(b) The absorption loss penetration depth can be defined as follows. If
some small absorption loss, α, is distributed uniformly throughout the
grating, the reflectivity of the grating will be reduced somewhat. If we
model the reflector as a hard mirror recessed by some penetration depth
into the lossy material, then the resulting round-trip attenuation is equal
to e−2αLa

eff ≈ 1 − 2αLa
eff (for small losses). The definition of La

eff is found
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by equating this effective reduction in power reflectivity with the true
reduction.

By including a uniform loss in the phase terms, φ±, of Eqs. (3.44),
show that at the Bragg frequency, � ≈ −jα�/2 instead of zero. With
this result and Eq. (A7.23), derive an approximate expression for La

eff,
assuming the loss terms can be expanded to first order. Show that La

eff is
equivalent to 1

2 meff� in the small r limit.

(c) Derive the exact phase penetration depth, Lp
eff, given in Eq. (A7.25).

4. Verify all relations in Eq. (A7.39). What are the corresponding relations for
a half-wave phase delay? Answer this question by:

(a) Directly using the half-wave matrix

(b) Connecting two quarter-wave phase delays in series

Using the half-wave phase delay properties just derived, and other tools
developed in Section A7.6, derive the reflectivity of a structure which is
composed of:

(a) A low-high interface

(b) A half-wavelength phase delay

(c) A high-low interface (where the high layer of both interfaces is the same)

Express the reflectivity both in terms of the three refractive indices and in
terms of the individual interface reflectivities. Repeat the derivation assuming
a quarter-wave phase delay instead. How do these expressions compare to
the Fabry–Perot expressions derived in Chapter 3?



APPENDIX EIGHT

Electronic States in
Semiconductors

A8.1 INTRODUCTION

In Appendix 1, a basic description of electronic states in periodic potentials was
given. Important concepts such as energy bands, the electron effective mass, and the
density of states were introduced. All these concepts are essential to understand-
ing the manner in which light interacts with semiconductor crystals. However,
to provide a quantitative description of optical gain in these materials, a more
complete description of the electronic states is required. In this appendix, the
wavefunctions of the electrons required to evaluate the transition matrix element
(see Appendix 10) will be considered in some detail. In addition, valence band-
mixing effects related to the coupling of the heavy-and light-hole bands will be
discussed. Finally the effects of strain on the subband structure of strained quantum
wells will be treated. Some of the discussions will draw on material introduced in
Appendix 1.

A8.2 GENERAL DESCRIPTION OF ELECTRONIC STATES

The electron wavefunctions in the conduction and valence bands of the semicon-
ductor are found by solving the Schrödinger equation, which relates the system
Hamiltonian, H0, of the crystal lattice to the energy, E , of the electron. It can be

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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written as

H0ψ =
[

p2

2m0
+ V (r)

]
ψ = Eψ , (A8.1)

where p is the momentum operator, r is the position vector, m0 is the free electron
mass, ψ is the wavefunction of the electron, and V (r) is the potential created by
the crystal lattice. Due to the periodicity of V (r), the solutions of the preceding
equation are given by Bloch waves of the form

ψ = eik·ru(k, r), (A8.2)

where k is the wavevector of the electron, and u is a Bloch function with the
special property that it is periodic with the crystal lattice, and hence repeats itself
in each unit cell of the crystal. In most practical cases, we never actually need
to know the exact description of the Bloch function. What is important, however,
is the symmetry properties of the Bloch functions in the conduction and valence
bands, which will be considered in Section A8.3.

For analyzing localized electronic states such as those encountered in quantum
wells and quantum wires, it is useful to consider linear combinations of the Bloch
wave solutions in Eq. (A8.2). Using an arbitrary set of expansion coefficients, A(k ),
we can express a spatially localized wavefunction as

ψ =
∫

A(k)eik·ru(k, r) d3k ≈ u(0, r)
∫

A(k)eik·r d3k ≡ F (r)u(r). (A8.3)

The description of localized states contained in (A8.3) is known as the envelope
function approximation. The key assumption here is that within a given energy
band, the Bloch function is not a strong function of k (at least in the proximity of
the band edge) and can thus be approximately represented by the band edge (k = 0)

Bloch function, u(0, r) ≡ u(r). This allows us to pull it out of the expansion and
define an envelope function, F (r), whose Fourier spectrum is made up of the plane
wave components of the solutions in (A8.2). Thus, our generalized approximate
solutions in a given energy band consist of the band edge Bloch function multiplied
by a slowly varying envelope function. We choose the two components to be
normalized such that in Dirac notation, we have

〈F |F 〉 ≡
∫

V
F ∗F d3r = 1, 〈u|u〉 ≡ 1

Vuc

∫
unit cell

u∗u d3r = 1. (A8.4)

For the envelope functions, V is the volume of the crystal. For the Bloch functions,
we only need to consider the volume of a single unit cell of the crystal, Vuc . Note
that with our chosen definitions, the envelope functions have dimensions of V −1/2,
whereas the Bloch functions are dimensionless.

From symmetry considerations alone, one can deduce that the conduction band
and valence band Bloch functions are orthogonal to each other. In Dirac notation,



A8.3 BLOCH FUNCTIONS AND THE MOMENTUM MATRIX ELEMENT 611

this orthogonality can be compactly written as

〈uc |uv〉 = 〈uv|uc〉 = 0. (A8.5)

In Section A8.3, a more detailed discussion of the Bloch functions will reveal why
this orthogonality exists. The envelope functions on the other hand can be deter-
mined explicitly. For example, in bulk material, the normalized envelope functions
are simple plane waves:

F = 1√
V

eik·r. (A8.6)

The envelope functions in quantum-well material are considered in Appendix 1
and also later in this appendix.

We are particularly interested in the relationship between the energy, E , of the
electron or hole given in Eq. (A8.1) and the electron’s wavevector, k, given in
Eq. (A8.6). It is quite common to assume the bands to be parabolic in both the
conduction and valence bands, allowing us to invoke the effective mass concept:

E2(k) = Ec + �
2k2

2

2mc
, E1(k) = Ev − �

2k2
1

2mv

, (A8.7)

where Ec,v are the band edge energies, mc,v are the effective masses in the two
bands, and k2,1 are the magnitudes of the wavevectors of a given electron or hole.
However, these expressions are oversimplifications to reality. First of all, E (k) is
not the same along all directions of the crystal, and we cannot simply use k in place
of k. For example, the heavy-hole band in GaAs is known to be highly anisotropic
as a function of the k -vector direction (in comparison, the conduction and light-hole
bands are much more isotropic at energies near the band edge). Second, at energies
away from the band edge, the band curvature does not remain perfectly parabolic,
especially in the light-hole band. In quantum-well and quantum-wire material, the
valence band becomes extremely nonparabolic. Thus, in defining the relations for
gain, we must keep in mind that (A8.7) is not always a good approximation to
reality.

A8.3 BLOCH FUNCTIONS AND THE MOMENTUM MATRIX ELEMENT

To define the electronic states more explicitly, we will first consider the Bloch func-
tions of the various energy bands. The conduction and valence bands are illustrated
in Fig. A8.1. The three valence bands are commonly known as the heavy-hole
(HH), light-hole (LH), and split-off hole (SO) bands. We can view each energy
band as originating from the discrete atomic energy levels of the isolated atoms
that compose the crystal as introduced in Appendix 1. In this sense, the conduction
band can be thought of as a remnant of an s atomic orbital, while the three valence
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�

FIGURE A8.1: Typical III–V semiconductor band structure schematic illustrating the con-
duction (C), heavy-hole (HH), light-hole (LH), and split-off (SO) bands and their relative
energy separations. The true (solid) and approximate (dashed) C bands are shown with their
corresponding effective masses. (The relative scale of the four bands corresponds roughly
to GaAs.)

bands are remnants of the three p atomic orbitals: px , py , and pz . The corresponding
Bloch functions for these orbitals are denoted here as us and ux , uy , and uz . It is
very useful to make this correspondence because the Bloch functions retain many
of the symmetries that the atomic orbitals possess.

For instance, the conduction band Bloch function, us , has even symmetry in all
three directions within each unit cell, similar to the spherically symmetric s atomic
orbital. In a similar manner, uz has odd symmetry along z , but even symmetry
in the other two directions, within each unit cell, similar to the pz atomic orbital.
From these two facts alone, we can state that the net odd symmetry along z must
give 〈us |uz 〉 = 0 (where the brackets indicate integration over a unit cell). However,
operating on uz with the momentum operator, pz , inverts the symmetry along z and
the momentum matrix element 〈us |pz |uz 〉 is therefore, in general nonzero. From
these and similar arguments we can immediately write down some useful symmetry
relations and definitions [1]

〈us |pi |uj 〉 = 0, for i �= j (A8.8)

〈us |p|ui 〉 = 〈us |pi |ui 〉 ≡ M , (A8.9)

〈us |p|ūi 〉 = 0, (A8.10)

where i = x , y , z , and ui , ūi indicate spin-up and spin-down functions. The third
relation comes from the fact that Bloch functions of opposite spin do not interact.
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The constant M is defined here as the basis function momentum matrix element.
Thus, through simple symmetry arguments, the various momentum matrix elements
between us and the three ui can now all be related simply to one constant, M .

The valence band Bloch functions uhh , ulh , and uso corresponding to the bands
of Fig. A8.1 are usually written as linear combinations of the “basis” functions ux ,
uy , and uz [2-4] in a manner analogous to the construction of hybrid orbitals in the
study of molecular bonds. Spin degeneracy exists in all three bands, so we actually
need to define six Bloch functions. Defining the electron’s k -vector to be directed
along z , the valence band Bloch functions can be written as

uhh = − 1√
2
(ux + iuy ), ūhh = 1√

2
(ūx − i ūy ),

ulh = − 1√
6
(ūx + i ūy − 2uz ), ūlh = 1√

6
(ux − iuy + 2ūz ), (A8.11)

uso = − 1√
3
(ūx + i ūy + uz ), ūso = 1√

3
(ux − iuy − ūz ).

The prefactors are normalization constants, which can have arbitrary phase (the
phases chosen here are those of Broido and Sham [5]). For k directed along another
direction we would have to redefine the above relations (however, cyclic permuta-
tion of x, y, and z do yield equivalent relations if we also include the direction of
k in the permutation).

The above linear combinations of basis functions are known as the angular
momentum representation. They are useful when we consider the spin-orbit inter-
action between the angular momentum of the p orbitals and the spin angular
momentum of the electron. The spin-orbit interaction term is “diagonalized” in
this representation [2]. The SO band would be degenerate with the HH and LH
bands if the spin-orbit interaction did not exist. As it is, the spin-orbit interaction
partially removes the degeneracy, suppressing the SO band from the other two by
a spin-orbit splitting energy, �, which in GaAs is equal to ∼0.34 eV.

With the above description of the valence bands, we can obtain a more complete
description of the transition matrix element. However, the magnitude of the basis
function momentum matrix element is still an unknown. Therefore, we will close
this section with an example use of the preceding relations to obtain an approximate
expression for the magnitude of |M |2.

Evaluation of |M |2 in bulk material was first obtained by theoretically relating
it to the curvature of the conduction band [3, 6]. Using a second-order perturbation
technique known as the k · p method [1–3], we can express the conduction band
effective mass along the electron’s k -vector direction (which for the definitions of
Eq. (A8.11) is the z -direction) as

1

mcz
= 1

m0

⎡
⎣1 +

∑
n �=c

2

m0

|〈uc |pz |un〉|2
Ec − En

⎤
⎦ , (A8.12)
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where the summation sums over all n energy bands (not to be mistaken with energy
subbands in quantum wells) of the crystal, and the En and Ec are the band edge
energies of each band. From (A8.12) we see that the deviation of the conduction
band effective mass from the free electron mass arises from the interaction between
the conduction band and all other energy bands in the crystal.

It is interesting to note that due to the sign of the denominator, contributions
from higher energy bands make the effective mass heavier and tend to flatten out
the conduction band, while contributions from lower-lying energy bands tend to
decrease the effective mass, increasing the curvature of the conduction band. In
either case we find that the effect of a given band is to repel the conduction band
away from it.

Also because of the denominator, only energy bands close in energy to the
conduction band will contribute significantly to the summation. By neglecting all
but the three valence bands in the summation, we can obtain an approximate closed-
form expression for the conduction band effective mass using the relations given
in (A8.8) through (A8.10) and (A8.11). Note that the HH Bloch function does not
contain uz , and hence its contribution to the sum is zero. Thus, summing over
the LH and SO bands and using the energy separations defined in Fig. A8.1, we
obtain

1

m∗ =
[

1 + 2|M |2
m0

(
2

3

1

Eg
+ 1

3

1

(Eg + �)

)]
. (A8.13)

The approximate conduction band effective mass, m∗, is expected to be lighter
than the true effective mass since the effects of any higher energy bands have been
neglected in our approximation. The approximate conduction band (with curvature
related to m∗) and the true conduction band are both illustrated in Fig. A8.1.

The true conduction band effective mass can be measured experimentally to
a good degree of precision using cyclotron resonance techniques [7]. Thus, by
assuming that m∗ is close to the true effective mass, mc , we can rearrange (A8.13)
to obtain

|M |2 =
( m0

m∗ − 1
) (Eg + �)

2

(
Eg + 2

3
�

)m0Eg . (A8.14)

So we see that the simple description of the valence bands given in Eq. (A8.8)
through Eqs. (A8.10) and (A8.11) has led directly to a formula that can yield a
rough estimate of |M |2 [6]. And although the above relation is not exact, it does
reveal that |M |2 is roughly proportional to the ratio of the energy gap to the
conduction band effective mass of the semiconductor [8].

We have derived Eq. (A8.14) as an exercise in using the valence band Bloch
functions. It is a useful formula for materials which have not been fully charac-
terized. However, in more common materials, such as GaAs, much more accu-
rate methods of determining |M |2 exist [9–13]. The inaccuracy of Eq. (A8.14)
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stems from the fact that the contribution from higher-lying energy bands can be
significant, and thus, m∗ is not always a very good approximation to the true
effective mass, mc . For example, in GaAs, m∗ is approximately equal to 0.0502m0

compared to the true effective mass, 0.067m0. Thus, using the true effective mass in
Eq. (A8.14) leads to an underestimation of the matrix element by about 26%. Many
previous calculations have failed to recognize this correction (see Yan et al. [14]
for a discussion of this) implying that both calculated spontaneous emission (and
hence, calculated radiative current density) and optical gain will be underestimated
by 26%, a significant factor. The most accurate estimates of |M |2 have actually
been obtained using electron spin resonance techniques [9–13]. In Table 4.1, we
tabulated the most accurately reported values of |M |2 in several material systems
commonly used in semiconductor laser applications.

A8.4 BAND STRUCTURE IN QUANTUM WELLS

With the Bloch functions now defined, we need to concentrate on defining and
solving for the envelope functions in the conduction and valence bands.

A8.4.1 Conduction Band

For a nondegenerate energy band (aside from spin), such as the conduction band, it
has been shown most notably by Luttinger and Kohn [4] (using a k · p formalism)
that an “effective mass equation” or Schrödinger-like equation for the envelope
function, F2, as defined in (A8.3) can be derived. It can be given as

(Hc + V )F2 = E2(k)F2, (A8.15)

where the Hamiltonian for the conduction band is simply

Hc = − �
2

2mc
∇2 → �

2

2mc
(k2

x + k2
y + k2

z ). (A8.16)

The arrow indicates the form of the Hamiltonian for plane wave solutions (when
V is constant). The potential, V , in this case corresponds to the variation in the
material band edge, and the total energy of the electron, E2(k), is measured relative
to the bottom of the conduction band. What is extremely appealing about the
effective mass equation as compared to Eq. (A8.1) is that the Bloch functions have
been removed from the equation, and the effect of the periodic potential arising
from the crystal lattice (and hence, the coupling to other energy bands) is now
replaced by a conduction band “effective” mass, mc . In this approximation, the
quantum well created by the interfacing of three materials of different bandgap
truly becomes a textbook particle-in-a-box problem with F as the wavefunction,
and the material band edges as the potential, V . The solutions to Eqs. (A8.15) and
(A8.16) for a quantum well are considered in Appendix 1.
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A8.4.2 Valence Band

Degenerate Effective Mass Equation The simplicity of the band structure in the
conduction band of a quantum well relies on the assumption that the interaction
with other energy bands is weak enough that we can treat it perturbatively by
replacing that interaction with a conduction band effective mass. However, for
bands degenerate in energy, the assumption of weak interaction is a poor one and
cannot be used. Therefore, the effective mass Eq. (A8.15) must be modified to
include the strong degenerate band interaction explicitly.

A modified derivation for the degenerate band effective mass equation has also
been treated by Luttinger and Kohn [4]. In this case, we still obtain an effective
mass equation for each degenerate band similar to Eq. (A8.15), however, as a
result of the degeneracy, a coupling term is introduced that couples the equations
together. For the degenerate HH and LH bands near the band edge (see Fig. A8.1),
this implies that we must work with four coupled effective mass equations (we
must include the spin degeneracy)! We can actually include as many energy bands
in the coupled set of equations as we desire (two equations for each spin-degenerate
band). For example, in addition to the HH and LH bands, Eppenga et al. [15, 16]
have included the SO band as well as the conduction band in their four-band model,
leading to eight coupled equations! However, interaction between the HH and LH
bands is by far the strongest, and we do not pay a large penalty by neglecting
the other bands. Only when we consider energy levels deep into the valence band
(energies comparable to the spin–orbit splitting energy, �), do we need to include
the SO band explicitly. In GaAs and InGaAs, � > 300 meV, implying that for
most gain calculations with these materials, we can neglect the SO band entirely.
In InP, � = 100 meV, however, the well material typically used in this system is
closer to lattice-matched InGaAs where again � is closer to 300 meV.

The four coupled effective mass equations can be greatly simplified using a
method first suggested by Kane [2] and later by Broido and Sham [5]. They
pointed out than an appropriate linear combination of the four Bloch functions
(uhh , ulh , ūhh , ūlh), into four new Bloch functions (uA, uB , uC , uD ), decouples the
four equations into two identical sets of two coupled equations. Thus, we actually
only need to consider two coupled equations in our analysis. However, a price must
be paid for this luxury. We must now restrict our attention to analyzing E1(kxy ) in a
given plane in the crystal (the direction of kxy must be specified). Furthermore, the
equations remain completely general only for the {100} and {110} planes. However,
for the present purposes, these represent only minor restrictions.

The two coupled effective mass equations for the degenerate bands can be
expressed as

(Hhh + V )Fhh + WFlh = E1(k)Fhh , (A8.17)

(Hlh + V )Flh + W †Fhh = E1(k)Flh , (A8.18)

where Fhh ,lh are the heavy- and light-hole envelope functions corresponding to two
new Bloch functions uA,B to be defined in the next section. These replace the generic
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valence band envelope function F1 in this coupled case. E1(k) is the total energy of
the hole measured from the valence band edge. Also, W † is the Hermitian conjugate
of W . The main difference between the degenerate Eq. (A8.17) and (A8.18) and
nondegenerate Eq. (A8.15) effective mass equations lies in the coupling term, W .
The energy, E1(k), is what we would like to solve for, but because of W , we must
now solve two equations simultaneously to find it.

The form of the Hamiltonians, Hhh ,lh , are also slightly different from
Eq. (A8.16). Let us define kz and kt to be two perpendicular k -vector components,
with kz directed along a 〈100〉 direction, and kt directed either along a 〈100〉
direction or a 〈110〉 direction within the kx−ky plane. With these definitions, we
can write (assuming plane wave solutions)

Hhh = (γ1 − 2γ2)k
2
z + (γ1 + γ2)k

2
t , (A8.19)

Hlh = (γ1 + 2γ2)k
2
z + (γ1 − γ2)k

2
t , (A8.20)

where

γ1 − 2γ2 ≡ �
2

2mhh
, γ1 + 2γ2 ≡ �

2

2mlh
. (A8.21)

In writing Hhh ,lh , we are assuming for convenience that E1(k) measures positive into
the valence band. Note that the form of Eqs. (A8.19) and (A8.20) is very similar
to Eq. (A8.16). The only surprising feature is the different effective masses used
along kz and kt . As we shall see in the next section, inclusion of the coupling term
compensates for this apparent asymmetry in bulk material. However, in quantum-
well material, this asymmetry produces a much lighter HH mass in the plane of the
well than along the confinement axis. The material constants γ1,2 are referred to
as the Luttinger parameters [17] and are easily related to the HH and LH effective
masses, mhh and mlh , through Eq. (A8.21). A third Luttinger parameter, γ3, exists
in the coupling term, W . The coupling term takes a slightly different form when
kt is directed along 〈100〉 and 〈110〉 directions. We can define the two forms as

W =
√

3kt (γ2kt − i2γ3kz ) for {100} planes, (A8.22)

W =
√

3kt (γ3kt − i2γ3kz ) for {110} planes. (A8.23)

The Hermitian conjugate is given by

W † =
√

3kt (γ2(3)kt + i2γ3kz ), (A8.24)

independent of whether or not kz is complex, (i.e., we do not take the complex
conjugate of the hermitian operator kz in defining W †). For either of the above
forms, it is interesting to note that with kt = 0, the coupling term disappears, and the
effective mass equations decouple! Thus, in a quantum well, we can independently
solve each of the effective mass Eqs. (A8.17) and (A8.18) for the quantized E1n(0)
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of the HH and LH valence bands, just as was done for the conduction band in
the previous section. However, for finite kt (i.e., away from the band edge), the
equations become coupled and the solutions for E1n(kt ) become more complicated.

Bulk Solutions As in the conduction band, our first step in solving the quantum-
well problem is to find the bulk solutions within each material. To find a general
relation for E1(k) in bulk material, it is convenient to cast the effective mass
Eqs. (A8.17) and (A8.18), into matrix form:

[
Hhh + V W

W † Hlh + V

] [
Fhh

Flh

]
= E1(k)

[
Fhh

Flh

]
. (A8.25)

For the bulk solutions we take V to be a constant, V0. Then in looking at
Eqs. (A8.19) and (A8.20), we find that for a given k -vector, the 2 × 2 Hamiltonian
matrix consists of simple constants. The eigenvalue problem in this case is easily
solved for the eigenenergies. In general form, the bulk E1(k) relations for the HH
and LH bands are given by

E1(k) − V0 = 1
2 (Hhh + Hlh) ± 1

2 [(Hhh − Hlh)2 + 4W †W ]1/2. (A8.26)

Using Eqs. (A8.19) through (A8.24), E1(k) can be given explicitly in terms of k
within any {100} plane, by

E1(k) = γ1(k
2
z + k2

t ) ± [4γ 2
2 (k2

z + k2
t )2 + 12(γ 2

3 − γ 2
2 )k2

z k2
t ]1/2, (A8.27)

where we have set V0 = 0. A similar equation can be found for E1(k) in any {110}
plane. Figure A8.2 illustrates the constant energy contour curves of (A8.27) for both

〈110〉〈100〉

〈100〉

Heavy hole Light hole

kzkz

kt kt0.02/Å−0.02/Å 0.02/Å−0.02/Å

FIGURE A8.2: Contours of constant energy within any {100} plane of k -space for the HH
and LH bands in bulk GaAs. The energy spacing between each contour level is 0.5 meVfor
the HH band and 3 meVfor the LH band.
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the HH band solution (negative root) and the LH band solution (positive root). From
these curves, we see that the third Luttinger parameter, γ3, can be related to the
effective mass anisotropy along the 〈100〉 and 〈110〉 directions (because with γ3 =
γ2, the contour curves would become circles, from Eq. (A8.27)). Looking along
either kz or kt , (along a 〈100〉 direction), the cross-term in Eq. (A8.27) disappears
and we simply have

E1(k) = (γ1 ± 2γ2)k
2, k directed along any 〈100〉 direction. (A8.28)

From the definition of the Luttinger parameters in Eq. (A8.21), we see that the
standard HH and LH E1(k) relations are obtained from Eq. (A8.28). Thus, contrary
to what Eqs. (A8.19) and (A8.20) may suggest, the effective masses along kz and
kt are identical in bulk material (within {100} planes).

To completely specify the bulk solutions, we also need to find the eigenvectors
of Eq. (A8.25). With Ehh(k) and Elh(k) given by the two roots of Eq. (A8.26), the
eigenvectors, apart from a normalization constant, are found to be

ψ1(k, r) =
[

Fhh

Flh

]
= eik·r

[
Hlh + V0 − Ehh

−W †

]
≡ eik·r

[
�1h(k)

�1l (k)

]
, (A8.29)

ψ2(k, r) =
[

Fhh

Flh

]
= eik·r

[
Hlh + V0 − Elh

−W †

]
≡ eik·r

[
�2h(k)

�2l (k)

]
, (A8.30)

where for either solution, the matrix notation implies

ψ = FhhuA + FlhuB . (A8.31)

The validity of Eqs. (A8.20) and (A8.30) can be checked by substituting them
into Eq. (A8.18). In addition, the Hamiltonians in Eqs. (A8.19) through (A8.24)
implicitly assumed plane wave solutions, so their inclusion in (A8.29) and (A8.30)
is mandatory. Eq. (A8.31) gives the wavefunctions in vector notation. The Bloch
functions, uA,B , are orthogonal to each other (analogous to two orthogonal unit
position vectors in real space) and are given by linear combinations of the valence
band Bloch functions defined in Section A8.3. We can write them as [18]

uA = 1√
2
(αuhh − α∗ūhh), (A8.32)

uB = 1√
2
(βūlh − β∗ulh). (A8.33)

For {100} planes, α = β = 1. For {110} planes, α = exp[i3π/8], and
β = exp[−iπ/8].

Quantum-Well Solutions To solve the quantum-well problem, we again choose
the quantum-well direction to be along z (this is not mandatory, but the effective
mass equations would not decouple at the band edge otherwise (see Eq. (A8.22)
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through). In this case, kz is directed along the confinement axis and kt is the
transverse k -vector component which lies in the plane of the well, as shown in
Fig. A8.3a. We now construct a general solution out of all bulk solutions that exist
at a given energy within each material. From Fig. A8.3b, we see that in general,
four plane wave solutions exist at a given energy [19]. The general solution in each
region of Fig. A8.3c is then given by a linear combination of these four waves, or

� =
∑

A±ψ1(±khh , kt , r) +
∑

B±ψ2(±klh , kt , r). (A8.34)

The sums are over the plus- and minus-going waves, and the khh ,lh are
defined in Fig. A8.3(b). The four coefficients, A±, B±, are unknown constants.
Equation (A8.34) is the valence band analog of Eq. (A1.6) in the conduction
band. In this sense, Eq. (A8.27) is the more complicated valence band analog of
Eq. (A1.7). Both ψ1 and ψ2 are two-component vectors, from their definitions
in Eqs. (A8.29) and (A8.30). The general solution, �, is also a two-component
vector. Each component can be written as

Fhh = eikt rt
[∑

A±�1h(±khh , kt )e
±ikhh z +

∑
B±�2h(±klh , kt )e

±iklh z
]

, (A8.35)

Flh = eikt rt
[∑

A±�1l (±khh , kt )e
±ikhh z +

∑
B±�2l (±klh , kt )e

±iklh z
]

, (A8.36)

kt
100 kt

110

kz

–kh kh

Ev
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–kl kl

(a) (b)

(c)

HH

LH

V0

A+
r

B+
r

A±

B±

A_l

B_
l

Barrier Barrier
0

Well

〈100〉

〈100〉

〈100〉

FIGURE A8.3: (a) Coordinate system to be used in the valence band model. The transverse
or in-plane k -vector, kt , can be directed along either a 〈100〉 or 〈110〉 direction, whereas
the confinement axis must be along a 〈100〉 direction. (b) Illustration of the four plane
wave states that exist at a given energy in the bulk valence band structure with kt = 0.
(c) Quantum-well potential and the eight coefficients which are to be used in solving the
degenerate effective mass equation (see Eq. (A8.34)). The l and r superscripts indicate left
and right coefficient.
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where we have pulled out the common transverse plane wave component. Thus,
in the case of the valence band, there are four unknown coefficients, A±, B± in
each region, as shown in Fig. A8.3c, as opposed to just two, as was the case in
the conduction band.

To find the coefficients, we match the general solutions within each region at both
well-barrier interfaces. The boundary conditions for the degenerate effective mass
equation involve matching the four following quantities [19] across the interface

Fhh and (γ1 − 2γ2)
dFhh

dz
+

√
3γ3kt Flh , (A8.37)

Flh and (γ1 + 2γ2)
dFlh

dz
−

√
3γ3kt Fhh . (A8.38)

With kt = 0, the above boundary conditions are identical to those given in
Appendix 1 for the nondegenerate case. In addition, for any kt , if the Luttinger
parameters are the same on both sides of the interface, the second boundary
conditions reduce to the simple slope continuity conditions. The generalized slope
continuity conditions Eqs. (A8.37) and (A8.38) can be derived by integrating
Eq. (A8.25) over an infinitesimal thickness that straddles the interface. However,
we must first symmetrize the Hamiltonian, which involves setting (γ1 ± 2γ2)k2

z →
kz (γ1 ± 2γ2)kz in Eqs. (A8.19) and (A8.20), and setting γ3kz → (γ3kz + kz γ3)/2
in Eqs. (A8.22) through (A8.24), before setting kz → −i∂/∂z , since γ1, γ2, γ3

all depend on z . These symmetrizing substitutions guarantee that the Hamiltonian
in Eq. (A8.25) remains hermitian for any arbitrary z -dependence of γ1, γ2, γ3.
It should be noted that the preceding boundary conditions hold for both {100}
and {110} planes. Caution should be issued here that the preceding boundary
conditions apply only when the Bloch functions of the two materials are similar
(this similarity should be mirrored in the values of the Luttinger parameters).

Applying the four boundary conditions at each interface gives us a total of eight
equations. There are four unknown coefficients in each of the three regions, or
twelve in total. However, requiring the envelope functions to go to zero at infinity
leaves us with a total of eight unknown coefficients as shown in Fig. A8.3c. Thus,
our problem is now completely specified, and we can solve the eight homogeneous
equations by numerically finding the roots of the 8 × 8 determinant.

The general procedure for obtaining E1(kt ) is then as follows: (1) find the E1n(0)

of a particular HH or LH band edge energy level using the conventional method
of Appendix 1; (2) increment kt and guess at the new energy of the state; (3) find
khh ,lh from the two E1(k) relations given in Eq. (A8.26) within each material (each
material having its own V0 and its own set of Luttinger parameters); (4) evaluate
the �’s within each material from their definitions in Eqs. (A8.29) and (A8.30);
(5) evaluate the 8 × 8 coefficient determinant; (6) if it is not equal to zero, use
Newton’s method to repeat the process until the energy root is found for that given
kt ; and (7) increment kt and repeat the entire process to find the new energy root,
using an educated initial guess. The entire E1n(kt ) can then be traced in this way.
The rate of convergence is very good for this type of problem. For example, for
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each kt , the energy root can be found in typically 2–3 iterations (Fig. A8.4 was
generated in less than 30 seconds on a Macintosh computer from the early ‘90ies.).

Our description of the valence subband structure is now complete, and we can
move on to an example. The one-dimensional quantum confinement in the con-
duction band gives rise to a set of parabolic subbands in the plane of the well. In
the valence band, coupling between the HH and LH subbands changes the situa-
tion drastically, giving rise to a much more interesting band structure. Figure A8.4
shows the valence subband structure for an 80 Å GaAs/Alx Ga1−x As quantum well
with x = 0.2 in the barrier regions, calculated using the procedure outlined earlier.
The subband structure is seen to be far from parabolic, and in some regions, the
band curvature is even inverted, leading to a negative “local” hole mass.

With respect to predicting the optical gain achievable in a material with the
subband structure shown in Fig. A8.4, we are particularly interested in the density
of states of the subbands, also shown in Fig. A8.4. The density of states is important
because it determines the relationship between carrier density and the quasi-Fermi
level of the band as discussed in Appendix 2. From Fig. A8.4, we see that ρv

is roughly 2.5ρc near the band edge, but rapidly becomes very large as mixing
between the bands starts to become significant. The mismatch between ρc and
ρv as well as the overall large ρv reduces the performance of the quantum well,
increasing transparency levels and reducing the differential gain (ideally the DOS
curve in Fig. A8.4 would be a straight line of magnitude one).

Because the energy bands are different along the 〈110〉 and 〈100〉 directions
within the quantum well, the density of states at any given energy should in

GaAs/AI0.2Ga0.8As
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FIGURE A8.4: Plotted on the left is the valence subband structure of an 80 Å
GaAs/Al0.2Ga0.8As quantum well (V0 ≈ 95 meV). On the right is the total (solid curve)
and H1 subband (dashed curve) density of states plotted relative to the density of states in
the first conduction (C1) subband.
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principle be calculated by averaging over all in-plane k -vector directions. For-
tunately, this procedure can be approximated by calculating the density of states
for just one set of energy bands, which is some appropriate average between the
〈100〉 and 〈110〉 dispersion curves shown in Fig. A8.4. These average energy bands
can be found by using a coupling term of the form Wave = (W100 + W110)/2 in the
band calculation. This approach is commonly known as the axial approximation
[3]. We use it to calculate the density of states in Figs. A8.4 and A8.6 as well as for
all quantum-well gain calculations presented in Chapter 4. For the “bulk” barrier
regions, the energy bands (the HH and LH effective masses) are found using a
“spherical average” of the effective masses along all directions in the crystal. It
basically involves replacing γ2 with (2γ2 + 3γ3)/5 in Eq. (A8.21), and is known
as the spherical approximation [19].

In the next section, we consider ways in which ρv can be modified, in beneficial
ways, by the introduction of strain.

A8.4.3 Strained Quantum Wells

It was originally suggested by Yablonovich and Kane [20] and independently by
Adams [21] that the introduction of compressive strain into the crystal lattice of
a semiconductor could lead to enhanced performance in semiconductor lasers. To
understand why, we need to examine the effects of strain, particularly in a quantum
well. Introducing compressive strain into a quantum well configuration is particu-
larly simple; just grow the well layer out of a material with a larger native lattice
constant than the barrier layers. Because the quantum-well layer is typically very
thin, instead of forming misfit dislocations, the lattice actually compresses in the
plane of the well to match that of the barrier layers. In addition, the lattice constant
in the direction normal to the plane becomes elongated (in an effort to keep the
volume of each unit cell the same), as shown in Fig. A8.5(a).

Because the energy gap of a semiconductor is related to its lattice spacing, we
might expect that distortions in the crystal lattice should lead to alterations in the
bandgap of the strained layer (putting aside for the moment the changes created
simply by quantum confinement). In fact, there are two types of modifications that
occur as discussed in more detail in Appendix 3. The first effect produces an upward
shift in the conduction band as well as a downward shift in both valence bands,
increasing the overall bandgap by an amount, H (that is positive for compressive
strain and negative for tensile strain). The H indicates that this shift originates
from the hydrostatic component of the strain. The second more important effect
separates the HH and LH bands, each being pushed in opposite directions from the
center by an amount, S . The S indicates that this shift originates from the shear
component of the strain. Thus, the band edge degeneracy of the two valence bands
is removed and two energy gaps must now be defined. The total strained bandgap
can be written as Eg + H ± S , where the upper sign refers to the C−LH bandgap,
Eg (LH), and the lower sign refers to the C−HH bandgap, Eg (HH). In Fig. A8.5(b)
we have plotted the unstrained bulk bandgap as well as the two compressively
strained bulk bandgaps of InGaAs on a GaAs substrate (which has a smaller lattice



624 ELECTRONIC STATES IN SEMICONDUCTORS

(b)

(c)

In xGa1–xAs on GaAs 

Strained HH

Strained LH

Unstrained Eg

Stot
Stot

Stot

Indium Mole Fraction

E
ne

rg
y 

G
ap

 (
eV

)

1.5

1.3

1.1

0.9

0.7

0.5

0.3
0 0.2 0.4 0.6 0.8 1

250

200

150

100

50

0

V

a1

a⏐⏐

a0 a⊥

(a)

a⏐⏐ (= a1) < a0 < a⊥

+

+

S
tot (m

eV
)

HH

LH

FIGURE A8.5: (a) Crystal lattice deformation under compressive strain. (b) Bulk band-gap
of Inx Ga1−x As, when the in-plane lattice constant is compressed to that of GaAs. (c) The
modified potential profile in the valence band of a quantum well, when the well material is
under compressive strain.
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constant than InGaAs). Note that S as defined here is positive for compressive
strain, since Eg (LH) > Eg (HH). For tensile strain, S would be negative and the
bandgap ordering would be reversed.

The two energy shifts, H and S , increase linearly with the lattice constant
mismatch, which in turn increases linearly with indium mole fraction. We should
expect then that the bandgap difference, Eg (LH) − Eg (HH), defined in the plot as
Stot, should be a linearly increasing function of indium mole fraction since from
the above discussion, Stot = 2S . For small indium mole fractions, we see from
the plot that this is true. However, as the indium mole fraction increases, Stot

begins to saturate. This is a result of the interaction between the LH band and
the SO band. When taken into account, this interaction introduces a correction
term into the expression for the strained LH bandgap such that to second order,
Stot = 2S (1 − S /�), where � is the spin–orbit splitting energy. A more detailed
discussion of strained bandgaps is given in Appendix 3.

In a quantum well, the splitting of the HH and LH bands can have dramatic
consequences, since the large nonparabolicity of the subband structure in Fig. A8.4
is a direct result of the HH and LH band mixing. If we place the strained bandgaps
shown in Fig. A8.5b into a quantum well, the situation becomes as shown in
Fig. A8.5c, where the depth of the quantum well as seen by light holes is reduced
by the splitting energy, Stot. To predict the valence subband structure of the strained
quantum well in Fig. A8.5c, we simply need to add a potential offset to the effective
mass equation describing the LH band in the well. Eq. (A8.25) in the previous
section now simply becomes

[
Hhh + V W

W † Hlh + V + Stot

] [
Fhh

Flh

]
= E1(k)

[
Fhh

Flh

]
, (A8.39)

where V is zero inside the well and Stot is zero outside the well. The procedure
for solving (A8.39) in a strained quantum well is entirely analogous to the pro-
cedure presented in Section A8.4.2 for an unstrained quantum well. Thus, we can
immediately turn to an example calculation using Eq. (A8.39).

For direct comparison, we take the GaAs/AlGaAs 80 Å quantum well used in
the example of Section A8.4.2 and simply add a bit of indium to the well layer.
In GaAs has a larger native lattice constant than GaAs, thus sandwiched between
two AlGaAs layers, it will be compressed in the plane of the well. For an indium
mole fraction of 20%, the resulting HH−LH splitting energy, Stot, is approximately
80 meV, or 1.4% compressive strain.

Figure A8.6 shows both the valence subband structure and the density of states
of the 80 Å In0.2Ga0.8As/Al0.2Ga0.8As strained quantum well calculated from
Eq. (A8.39) [22]. Immediately we see that the LH bands have been pushed deep into
the band (the full depth of the well is not shown). As a result, the band warping has
been greatly reduced. Comparison with Fig. A8.4 reveals that the density of states in
the strained quantum well is reduced significantly and matching between ρc and ρv

is greatly improved. Both of these features translate into lower transparency levels
and higher differential gain as calculations of gain presented in Chapter 4 reveal.
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FIGURE A8.6: Plotted on the left is the valence subband structure of an 80 Å
In0.2Ga0.8As/Al0.2Ga0.8As strained quantum well (V0 ≈ 175 meV). The LH bands have been
pushed further out of the well as a result of the strain and cannot be seen with the energy
scale shown. On the right is the total (solid curve) and H1 subband (dashed curve) density
of states plotted relative to the density of states in the first conduction (C1) subband.

Eq. (A8.39) not only applies to quantum wells, but can also be applied to bulk
strained material. The E (k ) relations in bulk material are obtained by finding the
eigenenergies of Eq. (A8.39) as we did for Eq. (A8.25) in the last section (see
Eq. (A8.26) and (A8.27)) (the definitions for H and W given in Section A8.4.2
apply here as well). The general bulk solutions for the eigenenergies of (A8.39)
can be obtained in closed form, but are somewhat messier than Eq. (A8.27). We
leave it as an exercise for the reader to show that to first order in γ2k2/S (i.e.,
in the large-strain regime where S � γ2k2), the eigenenergies of (A8.39) can be
expressed as [23]

E1(k‖) = (γ1 ∓ γ2)k
2
t ± Stot/2, (kz = 0) (A8.40)

E1(k⊥) = (γ1 ± 2γ2)k
2
z ± Stot/2. (kt = 0) (A8.41)

The upper signs refer to the LH band solutions while the lower signs refer to the HH
band solutions (we have thrown away any common shifts in the band edges to con-
centrate on the difference between the LH and HH bandgap energies). The parallel
(in-plane) and perpendicular (normal to the plane) k -vectors refer to the nota-
tion used in Fig. A8.5a. Note that the above relations are also obtained by setting
W = 0 (as seen by combining Eqs. (A8.19) and (A8.20) with Eq. (A8.39)). This
makes sense because in the large-strain regime we are basically saying that S � W ,
allowing us to neglect the coupling between the bands altogether. The modified
band structure given by (A8.40) and (A8.41) is shown to scale in Fig. A8.7. Thus,
even in bulk material, strain serves to reduce the effective mass of the HH band
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FIGURE A8.7: Effects of compressive strain on the bulk valence band structure. The relative
band curvatures are drawn according to Eqs. (A8.40) and (A8.41), which are derived under
the large-strain limit (the true dispersion curves would not cross each other as suggested in
the figure).

dramatically within the “plane of compression.” Perpendicular to the plane, it is
interesting to note, however, that apart from the splitting of the HH and LH bands,
the dispersion relation Eq. (A8.41) remains unchanged compared to Eq. (A8.28).

We have thus far not mentioned the effects of strain on the conduction band.
The reason for this is that due to its relative isolation from other bands, the con-
duction band curvature remains relatively unaffected by the shifting energy gaps.
Eq. (A8.13) would suggest that the increase in the bandgap should increase the con-
duction band effective mass slightly. However, we must be careful here because the
third parameter that ties into this equation, |M |2, does not necessarily remain con-
stant (for example, it is conceivable that |M |2 could increase proportionally with
the bandgap, leaving m∗ unaffected). In any case, the change in the conduction
band curvature should be slight.
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APPENDIX NINE

Fermi’s Golden Rule

A9.1 INTRODUCTION

This appendix derives a general expression for the rate of decay from an initial
quantum mechanical state into a continuum of final states in the presence of a
harmonic perturbation. The resulting expression for the transition rate is referred
to as Fermi’s Golden Rule, since it is a general result applicable to many quantum
mechanical systems. Here we concentrate on the interaction between light and
matter.

In physical terms, radiative transitions occur because the oscillating field of the
photon alters the oscillating phase of the electron wavefunction in such a way that
it becomes similar to the oscillating phase of another electron wavefunction typ-
ically in a different energy band. This phase-matching in time results in a strong
coupling between the two electron states, analogous to the coupling of waveguide
modes considered in Chapter 6. In the latter case, the coupling causes the energy
initially in one mode to be transferred back and forth between the two modes. If
only two electron wavefunctions were involved in the coupling, the electron would
also oscillate between the two states (known as Rabi oscillations in the quantum
world). However in most cases, a density of states are coupled to the initial electron
wavefunction, and as a result, the electron transforms with an exponential decay
from its initial wavefunction to one of many resonant wavefunctions. This electro-
magnetically induced phase-matching and subsequent transformation of an electron
from one state to another is the fundamental mechanism of radiative transitions.
The following treatment quantifies these physical arguments.
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A9.2 SEMICLASSICAL DERIVATION OF THE TRANSITION RATE

To characterize the electronic system and its interaction with light, we make use
of two Hamiltonians: one that describes the electronic system in isolation, H0,
and a second that describes a classical perturbation created by the electromagnetic
field, H ′(t). The wavefunction in Dirac notation, |�(t)〉, provides a description
of the state of the electron. Its evolution in time is governed by Schrödinger’s
equation:

i�
d

dt
|�(t)〉 = {H0 + H ′(t)}|�(t)〉. (A9.1)

The problem we wish to solve using Eq. (A9.1) is the process of absorption (stimu-
lated emission is analogous to absorption and hence leads to the same result, while
spontaneous emission is treated separately in Chapter 4). To model an absorption
event, we assume the electron initially occupies some ground state of the system,
|ψ0〉. The presence of the time-varying field excites a change in the state of the
electron. Under the appropriate conditions, the electron can be excited to any num-
ber of higher energy final states, |ψs〉, where the sth state has energy �ωs above
the ground state. This situation is depicted in Fig. A9.1.

Which state the electron eventually occupies is unknown, so we hypothesize a
time-dependent superposition of the initial and possible final states of the electron:

|�(t)〉 = c0(t)|ψ0〉 +
∑

s

cs(t)e
−iωs t |ψs〉, (A9.2)

with the initial conditions:

c0(0) = 1 and cs(0) = 0. (A9.3)

The time-dependence of the unperturbed wavefunctions, e−iωs t , is included explic-
itly to remove the rapidly oscillating phase from the time dependence of the
expansion coefficients (|ψ0〉 and |ψs〉 are assumed to be independent of time). Note
that Eq. (A9.2) satisfies Eq. (A9.1) with no perturbation present since H0|ψs〉 =
�ωs |ψs〉 and H0|ψ0〉 = 0.

To obtain a set of useful equations, we begin by substituting Eq. (A9.2) into
Eq. (A9.1). To move forward we recognize that all states are orthogonal to each
other such that 〈ψ0|ψs〉 = 0 and 〈ψs ′ �=s |ψs〉 = 0. Furthermore, we have 〈ψ0|ψ0〉 =
1 and 〈ψs |ψs〉 = 1. If we multiply Eq. (A9.1) from the left with 〈ψ0|, we obtain
one equation for the coefficient c0. Multiplying Eq. (A9.1) from the left with 〈ψs |,
we obtain an additional set of equations, one for each cs :

i�
dc0

dt
= H ′

00c0 +
∑

s

H ′
0s cs e−iωs t ,

(A9.4)

i�
dcs

dt
= H ′

s0c0eiωs t +
∑

s ′
H ′

ss ′cs ′e−i (ωs ′−ωs )t ,
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|y0 〉

|ys〉

|ys + 1〉

E = 0

w0

Initial ground state

Continuum of final states

···
···

Es = hws

FIGURE A9.1: Model assumed for the process of absorption.

where the following shorthand notation is used:

H ′
s0 ≡ 〈ψs |H ′|ψ0〉. (A9.5)

To simplify Eq. (A9.4) further, we need to express the time dependence of the
perturbation explicitly. For a harmonic perturbation, we can set

H ′(t) → H ′(eiω0t + e−iω0t ), (A9.6)

where ω0 is the oscillation frequency of the incident electromagnetic wave. The
amplitude of the wave is contained in H ′; however, we will not need to know the
explicit details of H ′ for the purposes of this appendix.

The set of equations contained in Eq. (A9.4) is exact. The first approximation
we make is known as the rotating wave approximation , which involves ignoring
all terms that oscillate at frequencies comparable to or greater than either ωs or ω0.
The reasoning is that these terms will oscillate positive and negative much faster
than the time scales involved with changes in c(t) and hence, will average out
to zero net contribution as time increases. Placing Eq. (A9.6) into Eq. (A9.4), the
following combinations of angular frequencies appear: ω0, ωs ± ω0, (ωs ′ − ωs) ±
ω0. If we assume ωs ∼ ω0 and ωs ′ ∼ ωs , then all combinations except ωs − ω0 are
comparable to or greater than either ωs or ω0.

Ignoring all terms in Eq. (A9.4) except those that contain the difference fre-
quency between the electronic and electromagnetic frequencies, ωs − ω0, we obtain
the central equations of motion:

i�
dc0

dt
=

∑
s

H ′
0s cs e−i (ωs −ω0)t ,

(A9.7)

i�
dcs

dt
= H ′

s0c0ei (ωs −ω0)t .

These equations are known as the Wigner-Weisskopf equations within the rotating
wave approximation.
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To solve Eq. (A9.7) we integrate the second equation from 0 to t , using the
initial conditions expressed in Eq. (A9.3) to obtain

cs(t) = − i

�
H ′

s0

∫ t

0
c0(t

′)ei (ωs −ω0)t ′dt ′. (A9.8)

Inserting Eq. (A9.8) into the first equation of Eq. (A9.7), we obtain

dc0(t)

dt
= − 1

�2

∑
s

|H ′
s0|2

∫ t

0
c0(t

′)e−i (ωs −ω0)(t−t ′)dt ′, (A9.9)

where we have made use of the fact that H ′
0s = (

H ′
s0

)∗
. We can convert the sum

over final states to an integral with the assumption that the states are so closely
spaced that they form a continuous distribution characterized by a density of states
function in energy:

∑
s

|H ′
s0|2 →

∫
|H ′(Es)|2ρf (Es)� dωs . (A9.10)

The matrix element |H ′(Es)|2 represents an average of |H ′
s0|2 over all final s states

existing with energies close to Es above the ground state. Also, the final density
of states function, ρf , represents the total number of states per unit energy.

Substituting Eq. (A9.10) into Eq. (A9.9) and reversing the order of integration,
we can identify one portion of the equation as the inverse Fourier transform of the
matrix element–density of states product:

f (t − t ′) =
∫ ∞

−∞

1

�
|H ′(Es)|2ρf (Es)e

−i (ωs −ω0)(t−t ′) dωs . (A9.11)

With this definition, Eq. (A9.9) becomes simply

dc0(t)

dt
= −

∫ t

0
c0(t

′)f (t − t ′) dt ′. (A9.12)

Under certain circumstances, this integro-differential equation can be solved
exactly. Its solution depends critically on the Fourier transform of the product
|H ′(Es)|2ρf (Es), represented by the time-domain response function, f (t − t ′). We
will examine three such solutions here, the first of these leading to the famed
Fermi’s Golden Rule.

A9.2.1 Case I: The Matrix Element-Density of Final States Product
is a Constant

If the density of final states is distributed evenly over a large energy range, and
if the matrix element does not vary over this range, we can set |H ′(Es)|2ρf (Es)
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to a constant. Taking the Fourier transform we find that f (t − t ′) becomes a delta
function in time, as is evident from the following relation:

∫ ∞

−∞
e−i (ωs −ω0)(t−t ′) dωs = 2πδ(t − t ′). (A9.13)

The integro-differential equation for this case reduces to a simple first-order dif-
ferential equation

|H ′(Es)|2ρf (Es) → |H ′|2ρf

f (t − t ′) = 1

�
|H ′|2ρf · 2πδ(t − t ′) (A9.14)

dc0(t)

dt
= −2π

�
|H ′|2ρf ·

∫ t

0
c0(t

′)δ(t − t ′) dt ′ = −π

�
|H ′|2ρf · c0(t).

The factor of 2π representing the total area under the delta function is reduced to π

in the last equality because the time integration terminates in the center of the delta
function such that only half of the area is included. The solution to Eq. (A9.14) is
a decaying exponential:

c0(t) = e−Wt/2 → |c0(t)|2 = e−Wt , (A9.15)

where the decay rate is given by

W = 2π

�
|H ′|2ρf . (A9.16)

We can also solve for the final state probability coefficients to determine where the
electron ends up after making the transition. Using Eq. (A9.15) in Eq. (A9.8), we
obtain

|cs(t → ∞)|2 = |H ′
s0|2

(�W /2)2 + (Es − �ω0)2
. (A9.17)

If we sum this probability over all final states (i.e., multiply Eq. (A9.17) by ρf dEs

and integrate over all energies), the total probability will equal one. Thus, the
electron will eventually appear somewhere in the continuum, we just don’t know
exactly where. The peak probability occurs at the state with energy Es = �ω0.
The electron can appear at other states as well; however, the probability of this
happening declines away from the peak with a distribution characterized by a
Lorentzian with �EFWHM = �W .

Equation (A9.17) also tells us that the electron only interacts with final states
clustered around Es = �ω0. In other words, states that are not within �W /2 of
the resonant energy effectively do not participate in the transition. Therefore,
our earlier assumption that |H ′|2ρf must be constant over a large energy range
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can be refined to state that as long as |H ′(Es)|2ρf (Es) is flat over energies for
which Eq. (A9.17) has significant amplitude, the solutions of Case I can be
applied.

This translates into evaluating |H ′(Es)|2ρf (Es) at Es = �ω0, and requiring that
it be constant for energies � �W . In semiconductor applications, |H ′|2ρf is usually
a smooth enough function of Es to easily meet this requirement. Therefore, interac-
tions between light and semiconductor materials will typically induce exponentially
decaying solutions for the initial state of the system.

Fermi’s Golden Rule. Our ultimate objective is to obtain a transition rate that can
be used in a rate equation. The preceding analysis allows us to determine how
quickly photons are being removed from the electromagnetic field. For example,
each transition event decays with the decay rate, W. If we resupply the ground state
with a new electron every 1/W seconds, then the ground state will remain filled
and every 1/W seconds on average, a photon will be absorbed. We can therefore
view W as the rate at which photons are absorbed in the active region, or the
transition rate. If Np is the photon density and Vp is the mode volume, then NpVp

photons exist in a given mode. The rate at which these photons disappear can be
expressed as

dNpVp

dt
= −W . (A9.18)

Dividing by the mode volume and introducing the confinement factor, the photon
density rate equation becomes

dNp

dt
= − V

Vp

W

V
≡ −	Rr , (A9.19)

where 	(= V /Vp) is the optical confinement factor, and Rr (= W /V ) is defined
as the radiative transition rate per unit volume of active material. If we absorb the
1/V into ρf , such that the final density of states is interpreted as a density per
unit energy and volume (as is customary), then the transition rate per unit volume
becomes

R r = 2π

�
|H ′(Es)|2ρf (Es)|Es =�ω0 . (A9.20)

This result and its interpretation as a transition rate is known as Fermi’s Golden
Rule. The evaluator bar reminds us that the product |H ′|2ρf must be evaluated at
Es = �ω0 for reasons discussed in reference to Eq. (A9.17).

The derivation presented here assumes the electron is making an upward tran-
sition to model absorption. However, we could just as well assume the electron is
making a downward transition by setting ωs → −ωs , allowing us to model stimu-
lated emission. This substitution requires that we use the opposite time harmonic in
the perturbation Hamiltonian Eq. (A9.6), however, aside from this simple change
the rest of the derivation is identical. Therefore, Rr has the same form for both
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absorption and stimulated emission. The difference between the upward and down-
ward transition rates appears only when we include the probability of finding an
electron in the initial state and no electron in the final state. The theory of gain
given in Chapter 4 elaborates on this issue in some detail since the balance between
absorption and stimulated emission provides the key to understanding optical gain
in any material.

A9.2.2 Case II: The Matrix Element-Density of Final States Product is a
Delta Function

Assume that only a single final state exists as opposed to a continuous density of
final states, as might exist in an atomic transition from one energy level to another.
We can model this situation by replacing the density of final states with a delta
function in energy to represent the solitary energy level, Ef . To simplify matters, we
will assume that ωf = ω0 such that perfect resonance between the electronic and
electromagnetic systems exists (see Problem A9.2 for the more general solution).
Taking the Fourier transform of the delta function, we find that f (t − t ′) is a
constant independent of time, which allows us to again solve Eq. (A9.12) exactly.
Summarizing the results, we have

ρf (Es) → 1

�
δ(ωs − ωf )

f (t − t ′) = 1

�2
|H ′|2 (assuming Ef = �ω0) (A9.21)

dc0(t)

dt
= − 1

�2
|H ′|2

∫ t

0
c0(t

′) dt ′ → c0(t) = cos 
t , 
2 = 1

�2
|H ′|2.

Using Eq. (A9.8) with ωf = ω0, the final state probability amplitude is given by
cf (t) = sin 
t . In words, when the electron interacts with only one possible final
state, the probability amplitude oscillates back and forth sinusoidally between the
initial and final states. The oscillation frequency depends on the magnitude of
interaction, |H ′(Ef )|2. Physically, the energy is continually shifting back and forth
between the electromagnetic field and the electron.

In a more general sense, we can view f (t − t ′) as a memory function that
represents how strongly previous events are coupled to current changes in c0(t).
With only one final state to interact with, the system has infinite memory (f (t − t ′)
is independent of time), and the interaction continues indefinitely in the same
periodic fashion. This periodic exchange of energy between the electromagnetic
field and the electron is characteristic of Rabi oscillations, which occur whenever
the coupled system exhibits a strong memory of interaction.

In contrast, the system considered in Case I (Fermi’s Golden Rule) has no
memory of previous events (f (t − t ′) is a delta function in time). The existence
of numerous equally probable transition pathways destroys the system memory,
such that the interaction only depends on the present state of the electron.
From another point of view, the probability amplitudes of the various pathways
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combine in such a way as to make the process irreversible causing the initial
state to decay exponentially toward a final state (rather than oscillating back
and forth indefinitely). The next case bridges the gap between Case I and Case
II, producing a system with finite memory and oscillatory decaying exponential
solutions.

A9.2.3 Case III: The Matrix Element-Density of Final States Product
is a Lorentzian

This situation can occur when analyzing the spontaneous emission process of a
two-level system placed in a highly resonant cavity. In general, the analysis of spon-
taneous emission leads to an equation identical to Eq. (A9.12), with the exception
that the density of final electronic states is interpreted as the density of free-space
optical modes, and the field strength within the matrix element is set equal to the
vacuum-field strength of the free-space mode at Es . When the two-level system
is placed in a cavity, the vacuum-field strengths of the free-space optical modes
become enhanced near the cavity resonances, which in turn enhances the matrix
element. For a highly resonant cavity, this enhancement has a Lorentzian lineshape
about each resonance.

With |H ′(Es)|2ρf (Es) set to a Lorentzian, its Fourier transform, f (t − t ′),
becomes a decaying exponential in time. In other words, the memory of the
system decays exponentially as it recedes away from the present. One way of
viewing this is that the spontaneously emitted photon only has a finite lifetime in
the cavity before it escapes, limiting the memory of the system to a finite duration.
In any case, Eq. (A9.12) can again be solved exactly; however, the solution is not
as obvious as it was in Case I or II (see Problem A9.3). Summarizing, we have

|H ′(Es)|2ρf (Es) → |H ′|2ρf K · 1

1 + (2�ωτp)2

f (t − t ′) = KW0

4τp
e−|t−t ′|/2τp (A9.22)

dc0(t)

dt
= −KW0

4τp

∫ t

0
c0(t

′)e−|t−t ′|/2τp dt ′, where W0 = 2π

�
|H ′|2ρf .

In the preceding equations, �ω ≡ ωs − ω0, τp is the photon lifetime of the cavity
(note that �ωFWHMτp = 1), K is the enhancement of the vacuum-field strength
within the cavity at the resonance peak (K ∝ τp), and W0 is the decay rate found
in Case I (with ρf in this case representing the density of free-space optical
modes). Using the initial conditions expressed in Eq. (A9.3), the function satisfying
Eq. (A9.22) can be written as

c0(t) = p+ep−t − p−ep+t

p+ − p−
, where p± = − 1

4τp
[1 ± (1 − 4τpKW0)

1/2]. (A9.23)
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If the memory of the system characterized by the photon lifetime, τp , is very short
such that 4τpKW0  1, the solution reduces to

p+ ≈ − 1

2τp
, p− ≈ − 1

2 KW0, and |c0(t)|2 ≈ e−KW0t . (A9.24)

The last equality is valid for all but very short times, which can be verified from
Eq. (A9.23) and the fact that p+ � p−. In words, when the photon escapes much
quicker than the time it takes to make a transition (represented by the inequality
4τpKW0  1), the initial state decays exponentially as was found in Case I for a
system with no memory. From another point of view, the inequality 4τpKW0  1
allows us to treat |H ′|2ρf as a constant for energy ranges � �KW0, making this
case equivalent to Case I. However in the present case, the decay rate is enhanced
by the vacuum-field strength enhancement inside the cavity, K . This enhancement
of the decay or emission rate was first postulated by Purcell many years ago.

If we go to the other extreme and assume that the system has a strong memory
(the photon lifetime in the cavity is very long) such that 4τpKW0 � 1, the roots
become

p± ≈ − 1

4τp
± i

(
KW0

4τp

)1/2

. (A9.25)

Complex roots suggest that |c0(t)|2 exhibits damped oscillatory behavior. Rabi
oscillations of this nature are again the result of the system having a strong
memory. In other words, the lifetime of the fields in the cavity is long enough
to induce additional absorption and re-emission of electromagnetic energy. How-
ever, contrary to Case II, |c0(t)|2 does eventually reduce to zero at a decay rate
≈ 1/2τp (which corresponds to the decay rate of the field amplitude within the
cavity).

Case III is perhaps the most interesting theoretically because it bridges the gap
between the first two cases showing clearly how the oscillating solution trans-
forms to the exponentially decaying solution as the photon lifetime of the cavity
is adjusted from infinity to zero, respectively.
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PROBLEMS

1. Determine f (t − t ′) in Case I assuming |H ′|2ρf is constant for energies within
Es ± �E/2, but zero everywhere else. Using this expression for f (t − t ′),
describe qualitatively the range over which the solution for c0(t) is expected
to behave like a decaying exponential. In your description, be sure to consider

(i) �E in relation to W , and

(ii) Es in relation to �ω0.

Qualitative plots of f (t − t ′) superimposed on the expected dependence of
c0(t ′) may prove useful in developing your answer.

2. Solve for c0(t) and cs(t) in Case II without assuming that Ef = �ω0. Plot
both as a function of time, assuming the energy difference (Ef − �ω0)

2 is
equal to

(a) |H ′|2 and

(b) 12 |H ′|2.

Can you make a comment about the significance of tuning Ef to �ω0?

3. Using the initial conditions in Eq. (A9.3), derive Eq. (A9.23) in Case III
assuming the solution is the sum of two exponentials with constant coeffi-
cients. Numerically plot c0(t) as a function of t/τp for 4τpKW0 equal to

(a) 100,

(b) 1, and

(c) 0.01.

Plot any other cases that may seem interesting to you. Can you explain this
behavior?



APPENDIX TEN

Transition Matrix Element

A10.1 GENERAL DERIVATION

As derived in Chapter 4 the matrix element |H ′
21|2 can be written in terms of a

transition matrix element |MT |2. We begin by repeating this equation, Eq. (4.22),

|H ′
21|2 =

(
qA0

2m0

)2

|MT |2, where |MT |2 ≡ |〈uc |ê · p|uv〉|2|〈F2|F1〉|2. (A10.1)

As discussed in Appendix 8, the momentum matrix element, |M |2 can be estimated
from experiment. We now need to determine |MT |2 in terms of |M |2. The difference
between the two matrix elements is that |M |2 determines the transition probability
between us and the basis functions (ux , uy , uz , or collectively ui ), whereas |MT |2
determines the transition probability between uc(= us) and the valence band Bloch
functions (uhh , ulh , uso , or collectively uv). By expanding the uv in terms of the
ui using Eq. (A8.11), we can express |MT |2 in terms of |M |2. Before we do this,
however, we need to discuss spin degeneracy and how to include it here.

In Appendices 1 and 8, a simple factor of 2 for spin degeneracy was included
in the definition of the density of states function. However, there are subtleties
involved, which are often overlooked when we simply include a factor of 2 in our
equations. For example, to include the spin degeneracy in our evaluation of |MT |2
we must obviously sum over both uc → uv and ūc → ūv transitions. However, what
is not so obvious is that in our sum we must also include ūc → uv and uc → ūv

transitions! This is necessary because the LH and SO valence band Bloch functions
are made up of both spin-up and spin-down basis functions, as seen from their
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640 TRANSITION MATRIX ELEMENT

definitions in Eq. (A8.11). Therefore, a total of four transitions must be considered,
as shown in Fig. A10.1. Because spin is already accounted for in the density of
states function, we will sum over these transitions and then divide by 2 to remove
the spin degeneracy. Thus, the reader should be aware that spin degeneracy has
been removed from all expressions for the transition matrix element |MT |2 derived
in this appendix.

Summing over the four transitions shown in Fig. A10.1, the transition matrix
element defined in Eq. (A10.1) becomes

|MT |2v = 1

2

∑
uc ,ūc

∑
uv ,ūv

|〈uc |ê · p|uv〉|2, (A10.2)

where the factor of 1/2 is to remove the spin degeneracy. We have set the envelope
function overlap integral, |〈F2|F1〉|2, equal to unity because for the moment we
will be interested in transitions between two bulk plane wave electron states. Later
on, we will return to a more general form of Eq. (A10.2) which does include the
envelope function overlap integrals.

To simplify Eq. (A10.2), we can first of all replace the dot product between the
unit polarization vector and the electron momentum operator, ê · p, with the expan-
sion, ex px + ey py + ez pz . Then by using the selection rules given in Eqs. (A8.8)
through (A8.10), in combination with the expansions of the valence band Bloch
functions given in Eqs. (A8.11), we can reduce the expression for |MT |2 to a
very simple form. To aid the reader in following the derivation, we give here the
intermediate step in simplifying |MT |2 for the three valence band transitions:

|MT |2hh = 1
4 |M |2{| − ex − iey |2 + 0 + 0 + |ex − iey |2},

|MT |2lh = 1
12 |M |2{|2ez |2 + |ex − iey |2 + | − ex − iey |2 + |2ez |2}, (A10.3)

|MT |2so = 1
6 |M |2{| − ez |2 + |ex − iey |2 + | − ex − iey |2 + | − ez |2}.

1

uc

uv

2 3 4

uc

uv

FIGURE A10.1: The four possible transitions between the spin-degenerate C and V bands,
which must be considered when estimating the transition matrix element.
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Each of the terms within brackets corresponds to one of the four spin-degenerate
transitions (the ordering of terms from left to right corresponds to the numbering
shown in Fig. A10.1). Note that in every case, the first term is equal to the fourth
and the second term is equal to the third (leading to the standard factor of 2 for
spin degeneracy).

To make the final expression as general as possible, we first replace every
occurrence of e2

x + e2
y with the equivalent expression, 1 − e2

z (since ê is a unit
vector). This substitution places everything in terms of ez . We can then interpret ez

as the component of ê which is parallel to the electron k -vector, since k is directed
along z (an assumption made in defining Eq. (A8.11). In other words, we can set
ez = k̂ · ê, where k̂ is a unit vector directed along k. Using these substitutions, we
find that

|MT |2v/|M |2 =

⎧⎪⎨
⎪⎩

1
2 (e2

x + e2
y ) = 1

2 (1 − |k̂ · ê|2) for HH band,
1
6 (e2

x + e2
y + 4e2

z ) = 1
2 ( 1

3 + |k̂ · ê|2) for LH band,
1
3 (e2

x + e2
y + e2

z ) = 1
3 for SO band.

(A10.4)

(A10.5)

(A10.6)

The relative transition strengths given in Eqs. (A10.4) through (A10.6) allow
us to relate the transition matrix element, |MT |2, needed in our gain calculations
to the experimentally measurable matrix element, |M |2. Note that the use of a dot
product has allowed us to drop any reference to a coordinate system and, hence,
drop the constraint that the electron k -vector be directed along z (in other words,
the physics does not lie in the coordinate system we choose, but in the relative
orientation between the field polarization ê and the electron k -vector).

To examine the dependence of Eqs. (A10.4) through (A10.6) on the field polar-
ization in a more visual fashion, we have plotted the relative transition strengths
for C–HH and C–LH transitions in Fig. A10.2 as a function of the angle between
the electron k -vector and the electric field polarization, ê. These three-dimensional
renderings reveal that the strength of interaction between each electron plane wave
state and photon is highly polarization dependent. However, the striking features
of Fig. A10.2 do not reveal themselves in bulk material because photons of a given
polarization interact with a great number of electrons, all with k -vectors pointing in
different directions. The average, over all these interactions transforms the interest-
ing shapes in Fig. A10.2 into uniform spheres. In fact, the average of |k̂ · ê|2 for k̂
sweeping over all three dimensions is equal to 1/3. Thus, for all three valence band
transitions, the bulk material transition matrix element is just equal to 1/3 × |M |2
(spin excluded) for any electric field polarization.

A10.2 POLARIZATION-DEPENDENT EFFECTS

The derivation presented here assumed plane wave states for the envelope func-
tions, which then led to the polarization dependence illustrated in Fig. A10.2. In
quantum-confined structures, the envelope functions are typically constructed from
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k

C–HH C–LH

k

E

E

FIGURE A10.2: Dependence of the transition strength, |MT |2, on angle between the elec-
tron’s k -vector and the incident electric field vector, E, for C–HH and C–LH transitions
(C–SO transitions are independent of angle). For C–HH transitions, |MT |2 is zero when
E ‖ k and becomes a maximum of 1

2 × |M |2 when E ⊥ k. For C–LH transitions, when
E ‖ k, |MT |2 has a peak value of 2

3 × |M |2 and is reduced to 1
6 × |M |2 when E ⊥ k.

two (or more) plane wave states. The magnitude squared of the transition matrix
element in (A10.2) will, in general, then contain cross-terms between the various
plane waves that make up the confined state. In the following discussion we will
ignore these cross-terms, making the analysis simpler. Later, we will see that in
quantum wells, the conclusions derived here are consistent with the band-mixing
model for transitions near the band edge.

Neglect of the cross-terms in (A10.2) implies that we can treat the plane waves
that make up the confined states as independent from each other. In this approx-
imation, each plane wave’s k -vector direction will then have a corresponding
polarization dependence similar to that derived in Section A10.1 and shown in
Fig. A10.2. Near the band edge in quantum-confined structures, the k -vectors are
quantized along certain directions, and the situation will be as shown in Fig. A10.3
for a typical quantum well and quantum wire. In the quantum well, all k -vectors
point along the same axis and the polarization dependence is simply proportional to
Fig. A10.2. However, in the quantum-wire case, we must average over the polar-
ization dependence of each plane wave (as indicated by the dashed curve in the
lower right side of Fig. A10.3). To quantify the average polarization dependence,
we choose our coordinate system along the confinement axis (axes) of the struc-
ture. It is then possible to evaluate the average transition strength along the three
orthogonal field polarizations, êx , êy , and êz , simply by replacing k̂ in Eqs. (A10.4)
through (A10.6) with some appropriate average k -vector direction, k̂ave .

We leave it to the reader to justify that k̂ave is obtained simply by finding the
average direction of all allowed k -vectors within the first octant of our coordinate
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Quantum Well

End View

Perspective

Quantum Wire

FIGURE A10.3: Illustration of how quantum confinement in a quantum well and a quantum
wire serves to “polarize” the momentum of band edge electrons along certain directions. The
C–HH transition strength is superimposed on each electron’s k -vector in the quantum-well
case. The end view of the quantum well suggests that C–HH interactions with light are
strongest when the light is polarized in the plane of the well. In the quantum-wire case, the
C–LH transition strength is used. The end view shows two possible k -vector directions for
electrons. The average C–LH transition strength is indicated by the dashed curve.

system (if we included all octants in our average, k̂ave would always be zero!).
Next we list k̂ave for bulk and various quantum-confined structures for band edge
states (where “band edge” implies that the total k -vectors are simply equal to the
quantized k -vectors):

k̂ave = (1/
√

3)(k̂x + k̂y + k̂z ), bulk

k̂ave = k̂z , quantum well (Lz )

k̂ave = (1/
√

2)(k̂x + k̂z ), quantum wire (Lx = Lz )

k̂ave = (1/
√

6)(k̂x + k̂y + 2k̂z ). quantum dot (Lx = Ly = 2Lz )

(A10.7)

The prefactors are normalization constants since k̂ave is a unit vector. The
last equation was obtained assuming k ∝ 1/L (which is exactly true only for an
infinitely deep well).

Figure A10.4 illustrates the band edge transition strengths for the three orthog-
onal polarizations in the four structures listed above, obtained by substituting the
k̂ave defined for each structure into Eqs. (A10.4) through (A10.6). When multiplied
by |M |2, the numbers in Fig. A10.4 give the magnitude of the transition matrix
element, |MT |2, for each particular case (spin excluded). Note that the sum of
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0, 2/3

1/2, 1/61/2, 1/6

(a) Bulk (b) QW

(e) Qdot Lx = Ly = 2Lz
(d ) Qwire Lx = 2Lz

1/3

1/3 1/3
x y

z

1/10, 17/30

2/5, 4/15 1/2, 1/6

(c) Qwire Lx = Lz

1/4, 5/12 1/2, 1/6

1/4, 5/12

1/6, 1/2

5/12, 1/45/12, 1/4

FIGURE A10.4: Relative band edge transition strengths for various quantum confinement
structures. The coordinates referred to in the text are indicated in (a). The magnitude of
the transition matrix element is found by multiplying the relative numbers by |M |2. For
example, with light polarized along the wire direction of (c), the band edge C–LH transition
strength |MT |2 = 1

6 × |M |2.

the transition strengths over the three polarizations for each type of transition is
always equal to |M |2, as is the case in bulk material. Thus, the “total” transition
strength for band edge transitions is always conserved. The difference is that in
quantum-confined structures, a redistribution of the transition strength among the
three polarizations occurs due to the nonuniform distribution of k -vector directions.

To treat arbitrary polarizations, we can always break the field up into the three
orthogonal components shown in Fig. A10.4. The transition matrix element is then
simply given by the trigonometric sum of the three components, or

|MT |2v = |M |2
∑

i

e2
i S v

i , i = x , y , z (A10.8)

where the S v
i are the transition strengths determined from Fig. A10.4. As an

example use of Eq. (A10.8), we examine the polarization-dependent characteristics
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of a quantum-wire structure. From Fig. A10.4 (c), the ratio of the transition matrix
element between the C–LH and C–HH transitions is 1

3 when ê is parallel to the
wire and 5

3 when ê is perpendicular to the wire. In general, from Fig. A10.4 (c)
and Eq. (A10.8), we have

|MT |2lh
|MT |2hh

=
1
3 cos2 θ + 5

6 sin2 θ

cos2 θ + 1
2 sin2 θ

, (A10.9)

where θ is the angle between ê and the axis of the wire.

A10.3 INCLUSION OF ENVELOPE FUNCTIONS IN QUANTUM WELLS

As shown in Appendix 8 quantum confinement changes the valence band structure
through the interaction and mixing of the envelope functions. That is, the general
valence band wavefunction in Eq. (A8.31) consists of both HH and LH envelope
function components. Thus, the transition matrix element in Eq. (A10.1) must be
modified and is now expressed as

|MT |2v =
∑
uc ,ūc

|〈uc |ê · p|uA〉〈F2|Fhh〉 + 〈uc |ê · p|uB 〉〈F2|Flh〉|2. (A10.10)

Equivalent terms summing over the spin degenerate counterparts of uA and uB (the
uC and uD Bloch functions) increase the sum by a factor of two. This is accounted
for by the removal of the factor of 1

2 appearing in Eq. (A10.2) (throughout this
appendix, the spin degeneracy is removed from the transition matrix element and
included in the reduced density of states function in Chapter 4).

The transition matrix element in Eq. (A10.10) can be placed in a more elegant
form by following a procedure similar to that outlined in Section A10.1. However,
in the present case we must average the transition matrix element over all in-
plane k -vector directions to remove the cross-term which results from squaring
Eq. (A10.10). With the help of Eqs. (A8.32), (A8.33), and (A8.11), the transition
matrix element reduces to

|MT |2v = |M |2[ 2
3 |〈F2|Flh〉|2], TM (ê ‖ ẑ) (A10.11)

|MT |2v = |M |2
2

[|〈F2|Fhh〉|2 + 1
3 |〈F2|Flh〉|2], TE (ê ⊥ ẑ) (A10.12)

where z is assumed to be the quantization direction. At the band edge (where
Flh = 0 for HH states, and Fhh = 0 for LH states), the preceding expressions give
the same transition strengths as those in Fig. A10.4 assuming the overlap integrals
are close to unity (which is true to within 5% to 10% typically, and would be true
exactly if the effective mass in the C and V bands were identical). However, as
we move away from the band edge, band-mixing occurs such that both Fhh ,lh are
present in any one wavefunction, altering the transition strengths from those shown
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FIGURE A10.5: Relative transition strengths for both TE and TM light polarization for the
two lowest subband transitions in an unstrained GaAs/Al0.2Ga0.8As 80 Å QW. The dashed
curves represent what one would calculate assuming parabolic subbands. The transition
strength as plotted here is defined as |MT |2/|M |2 (bulk value is 1/3).

in Fig. A10.4. Sample calculations of the transition strength, which illustrate this
effect are plotted as a function of transverse k -vector, kt in Fig. A10.5.

In finding the envelope functions and evaluating the overlap integrals numer-
ically, we must make sure they are properly normalized. Normalization of the
wavefunctions is obtained through the following relations

Fi (norm) = Fi√
Ni

, where Nhh ,lh = 〈Fhh |Fhh〉 + 〈Flh |Flh〉,
(A10.13)

N2 = 〈F2|F2〉.

The preceding envelope functions refer to the functions along the confinement
direction, and hence the brackets indicate integration along z . The in-plane envelope
functions are simple plane waves. Thus, we require k conservation in the plane
of the well, which then yields an in-plane overlap integral of unity, justifying our
conversion of a volume integral into an integral along z only.
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APPENDIX ELEVEN

Strained Bandgaps

In this appendix, the details of how strain affects the bandgap of III–V semicon-
ductors is considered. To provide some background, we will begin by reviewing
concepts of stress and strain in a crystal lattice [1].

A11.1 GENERAL DEFINITIONS OF STRESS AND STRAIN

A crystal lattice that feels an external force will react by distorting in some fashion.
The force per unit area, or stress, is usually defined by a stress tensor, σij , as
depicted in Fig. A11.1. Shear components of stress (i �= j ) will cause the crystal
to rotate unless equal and opposite components exist (for example, if σ23 = σ32). If
equal and opposite components do exist, the shear stress will deform a cubic lattice
into a nonrectangular shape (i.e., the crystal axes will become nonorthogonal). In
typical semiconductor applications, these types of deformations are rare, and for
the present purposes, we will assume that σij = 0 for i �= j . Normal components
of stress (i = j ) will cause the crystal to expand or contract along the crystal
axes, but in contrast to shear stress, the deformed lattice remains rectangular. The
six faces of a cubic crystal can be acted on by three normal forces: σ11, σ22, and
σ33. Because we are only considering normal components, the notation can be
abbreviated to σ1, σ2, and σ3. As suggested in Fig. A11.1, the σi are defined as
positive for outward directed forces.

The next consideration involves the mathematical description of the lattice dis-
tortion. The strained state of the lattice is usually defined by a strain tensor, εij .
Each component of the strain tensor defines some aspect of the distortion of the
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s33

s33

s22s22

s23

s32

s23

s32

au

Stress components Strain components

a2 = au (1 + e2)
e2 > 0

a3 = au (1 + e3)
e3 < 0

FIGURE A11.1: Components of stress tensor, σij , and examples of the abbreviated strain
tensor, εi , within the y−z plane.

lattice away from its unstrained shape. Restricting our attention to the effects of
normal forces on the lattice, we only need to consider the three diagonal compo-
nents of the strain tensor: ε11, ε22, and ε33 (since the crystal axes remain orthogonal
to each other). Again using the abbreviated notation, these can be written as ε1, ε2,
and ε3. The εi measure the fractional increase (εi > 0) or decrease (εi < 0) of the
crystal lattice along the i th axis as illustrated in Fig. A11.1. For example, if the
description of the lattice distortion is given as ε1 = 0, ε2 = 0.01, and ε3 = −0.01,
then we know that the lattice is undistorted along x , is larger by 1% along y ,
and is smaller by 1% along z , as qualitatively illustrated in the figure within the
y−z plane.

With the stress and strain tensors defined, we now need to relate them to predict
how a particular stress or set of external forces leads to a particular strain or lattice
deformation. In a uniform material, the strain is proportional to the magnitude of
the applied stress, as long as we remain within the elastic limits of the material.
Hooke’s law in an isotropic medium expresses this scalar relation as σ = C ε,
where the constant, C , is Young’s modulus. In a crystal, one type of stress may
lead to more than one type of strain, implying that the different components of both
stress and strain tensors are potentially related. The more general form of Hooke’s
law excluding shear components of stress can be written as

⎡
⎢⎣

σ1

σ2

σ3

⎤
⎥⎦ =

⎡
⎢⎣

C11 C12 C12

C12 C11 C12

C12 C12 C11

⎤
⎥⎦

⎡
⎢⎣

ε1

ε2

ε3

⎤
⎥⎦ . (A11.1)

The Cij are referred to as the elastic stiffness coefficients or the elastic moduli. The
expression written here assumes the crystal has cubic symmetry such that all off-
diagonal elements are equal, and all diagonal elements are equal, leaving us with
only two elastic moduli, denoted C11 and C12. For crystals with less symmetry,
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more Cij components may need to be specified (if we include shear stress, an
additional C44 is required to complete the description of stress and strain in cubic
crystals). In common semiconductors, C11, C12 > 0 with C11 > C12, and both are
usually described in units of 1011dyn/cm2.

Some relevant examples using Eq. (A11.1) are shown in Fig. A11.2. In the first
two examples shown on the left, stress is applied to all four x and y faces of the
cube such that σ1 = σ2, and no stress is applied to the z faces, such that σ3 = 0. For
both of these cases, the crystal is under biaxial strain. When the stress is directed
outward (σ1 > 0), the resulting strain is referred to as biaxial tensile strain, while
inward stress (σ1 < 0) gives rise to biaxial compressive strain. The resulting lattice
deformation can be calculated using Eq. (A11.1). By symmetry, with σ1 = σ2, the
strain in both x and y directions must be equal and we can set ε1 = ε2. With σ3 = 0
and ε1 = ε2, the first and third equations in Eq. (A11.1) reduce to

σ1 = C11ε1 + C12ε1 + C12ε3,

0 = C12ε1 + C12ε1 + C11ε3. (A11.2)

These equations are valid for both tensile and compressive biaxial strain. The
relationship between the strain components is immediately obtained from the lower
equation:

ε3 = −2C12

C11
ε1. (A11.3)

Since C11, C12 > 0, we conclude that under biaxial strain, the lattice deformation
along z will be opposite to the deformation along either x or y , as depicted in

Biaxial strain Uniform pressure

CompressiveTensile

s1 > 0

s2 = s1 s2 = s1

s1 < 0

s3 = 0 s3 = 0 s3 = –dP

s1 = –dP

s2 = –dP

e3 = −
2C12

C11
e1

e1 = e2 < 0e1 = e2 > 0
e1 = e2 = e3 < 0

−dP = (C11 + 2C12) ⋅ e1

FIGURE A11.2: Examples of the relationship between stress and strain.
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Fig. A11.2. This effect is similar to squeezing a balloon—as the sides are com-
pressed, the top and bottom expand as the balloon attempts to maintain the same
volume of air. Using Eq. (A11.3) in the first equation of Eq. (A11.2), we then find

σ1 = C11ε1[1 + C12/C11 − 2(C12/C11)
2]. (A11.4)

This equation gives us the absolute measure of the stress required to achieve a given
strain. Note that if C12 = 0, the strain perpendicular to the stress plane (i.e., along
z ) reduces to zero, and Hooke’s law reduces to the scalar relation: σ1 = C11ε1.

The example shown on the right side of Fig. A11.2 corresponds to a uniform
stress applied equally to all sides of the crystal. If we define this inward-directed
stress as a differential pressure change, dP, surrounding the crystal, then we can
set σ1 = σ2 = σ3 = −dP . Adding up all three equations in Eq. (A11.1), we imme-
diately find

−3 dP = (C11 + 2C12)(ε1 + ε2 + ε3). (A11.5)

Neglecting cross-terms between the εi , the fractional change in the volume of the
crystal lattice is given by

dV/V ≈ ε1 + ε2 + ε3. (A11.6)

Therefore, Eq. (A11.5) allows us to determine the change in the crystal volume in
response to a change in the uniform pressure surrounding the crystal. This relation-
ship will be used later to relate the experimentally measured pressure dependence
of the bandgap to the strain of the lattice.

A11.2 RELATIONSHIP BETWEEN STRAIN AND BANDGAP

With an understanding of how a particular stress leads to a particular strain, we are
left with the task of determining how a particular strain affects the bandgap of the
semiconductor, the main topic of this appendix. Pikus and Bir [2] in 1959 provided
the fundamental theory necessary to describe how lattice deformations affect the
Hamiltonian, which describes the interaction between the three valence bands:
the heavy-hole (HH), light-hole (LH), and split-off (SO) bands. Their analysis
involved transforming the coordinate system describing the crystal potential and
the hole wavefunctions into a new deformed coordinate system, making use of
the strain tensor. To first order in the strain, it was shown that a Hamiltonian
identical in form to the Luttinger–Kohn (LK) valence band Hamiltonian described
in Appendix 8 must be added to account for the strain. This new Pikus and Bir
or strain Hamiltonian can be found directly from the LK Hamiltonian using the
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following substitutions:

ki kj → εij ,

γ1 → a ,

−2γ2 → b,

−2
√

3γ3 → d . (A11.7)

In these substitutions, the ki are the various wavevectors appearing in the LK
Hamiltonian and the γi are the Luttinger parameters, both of which are discussed
in Appendix 8. The εij are the components of the strain tensor describing the
lattice deformation and a, b, and d are lattice deformation potentials, which relate
shifts in the valence bands to the strain tensor. An additional strain-dependent spin–
orbit interaction Hamiltonian [3, 4] also exists; however, the deformation potentials
associated with this interaction are generally more than an order of magnitude
smaller [3] than those associated with the Pikus and Bir Hamiltonian and will
therefore be neglected here.

In this appendix, only normal components of the stress tensor are considered, and
we can set εij = 0 for i �= j . Furthermore, if we concentrate on biaxial strain then
we can also set ε1 = ε2. Under these conditions, the 6 × 6 strain Hamiltonian [4, 5]
relating the three twofold spin-degenerate valence bands is block-diagonalized into
two identical 3×3 Hamiltonians (the interaction between states of opposite spin is
removed). We can write the 3×3 strain Hamiltonian as

HH LH SO⎡
⎢⎢⎣

H − S 0 0

0 H + S
√

2S

0
√

2S H + �

⎤
⎥⎥⎦

HH

LH

SO

(A11.8)

where

H = a(ε1 + ε2 + ε3), (A11.9)

S = b( 1
2 (ε1 + ε2) − ε3), (A11.10)

and � is the spin–orbit energy, which separates the SO band from the HH and LH
bands. The energies, H and S , are related to the strain tensor through the a and
b deformation potentials (the deformation potential, d , appears only when shear
components of stress are considered).

Equation (A11.9) reveals that H is proportional to the change in volume of the
crystal lattice created by the strain (compare with Eq. (A11.6)). It is referred to as
the hydrostatic component of the strain. Because H appears with the same sign
in every diagonal term of the Hamiltonian Eq. (A11.8), we conclude that changes
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in the crystal volume result in a rigid shift of all three valence bands either up or
down in energy, depending on whether the volume change is positive or negative.

Equation (A11.10) defines the shear component of the strain, S . The shear strain
energy is proportional to the asymmetry in the strain parallel and perpendicular to
the stress plane (the shear strain should not be confused with shear stress which is
zero in this case). The dependence of the Hamiltonian on S is more complex than
its dependence on H . The HH band is isolated from the other two bands; however,
the LH and SO bands are coupled through the

√
2S term. If S � �, the LH–SO

band coupling can be neglected, and the dominant contribution from S shows up
in the HH and LH diagonal terms, where it is seen to split the HH and LH bands
in opposite directions.

The strain Hamiltonian is written in terms of the hole energy, such that positive
energy moves further into the valence band. For biaxial compressive strain, H and
S are both positive, indicating an increase in the bandgap. For biaxial tensile strain,
H and S are both negative. Figure A11.3 illustrates the band edge shifts of the three
valence bands for both types of biaxial strain. The conduction band experiences
a shift due to the hydrostatic component of strain only. In fact, we can define
a separate H ′ with a corresponding deformation potential a ′ associated with the
movement of the conduction band. However, it can be difficult to experimentally
separate H ′ from the total bandgap shift [6]. A common approach is to interpret
H in the strain Hamiltonian (and deformation potential a) as the total energy
shift of the bandgap resulting from hydrostatic strain, and not worry about how
the total shift is divided up between the conduction and valence bands. In fact, to
estimate strained bandgaps, the division of H into H ′ and H − H ′ is irrelevant. For
heterointerface applications (including strained QWs), the division of H into H ′
and H − H ′ can indicate how the conduction band offset, Qc , is affected by strain.
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FIGURE A11.3: Qualitative band energy shifts of the conduction band and three valence
bands for biaxial compressive and tensile strain. The magnitude of the energy shift is indi-
cated next to each shift. The gray energies include LH–SO band coupling.
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However, in practice Qc is measured experimentally by other means, implying that
again we do not need H ′. As a result, the strained bandgap and its lineup with
other material bandgaps is typically defined using H and measured values of Qc .

To quantify the energy shifts depicted in Fig. A11.3, we need to evaluate H and
S . The strain components within the stress plane, ε1 and ε2, are easily identified
as the fractional change in the in-plane lattice constant of the strained material.
The strain perpendicular to the stress plane, ε3, was discussed earlier in reference
to Fig. A11.2, and can be related to ε1 and ε2 using Eq. (A11.3). If we assume
the in-plane lattice constant, a‖, of the strained material is strained to match the
substrate lattice constant such that a‖ = asub, we can define the strain as

ε ≡ anative − asub

anative
, (A11.11)

where anative is the native unstrained lattice constant of the strained material. The
various strain components are related to this definition as follows:

ε1 = ε2 = −ε and ε3 = 2C12

C11
ε. (A11.12)

The lattice-mismatch parameter, ε, is defined negative to the in-plane strain com-
ponents by convention such that ε > 0 for compressive strain, and ε < 0 for tensile
strain. Plugging these into the definitions of H and S , we find

H = (−a) · 2
C11 − C12

C11
ε, (A11.13)

S = (−b) · C11 + 2C12

C11
ε. (A11.14)

The parentheses around the deformation potentials are used because in common
semiconductors, a , b < 0. The parentheses therefore enclose positive numbers, and
the sign of ε determines the sign of both H and S .

The change in the HH, LH, and SO bandgaps for S � � can be approximated by
the diagonal terms of Eq. (A11.8). However, for larger strains, the matrix must be
diagonalized. Since the HH band is isolated, the problem is reduced to finding the
eigenvalues of the 2×2 submatrix which couples the LH and SO bands. Performing
this procedure, the bandgap shifts become

�EHH = H − S ,

�ELH = H + S − δ,

�ESO = H + � + δ, (A11.15)

δ = 1
2�{[1 − 2(S /�) + 9(S /�)2]1/2 − (1 − S /�)} ≈ 2S 2/�.

The energy, δ, represents an additional repulsion between the LH and SO bands,
which increases approximately quadratically with S and hence is positive for both



654 STRAINED BANDGAPS

tensile and compressive strain. This LH–SO band-coupling energy shift is indi-
cated by the gray energy levels in Fig. A11.3. The band edge energy shifts in
Eq. (A11.15) are all relative to the unstrained direct bandgap of the material,
Eg0. Once Eg0 is added to the energy shifts, the strained bandgaps are com-
pletely defined. The material parameters that we must know to predict the strained
bandgaps (aside from the unstrained bandgap and lattice-mismatch parameter) are
a , b, C11, C12, and �.

Values for all of the required strain parameters can be found in the literature.
However, the hydrostatic deformation potential, a , is a bit more difficult to track
down. The division of a between the valence and conduction band is not well
standardized. As a result, a sometimes refers to the conduction band shift and
sometimes the valence band shift, or sometimes the sum of these two (which
is what we are interested in). Unfortunately, it is often difficult to know which
definition is being used in any given citation. For this reason it is common to
estimate a based on measurements of the pressure dependence of the bandgap.
The strain example given earlier in reference to Fig. A11.2 showed that a uniform
pressure is related to the volume change as follows:

−3 dP = (C11 + 2C12) (ε1 + ε2 + ε3). (A11.16)

Furthermore, for a uniform pressure we can set S = 0, implying that the shift in
the HH and LH bandgaps is caused solely by H . Thus, the differential change in
bandgap in response to a differential change in pressure is simply

dE = a(ε1 + ε2 + ε3). (A11.17)

Dividing Eq. (A11.17) by Eq. (A11.16), we find

a = − 1
3 (C11 + 2C12)

dE

dP
. (A11.18)

Because dE/dP > 0, we conclude that a < 0, as stated earlier. This formula allows
us to determine a for any bandgap once the pressure dependence of the gap is
known. The pressure dependence of the energy gap is commonly quoted in units
of 10−6 eV/bar or sometimes 10−6 eVcm2/kg (1 bar = 1.019 kg/cm2). In defining
a this way, a useful conversion factor to keep handy is

10−6 eV/bar × 1011 dyn/cm2 = 0.1 eV. (A11.19)

Strain-related parameters of III–V semiconductor materials are summarized
in Table A11.1. The strain parameters related to shear stress, d and C44, are
included for completeness but are not required in the calculation of biaxially
strained bandgaps. The hydrostatic deformation potential, a , was calculated
from other parameters in the table using Eq. (A11.18); the values of dE/dP in
the table correspond to the direct bandgap change with pressure. The first five
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TABLE A11.1: Strain Parameters in III–V Semiconductors

Lattice Deformation Potentials Elastic Moduli (10−6

Constant (eV) (1011dyn/cm2) eV/bar)

Material a(Å) a b d C11 C12 C44 dE /dP �(eV)

GaAs 5.6533 −8.68 −1.7 −4.55 11.88 5.38 5.94 11.5 0.34
InAs 6.0583 −5.79 −1.8 −3.6 8.329 4.526 3.959 10.0 0.371
AlAs∗ 5.6611 −7.96 −1.5 −3.4 12.02 5.70 5.89 10.2 0.30

GaP∗ 5.4512 −9.76 −1.5 −4.6 14.12 6.253 7.047 11.0 0.10
InP 5.8688 −6.16 −2.0 −5.0 10.22 5.76 4.60 8.5 0.10
AlP∗ 5.4635 −8.38 −1.75 −4.8 13.2 6.3 6.15 9.75 0.10

GaSb 6.0959 −8.28 −1.8 −4.6 8.842 4.026 4.322 14.7 0.8
InSb 6.4794 −7.57 −2.0 −4.8 6.47 3.65 3.02 16.5 0.98
AlSb∗ 6.1355 2.04 −1.35 −4.3 8.769 4.341 4.076 −3.5 0.75

∗Indirect gap.

entries were taken primarily from Adachi [7, 8] while the rest were taken from
Landolt–Bornstein [9]. Complete data for AlP could not be found. Thus, blank
entries in this row were filled with the average value of the other two phosphides.

If we wanted to know, for example, the strained bandgap of InGaAs grown
on GaAs as a function of indium mole fraction, we could determine the strain
parameters for the InGaAs ternary by linear interpolation between the GaAs and
InAs values listed in Table A11.1. For most ternaries this procedure works well.
For quaternaries, Vegard’s law [7] can be applied to provide reasonable estimates.

A11.3 RELATIONSHIP BETWEEN STRAIN AND BAND STRUCTURE

The energy shifts discussed in this appendix refer to the band edge shifts exclu-
sively. To predict the band structure away from the band edge, the strain Hamil-
tonian must be added to the LK Hamiltonian, and the combination must be diag-
onalized. In Appendix 8, this combined Hamiltonian uses the band edge of the
HH band as the zero-energy reference. Thus, H − S should be subtracted from all
diagonal terms of the strain Hamiltonian. The net result once the strain Hamiltonian
is diagonalized is that the difference between the HH and LH band edges should
be added to the LH diagonal term in the LK Hamiltonian. In Appendix 8, this
total splitting energy between the HH and LH bands was defined as Stot. Using
Eq. (A11.15), we can write

Stot ≡ ELH − EHH = 2S − δ ≈ 2S (1 − S /�), (A11.20)

where the latter approximation expands δ to second order in S .
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In Appendix 8, the LK Hamiltonian used for the subband structure calculations
ignores any coupling to the SO band. Chao and Chuang [5] have analyzed the
consequences of this approximation and found that significant differences do exist
between the subband structure with and without SO band coupling. However, their
calculations without SO band coupling assume Stot = 2S (i.e., they ignore the SO
band coupling entirely). By assuming Stot = 2S − δ, the SO band coupling can at
least be partially included since we obtain more accurate estimates of the LH sub-
band energies at the zone center (i.e., at the subband edges). This procedure should
improve the accuracy of strained subband structure calculations which ignore SO
band coupling in the LK Hamiltonian.
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APPENDIX TWELVE

Threshold Energy for Auger
Processes

A12.1 CCCH PROCESS

For the CCCH process in Fig. 4.21, we can write the momentum and energy con-
servation laws (i.e., initial = final) as

k1 + k2 = k3 + k4, (A12.1a)

�E1 + �E2 = −(Eg + �E3) + �E4, (A12.1b)

where the k’s are vectors in k -space, and Ec has been used as the energy reference
level in the latter equation. Rearranging the energy conservation law, we find

�E4 − Eg = �E1 + �E2 + �E3. (A12.2)

From Eq. (4.107b), it follows that the most probable transition corresponds to the
minimum possible energy of state 4. This minimum value for �E4 is referred to
as the threshold energy, ET , of the Auger process.

To determine the threshold energy, we need to minimize Eq. (A12.2). If we
assume that all bands are parabolic, we can set �Ei ∝ ki · ki /mC for the three
conduction band states and �E3 ∝ k3 · k3/mH = μk3 · k3/mC , for the valence
band where μ = mC /mH . At the minimum, �E4 will be independent of variations
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in any of the k -vectors. The differential of any one term is d(ki · ki ) = ki · dki

+ dki · ki . Taking the total differential of Eq. (A12.2) and setting it to zero, we
obtain

k4 · dk4 = k1 · dk1 + k2 · dk2 + μk3 · dk3 = 0, (A12.3)

dk3 = dk1 + dk2 − dk4. (A12.4)

The second equation follows from taking the differential of the constraint
Eq. (A12.1a). Replacing dk3 in Eq. (A12.3) using Eq. (A12.4), we find

(k1 + μk3) · dk1 + (k2 + μk3) · dk2 − μk3 · dk4 = 0. (A12.5)

The last term is zero when k3‖k4, since k4 · dk4 = 0 from Eq. (A12.3). The remain-
ing two terms are zero for any dk1 and dk2 when k1 = k2 = −μk3. Substituting
this into Eq. (A12.1a), we can determine k4. To summarize, we have

k1 = k2 = −μk3, (A12.6)

k4 = −(1 + 2μ)k3, (A12.7)

where μ = mC /mH . Thus, the most probable Auger transition occurs when all
four k -vectors are colinear, with k3 pointing in the opposite direction to the rest.
The Auger transitions in Fig. 4.20 reflect this conclusion. Using Eqs. (A12.6) and
(A12.7) in Eq. (A12.1b) and solving for k2

3 , we obtain

k2
3 = 1

(1 + 2μ)(1 + μ)
k2

g , (A12.8)

where kg corresponds to Eg = �
2k2

g /2mC . The energies of the four states involved
are then easily found using Eq. (A12.8):

�E1 = �E2 = μ�E3 = μ2

(1 + 2μ)(1 + μ)
Eg , (A12.9)

�E4 = 1 + 2μ

1 + μ
Eg . (A12.10)

The threshold energy for the CCCH process is therefore given by

ET ≡ �E4 = 1 + 2μ

1 + μ
Eg = 2mC + mH

mC + mH
Eg . (A12.11)

The most probable CCCH Auger transition is now completely defined.



A12.2 CHHS AND CHHL PROCESSES 659

A12.2 CHHS AND CHHL PROCESSES

For the CHHS process in Fig. 4.20, we again start by writing the momentum and
energy conservation laws:

k1 + k2 = k3 + k4, (A12.12a)

−(�E1 + �E2) = Eg + �E3 − (�so + �E4). (A12.12b)

In this case, Ev has been used as the energy reference level in the latter equation.
Rearranging the energy conservation law, we find

�E4 − (Eg − �so) = �E1 + �E2 + �E3. (A12.13)

Again, we wish to minimize �E4 to maximize the transition probability. Using the
same procedure as outlined earlier, the minimum k -vectors are found to be

k1 = k2 = −k3/μH , (A12.14)

k4 = −(1 + 2/μH )k3, (A12.15)

where μH = mC /mH . Again, all four k -vectors are colinear, with k3 pointing in
the opposite direction to the rest. The energies of the four states involved are found
to be

μS �E1 = μS �E2 = �E3

= 1/μS

(1 + 2/μH )(1 + 2/μH − 1/μS )
(Eg − �so), (A12.16)

�E4 = (1 + 2/μH )

(1 + 2/μH − 1/μS )
(Eg − �so), (A12.17)

where μS = mC /mS . The threshold energy for the CHHS process is therefore
given by

ET ≡ �E4 = 2mH + mC

2mH + mC − mS
(Eg − �so). (A12.18)

The equations for the CHHL process are found by setting �so → 0 and mS → mL.



APPENDIX THIRTEEN

Langevin Noise

This appendix gives a more detailed account of the Langevin noise sources used
in Chapter 5. It is divided into three main sections. The first section considers
basic properties of Langevin noise sources and covers the general definition and
evaluation of the correlation strength between two Langevin noise sources. The
second section considers the specific Langevin noise correlations between: (1) the
photon density and carrier density Langevin noise sources, (2) the photon density
and output power Langevin noise sources, and (3) the photon density and phase
Langevin noise sources. The final section makes use of the specific correlation
strengths to evaluate the noise spectral densities of the photon density, output
power, and carrier density, using the formulas developed in Chapter 5. Practical
approximations to these lengthy expressions are also discussed.

A13.1 PROPERTIES OF LANGEVIN NOISE SOURCES

A13.1.1 Correlation Functions and Spectral Densities

One of the defining characteristics of a Langevin noise source, F (t), is its com-
pletely random nature. In fact, the best analogy to F (t) is a random number
generator that generates a new number between ±∞ every �t seconds in the
limit of �t → 0. In mathematical terms, this characteristic is described as a mem-
oryless process, which means that the value of F (t) at time t has absolutely no
correlation with any previous value F (t − τ) including τ → 0+. Now because
F (t) is just as often positive as it is negative, the average value over time is zero:

Diode Lasers and Photonic Integrated Circuits, Second Edition.
Larry A. Coldren, Scott W. Corzine, and Milan L. Mašanović.
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662 LANGEVIN NOISE

〈F (t)〉 = 0.1 Furthermore, since F (t) and F (t − τ) fluctuate randomly relative to
each other, they have the same sign just as often as they have opposite signs over
time. As a result, the average of the product of the two over time t is also zero:
〈F (t)F (t − τ)〉 = 0. The only exception is when τ = 0, in which case the product
is always positive: 〈F (t)F (t)〉 = 〈F (t)2〉 = ∞ (the magnitude is infinite because
F (t)2 can take on any value between 0 and ∞, which when averaged is infi-
nite). As a function of τ then, the correlation function 〈F (t)F (t − τ)〉 displays a
delta function-like behavior. Generalizing this result, we can define the correlation
function between any two (memoryless) Langevin noise sources as

〈Fi (t)Fj (t − τ)∗〉 = Sij · δ(τ ). (A13.1)

The proportionality constant Sij defines the correlation strength between the
two noise sources (it has units of (seconds) × (fluctuating variable units)2).
When i = j , Sij defines the autocorrelation strength. When i �= j , Sij defines the
cross-correlation strength, which is nonzero only if the fluctuations of one noise
source are in some way correlated with the fluctuations of the other noise source.
The complex conjugate is included in the definition of the correlation function
to account for possibly complex Langevin noise sources (such that at τ = 0, the
autocorrelation function reduces to 〈|Fi (t)|2〉).

It is interesting to point out that according to Eq. (A13.1), a Langevin noise
source has an infinite mean-square value: 〈|Fi (t)|2〉 = ∞. However, this would
only be observable by a detection system that had infinite bandwidth. In practice,
the fluctuations observed on an oscilloscope are never infinite because they are
limited by the system rise time or measurement bandwidth. The actual measured
mean-square noise is found from the overlap of the measurement bandwidth with
the spectral density of the noise source as worked out in Eqs. (5.112)–(5.114) in
Section 5.5.

We can relate the spectral density to the correlation function by examining the
frequency domain correlation function as follows:

〈Fi (ω)Fj (ω
′)∗〉 =

〈∫
Fi (τ )e−jωτ dτ ·

∫
Fj (t)

∗ejω′t dt

〉

=
∫∫

〈Fi (t + τ)Fj (t)
∗〉e−jωτ e−j (ω−ω′)t dt dτ

=
∫

〈Fi (t + τ)Fj (t)
∗〉e−jωτ dτ ·

∫
e−j (ω−ω′)t dt

=
∫

〈Fi (t)Fj (t − τ)∗〉e−jωτ dτ · 2πδ(ω − ω′)

≡ Sij (ω) · 2πδ(ω − ω′). (A13.2)

1The brackets 〈 〉 actually refer to a statistical average over many similarly prepared systems at the
same time t . However, we can obtain the same result by averaging a single system over extended time
intervals if the statistical processes involved are both stationary and ergodic, which we assume to be the
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The first step in this derivation uses Eq. (5.111) to transform to the time domain.
The second step sets τ → t + τ (with dτ = dτ ) and regroups, confining the sta-
tistical average (see footnote 1) to the statistically varying processes. The third and
fourth steps assume that 〈F (t + τ)F (t)∗〉 only depends on the relative time delay
τ between the two functions and not on the absolute time t . This characteristic is
described as a stationary process and is not limited to Langevin noise sources but
applies to all statistical processes considered in this book. For stationary processes
then, we can separate out the integration over t in the third step and shift the
time origin to t → t − τ in the fourth step. The fourth step also recognizes the
integration over t to be a delta function of strength 2π .

The final step in Eq. (A13.2) defines the correlation strength of the frequency
domain delta function as the spectral density Sij (ω) (compare with Eq. (5.113)),
where

Sij (ω) =
∫

〈Fi (t)Fj (t − τ)∗〉e−jωτ dτ. (A13.3)

In words, the spectral density is just the Fourier transform of the correlation func-
tion. This fundamental relation is known as the Wiener–Khinchin theorem and it
applies to all types of stationary processes (not just Langevin noise). For example,
when discussing linewidth in Section 5.5.6, we stated that the power spectrum
was equal to the Fourier transform of the electric field autocorrelation function.
Equation (A13.2) is the proof of that statement. However, here we are interested
in applying this result to Langevin noise.

Plugging the Langevin noise correlation Eq. (A13.1) into Eq. (A13.3), we find

Sij (ω) = Sij

∫
δ(τ )e−jωτ dτ = Sij . (A13.4)

Thus, the Langevin noise spectral density is simply equal to the correlation strength
and is independent of frequency—it is a “white” noise source (this is in fact true
for any memoryless, stationary process). Since the Langevin noise spectral density
and correlation strength can be used interchangeably, we adopt a common notation
for both:

〈Fi Fj 〉 ≡ Sij (ω) = Sij . (A13.5)

In some cases it is more meaningful to interpret 〈Fi Fj 〉 as the noise spectral density
while in other cases the correlation aspect is more relevant. In this appendix,
we will generally refer to 〈Fi Fj 〉 as the correlation strength. Note that both the

case here. Thus, whether we define 〈 〉 as a statistical average or time average is a matter of conceptual
convenience. In the time domain, it is often convenient to think in terms of a time average, whereas in
the frequency domain, a statistical average is usually more appropriate.
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spectral density and the correlation strength have units of (seconds) × (fluctuating
timedomain variable units)2.

A13.1.2 Evaluation of Langevin Noise Correlation Strengths

The Langevin noise sources discussed here and in Chapter 5 are based on a shot
noise model advanced by McCumber [1] and others such as Lax [2] as a method of
simplifying the rigorous quantum description of noise in lasers. Within this model,
the laser noise is assumed to originate from shot noise associated with the discrete
random flow of particles into and out of the carrier and photon reservoirs. It can
be shown that the spectral density of shot noise is constant and proportional to the
average rate of particle flow. With this in mind, consider a reservoir where particles
are flowing into and out of the reservoir by a host of discrete random processes.
In the Langevin formalism, each of these discrete processes contributes shot noise
to the overall noise in the reservoir. Therefore, to determine the total Langevin
noise spectral density or correlation strength 〈Fi Fi 〉, we simply sum over all shot
noise contributions—or over all rates of particle flow into and out of reservoir i . To
determine the cross-correlation strength 〈Fi Fj 〉 between two reservoirs i and j , we
sum only over particle flows that affect both reservoirs simultaneously. However
in this case, when one reservoir gains a particle (Fi > 0), the other loses a particle
(Fj < 0). Hence the product 〈Fi Fj 〉 is always negative, and the noise between the
two reservoirs is said to be negatively correlated.

Within the shot noise Langevin model then, the correlation strengths between
the various Langevin noise sources are found by simple inspection of the rates into
and out of the various reservoirs:

〈Fi Fi 〉 =
∑

R+
i +

∑
R−

i , (A13.6)

〈Fi Fj 〉 = −
[∑

Rij +
∑

Rji

]
. (A13.7)

The reservoir Langevin noise sources, Fi and Fj , as well as the rates of particle
flow into, R+

i , out of, R−
i , and between the two reservoirs, Rij and Rji are all in

units of numbers per unit time. For single-sided spectral densities, an additional
factor of 2 would be required on the RHS of these definitions.

As an example use of Eq. (A13.6), let’s consider a simple and perhaps familiar
example: shot noise in a detector. The shot noise associated with the current gen-
erated by discrete random absorption events is given by: 〈iN (t)2〉 = 2qI �f , where
I is the average current, and �f is the bandwidth of the detection system. We can
arrive at this same result by defining the current noise in terms of a Langevin noise
source: i (t) = I + FI (t). After converting to pure numbers per unit time (i.e., I/q

2If the absorbed photons do not arrive in an entirely random fashion, it is possible to generate a noise
current smaller than the standard shot noise level. Such a nonrandom, or sub-shot-noise-limited photon
stream can be generated by semiconductor lasers (see Section 5.5.4 for details).



A13.2 SPECIFIC LANGEVIN NOISE CORRELATIONS 665

and FI /q), we can use Eq. (A13.6) to determine the spectral density of the noise
or the correlation strength 〈FI FI 〉:

1

q2
〈FI FI 〉 = I

q
→ 〈FI FI 〉 = qI . (A13.8)

Multiplying this double-sided spectral density by 2�f (see Eq. (5.115)) gives the
shot noise expression for 〈iN (t)2〉. The main point of this exercise is to show
the importance of first converting to numbers per unit time to get the correct
proportionality constant (in this case, q).

A13.2 SPECIFIC LANGEVIN NOISE CORRELATIONS

A13.2.1 Photon Density and Carrier Density Langevin Noise Correlations

Figure 5.1 displays all rates into and out of both carrier and photon reservoirs. The
associated density Langevin noise sources for each reservoir, FN and FP , when
converted to units of numbers per unit time are VFN and VpFP . Using Fig. 5.1 in
combination with Eqs. (A13.6) and (A13.7), we immediately obtain

V 2
p 〈FP FP 〉 = NpVp/τp + (R21 + R12 + R′

sp)V , (A13.9)

V 2〈FN FN 〉 = ηi I /q + (Rsp + Rnr + R21 + R12)V , (A13.10)

VpV 〈FP FN 〉 = −(R21 + R12 + R′
sp)V . (A13.11)

The current term ηi I /q in (A13.10) may be smaller or larger depending on the
noise characteristics of the current pumping source [3].

We can simplify the correlation strengths using the following substitutions.
From the steady-state relations, we can set NpVp/τp = (R21 − R12 + R′

sp)V in
Eq. (A13.9). From the fundamental relations Eqs. 4.32 and 4.48, we can also set
R12 = R21 − vg gNp and R21 = R′

spNpVp . Finally with Rsp − R′
sp + Rnr = ηi Ith/qV

from Eq. (5.18), we obtain

〈FP FP 〉 = 2�R′
spNp

[
1 + 1

NpVp

]
, (A13.12)

〈FN FN 〉 = 2R′
spNp

�

[
1 + 1

2NpVp

]
− vg gNp

V
+ ηi (I + Ith)

qV 2
, (A13.13)

〈FP FN 〉 = −2R′
spNp

[
1 + 1

2NpVp

]
+ vg gNp

Vp
. (A13.14)

For lasers putting out milliwatt power levels above threshold, the photon number
in the cavity is typically ∼105 or more. Thus it is generally safe to assume
NpVp � 1. For this reason, Eqs. 5.136 through 5.138 are written without the
terms in square brackets.
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“quiet” stream of incident photons

3 of 10 photons randomly reflected 7 of 10 photons randomly transmitted

R = 30%

FIGURE A13.1: Illustration of partition noise created by a partially reflecting mirror. The
key point is that a negative correlation exists between the partition noise reflected and
transmitted at the mirror facet.

A13.2.2 Photon Density and Output Power Langevin Noise Correlations

In Chapters 2 and 5, we simply used P0 = (hνVpvgαmF )Np or equivalently
P0 = (η0hνVp/τp)Np to convert from photon density to output power. However,
when considering the noise inside and outside the cavity we must be careful. To
understand why, consider a perfectly uniform stream of photons incident on a
partially reflecting mirror as sketched in Fig. A13.1. While on average 30% of
the photons are reflected, each individual photon must either be completely trans-
mitted or completely reflected. This random division into reflected and transmitted
photons leads to partition noise in the stream of both reflected and transmitted
photons.

The partition noise reflected back into the cavity is accounted for in 〈FP FP 〉
by the term NpVp/τp in Eq. (A13.9), which is equivalently the shot noise created
by photons escaping the cavity. The partition noise transmitted outside the cavity
however is different from that reflected back in. In fact, it is the exact inverse of the
reflected noise, as Fig. A13.1 reveals. When added to the other noise contributions,
the overall noise associated with the power outside the cavity is not the same
as the overall noise associated with the photon density inside the cavity. This
perhaps subtle point was first brought out by Yamamoto [4] using more fundamental
quantum mechanical arguments.3

3Yamamoto describes the partition noise as vacuum-field fluctuations incident on the mirror facet from
outside the cavity. In this case, the vacuum fields transmitted into the cavity have a negative phase
relationship to those reflected off the mirror facet, and this is what provides the negative correla-
tion between the facet noise inside and outside the cavity. Despite this difference in interpretation,
Yamamoto’s derivation produces the same result for output power noise considered in this appendix
(however, Yamamoto’s derivation requires a high mirror reflectivity resonator).
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We can again use the Langevin method to determine the effect of this negativ-
ity correlated partition noise by treating the stream of output photons as another
reservoir with its own associated Langevin noise source (similar to the detector
current considered initially). Adapting Eq. (5.127), we have for the output power
fluctuations:

δP(t) = (η0hνVp/τp)Np1(t) + F0(t). (A13.15)

As we did in deriving Eqs. (A13.28) and (A13.26), we convert to the frequency
domain, multiply both sides by δP(ω′)∗, take the time average, and integrate over
ω′ to obtain

SδP (ω) = (η0hνVp/τp)
2SNp (ω) + 2 Re{(η0hνVp/τp)〈Np1F0〉} + 〈F0F0〉.

(A13.16)

The first term in this equation is what we would naively expect the relationship
to be. However, the partition noise at the mirror facet creates two additional noise
contributions which are important to consider, particularly at high output powers.

Using Eq. (5.130) for Np1(ω), we can set

〈Np1F0〉 = H (ω)

ω2
R

[(γNN + jω)〈FP F0〉 + γPN 〈FN F0〉]. (A13.17)

Thus, to evaluate (A13.16) we need to know the various correlations between the
three noise sources, F0, FP , and FN . First of all, there is no correlation between
the carrier noise and the phenomenon depicted in Fig. A13.1. Therefore, we can
immediately set 〈FN F0〉 = 0. For the other two correlation strengths we can apply
Eqs. (A13.6) and (A13.7) using F0/hν and VpFP to obtain

〈F0F0〉 = η0NpVp/τp · (hν)2 = hνP0, (A13.18)

〈FP F0〉 = −η0NpVp/τp · (hν/Vp) = −P0/Vp , (A13.19)

〈FN F0〉 = 0. (A13.20)

Using these in combination with Eqs. (A13.12) through (A13.14), we can evaluate
SNp (ω) Eq. (5.125) and 〈Np1F0〉 Eq. (A13.17) from which we can ultimately obtain
the output power spectral density function SδP (ω) Eq. (A13.16). The complete
expression is deferred to the next section, where we evaluate all three photon
density, output power, and carrier density noise spectral density functions.

A13.2.3 Photon Density and Phase Langevin Noise Correlations

The phase Langevin noise source Fφ(t) and its related correlation strengths are
found by studying the electric field in the laser cavity. To begin, we assume the
noise on the electric field contains fluctuations in-phase and out-of-phase with
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FIGURE A13.2: Vector illustration of the relationship between the instantaneous field mag-
nitude and the quadrature (in-phase and out-of-phase) noise components.

the average field as shown in Fig. A13.2. Defining the in-phase and out-of-phase
random fields as �Er (t) and �Ei (t), the total instantaneous field and associated
complex Langevin noise source become

E (t) = E0 + �Er (t) + j�Ei (t),
F̃ (t) = Fr (t) + jFi (t).

(A13.21)

Here Fr (t) models the in-phase field fluctuations, and Fi (t) models the out-of-phase
field fluctuations.

The power and phase fluctuations and their associated Langevin noise sources
can be related to the in-phase and out-of-phase noise components as follows:

E ∗E ≈ E 2
0 + 2E0�Er and ∠E ≈ �Ei /E0,

(A13.22)
FP (t) ≈ 2

√
NpFr (t) and Fφ(t) ≈ Fi (t)/

√
Np .

The approximate equalities are valid for �Er , �Ei  E0. For the latter relations,
the fluctuating portion of E ∗E translates into photon density fluctuations, FP (t),
while E 2

0 translates into average photon density, Np (and hence, E0 translates into√
Np). Now if we assume the spectral density of the in-phase and out-of-phase

components of the field noise are equal in magnitude (i.e., 〈Fi Fi 〉 = 〈Fr Fr 〉), we
obtain

〈Fr Fr 〉 = 1

4Np
〈FP FP 〉 = �R′

sp

2
, (A13.23)

〈FφFφ〉 = 1

Np
〈Fi Fi 〉 = 1

Np
〈Fr Fr 〉 = �R′

sp

2Np
. (A13.24)

The first equation uses Eq. (A13.12) to set 〈FP FP 〉 = 2�R′
spNp assuming

NpVp � 1.
To determine the cross-correlations, we note that 〈FφFP 〉 = 2〈Fi Fr 〉 from

Eq. (A13.22). Assuming �Ei (t) and �Er (t) are completely uncorrelated, we can
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set 〈Fi Fr 〉 = 0. As for 〈FφFN 〉, we note that phase fluctuations due to changes in
carrier density are accounted for separately with the linewidth enhancement factor,
α (see Eq. (5.147)). Thus, the inherent phase fluctuations that exist even when
α = 0 are unrelated to carrier noise. From these arguments, we conclude that

〈FφFP 〉 = 〈FφFN 〉 = 0. (A13.25)

Finally it should be noted that a difference appears between the phase fluctuations
inside the cavity and outside the cavity as discussed by Yamamoto [4]. However,
the difference in this case is relatively minor and will not be considered here (it is
only important to consider at frequencies comparable to or greater than 1/τp).

A13.3 EVALUATION OF NOISE SPECTRAL DENSITIES

A13.3.1 Photon Noise Spectral Density

For reference, the spectral density of the photon density noise derived in Chapter 5
is given by

SNp (ω) = |H (ω)|2
ω4

R

[(γ 2
NN + ω2)〈FP FP 〉 + 2γNN γPN 〈FP FN 〉 + γ 2

PN 〈FN FN 〉].
(A13.26)

Using the rate coefficients defined in Eq. (5.35) and the Langevin noise correla-
tion strengths defined in Eqs. (A13.12) through (A13.14), the photon density noise
becomes

SNp (ω) = NP

Vp
τp .

a ′
1 + a ′

2 ω2

ω4
R

|H (ω)|2, (A13.27)

where

a ′
1 = a ′

2

τ 2
�N

+ ω2
R

2

τ�N τp
+ ω4

R

[
ηi (I + Ith)

Ist
+ 1

]
,

a ′
2 = 8π(�ν)ST NpVp

τp

[
1 + 1

NP Vp

]
,

and (�ν)ST = �R′
sp/4πNp , Ist = qNpVp/τp . To simplify the expression, we have

neglected the dependence of the single-mode spontaneous emission rate on N by
setting 1/τ ′

�N → 0. Also, in defining a ′
1 we have set vg aNp/τp = ω2

R . Thus within
a ′

1, the resonance frequency is by definition: ω2
R ≡ vg aNp/τp .

The three terms comprising a ′
1 form a power series in ω2

R , or equivalently in Np .
At very low powers the first term dominates, while at moderate-to-high powers the
last ω4

R term dominates. In fact at very high powers, the ω4
R term in a ′

1 dominates
the entire numerator of Eq. (A13.26) and its coefficient in square brackets reduces
to 2 (for a shot noise-limited current source). At very high powers, we can also set
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|H (ω)|2 ≈ (1 + ω2τ 2
p )−1 if we neglect gain compression (with gain compression,

τp is replaced by γ /ω2
R). In this limit then, SNp (ω) ≈ (2Np/Vp) · τp/(1 + ω2τ 2

p ).
Using Eq. (5.114), we can estimate the mean-square photon number fluctuation.
Integrating SNp (ω)V 2

p over all frequencies, we obtain 〈|δNp(t)Vp |2〉 = NpVp . This
result reveals that in the limit of high powers, the statistics of the photon number
inside the cavity converges toward a Poisson distribution, indicative of a coherent
state (in the language of quantum optics) [4].

A13.3.2 Output Power Noise Spectral Density

For reference, the spectral density of the output power noise derived earlier is
given by

SδP (ω) = (η0hνVp/τp)
2SNp (ω) + 2 Re{(η0hνVp/τp)〈Np1F0〉} + 〈F0F0〉.

(A13.28)

Using the expression for 〈Np1F0〉 given in Eq. (A13.17) and the Langevin noise
correlation strengths defined in Eqs. (A13.18) through (A13.20), the output power
noise becomes

SδP (ω) = hνP0 ·
[

a1 + a2 ω2

ω4
R

|H (ω)|2 + 1

]
, (A13.27)

where

a1 = 8π(�ν)ST P0

hν

[
1 + 1

NpVp

]
1

τ 2
�N

+ η0ω
4
R

[
ηi (I + Ith)

Ist
− 1

]

− 2η0ω
2
�

[
ω2

R + 1

τ�N τp

]
,

a2 = 8π(�ν)ST P0

hν

[
1 + 1

NpVp

]
− 2η0ω

2
R

[
�ap

a
+ 4π(�ν)ST

ω2
Rτp

]
,

and (�ν)ST = �R′
sp/4πNp , Ist = qP0/η0hν. To simplify the expression, we have

neglected the dependence of the single-mode spontaneous emission rate on N by
setting 1/τ ′

�N → 0. Also, in defining a1 and a2, we have set vg aNp/τp = ω2
R . Thus

within a1 and a2, the resonance frequency is by definition: ω2
R ≡ vg aNp/τp . The

remainder of terms comprising the exact expression for the resonance frequency
are sectioned off into the variable: ω2

� ≡ γNPγPN + γNN γPP − vg aNp/τp .
Within a1, the first term is independent of power and dominates at very low

powers. The second term is ∝ P2
0 and dominates at moderate-to-high powers even

though ηi (I + Ith)/Ist approaches one at high powers (for a shot noise-limited cur-
rent source). The third ω2

� term can be neglected for all but very small power
levels since the difference between vg aNp/τp and the actual ω2

R is usually negligi-
ble. Within a2, the first term is independent of power, but nevertheless dominates
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for all but very high powers. The second term is ∝ P0, so it eventually becomes
comparable to the first term. However, gain compression limits ω2

R to a maximum
value, such that the second term never actually grows larger than the first term.
Within the square brackets of the second term, �ap/a dominates for all but very
small powers since 4π(�ν)ST /ω2

Rτp is ∝ 1/P2
0 .

In comparing SδP (ω) to SNp (ω), note that in addition to the slightly more com-
plex frequency coefficients, a new “+1” factor appears in SδP (ω). This factor
ensures that the output power spectral density never drops below the shot noise
limit of hνP0 for all frequencies (unless the current source has sub-shot noise char-
acteristics). Because the shot noise is included implicitly in SδP (ω), it is in principle
not necessary to explicitly add a shot noise term to the noise current in a photode-
tector [4]. However in practice, the partition noise created by the random loss of
photons in getting from the laser to the detector contributes a shot noise-like term
∝ (1 − ηdet ) that should be added to the detector current noise (see Eq. (5.146a)
and (5.146b) for details).

The expression for SδP (ω) given in Eq. (5.139) neglects the ω2
� term of a1, and

the second term within square brackets of the ω2
R term in a2. The first set of square

brackets in both a1 and a2 are also set equal to one, assuming NpVp � 1 above
threshold.

A13.3.3 Carrier Noise Spectral Density

For reference, the spectral density of the carrier density noise derived in Chapter 5
is given by

SN (ω) = |H (ω)|2
ω4

R

[γ 2
NP 〈FP FP 〉 − 2γPPγNP 〈FP FN 〉 + (γ 2

PP + ω2)〈FN FN 〉].
(A13.28)

Using the rate coefficients defined in Eq. (5.35) and the Langevin noise correla-
tion functions defined in Eqs. (A13.12) through (A13.14), the carrier density noise
becomes

SN (ω) = 8πN 2
P

�2τ 2
p ω4

R

(�ν)ST · (1 + δ)|H (ω)|2, (A13.29)

where

δ = − εNp/nsp

(1 + εNp)2

[
1 + εNp − εNp

2

{
ηi (I + Ith)

Ist
+ 1

}]

+ ω2τ 2
p

[
1 + 1

2nsp

{
ηi (I + Ith)

Ist
− 1

}]
,

and (�ν)ST = �R′
sp/4πNp , Ist = qNpVp/τp . To simplify the expression for this

case, we have set the gain equal to the loss (�vg g = 1/τp) and assumed NpVp � 1.
We have also written out ap explicitly using Eq. (5.32) and set R′

spV τp → nsp . For
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practical uses, it turns out that δ does not need to be considered. For example,
at low powers, the entire first term reduces to −εNp/nsp which is negligible in
comparison to one (nsp ∼ 1 above threshold). At very high powers, it reaches a
maximum of −1/4nsp when εNp = 1 (ηi (I + Ith)/Ist → 1 at high powers for a
shot noise-limited current source). Thus, gain compression can reduce the low fre-
quency carrier noise by as much as 25% at very high powers, however, we neglect
this contribution in Chapter 5. The second term is small in comparison to one for
ω  1/τp , so unless we are interested in very high frequency carrier noise, we can
neglect it as well.

The expression for SN (ω) given in Eq. (A13.28) neglects δ in Eq. (A13.28) and
sets ω2

R = vg aNp/τp .
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PROBLEMS

1. Assume the output power of a laser with a given noise spectral density,
Si , is split by a beam splitter and fed into two photodetectors. Use the
Langevin method to determine the detected noise spectral densities. Start
by defining reservoirs for the incident and detected photon streams, with
associated Langevin noise sources (Fi , Fd1, and Fd2). For the incident pho-
ton reservoir, assume an in-flow from the laser, I , and two out-flows, ηI
and (1 − η)I . For the detector reservoirs assume only in-flows from the inci-
dent photon reservoir (a flowchart is useful here). Next, define all auto- and
cross-correlation strengths between the three Langevin noise sources, con-
sidering the in-flow correlation term in the incident photon reservoir to be Si

instead of shot noise, I (assume photon number flow rates in all reservoirs for
convenience). Finally, using a small-signal analysis, show that the spectral
density of the first detected photon stream 〈Id1Id1〉 is equal to the product
〈(ηFi + Fd1)(ηFi + Fd1)〉, and then evaluate the product for both detectors.
Interpret how this result applies to Eqs. 5.146a and 5.146b. How and why
does the beam splitter affect the detected noise?

2. For the arrangement described in Problem A13.1, show that the spectral
density of the sum of the detected photon streams reproduces the noise of
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the incident photon stream, independent of η. What spectral density does
the difference between the two detected photon streams yield in general, and
for η = 0.5? Can you use the results for the sum and difference spectral
densities to suggest a measurement technique that calibrates the measured
intensity noise of a laser to the shot noise floor? This type of configuration
is in fact known as a balanced detector pair and is commonly employed to
determine whether or not a laser is operating below the standard quantum
limit for noise.



APPENDIX FOURTEEN

Derivation Details for
Perturbation Formulas

In Chapter 6 several calculations involve deriving an approximate solution to a per-
turbation on a known waveguide problem. This typically involves inserting a trial
field into the wave equation, dropping out second-order terms, multiplying through
by a complex conjugate of a transverse-mode eigenfunction of the unperturbed
problem, integrating over the cross section, and using modal orthogonality as well
as other arguments to drop additional terms, so that a simple analytic formula can
be derived.

During the course of these calculations we repeatedly come on a collection
of terms composed of the transverse-mode perturbation acted upon by the wave
equation. The first such instance is given in Eq. (A14.1), which is the result just
after multiplying times U ∗ and integrating over the cross section. That is,

2β�β

∫
|U |2 dA =

∫
�εk2

0 |U |2 dA

+
∫

[(∇2
T �U )U ∗ + εk2

0 �UU ∗ − β2�UU ∗] dA. (A14.1)

The terms in question are contained in the second integral on the right side of the
equation (second line). We need to show that the integral is zero or negligible in
the cases of interest.
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First, we multiply the complex conjugate of the transverse wave equation,
Eq. (6.5), by �U to get

�U (∇2
T U ∗) + �U [ε∗(x , y , z )k2

0 − β∗2]U ∗ = 0. (A14.1)

Thus, the last two terms in the last integral in Eq. (A14.1) can be replaced by
−�U (∇2

T U ∗) + (ε − ε∗)k2
0 U ∗ − (β2 − β∗2)U ∗. If ε and β were real, then we

would only need −�U (∇2
T U ∗). Making the replacement,

∫
[(∇2

T �U )U ∗ + εk2
0 �UU ∗ − β2�UU ∗] dA

=
∫

[(∇2
T �U )U ∗ − �U (∇2

T U ∗)] dA

+
∫

[(ε − ε∗)k2
0 �UU ∗ − (β2 − β∗2)�UU ∗] dA. (A14.2)

Now, the first integral on the right is identically zero because

∫
[(∇2

T �U )U ∗ − �U (∇2
T U ∗)] dA =

∫
∇T · [(∇T �U )U ∗ − �U (∇T U ∗)] dA

=
∮

∞
ên · [(∇T �U )U ∗ − �U (∇T U ∗)] ds ≡ 0.

(A14.3)

The latter equality uses Green’s Theorem to convert the integral over the cross-
sectional area to a line integral around the perimeter of the cross section (in this
case, at infinity). The vector ên is the unit vector normal to the contour of integra-
tion. The contour integral at infinity is zero because both U and �U must vanish at
infinity for any guided mode. The second integral on the right side of Eq. (A14.2)
also is identically zero for ε and β real. In fact, even for complex ε and β, it tends
to be negligible in comparison to the first integral on the right side of Eq. (A14.1)
in most cases, since �U � U , and because the loss or gain of the unperturbed
problem can usually be chosen to be sufficiently small. Only in the extreme case
where the gain provides most of the waveguiding effect (as in gain-guided lasers)
will this term be nonnegligible. In this rare case, the use of the �β formula is
questionable.
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APPENDIX FIFTEEN

Multimode Interference

Modal excitation of multimode waveguides can be used to realize important pho-
tonic functions of light splitting and combining through the effect of multimode
interference (MMI).

A15.1 MULTIMODE INTERFERENCE-BASED COUPLERS

Multimode interference couplers are based on the principle of self-imaging. This
is a property of the multimode waveguides by which an input field profile is
periodically reproduced as a single or multiple images while propagating through
the multimode waveguide, as illustrated in Fig. 6.24. To create an MMI effect, it
is crucial to have a waveguide that supports a large number of modes. As will be
explained later, the larger the number of supported modes, the better the imaging
properties of the MMI components. However, the larger the number of modes,
the wider the multimode waveguide needs to be, which increases the length of
the MMI component, and its insertion losses. At the end of this section, we will
show that the optimum MMI component length is proportional to the MMI width
squared.

In Section 6.5, we have analyzed the case of waveguide excitation at the inter-
face of two waveguides. Here, we expand that analysis to examine the input field
exciting multiple modes of a multimode waveguide.

We will be analyzing a step-index multimode waveguide of width dm , which
supports M lateral modes with numbers m = 0, 1, . . . (M − 1) at a free-space wave-
length λ0. Defining the waveguide transverse effective index as nl , the lateral wave
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vector kxm and the propagation constant βm are related to the waveguide transverse
effective index (which serves as the lateral plane wave index here) by the standard
relation

k2
xm + β2

m = k2
0 n2

l . (A15.1)

For each of the supported modes, the effective waveguide width deffm takes into
account the polarization dependent lateral penetration depth of each mode field due
to its exponential decay, as discussed in Appendix 3 and Chapter 7. The effective
waveguide width can generally be approximated by the effective width of the
fundamental mode, deff . The lateral component of the wave vector, kxm , has to
fulfill the transverse resonance condition,

kxm = (m + 1)π

deffm
≈ (m + 1)π

deff
. (A15.2)

The propagation constant βm can be expressed from Eqs. (A15.1) and (A15.2) as

βm = k0nl

√
1 − k2

xm

k2
0 n2

l

≈ k0nl − (m + 1)2πλ0

4nl d2
eff

, (A15.3)

where we have used the binomial expansion, enabled by the fact that k2
xm � k2

0 n2
l .

The propagation constants in a step-index multimode waveguide therefore show
a nearly quadratic dependence with respect to the mode number m .

We now define the self-imaging length as the beat length between the lateral
plane wave and the fundamental lateral mode in the MMI region,

Lsi ≡ 2π

k0nl − β0
= 8nl d2

eff

λ0
, (A15.4a)

which will turn out to be a quantity useful for describing the imaging lengths of
key MMI structures. The propagation constant βm can now be expressed as

βm = k0nl − 2π(m + 1)2

Lsi
. (A15.4b)

A15.2 GUIDED-MODE PROPAGATION ANALYSIS

Using the principles of the guided-mode propagation analysis, an input field profile
E (x , 0) at a distance z = 0 and contained within a finite width W will, in general,
excite all the guided modes of a multimode waveguide. These modes form a basis
set of functions needed to describe the input field,

E (x , 0) =
M −1∑
m=0

amUm(x). (A15.5)
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The field profile at a propagation distance z from the interface will be given by
the superposition of the individual modes of the MMI waveguide,

E (x , z ) =
M −1∑
m=0

amUm(x) · e−jβm z , (A15.6)

where the exponential time dependence of the field is implicit. Using the expression
for the βm , Eq. (A15.4b), and taking the phase of the lateral plane wave out of the
sum, the MMI field profile equation is transformed into

E (x , z ) = e−jk0nl z ·
M −1∑
m=0

amUm(x) · ej 2π(m+1)2(z/Lsi ). (A15.7)

Analyzing this expression, we notice that the types of images formed will be
determined by the modal excitation factors am and by the properties of the mode
phase factor

ej 2π(m+1)2(z/Lsi ). (A15.8)

Per example, with z = Lsi , it becomes obvious that this phase factor equals 1 for
all m , and that the sum of all the field components will produce an image identical
to the input field - hence the name “self-imaging” length Lsi that we have chosen.
Note also that the image is delayed in phase by the phase delay of the lateral plane
wave across that distance.

A15.2.1 General Interference

General interference effects in multimode waveguides occur when all the modes
of the multimode waveguides have non-zero overlap with the input field, and thus
get excited at the MMI input.

The general interference can yield both single and multiple images of the input
field profile, based on the multimode waveguide length. This is illustrated in
Figure 6.25, where calculated electric fields are superimposed over the waveguide
geometry used.

Inspecting Eq. (A15.8), we notice that for z = Lsi , Lsi /2 and Lsi /4, we have

z = Lsi : ej 2π(m+1)2 = 1 (for all m) self-image

z = Lsi

2
: ejπ(m+1)2 =

{ −1 (even m)
1 (odd m)

mirrored image (A15.9)

z = Lsi

4
: ej (π/2)(m+1)2 =

{
j (even m)
1 (odd m)

self-and mirrored image



680 MULTIMODE INTERFERENCE

The first case from Eq. (A15.9) is pretty straightforward, as based on Eq. (A15.7),
we have that

E (x , Lsi ) = e−jk0nl Lsi

M −1∑
m=0

amUm(x) = e−jk0nl Lsi E (x , 0), (A15.10)

which is a self image with a phase delay of the lateral plane wave across the
distance z = Lsi .

For the latter two cases, we need to break the sum of modes from Eq. (A15.7)
into even and odd modes and associate those with the even and odd field profiles
at z = 0. For the mirrored image case, z = Lsi /2, we have that

E (x , Lsi /2) = e−jk0nl Lsi /2 ·
( ∑

m=even

amUm(x)(−1) +
∑

m=odd

amUm(x)(1)

)

(A15.11)

The even and odd mode sums can be expressed in terms of the even and odd input
field profiles as follows

∑
m=even

amUm(x) = 1

2
(E (x , 0) + E (−x , 0)),

(A15.12)∑
m=odd

amUm(x) = 1

2
(E (x , 0) − E (−x , 0)).

Substituting Eq. (A15.12) into Eq. (A15.11), we arrive at the mirror image

E (x , Lsi /2) = −e−jk0nl Lsi /2 · E (−x , 0). (A15.13)

Using the same procedure, for z = Lsi /4 we get

E (x , Lsi /4) = e−jk0nl Lsi /4
(

1 + j

2
E (x , 0) − 1 − j

2
E (−x , 0)

)
, (A15.14)

which represents two images, a self-image and a mirror image that are 90◦ out of
phase with each other. Hence, two symmetric input and output waveguides and an
MMI component of this length can be used to produce an efficient 2-by-2 coupler.

The expressions can be generalized into a compact expression with an integer
p stepping through the four unique z = p · Lsi /4 values,

E (x , pLsi /4) = j p

2
[E (x , 0) + E (−x , 0)] + 1

2
[E (x , 0) − E (−x , 0)], (A15.15)

where we have excluded the plane wave phase term. The term in the first bracket
is generated by the symmetric or even components of the input field, while the
term in the second bracket is generated by the antisymmetric or odd components.
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As we can see, the pattern predicted by Eq. (A15.15) is cyclic with length, and it
varies as p modulo 4 in cases where z exceeds Lsi .

Analytical expressions for both the image z and x positions and phases relative
to the input field can be obtained using Fourier analysis, and are given by

L = p

N

(
Lsi

2

)

xq = p(2q − N )
deff

N
(A15.16)

φq = p(N − q)
qπ

N

where p indicates the imaging periodicity along z , q refers to each of the N images
along x , and p and N have no common divisors. It is interesting to note that the
N images are generally not equally spaced.

A15.2.2 Restricted Multimode Interference

Unlike general interference, restricted interference effects in multimode waveguides
occur when the input excitation (waveguide position and field) are such that some
of the modes of the multimode waveguides are not excited. This is due to the
fact that the overlap integral of these modes with the input field is equal to zero.
A special case of restricted interference that is of particular interest is symmetric
interference, when the input waveguide is laterally centered relative to the multi-
mode waveguide. In all symmetric interference components, only even modes of
the multimode waveguide get excited, since all odd modes have a null at the center
of the waveguide.

Starting from Eq. (A15.15), for symmetric excitation, the second term will dis-
appear, and the expression for the field at distance z = Lsi /4 will reduce to

E (x , Lsi /4) = j

2
[E (x , 0) + E (−x , 0)] = jE (x , 0), (A15.17)

since the input field is symmetric. Therefore, the self-image now appears at a
distance that is 1/4 that of the general interference case. Likewise, the length
periodicity of multifold images will also be reduced by a factor of 4, and N -fold
images for symmetric inteference will be obtained at distances

L = p

N

(
Lsi

8

)
(A15.18)

and they will be located symmetrically along the x -axis, with equal spacings of
deff /N .

Symmetric interference can be used to produce 1 × N light splitters in a very
length-efficient way. A 1 × 2 light splitter is illustrated in Fig. 6.26. Using sym-
metric interference components whenever possible will minimize the device size,
which helps with the propagation losses and chip area utilization.
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A15.3 MMI PHYSICAL PROPERTIES

A15.3.1 Fabrication

Multimode interference based components are easier to fabricate than directional
couplers discussed in Chapter 6. Directional couplers require a submicron gap
between waveguides, and even minute variations of the gap dimensions will greatly
affect the coupler performance. On the other hand, MMIs consist of wide waveg-
uides, and they are less sensitive to small width variations (even though their
optimum length changes as square of the component width).

A15.3.2 Imaging Quality

The quadratic dependence of the propagation constants with the mode number is
an approximation—therefore, the guided modes will accumulate small deviations
in phase at the imaging distances, which will result in blurring of the reconstructed
image. Some aleviation of this problem is achieved by using numerical modelling
(such as beam propagation method, discussed later in the book) to optimize the
component’s length. Another effect that affects the MMI imaging properties is
the scattering of the light at the edges of the MMI waveguide. The amount of
this scattering will be mode dependent, thereby further degrading the imaging
properties of the component. Consequently, it is of interest to use the shortest
MMI components possible.

The imaging resolution of a MMI component is in principle determined by the
highest supported multimode waveguide mode and can be estimated as equal to
the cosine-like lobe width of that highest supported lobe, ρ = de ff

m [1].

A15.3.3 Inherent Loss and Optical Bandwidth

The inherent loss of an MMI component depends on the quality of the imaging of
the input of the MMI onto the output. Basically, the inherent loss mechanisms will
be the diffraction of the input field in the multimode waveguide section and the
coupling losses between the imaged field and the output access waveguide. This
loss is generally low due to good imaging properties and resolution of the MMIs.

Additional losses common to all optical waveguides, absorption and scattering,
dictate that the length of the components be as short as possible.

Finally, the imaging length of the MMI needs to be matched for the mate-
rial/waveguide structure chosen. Any departure from the optimum MMI component
length will lead to the increase in the MMI inherent loss.

Optical bandwidth of the MMI components is limited by the changing mode
propagation constants and refractive index values as a function of wavelength.
The optimum imaging length and the field patterns vary slowly with wavelength,
degrading the image at the output and reducing the power coupled into the output
access waveguides. The optical bandwidth of an MMI component will be inversely
proportional to the width squared of the MMI waveguide. Since the length of the
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component has a square dependence on the MMI width, shorter MMI components
are also expected to have higher optical bandwidth. Both 1 × 2 and 2 × 2 MMI
couplers exhibit 3 dB bandwidths far in excess of 100 nm [1]. Therefore, the
bandwidth does not pose any practical limitations to the MMI component design
and choice.

A15.3.4 Polarization Dependence

Polarization dependence of the MMI components stems from the polarization
dependence of the material system and the waveguide structure used for their
fabrication. The level of polarization dependence is low, just as that of the passive
waveguides. It is possible to make polarization insensitive MMI components by
properly choosing the material and geometrical properties of the waveguide [1].

A15.3.5 Reflection Properties

MMI-based interconnecting components can be a source of major reflections. This
is especially true for MMI 1 × 2 and 2 × 2 light splitters and combiners that are
fabricated using strongly guided structures. We distinguish between reflection back
into the input waveguides and internal resonance modes due to the occurrence of
simultaneous self-images [1]. Because of self-imaging, reflection can be extremely
efficient, even in the case of MMI devices with optimized transmission. Various
techniques can be employed to suppress back reflections in the MMIs. They allow
for sucessfull integration of MMI components with lasers as part of a single PIC.

REFERENCE
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APPENDIX SIXTEEN

The Electro-Optic Effect

For many tunable lasers and photonic integrated circuits it is desirable to change the
index of refraction by the application of a dc (or rf) electric field. In certain crystals
that do not possess inversion symmetry this is possible through what is known as
the electro-optic effect. Because the index changes virtually instantaneously with
the field, this effect can be used in very high modulation bandwidth modulators
and tunable filters.

The electro-optic effect is somewhat more complex than one might at first expect
because the change in index is generally different for different polarizations of the
optical field for a given applied dc field orientation, and moreover, it is usually
associated with anisotropic crystals that have different indexes for different optical
polarizations initially [1]. Thus, it is necessary to use the full dielectric tensor in
relating the displacement, D, to the electric field, EEEE , of the lightwave. That is, the
displacement might not be parallel to the electric field for all orientations. Also,
the applied dc or rf field generally has still another orientation, so we have three
orientations to keep track of in this process.

The displacement field is related to the optical electric field via the dielectric
tensor, D = εEEEE , or

⎡
⎣Dx

Dy

Dz

⎤
⎦ =

⎡
⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦ . (A16.1)

If we choose axes to diagonalize the matrix, then we have found the prin-
ciple dielectric axes of the medium. Switching to the optical index, we then
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have
⎡
⎣Dx

Dy

Dz

⎤
⎦ = ε0

⎡
⎣n2

xx 0 0
0 n2

yy 0
0 0 n2

zz

⎤
⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦ . (A16.2)

We continue to allow for anisotropy of the index, but we have defined an index
ellipsoid with axes along the material’s principle axes. When the field is polar-
ized along one of these directions, D will be parallel to EEEE . In most materials at
least two of these indexes are equal. These are called the ordinary index, while
the third is called the extraordinary index. Rays with their electric field aligned
along these directions are also referred to as the ordinary or extraordinary rays.
By convention we label nzz as the extraordinary index, and the z -axis is called the
optic axis. Materials with two such indexes are called birefringent. In the III–V
semiconductor materials considered in this book, the index is isotropic when no
additional dc or rf field is applied. Thus, all the indexes are the same with no applied
field. However, with the application of a field, these materials become birefringent
also.

The general index ellipsoid from Eq. (A16.2) is

x2

n2
xx

+ y2

n2
yy

+ z 2

n2
zz

= 1. (A16.3)

The index of any propagating wave can be found by constructing a plane perpen-
dicular to its k -vector that passes through the origin of the ellipsoid. The wave’s
electric field direction is then constructed as a line from the origin on this plane.
The index is given by the distance to the surface of the ellipsoid. Figure A16.1
illustrates this construction. Note that for GaAs or InP this ellipsoid is just a sphere
in the absence of any applied dc or rf field.

With the application of a dc or rf field to an electro-optic material this ellipsoid
is distorted, so that generally off-diagonal terms appear in Eq. (A16.2). The electro-
optic tensors are defined from the perturbation to each of the terms in the index
ellipsoid. That is,

�

(
1

n2

)
ij

=
∑

k

rijkEk , (A16.4)

where r is the linear electro-optic tensor and Ek is the applied dc electric field.
Three subscripts are necessary to account for the relative orientation of the
crystal axis, the optical electric field, and the dc electric field. It is also possible
that quadratic effects are important, so we can also define a similar equation
where EEEE is replaced by EEEE 2 and r is replaced by s, the quadratic electro-optic
tensor. Quadratic effects are important for wavelengths near the absorption edge
in bulk and MQW waveguides, where an electric field can move the effective
absorption edge [2,3]. Also, in depletion regions of pn-junctions quadratic
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FIGURE A16.1: Plot of index ellipsoid [1] (From Optical Waves in Crystals, A. Yariv and
P. Yeh, Copyright © 1984 John Wiley & Sons, Inc. Reprinted by permission of John Wiley
and Sons, Inc.)

effects become dominant if a significant carrier density is being depleted at
the same time [4]. We will come back to this topic after completing the linear
effect.

To simplify the notation somewhat, an abbreviated subscript notation is usu-
ally introduced, so that the three-dimensional tensor can be expressed in two
dimensions. The notation involves using numbers from 1 to 6 for the first two
subscripts, where 1 ≡ xx , 2 ≡ yy , 3 ≡ zz , 4 ≡ yz , 5 ≡ xz , and 6 ≡ xy . The final
subscript, which refers to the applied dc or rf electric field orientation also is
given a numerical subscript, where 1 ≡ x , 2 ≡ y , and 3 ≡ z . Thus, Eq. (A16.4)
becomes

�

(
1

n2

)
i
=

3∑
j=1

rij Ej , i = 1, 2, . . . , 6 (A16.5)



688 THE ELECTRO-OPTIC EFFECT

With the application of a dc or rf field, the distorted index ellipsoid takes on the
form, (

1

n2

)
1

x2 +
(

1

n2

)
2

y2 +
(

1

n2

)
3

z 2

+ 2

(
1

n2

)
4

yz + 2

(
1

n2

)
5

xz + 2

(
1

n2

)
6

xy = 1, (A16.6)

where the additional terms are solely due to (A15.5) and the original terms may also
be changed if nonzero perturbation terms are generated by Equation. To determine
the change in index for a propagating optical wave, we again must diagonalize the
index matrix, or equivalently, find the new principle axes for the distorted index
ellipsoid. This generally involves a rotation in space of the original axes. Once this
new principle axis set (x ′, y ′, z ′) is found, the index ellipsoid will again have the
form of (A15.3). The coefficient of x ′2 will give the reciprocal of the square of the
perturbed index, nx ′ , for an optical field polarized along the x ′-axis, and similarly
for the other components.

In the case of GaAs, InP, or their alloys, the process of finding the perturbed
principle axes and the related indexes is somewhat simplified, since for crystals of
this zinc blende class (cubic-4̄3m) only r41, r52, and r63 are nonzero for x , y , and z
aligned with the crystal axes. Also, these all have the same value, so we set them all
equal to r41. Thus, for a dc field in the z -direction, or [001], Eq. (A16.6) becomes

x2 + y2 + z 2

n2
0

+ 2r41Ez xy = 1, (A16.7)

where n0 is the unperturbed index for the isotropic semiconductor in all directions.
That is, in the x − y plane, the index ellipsoid is somewhat squashed in the first
and third quadrants and somewhat stretched in the second and fourth quadrants. To
put Eq. (A16.7) in the form of Eq. (A16.3), it can be shown that a rotation of the
coordinate system about the z -axis by 45◦ is required. That is, z = z ′, and

x = x ′ cos 45◦ + y ′ sin 45◦,
(A16.8)

y = −x ′ sin 45◦ + y ′ cos 45◦,

so that the new (primed) axes become x ′ = [11̄0] and y ′ = [110]. Plugging this
into Eq. (A16.7), we obtain

(
1

n2
0

− r41Ez

)
x ′2 +

(
1

n2
0

+ r41Ez

)
y ′2 +

(
1

n2
0

)
z 2 = 1. (A16.9)

Thus,

1

n2
x ′

= 1

n2
0

− r41Ez and
1

n2
y ′

= 1

n2
0

+ r41Ez . (A16.10)
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For r41Ez � 1/n2
0 , we can approximately solve for the desired perturbed indices,

nx ′ = n0 + n3
0

2
r41Ez ,

ny ′ = n0 − n3
0

2
r41Ez . (A16.11)

The result of the above calculation is that the index for an optical field polarized
along the [11̄0] direction (i.e., x ′-direction) will be increased by (n3

0/2)r41Ez , while
the index for an optical field polarized along the [110] direction (i.e., y ′-direction)
will be decreased by (n3

0/2)r41Ez . There will be no change in index for a component
of optical field along the direction of the applied field [001]. Thus, for a waveguide
on a (001) wafer aligned perpendicular to the natural (110) cleavage planes in these
III–V materials, the application of a surface-normal field will cause the index of a
TE mode to change, but it will not change for a TM mode.

In GaAs, r41 varies from 1.1 to 1.5×10−12 m/V in the 0.9 to 1.3 μm wavelength
range. In other materials the electro-optic coefficient can be much larger than this.
Of course, it is really the product n3rij , which gives the best measure of the
index change for a given applied field. In GaAs, n3r41 ∼ 55×10−12 m/V. Thus, for
fields ∼400 kV/cm, obtainable in pin undoped regions (as well as in the depletion
regions of pn-junctions), �n/n ∼ 0.001. Outside the semiconductor regime, the
most popular material for photonic integrated circuits is lithium niobate, LiNbO3.
In this trigonal -3m material several terms in the electro-optic tensor are nonzero.
At 1.3 μm, r13 = −r23 ∼ 7; r22 = −r12 = −r61 ∼ 3.3; r33 ∼ 30; and r51 = r42 ∼
26×10−12 m/V. The ordinary and extraordinary indices of refraction are 2.22 and
2.14, respectively. Also, n3

0 r33 ∼ 328×10−12 m/V.
In certain III–V device configurations the quadratic electro-optic effect is larger

than the linear effect. This can happen if the wavelength of the lightwave is close to
the absorption edge in bulk or quantum-well material. When a field is applied the
absorption edge moves to longer wavelengths via either the Franz–Keldysh (FK)
in bulk or quantum-confined Stark effect (QCSE) in MQWs. Since the index of
refraction is decreasing roughly as 1/λ above the absorption edge, the application
of a field also increases the index at some wavelength in this region. The combined
effect is nearly quadratic with electric field [4]. Also, if free carriers are depleted
when a field is applied, e.g., in the depletion region of a pn-junction, the index will
increase due to the removal of the index reduction associated with the existence
of free carriers as well as the shift in absorption edge due to a removal of band
filling. This effect again is approximately quadratic with the applied field.

Analogous to the linear effect, the quadratic index change in all cases can be
written as

�nq = n3
0

2
sE 2

z . (A16.12)

The difficulty in these cases is that the quadratic coefficient, s , also decreases with
increasing distance away from the absorption edge, and therefore, it is difficult to
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effectively parameterize the problem as with the linear electro-optic effect. With
the QCSE, associated with absorption due to excitons in MQWs, the index shift
per unit field change can be larger than in bulk GaAs, but the effect also decays
more rapidly with increasing wavelength. For example, the effect becomes less
than the linear effect ∼40 nm from the absorption edge, whereas in bulk materials
the quadratic effect due to the absorption edge alone is larger than the linear
effect 100 nm away. The depletion of charge also only works effectively in bulk
materials, since the charge will tend to screen the excitons in quantum wells. Thus,
it is unclear whether or not quantum wells can offer a significant practical advantage
in electro-optic modulators.

Figure A16.2 plots the phase modulation available in a doped GaAs waveguide
under reverse bias. This device has a pn-junction in the center of the doped waveg-
uide, and the waveguide is oriented along the [011] direction so that the quadratic
effects add to the linear effect. A separate curve is plotted for each physical effect.
The net phase shift �φ, in a device of length L, is obtained from the plotted
phase-shift efficiency, ηps , from

�φ = ηps L(�V ), (A16.13)

where �V is the applied voltage shift.
In all cases the proximity of the operating wavelength to the absorption edge is

limited by loss. That is, although the amount of index change available increases
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FIGURE A16.2: Calculated and measured (data) phase-shift efficiency versus wavelength
with Lm = 740 μm, and equal n- and p-type doping to the center of the 0.25 μm-thick GaAs
waveguide [5]. The AlGaAs cladding material contains 40% Al. PL, BF, ER and LEO refer
to the plasma, band-filling, electro-refractive, and linear electro-optic effect respectively. All
except LEO are approximately quadratic with applied reverse bias in this configuration.
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as the absorption edge is approached, so does the loss and the loss change. As a
consequence, it is important to limit the residual loss and loss change to some values
when comparing different kinds of index modulation. As defined in Chapter 2, the
ratio of the changes in the real to the imaginary parts of the refractive index is called
the chirp parameter, α. Thus for good phase modulation with low loss this parameter
should be large. As a rule of thumb, we prefer α > 10 for reasonably low-loss phase
modulation. Figure A16.3 shows the calculated and measured phase modulation
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FIGURE A16.3: Calculated and measured phase-shift efficiency (top) and chirp (bottom)
for undoped material versus wavelength deviation from the zero-bias absorption edges at
0.87 μm for bulk and 0.855 μm for the MQW waveguides [5, 6]. The waveguide regions
(MQW separate-confinement region) are 0.25 μm wide clad by Al0.4Ga0.6As. The bulk
guide is undoped GaAs; the MQW region has either 1, 4, or 17 GaAs wells, 10-nm-thick,
separated by Al0.2Ga0.8As barriers. In all cases the phase-shift efficiency and chirp are
calculated between 0 and −4V. For the bulk case (a) the TE mode measurements are given
by circles; the TM mode by squares. The calculated net quadratic electro-refractive (ER)
effect is shown with the short dashed line, the net linear electro-optic (LEO) effect is shown
with the long dashed line, and the total with a solid line. For the MQW case (b) only the
TE mode is measured.
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efficiency and the chirp parameter for undoped bulk and MQW waveguides for
comparison.
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APPENDIX SEVENTEEN

Solution of Finite Difference
Problems

A17.1 MATRIX FORMALISM

In Section 7.3.6, the finite-difference technique was introduced to solve for the effec-
tive index and field profiles of an arbitrary channel waveguide structure. The scalar
wave equation was discretized to provide the following linear matrix equation:

U i−1
j

�X 2
+ U i

j−1

�Y 2
−

(
2

�X 2
+ 2

�Y 2
− (

ni
j

)2
)

U i
j + U i

j+1

�Y 2
+ U i+1

j

�X 2
= n̄2U i

j . (A17.1)

where U i
j and ni

j are the normalized electric field and refractive index at the grid
point (i , j ) for i = 0, 1, 2, . . . , I + 1 and j = 0, 1, 2, . . . , J + 1. Also, �X = k0�x
and �Y = k0�y are the normalized coordinate steps between grid points, and n̄ is
the effective index of the waveguide mode.

To complete the problem we need to specify boundary conditions. Although
different choices exist, the simplest choice is simply to set the fields to zero around
the border of the computational window. This approximation is valid as long as
we are far enough away from the guiding layers that the true field solutions are
essentially zero. Experimentation with the size of the computational window can
determine the validity of this approximation. So our boundary conditions are U 0

j =
U I +1

j = U i
0 = U i

J +1 = 0, and we are left solving for the fields within the window.
In other words, we need to solve all equations for i = 1 to I and j = 1 to J , or a
total of I × J coupled equations.
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Defining coefficients for terms with common j indices, Eq. (A17.1) becomes

U i−1
j

�X 2
+ [

bU i
j−1 + ai

j U i
j + bU i

j+1

] + U i+1
j

�X 2
= n̄2U i

j , (A17.2)

where

ai
j = (

ni
j

)2 − 2

�X 2
− 2

�Y 2
,

b = 1

�Y 2
.

We can compact the y-direction into matrix notation by defining a vector that
encompasses y for each x position, i :

Ui =

⎡
⎢⎣

U i
1
...

U i
J

⎤
⎥⎦ . (A17.3)

Then, by vertically listing all J Eqs. (A17.2) for a given i , we can group common
i indices into a matrix-difference equation along x :

BUi−1 + Ai Ui + BUi+1 = n̄2Ui , (A17.4)

where

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai
1 b 0 · · · 0 0

b ai
2 b 0 0

0 b ai
3 b 0

...

... 0
. . . 0

0 0 b ai
J −1 b

0 0 · · · 0 b ai
J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B = 1

�X 2
I,

and I is the J × J identity matrix. The second b does not appear in the top and
bottom rows of the Ai matrix because U i

0 = 0 and U i
J +1 = 0 (this is in fact the

reason we need to set the fields to zero at the boundaries).
Now writing all I Eqs. (A17.4) along x in matrix form, we obtain⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B 0 · · · 0 0

B A2 B 0 0

0 B A3 B 0
...

... 0
. . . 0

0 0 B AI −1 B

0 0 · · · 0 B AI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

...

UI −1

UI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= n̄2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

...

UI −1

UI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A17.5)
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where again the second B does not appear in the top and bottom rows because
U0 = 0 and UI +1 = 0. We can write this equation symbolically as

AU = n̄2U with U =

⎡
⎢⎣

U1

...

UI

⎤
⎥⎦ . (A17.6)

This is the matrix equation to be solved for the eigenvalue, n̄2, and eigenvector,
U. In this compact form, A represents an I × I matrix with elements that are
themselves J × J matrices, and U is an I length vector with components that are
themselves J length vectors. To solve the equation, we expand each element of A
into a J × J block, so that A becomes an (IJ ) × (IJ ) matrix with scalar elements.
Likewise, we expand the component vectors of U, so that U becomes an (IJ )
length vector with scalar components. Various matrix methods are then available
for determining the eigenvalues and eigenvectors.

A17.2 ONE-DIMENSIONAL DIELECTRIC SLAB EXAMPLE

To illustrate the basic numerical technique, we consider the most simple slab waveg-
uide problem. In this case the scalar wave equation correctly describes the TE mode
with its electric field polarized along the y-direction as illustrated in Fig. A17.1.

In this case the eigenvalue Eq. (A17.5) reduces to
⎡
⎢⎢⎢⎢⎢⎢⎣

(
n2

1 − 2
�X 2

) 1
�X 2 0 0

1
�X 2

(
n2

2 − 2
�X 2

) 1
�X 2 0

0
. . . 0

0 0 1
�X 2

(
n2

I − 2
�X 2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

...

UI

⎤
⎥⎥⎥⎥⎥⎥⎦

= n̄2

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

...

UI

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A17.7)

where we have simplified the notation in this one-dimensional case, in which there
is no variation of the index in the y-direction, by letting, ni = ni

j , and Ui = U i
j ,

since j only takes on a single value.

nI

nIII

I

III

x

y

d/2

−d/2

U(x)

II nII

FIGURE A17.1: Schematic of dielectric slab waveguide assuming propagation in the
z -direction.
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n = 1 

n = 3.1 

Computational
window

0.5 μm

1.0 μm

dn = 3.4 

FIGURE A17.2: One-dimensional slab waveguide example.

Figure A17.2 shows an illustrative one-dimensional problem. To demonstrate
the importance of the grid size, we solve the problem for several different finite-
difference step sizes and two different slab thicknesses. The results are given in
Tables A17.1 and A17.2.

TABLE A17.1: Results of Finite Difference Calculation of Slab Waveguide in
Fig. A17.2.∗

Air Guide Sub. Matrix Effective Error
�x(μm) Grid Pts Grid Pts Grid Pts Size Index (%)

0.25 2 2 4 8 × 8 3.315 23 1.081
0.125 4 4 8 16 × 16 3.292 13 0.376
0.0625 8 8 16 32 × 32 3.283 29 0.107
0.03125 16 16 32 64 × 64 3.280 70 0.028

∗Slab waveguide thickness d = 0.5 μm (single transverse mode). Exact effective index is n̄0 = 3.279 790
(for λ0 = 1.3 μm).

TABLE A17.2: Results of Finite Difference Calculation of Slab Waveguide in
Fig. A17.2.†

Air Guide Sub. Matrix Effective Error
�x(μm) Grid Pts Grid Pts Grid Pts Size Indices (%)

0.25 2 4 4 10 × 10 3.365 83 0.242
3.272 23 1.234

0.125 4 8 8 20 × 20 3.360 46 0.082
3.245 07 0.394

0.0625 8 16 16 40 × 40 3.358 49 0.021
3.235 82 0.108

0.03125 16 32 32 80 × 80 3.357 92 0.006
3.233 22 0.028

†Slab waveguide thickness d = 1.0 μm (two modes allowed). Exact effective indices are n̄0 = 3.357 718
and n̄1 = 3.232 331 (for λ0 = 1.3 μm).
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reflection and transmission of, 96–8

for guided modes, 96, 114
Dielectric Perturbations, 336–9, 339–41,

356–60, 675–6
periodic, 342–53, 356–63, 372

Dielectric Waveguide(s), 10, 24–30, 91–2,
395–445, 545–55

analysis of, 400–434
standing wave, 400–403
transverse resonance, 403–10, 438–9

antiguide, 438–40
ARROW, 440–441
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Differential Quantum Efficiency (see Efficiency)
Dipole Moment, 175
Directional Coupler(s) , 356–70, 390

filters and switches, 370–376
four-port, 363–6

coupling length of, 364
grating-assisted, 372–6, 452–67,

470–474
vertical, 371

Dispersion Curves
codirectional coupler filter, 373
coupled waveguide, 370
grating, 347
waveguide, 406, 409

Distributed
Bragg reflector (DBR) (see Gratings)

laser, 92, 123–41, 452–67
feedback (DFB) laser, 92, 141–51, 353–6

gain-coupled, 142, 147
quarter-wave shifted, 142–4
unshifted, 141–2, 144
with cleaved mirror, 143, 147
with HR mirror, 146, 149

Echelle grating, 389
demultiplexer, 389
laser, 474
multiplexer, 389

Edge-Emitting
cavity (see Cavity/in-plane)
laser (see Laser/in-plane)

Effective
index (see Index of Refraction)
index technique, 418–21, 551–5
length, 109, 121–3
mirror (see Mirror)
number of mirror periods, 117–21, 595–7
width of mode, 336–9, 353–4

Effective Mass, 14, 16, 162, 172, 215–18, 511,
520–521, 611

conduction band, 613–15
equations, 615–18, 625
reduced, 172
with strain, 218–20, 242–3, 626–7
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differential quantum, 62–3, 109, 250,

573–6
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methods of measuring the, 75–8
temperature dependence of, 31, 82

external LED quantum, 51

internal quantum/injection, 47, 49, 233, 248,
542–4
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temperature dependence of, 82

optical, 249, 250
power conversion, 79, 274
radiative, 49–50, 229, 250, 542
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Electro-Optic

coefficients, 689
effect, 110, 124, 136, 370–372, 685–92
modulation, 370–372, 373
switches, 370–372
tensor, 685–92
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bands, 5–7, 516–21, 615–27

Feynman model of, 516–28
Kronig-Penney model of, 516
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conservation of, 7, 160, 164–5, 211–18,
580–581

density, 566, 580
gap, 13–20
levels, 5, 6, 7
uncertainty, 160, 181–5, 582–4, 633

Envelope Function, 160–162, 165–70, 520,
610–611, 615–23, 645–6

approximation, 610
Excitons, 187–90
Expected Value, 510
External Quantum Efficiency (see Efficiency)
Externally Modulated Lasers, 474

Fabry-Perot
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asymmetric, 103
scattering matrix of, 101
symmetric, lossless, 102
transfer function using Mason’s rule, 104–5
transmission matrix of, 102

laser, 105–7
resonator, 403, 406

Far Fields, 555–7
Feedback

dependence of linewidth on, 300–301, 321–7
dependence of noise on, 321–7
effects of, 311–27
from a cleaved fiber, 311
from substrate-air interface, 317
in-phase, 313, 325
level, 313

critical, 325
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method of measuring, 315
out-of-phase, 325
phase, 311–27
rate, 313

method of measuring, 315
reduction of, 327
regimes of, 321–7

Fermi (also see Quasi-Fermi Level)
factors, 160, 175, 192, 212, 215, 588–92
function, 9, 161, 172, 212, 529, 531, 580
levels, 161, 200, 527–37
occupation probability (see Fermi function)

Fermi-Dirac
distribution (see Fermi function)
integral, 532

Fermi’s Golden Rule, 162, 164, 170–173, 174,
175, 187, 215, 629–38

Filter(s)
bandwidth, 291
codirectionally coupled filters, 356–76
directional coupler, 356–70
enhanced tunability of, 373–6 356–76
grating-assisted coupler, 372–6
low-pass, 310–311
narrowband, 289–91
passband, 356–76
tunable, 452–84
wavelength-selective, 356–76

Finite-Difference Technique, 427–32, 693–6
Franz-Keldysh (Electro-Absorption) Effect,

689–92
Frequency

Bragg (see Bragg Condition), 113, 116, 344
chirping, 270–276, 286–7, 692–4
noise (see Noise/frequency)
normalized, 355, 419–21, 444, 548–9
response (see Modulation Response)
shift due to carrier density, 270–271, 320
shift due to current injection, 458–63
shift due to feedback, 318–20
shift due to injection, 317–20
shift due to temperature, 273–6
small-signal modulation of, 272

Gain, 8, 45, 55, 174–90, 585–9
band edge, 180
bandwidth, 109–10, 185
characteristics of, 174–9, 185–7, 585–9
clamping of, 59, 110, 252, 255, 287
compression, 70, 72, 258, 263–6, 268,

310–311, 543, 673, 674
intermodal, 259, 278
method of measuring, 271–6

definition of material, 53, 174–5

dependence on
doping, 218–20, 234–8
temperature, 234–8
well width, 234–8

differential, 64–5, 71–4, 224–5, 258–65,
589

increase due to strain, 218–20
nominal, 258
temperature dependence of, 80

Einstein’s approach to calculating, 585–9
in microcavity lasers, 587–9
including lineshape broadening, 180
margin, 143–9
modal, 57, 341, 565–77
peak, 109–10
relation between spontaneous emission,

193–7, 587–9, 590
spectrum, 185–7, 220–2, 588

broadening of, 181–5
modelling of, 277–83
redshift due to bandgap shrinkage, 189

threshold, 45, 55, 59, 76, 251
of DBR lasers, 124–5
shift due to feedback, 319

vs. carrier density, 64–5, 223–6
curve fits, 65, 224, 589

vs. current density, 75–8, 229–32
curve fits, 231, 233

Gap Factor, 112
Gaussian Spot Size, 416, 443, 555
Goos-Hanchen Shift, 434–5
Grating(s), 24, 91–2, 113–23, 342–52, 593–605

arrayed waveguide, (see Arrayed waveguide
grating)

average loss of, 116, 571
average propagation constant of, 116
coupling constant of, 121, 344–7, 603

closed-form expression for, 354
for square wave profile, 121, 354, 603

decay constant of, 347, 603
detuning parameter, 116, 117–18, 345, 346,

598
diffraction efficiency of, 354
Echelle, (see Echelle grating)
effective length of, 121–3, 599
effective mirror model of, 121–3
lossless, 119
lossy, 121
passband, 117
penetration depth of (see Penetration Depth)
physical length of, 350
reflectivity, 119–21, 348–52, 596–7

bandwidth of, 350–351
coupled-mode limit of, 352, 602–3
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Grating(s) (Continued)
Fourier limit of, 121, 601–2
including arbitrary input and output layers,
numerical determination of, 123
phase, 349
spectrum, 119–21, 350–351, 597–600

sampled, 458–63
coupling constant of, 459-61
spectral width, 119

stopband, 117, 347, 350–351
transmission, 352
with terminations, 350–351, 603–5

GRINRODs, 418
Group Velocity, 54, 58, 174–5, 194, 249, 251,

271, 434, 567, 576–7

Hamiltonian, 164, 510
Luttinger-Kohn (LK), 615–17, 625, 656
perturbed, 630
Pikus and Bir, 650–652

Heat
diode laser performance, 84
effects of, 66, 72, 86
flow, 79–80

Hermite-Gaussian polynomials, 416, 442–4
Heterodyne Receiver (see Receiver)
Hooke’s Law, 650
Huygen’s Principle, 556

Ideality Factor, 72
Index Ellipsoid, 686–8
Index of Refraction

carrier density dependence of, 58, 136, 269,
270, 302, 691–3

change in, 10–11, 27, 35, 36, 136, 270,
340–341, 371, 374, 452

quadratic, 691–4
relative to change in gain, 270, 292
using the electro-optic effect, 687–94

complex, 270, 546
dispersion of, 58, 347, 370, 373, 406, 409
effective, 58, 97, 114, 425–7, 545–6, 553–4,

556–7
closed-form expression for, 355
change in, 136, 270, 340–341, 371, 374,

452
periodic perturbation of, 344, 358

group, 58, 59, 270, 561, 576–7
group effective, 58, 59, 351, 374, 454,

576–7
ordinary and extraordinary, 688

Injection locking, 317–20
dynamic characteristic, 320
frequency shift, 318–20

carrier induced, 319–20
injected signal caused, 318–19
total, 320

stability, 321–2
static characteristic, 317

Interference Fringe, 304
visibility, 304

Internal Modal Loss (see Loss)
Internal Quantum Efficiency (see Efficiency)
Intraband Relaxation Time, 182, 582–4, 588

Joyce-Dixon Approximation, 534, 536

K-Factor, 264–6, 325
with transport effects, 311

k-Selection Rule, 165, 166–70, 171–4
exceptions to, 170

Langevin
correlation strengths, 644–71

between photons and carriers, 667
between photons and phase, 670–671
between photons and power, 669

method, 294–6, 299–301, 666–7
noise sources, 294–6, 301–3, 663–74

negatively correlated, 296, 666, 668–9
as white noise, 295, 665

noise spectral densities, 294–6, 663–6
Laser

array, 484
arrayed waveguide grating, 472
cavity examples, 130–132

characterization of, 78-9
proton-implanted, 27–8, 34–9
dielectrically apertured, 28, 34–9
mesa confined, 28, 34–9

coupled-cavity, 111–13
diode, semiconductor, 1, 2–5
distributed Bragg reflector (DBR), 92, 123–41

multisection, 452–7
distributed feedback (DFB), 92, 141–51,

353–6
gain-coupled, 136, 143–7
quarter-wave shifted, 142
unshifted, 141–3
with cleaved mirror, 141–3, 353–6
with high reflectivity coating, 146

Echelle grating, 474
externally modulated, 474

monolithic example DFB, 478
Fabry-Perot, 92, 100–105
gain-guided., 27
gas, solid-state, YAG, HeNe, C02, 1, 2–5
heterostructure
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buried (BH), 27, 29
double (DH), 10–13, 308, 539, 541
separate confinement (SCH), 12, 308–11
graded index (GRINSCH), 12

in-plane (IPL), 24
characterization of, 75–8

index-guided, 27
injection locked, 317–20
micro-cavity and thresholdless, 195, 252–3,

587–8, 592
mode locked, 279–83
oxide stripe, 27
proton-implanted, 27
ridge, 27
ring, 366–70
tunable, 92, 113, 124

DBR, 452–574
Digital supermode DBR, 464
double ring-resonator, 467–8
grating coupled sampled reflector, 470
Sampled Grating DBR, 458–61
Superstructure grating DBR, 464
Y-branch SGDBR, 467

Typical parameters for, 260–261
V-groove, removed
vertical-cavity surface-emitting (VCSEL), 28,

29, 34–9, 52, 133–41
Lasing

threshold (see Threshold)
transition to, 253–5
wavelength, 58

Lattice
constant, 13–20
deformation potentials, 651–3
matching, 15–20
mismatch parameter, 653
strained, 15–20, 201–2, 218–20

critical thickness of, 202, 218
Lifetime

carrier, 48, 257, 283–6, 591
differential, 257, 283–6, 311
single-mode differential, 257
spontaneous, 591
stimulated, 255

photon/cavity, 53–4, 55, 57, 71, 249–50, 292,
636–8

dependence on feedback, 313
effective, 294

Light-Emitting Diode (LED), 9, 45, 49–51
diffraction grating
shaped

Lineshape
broadening, 181–5, 195–7, 582–4, 586–92
function, 182, 195–7, 582–4, 586–92

Lorentzian, 182
Linewidth

enhancement factor, 271, 292, 307, 320,
692–3

method of measuring, 272–6
narrowing with external cavity, 327
spectral, 288, 292–4, 303–8, 663

dependence on noise, 292–4
method of measuring, 303 - 8
Schawlow-Townes, 292–4

modified, 294, 303, 307
with satellite peaks, 306, 325

Liquid-Phase Epitaxy (LPE), 20–21, 201
Local Oscillator, 491–9
Loss(es)

bend, 441–5
free carrier, 249
in gratings, 116, 122, 571
margin, 110, 128, 140
mirror (see Mirror)
modal, 55, 57, 249–50, 570–571

methods of measuring the, 75–8
temperature dependence of, 81

modulation, 110
optical, 45, 249–50
scattering, 98, 438
waveguide radiation, 437–45

Luttinger Parameters, 617–19

Mach-Zehnder Interferometer, 479–81
Many-Body Effects, 187–90
Mason’s rule, 104–5, 366–7
Material

parameters, 14
quaternary, 13–20
semi-insulating (SI), 27–30
strained (also see Strain), 13–20, 200–202,

218–20
ternary, 13–20

Matrix Elements
Energy (H′

21), 165–6, 631–3
Momentum (M ), 166–9
Transition (MT ) (also see Transition), 165–70,

175, 185–7, 639–46
polarization dependence of, 165, 169–70,

641–6
quantum-well, 645–6

Maxwell-Bolzmnann Distribution, 529, 561
Memoryless Process, 661
Metal-Organic Chemical Vapor Deposition

(MOCVD), 20–22, 201–2
Mirror(s)

cleaved, 24, 57
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Mirror(s) (Continued)
effective, 92, 107–8, 111–13, 121–3, 124–7,

311–13, 355–6
facet damage of, 72
grating (see Gratings)
loss, 57, 75, 250

in active/passive cavities, 57, 574–5
in DBR lasers, 126
dependence on feedback, 311–14
modulation of, 258–9, 261
optimum, 67
variation with wavelength, 91–2, 126–8,

140
multilayer (see Gratings)
total internal reflection, 435

Modal Excitation, 376–8
Modal Gain, 56–7, 341, 565–77

multiple quantum wells active region,
68

Modal Transition
adiabatic, 422
waveguide offset, 422

Mode(s)
alignment with gain spectrum, 80–81, 192,

256, 278
asymmetric in curved waveguide, 424
external cavity, 316, 319–20

multiple, 325–7
spacing of, 325-7
transition from single to multiple, 325–7

Fabry-Perot, 102–4
feedback, 319–27
hopping, 84–6, 135, 301, 324
impedance, 93, 376–7
internal cavity, 319–20
lasing, 45, 56
locking, 279–83

techniques, 282
pulse width, 282
pulse period, 282

numbers, 559–61
optical, 10–13, 24–30, 52, 55, 159, 194–5,

255–6, 277–83
density of, 194, 229, 559–61, 585, 587–8

in a cavity, 636
quantum mechanical description of, 192

pulling, 314–16
repeat, 109–10
saturation of side, 256
single, 91–2, 110, 136, 139–41, 149–51

tuning, 452–63
transition rates, 159

spacing, 58, 109, 125
suppression of side, 109–10

suppression ratio (MSR)
dynamic, 278
in grating-assisted coupler-laser, 470–472
static, 93, 139–41, 149–51

tuning of (see Wavelength/tuning)
waveguide (see Dielectric Waveguide)

Modulation
bandwidth, 72, 262–3

ways to maximize the, 72–3
doping, 170, 219, 235–8
electro-optic, 370–372, 373
index

frequency, 271–2
intensity, 272
measuring the FM-to-IM, 271–6

phase, 692–4
differential phase shift keying, 493
quadrature phase shift keying, 493
vector, 499

response, 46
comparison of FM and IM, 272
damping of, 71
FM, 270–276
laser, 70–74, 261–6
LED, 51
low-frequency roll-off of, 310–312
with RC parasitics, 330

transfer function, 71, 261–6
natural roots of, 267

Modulator
absorption, 476–9
amplifier, 481–3
directional coupler, 371, 374
Franz-Keldysh, 691–4
laser combined with, 488–91
length, 488–91
Mach-Zehnder, 479
phase, 488–91

Molecular Beam Epitaxy (MBE), 20–22,
201–2

metal-organic (MOMBE), 23
Momentum

conservation of, 7–9, 160, 169, 212, 215, 581,
657–8

density of states, 525
matrix element (see Matrix Element)
operator, 163–5, 510, 610, 612, 640

Multimode interference, 378–81, 677–84
component properties, 381
coupler, 379–80, 683
general, 380, 679–81
restricted, 683
self-imaging, 380, 680
symmetric, 379, 681
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Near Fields, 555–7
Noise

carrier, 295, 301–3, 307–8, 671–2
correlation strengths, 295, 302, 662–69
current source shot, 296, 298–301, 665, 671
dependence on feedback, 321–8
detector, 300–301, 664–5, 671
excess intensity, 296–8
field, 303
figure of optical amplifiers, 483
floor, 287, 298–301
frequency, 292, 301–3, 305–6
inherent quantum, 297
Langevin (see Langevin)
mode partition, 301
negative correlation between reflected and

transmitted, 295–6
output power, 296, 670–671
partition, 298–301, 666
photon, 295, 689–90
quadrature components of, 293
relative intensity (RIN), 288–308

low frequency, 297
low power, 297
multimode, 301
peak, 298
per unit bandwidth, 298–9
spectrum, 288–308

shot, 296, 299–301, 664–5
sources, 258–9, 288
sub-shot, 299–301, 664
thermal, 299

Noise-Free Operation, 299–301

Obliquity Factor, 556
Operator, 509
Optic Axis, 688
Optical

amplifier, 481–3
efficiency, 249, 250
heterodyne receiver, 496
isolator, 304, 327
loss, 45, 249–50
modes (see Modes)
receiver (see Receiver)

Optimum Laser Designs
for high speeds, 70–74
for low current, 64–70

Organometallic Vapor-Phase Epitaxy (OMVPE),
20–22

Orthogonality
of electromagnetic waves, 336
of particle waves, 169, 512–13

Output Power (see Power)

Parameters
internal laser, 75–9
material, 14

Pauli Exclusion Principle, 6, 560
Penetration Depth, 118, 351–2

energy, 123, 435, 599, 605–7
loss, 600
phase, 123, 599–600

Perturbation Theory, 339–41, 675–6
Phase

change in, 315
noise (see Noise)
round-trip, 313, 315

change in, 315
Photodiode

edge coupled, 486
noise, 487
quantum efficiency, 486
responsivity, 485
uni-traveling carrier, 487–9
waveguide, 485

Photon (Density)
confinement of, 10–13, 24–30
fluctuations, 287, 295
in terms of the field strength, 175
large-signal, 279
lifetime, 53–5, 57, 71, 251, 292, 636–7

dependence on feedback, 311–13
effective, 293

modulation bandwidth dependence on, 71
recycling, 50
relationship to output power, 62
small-signal, 70–71, 261–6, 308–10
steady-state

above-threshold, 62, 139, 149–50, 252
below-threshold, 63, 251

transient solution of
small-signal, 268-70

Photonic Integrated Circuits (PICs), 451–99
Piezoelectricity, 190
Population Inversion, 158, 177–9, 185, 590

factor, 192–3, 590
curve fit, 253, 256

Potential Well (1-D), 511–16
Power

dependence of linewidth on, 292–3
dependence of RIN on, 294–8, 671
dissipation, 79, 83
flow curves in a laser cavity, 572
flowing into a port, 93
fluctuations, 290
fraction from each facet, 62, 66, 106–7, 250

in an active/passive cavity, 576
in a DBR laser, 126
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Power (Continued)
modulation bandwidth dependence on, 72
normalized flow of, 92–5
output of laser, 62, 250, 252
propagation in a waveguide, 336–9
saturation in amplifiers, 482–3
shift due to feedback, 314
small-signal, 71, 310–311
spectrum of laser, 307, 665
spontaneous (LED), 49–51, 250, 252

saturation of, 256
vs. current, 60–64, 253–5

derivative analysis of, 84–6
experimental characterization of, 75–8
linearity of, 63, 84–6, 254

Prepatterned substrate, 37–9
Principle Dielectric Axes, 685–6
Propagation

constant, 55,
discrete, 117
grating-induced replicas of, 346–8
numerical determination of, 424–7, 432–4
perturbation of, 339–41
vs. frequency, 347, 370, 373

delay, 99
loss (see Attenuation Constant)
vector components, 396–400, 413

Purcell effect, 198

Quantum-Confined
regime, 11, 523
Stark Effect (QCSE), 689–92

Quantum Dots, 179
excitonis effects, 189
gain, 180

Quantum Efficiency (see Efficiency)
Quantum Noise Floor, 296
Quantum Numbers, 513–16, 522–3, 526–7
Quantum Well (QW), 12, 511–16

absorption spectrum, 187–8, 221–2
band structure, 615–23

method of calculating, 621–2
characteristic equation for, 512–16
dependence of gain on width of, 234–8
dependence of modal gain on number, 68
gain, 176–9, 185–7, 218–38, 588–9
strained, 15–20, 201–2, 218, 219–20, 623–7
subbands, 169–70, 176–9, 185

Quantum Wires, 163, 169–70, 172, 641–5
Quarter-Wave Dielectric Stacks (see Gratings)
Quasi-Fermi Level(s), 161, 176–9, 530, 538–40,

580–582, 585–7, 591–2
clamping of, 543
effect of doping on, 218–20, 235–8

effect of strain on, 218–20
separation, 79, 161, 176–9

required to achieve gain, 161, 176–9,
185–7, 587

Rabi Oscillations, 629, 635, 637
Radiation

spectral density, 174, 582
equivalent for spontaneous emission,

561–2, 585
Rate Coefficients, 258, 259

with transport effects, 309
Rate Equations, 45, 54, 249, 325

carrier, 45, 46–9, 284
above-threshold, 62

differential analysis cif, 257–76
including transport effects, 308–9
large-signal, 277–9
multimode

large-signal, 277–9
small-signal, 259
steady-state, 255-6

numerical solutions to, 277–9
phase, 302
photon, 45, 52–5
small-signal, 45, 257, 258–9, 261–2, 308–9

with Langevin noise driving terms, 294
steady-state, 49, 62, 250–256

Receiver
array, 484
bandwidth, 491–9
coherent

In-phase and quadrature, 493, 497
optical heterodyne, 491–9
tunable, 498
polarization diversity, 498

Recombination Rate
Auger, 9, 55, 70, 211–18, 228–32, 284, 543,

657–59
bandgap dependence of, 213–14
temperature dependence of 58, 215–16

bimolecular, 48, 65, 227–9, 284, 591
clamping of, 62, 64, 252, 255
defect and impurity, 8–9, 55, 199–202
in SCH regions, 541–3
interface, 8–9, 202–11
leakage, 48, 542–4
linear, 200–204
nonradiative, 8–9, 23, 45–6, 48, 70, 199–218,

248–9
radiative, 8–9, 48, 162–5, 192–7, 227–9,

580–583
surface, 8–9
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Reference Planes, 52–3, 96, 98, 100, 107–8,
141, 348–52

Reflection
coefficient, 57, 95, 397, 414

facet, 327
of gratings (see Gratings)

of plane waves, 396–400
phase angle, 398–400, 435
supression, 327
total internal, 435–6

mirrors, 435
frustrated, 435

Reflectivity
grating (see Gratings)
mean mirror, 57, 75
of Fabry-Perot etalon, 102–3

Regrowth, 33–8, 123, 202, 208
Relaxation Resonance

description of, 70–72
frequency, 70–74, 224–5, 261–6, 293–4,

305–8
ways to maximize the, 72–4
with transport effects, 310

Reservoir
analogy, 47, 61
model, 248, 664–5

Resistance
series, 79, 83, 85
shunt, 85

Resonant Cavity, 10–12, 56, 292
Resonance Condition, 56, 315
Ring

filter, 366
laser, 366–70
resonator, 366

Ringing Frequency, 266–8
Rotating Wave Approximation, 631
Rowland circle, 384

radius in an AWG, 386

Scattering
coefficients, 92–105

relations between, 94–6
junctions, 93, 95

dielectric interface, 96–8
Fabry-Perot etalon, 100–104
transmission line, 98–100

loss, 98, 438
matrices, 91, 94

four-port, 363–5
theory, 92–5

Schrödinger’s Equation, 162–3, 510, 609,
630

normal mode expansion of, 516–20

time-dependent expansion of, 630–632
Section

active, 57
passive, 57

Self-Heterodyne Technique, 304
Self-Imaging Length, 680
Self-Pulsations, 322
Semiconductor Amplifier, 481–3
Shockley-Read-Hall Recombination Theory,

200–201, 203
Shot Noise Floor, 295–301
Signal-to-Noise Ratio (SNR), 288–9
Single Frequency Operation, 92, 123, 128, 139,

141, 149, 452–75
Snell’s Law, 396–7
Spectral Density

carrier, 295, 302
current, 297
definition of, 290
frequency, 306
Langevin noise (see Langevin)
output power, 296
photon, 295
single-sided and double-sided, 290
units of, 291

Spin Degeneracy, 6, 172, 524, 560, 639–41, 645
Spin-Orbit

energy, 612–13, 649, 659
interaction, 613

Splitter
frustrated total internal reflection, 437
multimode interference, 379

Spontaneous Emission, 8, 45, 48–50, 55,
158–62, 192–9, 227–9, 248–9, 579–92

amplified, 293–4
as a noise source, 159–60, 292–3, 301–2, 307
Einstein’s approach to calculating, 589–92
factor, 53, 139–41, 149–51, 198, 248, 250,

252–3, 562–3
in microcavities, 195, 587–8, 636–7
lifetime, 591
relation between gain and, 193–7, 587–8, 590
relation between stimulated emission and,

161–2, 192, 585
single-mode, 159–62, 192–3, 250, 253

curve fit, 253, 261
spectrum, 195–7, 227, 562–3

broadening of, 182, 195–7, 590
using the metal box assumption, 194–5

Standard Quantum Limit, 296, 298–301
Standing Wave Effects, 58, 567–73
Stationary Process, 665
Step Response (see Transient Response)
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Stimulated Emission, 8, 45, 48–50, 54, 58–9,
70–71, 158–62, 248–9, 292–3, 579–92

net rate of, 161
relation between gain and, 54, 174–6
relation between spontaneous emission and,

161, 192, 585
Stimulated Rate Constant, 161, 174, 582–5
Strain, 16–20, 64, 201–2, 218, 219–20, 623–7,

647–56
band edge shifts created by, 623–5, 650–656
biaxial, 649
compressive and tensile, 16–20, 218–20,

221–30, 623–7, 649
critical thickness of, 16–20, 202
effect on effective masses, 218–20, 242–4,

623–7
effect on performance of active material,

218–38
hydrostatic and shear components of, 623–5,

651–3
tensor, 647–50

Stress
normal and shear components of, 647–50
tensor, 647–50

Surface
passivation, 210–211
recombination (see Recombination Rate)

equivalent velocity for diffusion, 208–10,
243–5

velocity, 202–10, 243–5
states, 202

Table of
approximations for N and EF , 533, 534
density of states for different dimensions,

172
gain vs. carrier density curve fits, 224
gain vs. current density curve fits, 231
material parameters, 14
strain parameters, 655
transmission and scattering matrices, 96, 97,

100
typical laser parameter values, 260–261

Temperature
characteristic, 81, 237–8
dependence of laser parameters on, 80–84,

237–8
rise of, 79
tuning, 271–6

Thermal
conductivity, 79
effect on lasing frequency, 271–6
impedance, 79–80, 274
time constant, 274

Thermionic Emission, 47, 249, 538–41
Threshold

carrier density, 45, 59, 65–6, 70, 251
shift due to feedback, 314

characteristic equation defining, 57, 355–6
for DFB lasers, 141–3, 353–4, 355–6
for three-mirror cavity, 108

condition in active/passive cavities, 57,
574–6

current, 45, 60–62, 65, 66, 70, 252
nonradiative component of, 70
shift due to feedback, 314

definition of lasing, 56, 106
in DBR lasers, 125
in DFB lasers, 141–3

gain, 45, 57, 59, 75–6, 251
numerical determination of, 106

in DFB lasers, 141–3, 353–4, 355–6
Threshold Energy (see Auger Recombination)
Transient Response

small-signal, 266–70
Transition(s)

allowed and forbidden, 165–70, 188
Auger, 213
matrix element (see Matrix Element)
nonradiative, 199–218
radiative, 8, 158–73

band-to-band, 112, 123, 158, 170
band-to-bound and bound-to-bound, 170
band-to-exciton, 187
rate of, 162–5
relations between, 161

Transmission
coefficient, 98, 390

for Fabry-Perot etalon, 100–104
line, 98–100
matrices, 91, 94–105

applied to gratings., 115–21
multiplying, 94, 100, 102, 113–15
relations between coefficients, 96, 593–7

Transparency
carrier density, 9, 55–6, 64, 219, 220,

223–5
temperature dependence of, 80–81

condition, 185–7
current, 229–38

Transport
effects, 70, 72, 308–11
factor, 310

Transverse
electric (TE) and magnetic (TM) modes, 166

coupling between, 359–62
reflection coefficient for, 397–8

Transceiver, 488–91
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Triplexer, 491–2
Tunable

filters, 370–376, 452–7
Lasers (see Lasers)

Turn-On Delay, 278, 283–7
Two-Port Networks, 93–5

cascading, 95, 99, 101–2, 114–15, 117
properties of, 97
reciprocal, 97

Uncertainty Principle, 509
Unger Approximation, 533–7

Vacuum Fields, 158–62, 192–3, 636–7
Vector Modulation, 494
Vector Potential, 164

in terms of the electric field, 175
Vegard’s Law, 16–20
Vertical Cavity

examples, 130–132
geometry of, 25, 28, 52

Voltage
ideal diode, 79–80
series, 79–80
threshold, 79–80, 274

vs. current derivative analysis of, 84–6

Wall-Plug Efficiency (see Efficiency)
Wave Equation, 6

electromagnetic, 336, 545
electron, 510
numerical solutions of, 424–7
scalar, 411, 426, 695
transverse, 336, 411, 677

Wavefunction, 162–3, 164, 509, 609–11
quantum-well, 169

Waveguide (see Dielectric Waveguides)
Waveguide losses (see Dielectric Waveguide

Losses)
Wavelength

Bragg (see Bragg Condition)
chirp, 270–276, 286–7

maximum transmission distance, 475
division multiplexing (WDM), 484
fine tuning and channel changing of, 452–72
modal, 58
spacing between modes (see Mode)
tuning, 92, 110, 113,124, 127–8, 135–5,

270–276, 452–72
WKB approximation, 411–16
Wiener-Khinchin Theorem, 665
Widely Tunable Lasers (see Lasers)
Wigner-Weisskopf Equations, 631










