توضیحات
تحقیق روش های تحلیل سیگنال قلب
چکيده
سيگنال هايي كه توسط ارگان هاي بدن توليد مي شوند با هم ديگر مخلوط شده يا تحت تاثير نويز قرار مي گيرند. منظور از پردازش سيگنال هاي حياتي جدا كردن سيگنال مورد نظر از سيگنال هاي در هم آميخته و نويز دار و سپس استخراج پارامترهاي مفيد سيگنال است. اين پارامترها براي تشخيص پزشكي به كار برده مي شوند. در این تحقیق تلاش داریم تا به بررسی روش های موجود در زمینه تحلیلی سیگنال قلب بپردازیم و همچنین پس از آن به بررسی یکی از محبوبترین روش های آنالیز سیگنال قلب یعنی آنالیز موجک پرداختیم.
مقدمه
سيگنال تابعي از يك يا چند متغير مستقل است كه اطلاعاتي را در مورد يك پديدة فيزيكي يا بيولوژيكي در بردارد. موجودات زنده از سلول گرفته تا ارگان هاي بدن، سيگنال هايي با منشاء بيولوژيكي توليد مي كنند. اين سيگنا ل ها به صورت الكتريكي، مكانيكي يا شيميايي اند. سيگنال هاي الكتريكي نتيجة دپلاريزاسيون سلول هاي عصبي يا ماهيچة قلبي اند. صداي توليد شده توسط دريچه هاي قلب نمونه اي از سيگنال هاي مكانيكي است يا PCO2 خون، سيگنال شيميايي است. اين سيگنال هاي بيولوژيكي يا سيگنال هاي حياتي براي تشخيص پزشكي و تحقيقات زيست- پزشكي مورد استفاده قرار مي گيرند.
فهرست مطالب تحقیق روش های تحلیل سیگنال قلب
- فصل 1: کلیات تحقیق.. 8
- 1-1- مقدمه. 8
- 1-2- بیان مسئله. 8
- 1-3- اهمیت و ضرورت مسئله. 10
- 1-4- اصطلاحات و تعاریف… 10
- فصل 2: مروری بر منابع. 12
- 2-1- استخراج ویژگی های سیگنال ECGقلب… 12
- 2-2- مرحله پیش پردازش…. 13
- 2-3- مرحله تشخیص QRS.. 14
- 2-4- استخراج ویژگی و طبقه بندی… 14
- فصل 3: روش تحقیق.. 17
- 3-1- مقدمه. 17
- 3-2- روش تحقیق… 17
- 3-3- قلمرو تحقیق… 17
- 3-4- روشهای گردآوری اطلاعات… 18
- 3-5- فرآیند اجرایی تحقیق… 18
- 3-6- محدودیتهای تحقیق… 18
- فصل 4: نتايج و تفسير آنها 21
- 4-1- مقدمه. 21
- 4-2- آنالیز موجک (Wavelet Analysis) 21
- 4-3- تبدیل موجک ( Wavelet Transform ). 23
- 4-3-1- تبدیل.. 23
- 4-3-2- آنالیز چند رزولوشنه: 24
- 4-3-3- تبدیل ویولت پیوسته: 25
- 4-3-4- رزولوشن در صفحه زمان فرکانس: 29
- 4-3-5- عکس تبدیل ویولت: 34
- 4-3-6- گسسته سازي تبدیل ویولت پیوسته: 35
- 4-3-7- تبدیل ویولت گسسته: 38
- 4-3-8- مقایسه. 45
- فصل 5: جمعبندي و پيشنهادها 46
- 5-1- نتیجهگیری… 46
- 5-2- کارهای آینده. 46
- فصل 6: مراجع 48
منابع تحقیق روش های تحلیل سیگنال قلب
[1] World Health Organization (WHO) web site: http://www.who.int/mediacentre/factsheets/fs317/en/index.html
[2] P. deChazal, M. O’Dwyer, and R. Reilly, “Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features”, IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1196-1206, 2004.
[3] V. S. Chouhan and S. S. Mehta, “Total Removal of Baseline Drift from ECG Signal,” Computing: Theory and Appl.-ICCTA , 2007.
[4] L. T. Sheffield, C. A. Berson, D. B. Remschel, P. C. Gillette, R. E. Hermes, L. Hinkle, H. Kennedy, D. M. Mirvis, and C. Oliver, “Recommendations for standard of instr. and practice in the use of ambulatory electrocardiography,” Circulation, pp. 626A-636A, 1985.
[5] H. Gholam-Hosseini, H. Nazeran, and K. Reynolds, “ECG noise cancellation using digital filters.”, in 2nd lntemational Conference on Bioelectromagnetism, pp. 151-152, 1998.
[6] P. Laguna, R. Jané, and P. Caminal, “Adaptive filtering of ECG baseline wander”, in Engineering in Medicine and Biology Society, 14th Annual International Conference of the IEEE, Vol. 2, pp. 508 – 509, 1992.
[7] F. A. Afsar, M. S. Riaz, and M. Arif, “A Comparison of Baseline Removal Algorithms for Electrocardiogram (ECG) based Automated Diagnosis of Coronory Heart Disease,” in 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009.
[8] R. Lakhwani, Shahanaz A. and J.P. Saini, “Design and comparision of digital filters for removal of baseline wandering from ECG signal”, in 5th International Conference on Computational Intelligence and Communication Networks, pp. 186-191, 2013.
[9] C. B. Mbachu, G. N. Onoh, V. E. Idigo, E. N. Ifeagwu, and S. U. Nnebe, “Processing ECG Signal With Kaiser Window- Based FIR Digital Filters,” IJEST, Vol 3, No.8, August 2011.
[10] W. Hao, Y. Chen, and Y. Xin, “ECG baseline wander correction by mean-median filter and discrete wavelet transform,” in Proc. IEEE EMBS Conf., pp. 2712–2715, 2011.
[11] D. Zhang, “Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction” in Proc. of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, pp.1212-1215, September 1-4, 2005.
[12] O. Sayadi and M. B. Shamsollahi, “Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction,”. EURASIP Journal on Advances in Signal Processing, 2007: p. Article ID 41274, 11 pages.
[13] C. R. Meyer and H. N. Keiser, “Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques,” Computers and Biomedical Research, vol. 10, pp. 459-470, 1977.
[14] C. Papaloukas, D. I. Fotiadis, A. Likas, A. P. Liavas, and L. K. Michalis, “A robust knowledge-based technique for ischemia detection in noisy ECGs,” in Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000. Proceedings. Fourth International Conference on, pp. 768-771, 2000.
[15] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” in Proceeding of the Royal Society London, vol. 454, pp. 903-995, 1998. [16] S. Pal and M. Mitra, “Empirical Mode Decomposition based ECG Enhancement and QRS Detection,” Computers in Biology and Medicine, vol. 42, pp. 83-92, 2012.
[17] L. She, Z. Xu, S. Zhang, and Y. Song, “De-noising of ECG based on EMD improved-thresholding and mathematical morphology operation,” in Proceeding of 3rd International Conference on Biomedical Engineering and Informatics, IEEE , vol. 2, pp. 838–842, 2010.
[18] I. Sadiq, A. M. Zuberi, I. Zaman, A. Hassan, and T. Zaidi, “Adaptive removal of power-line interference from high resolution ECG,” Advances in Bioscience and Biotechnology, 2012.
[19] S. Zahurullslam, RazaliJidin, S. Zahidullslam, and M. A. Mohammad, “Performnance Study of Adaptive Filtering Algorithms for Noise Cancellation of Electrocardiogram (ECG) Signal” in Proceednig of 7th International Conference on Information, comunication and signal
processing, IEEE , pp. 987-991, 2009.
[20] A. Mathur, P. Tripathi, K. C. Ray, and R. Chand, “FPGA Implementation of Fast FIR Low Pass Filter for EMG Removal from Electrocardiogram (ECG) Signal,” in International Conference on Power, Control and Embedded Systems (lCPCES), pp. 1-5, 2010.
[21] W. K. Ma, Y.T. Zhang, and F.S. Yang, “A fast recursive-least-squares adaptive notch filter and its applications to biomedical signals,” Medical & Biological Engineering & Computing , vol. 37, pp. 99- 103, 1999.
[22] C. Levkov, G. Mihov, R. Ivanov, I. K. Daskalov, I. Christov, and I. Dotsinsky, ” Removal of power-line interference from the ECG: a review of the subtraction procedure,” Biomed Eng Online, 2005.
[23] M. S. Chaudhary, R. K. Kapoor and A. K. Sharma, ” Comparison between Different Wavelet Transforms andThresholding Techniques for ECG Denoising,” in Proceedings of International Conference on Advances in Engineering & Technology Research (ICAETR – 2014),
IEEE, 2014.
[24] V. Afonso, W. J. Tompkins, T. Nguyen, and S. Luo, “ECG beat detection using filter banks,” Biomedical Engineering, IEEE Transactions on, vol. 46, No. 2, pp. 192-202, 1999.
[25] N. Arzeno, Z.-D. Deng, and C.-S. Poon, “Analysis of first-derivative based qrs detection algorithms,” Biomedical Engineering, IEEE Transactions on, vol. 55, no. 2, pp. 478-484, 2008.
[26] J. Martinez, R. Almeida, S. Olmos, A. Rocha, and P. Laguna, “A waveletbased ecg delineator: evaluation on standard databases,” Biomedical Engineering, IEEE Transactions on, vol. 51, no. 4, pp.570-581, 2004.
[27] B. Abibullaev and H. Seo, “A new qrs detection method using wavelets and artificial neural networks,” Journal of Medical Systems,vol. 35, no. 4, pp. 683-691, 2011.
[28] D. Coast, R. Stern, G. Cano, and S. Briller, “An approach to cardiac arrhythmia analysis using hidden markov models,” Biomedical Engineering, IEEE Transactions on, vol. 37, no. 9, pp. 826-836, 1990.
[29] R. Poli, S. Cagnoni, and G. Valli, “Genetic design of optimum linear and nonlinear qrs detectors,” Biomedical Engineering, IEEE Transactions on, vol. 42, no. 11, pp. 1137-1141, 1995.
[30] A. Mart__nez, R. Alcaraz, and J. J. Rieta, “Application of the phasor transform for automatic delineation of single-lead ecg _ducial points,” Physiological Measurement, vol. 31, no. 11, p. 1467, 2010.
[31] Z. Zeng, X. Ge, and Q. Wu, ” Simplified support vector machine method for QRS wave detection,” Computer-Aided Industrial Design & Conceptual Design, CAID & CD 2009. IEEE 10th International Conference on, pp. 2317-2319, 2009.
[32] J. C. T. B. Mores, M. O. Seixas, F. N. Vilani, and E. V. Costa, ” A Real Time QRS Complex Classification Method using Mahalanobis Distance,” Computers in Cardiology, vol 29, pp. 201-204, 2002.
[33] D. Pandit, L. Zhang, C. Liu, A. Hossain, and S. Chattopadhyay, “An Efficient Abnormal Beat Detection Scheme from ECG Signals using Neural Network and Ensemble Classifiers,” Software, Knowledge, Information Management and Applications (SKIMA), 8th International Conference on, 2014.
[34] M. Arif, I. A. Malagore and F. A. Afsar, “Automatic Detection and Localization of Myocardial Infarction using Back Propagation Neural Networks,” Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 2010.
[35] M. Arif, I. A. Malagore and F. A. Afsar, “Detection and localization of myocardial infarction using K-nearest neighbor classifier,” in Journal of Medical Systems, pp. 279-289, 2012.
[36] K. Minami, H. Nakajima, and T. Toyoshima, “Real-time discrimination of ventricular tachyarrhythmia with Fourier transform neural network,” Biomedical Engineering, IEEE Transactions on, vol. 46, pp. 179-185, 1999.
[37] H. Gothwal, S. Kedawat and Rajesh Kumar, ” Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network,” J. Biomedical Science and Engineering, vol. 4, pp. 289-296, 2011.
[38] Z. Dokur, T. Olmez and E. Yazgan, “Comparison of discrete wavelet and Fourier transforms for ECG beat classification” in Electronics Letters , vol. 35 , Issue 18 ,pp. 1502-1504, 2002.
[39] A. S. Al-Fahoum, and I. Howitt, “Combined Wavelet Transform and Radial Basis Neural Networks for the classifying Life Threatening Cardiac arrhythmias,” Medical & Biological Engineering & Computing, vol 37, pp. 566-573, 1999.
[40] G. K. Prasad, J. S. Sahambi, “Classification of ECG arrhythmias using multiresolution analysis and Neural Networks”. in Conference on Convergent Technologies, 2003.
[41] S. N. Yu and Y. H. Chen, “Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network,” Pattern Recognition Letters, vol. 28, Issue 10, pp. 1142-1150, 2007.
[42] F. A. Afsar and M. Arif, ” Robust Electrocardiogram Beat Classification using Discrete Wavelet Transform,” in 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 1867-1870, 2008.
[43] F. A. Afsar, M. U. Akram, M. Arif and J. Khurshid, ” A Pruned Fuzzy k-Nearest Neighbor Classifier with Application to Electrocardiogram Based Cardiac Arrhytmia Recognition,” in
International Multitopic Conference INMIC 2008, IEEE , pp. 143- 148, 2008.
[44] S. Faziludeen and P. V. Sabiq, “ECG beat classification using wavelets and SVM,” Information & Communication Technologies (ICT), IEEE Conference on, pp. 815-818, 2013.
[45] M. K. Das and S. Ari,” ECG Beats Classification Using Mixture of Features,” International Scholarly Research Notices, vol. 2014, 2014.
[46] L. N. Sharma, R. K. Tripathy, and S. Dandapat, “Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction,” IEEE Transaction on Biomedical Engineering, vol. 62, No. 7, pp.1827-1837, 2015.
[47] S. Banerjee and M. Mitra, “Application of Cross Wavelet Transform for ECG Pattern Analysis and Classification,” IEEE Tran. on Inst. and Measurements, vol. 63, No. 2, pp. ,326-333, 2014.
[48] Y. Goletsis, C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis, “Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis,” IEEE Transaction on Biomedical Engineering, vol. 51, Issue 10, pp. 1717-1725, 2004.
[49] C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis, ” An ischemia detection method based on artificial neural networks,” Artif. Intell. Med., vol. 24, Issue 2, pp. 167-178, 2002.
[50] T. P. Exarchos, M. G. Tsipouras, C. P. Exarchos, C. Papaloukas, D. I. Fotiadis, and L. K. Michalis,”A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree,” Artif. Intell. Med., vol. 40, Issue 3, pp. 187-200, 2007.
[51] V. R. Kumar and A. Sivanantharaja, “Feed Forward Neural Network Optimized Using PSO and GSA for the Automatic Classification of Heartbeat,”. Middle-East Journal of Scientific Research, vol. 23, no.5, pp.896-901, 2015.
[52] J. Park, S. Lee, and K. Kang, “Arrhythmia detection using amplitude difference features based on random forest,” In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5191-5194), 2015.
توجه:
تحقیق روش های تحلیل سیگنال قلب شامل یک فایل ورد 45 صفحه ای می باشد.
لینک دانلود فایل بلافاصله پس از خرید بصورت اتوماتیک برای شما ایمیل می گردد.
به منظور سفارش تحقیق مرتبط با رشته تخصصی خود بر روی کلید زیر کلیک نمایید.
سفارش تحقیق
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.