
Read Consistency in Distributed Database Based on DMVCC

Jie Shao†§, Boxue Yin§, Bujiao Chen§, Guangshu Wang§, Lin Yang§

Jianliang Yan§, Jianying Wang§, Weidong Liu†

†Tsinghua University §Baidu,Inc
†shao-j14@mails.tsinghua.edu.cn †liuwd@mail.tsinghua.edu.cn

§{yinboxue,chenbujiao,wangguangshu,yanglin05,yanjianliang,wangjianying}@baidu.com

Abstract—In a traditional distributed database system, the
partitions use two-phase locking (2PL) as the concurrency
control protocol to ensure distributed read consistency. But
the read-lock acquired by a read operation is incompatible
with a write-lock, which undermines the performance of the
system. While in a system at the snapshot isolation level, where
partitions use Multi-Version Concurrent Control (MVCC) as
the concurrent control protocol, distributed read inconsistency
may occur. To achieve read consistency and guarantee the
performance at the same time, we propose Distributed Multi-
Version Concurrent Control (DMVCC). With DMVCC, the
system can support snapshot reads, which do not block write
operations, and ensure distributed read consistency. In this
protocol, a transaction obtains a set of consistent snapshot
version numbers at the startup time. The transaction then uses
those numbers to read the corresponding data stored on each
partition. The correctness of the protocol is strictly proved.

We conduct a series of experiments to compare the perfor-
mance of the system when using and not using DMVCC with a
scaled TPC-C benchmark. We observe that our DMVCC based
system outperforms the system using 2PL at both medium (up
to 1.53x speed up) and high contention (up to 2.0x speed up)
levels. Furthermore, when read/write ratio goes up to 1:1, the
throughput of the DMVCC based system is 290% higher than
that of the system using 2PL. The scalability of the system is
also presented.

I. INTRODUCTION

As the data increase, many large-scale services in Baidu

such as Baidu Wallet can no longer store data in a single

database. Being a Chinese counterpart of PayPal, Baidu

Wallet relies on a distributed on-line transaction processing

(OLTP) system as its storage backend. OLTP systems require

concurrency control to guarantee consistency[6], [7], so that

services running on top of them can function correctly. With-

out right concurrency control, Baidu Wallet could transfer

more money than there is from the account, execute the

transfer twice, transfer the wrong amount of money, or

present the wrong balance after a transaction.

While concurrency control is a well-studied field concern-

ing single databases, the performance of protocols such as

two-phase locking (2PL)[6] is limited with high-contention

workloads, especially when the database receives long read-

only transactions. To solve this problem, Multi-Version

Concurrency Control (MVCC)[7], [11], [14] is proposed.

For read operations, a client is allowed to read historical data

Figure 1: The throughput of a single database at different

isolation levels as the client number increases

to avoid read-write conflicts. This improve the performance

intensely[16].

To prove that, we set up a simple experiment that com-

pares the performances of a single database at different

isolation levels. In this experiment, we use MySQL[1] as our

database, which has different concurrency control methods.

2PL is used at the serializable isolation level, while MVCC

is used at the repeatable read level. TPC-C[2] is used as

our benchmark. The database contains 5 warehouses. The

experimental setup remains the same in Section V. Figure 1

shows the results:

• When the number of clients is less than 10, the perfor-

mance of the system remains almost unchanged at the

repeatable read level and at the serializable level since

there is little contention.

• As the number of clients increases, the throughput of

the database at the serializable isolation level drops

sharply. Meanwhile, the throughput of the system at the

repeatable read level almost remains the same. That is

to say the drop is caused by read and write conflicts

instead of resource limitation.

2016 IEEE 23rd International Conference on High Performance Computing

978-1-5090-5411-4/16 $31.00 © 2016 IEEE

DOI 10.1109/HiPC.2016.11

142

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

(a) partitions using 2PL
(b) partitions using MVCC

Figure 2: How transactions read data using 2PL and using MVCC

As Figure 1 shows, if the distributed database uses MVCC

as the concurrency control protocol, the system may have

a better performance. Unfortunately, the distributed system

requires that the transactions use 2PL in every partition1[1].

A MVCC-based distributed database system at the non-

serializable level leads to distributed read inconsistency,

which refers to the circumstance where only some of the

updates of a distributed transaction are visible to other

transactions. We will explain that in detail in Section II.

Many transactions in Baidu Wallet such as account checking

and statistic analysis do not need to read the latest data. But a

global consistent snapshot is still needed. So in this paper we

propose DMVCC (Distributed Multi-Version Concurrency

Control), a distributed concurrency protocol that ensures

distributed read consistency and the performance at the same

time.

DMVCC is a two-phase protocol based on two-phase

commit (2PC)[6], [19]. A set of distributed transaction

managers (DTMs) run the protocol on behalf of clients. At

the beginning of a transaction, the DTM connects with the

consistency coordinator to obtain global consistent snapshot

version numbers. In the prepare phase, the transaction uses

the snapshot version number to read data items stored on

each partition. In the commit phase, the DTM collects the

snapshot versions from each partition and sends them to

the consistency coordinator. The consistency coordinator

then calculates the new global consistent snapshot version.

With DMVCC, the system guarantees that all or none of

the updates of a distributed transaction is visible to other

transactions.

The rest of the paper proceeds as follows. Section II

presents a case of distributed read inconsistency and the way

to avoid it. Section III elaborates the design of a DMVCC-

based system. In Section IV, we prove the correctness of

DMVCC. Section V sets up the experiments and presents

1In our design, we call each database a partition.

the results of our experimental evaluation. Then we discuss

the related work in Section VI and present the conclusion

in section VII.

II. OVERVIEW

This section begins with a review of why we can not use

MVCC in a distributed system. Then we will explain how

the distributed multi-version concurrency control works.

A. A case of distributed read inconsistency

Application programmers usually prefer the highest isola-

tion level to simplify the reasoning of correctness in the face

of concurrent transactions[6], [17]. To guarantee distributed

consistency, a distributed transaction runs standard concur-

rency control schemes such as standard 2PL combined with

two-phase commit (2PC)[6], [8], [9].

To give a more intuitive explanation, we demonstrate a

simplified process of money transferring in Baidu Wallet,

during which the system reads the balance data from the

account to ensure consistency. As is shown below, there are

two distributed transactions T1 and T2 and two partitions S1

and S2, which contain data items a and b respectively. In

transaction T1, account A transfers 10 dollars to account B.

Transaction T2 then reads the data of the current account

balance of A and B.

T1: UPDATA a = a - 10 UPDATA b = b + 10

T2: READ a READ b

Firstly, let us see how distributed transactions work on

each partition which uses standard 2PL as the concurrency

control protocol and 2PC as the distributed commit protocol.

Suppose partition S1 and S2 receive T1 and T2’s subtransac-

tions sequentially. The process is shown in Figure 2(a). We

can see that T2 arrives when T1 is committed on partition S1

but not yet committed on partition S2 because of network

latency or thread scheduling on S2. Since T1 is committed

143

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

on S1, T2 returns directly on S1 without being blocked.

However, T2 will be blocked in S2 until T1 is committed

because of the incompatibility of write locks and read locks.

Therefore, the data read by T2 on S1 and S2 have both

been modified by T1. That is to say, the data read by T2 are

consistent. On the other hand, when T2 arrives ahead of T1

on partition S1 and S2, neither of the data read by T2 have

been modified by T1, which is also consistent. Transaction

T1 may be blocked in this case.

Now we consider another condition. If the partitions use

MVCC as the concurrency control, a read operation sees a

snapshot containing the committed data of each transaction.

Figure 2(b) shows how transaction T2 is executed on the

partitions with MVCC. When T2 arrives at partition S1 after

T1 is committed, T2 reads the latest version of data which

have been modified by T1. At the same time, T2 arrives at

S2. Since T1 is not yet committed on S2, T2 reads an old

version of data b. In short, T2 obtains the data on S1 which

have been modified by T1 and the data on S2 which have

not been modified by T1. This is when inconsistency occurs.

Based on the two situations discussed above, we can

conclude that: 1) on partitions with 2PL, conflicts increase in

the system due to the incompatibility of read locks and write

locks, which impacts the performance; 2) on partitions with

MVCC, the data read by clients may not be consistent. In

this paper we propose DMVCC, a distributed protocol that

avoids distributed read inconsistency. Using this protocol,

we can free read locks for read operations and obtain a

consistent snapshot version in the distributed database with

evident performance improvement.

B. Distributed Multi-Version Concurrency Control

This section describes how DMVCC works to guarantee

the properties around concurrency control, and how those

properties are used to implement features such as transaction

consistency and lock-free reads.

A read-only transaction shares the benefits of snapshot

reads in performance[4]. And a snapshot read is a read

operation that reads the historical data items without locking.

In our design, a client does not need to specify a timestamp

or a version of data items for a snapshot read. He only needs

to determine whether the read operation is a snapshot read or

not. If the read operation is a snapshot read, the system will

assign a global consistent snapshot version to the operation.

If not, the client should execute the operation with SELECT
... FOR UPDATE.

To understand the DMVCC, two key points need further

elaboration: when to generate a snapshot version on each

partition and when to use the version in the system.

• Generating a snapshot: Read and write operations

in transactions use two-phase locking. As a result, the

systems can generate a snapshot anytime after all locks

are acquired and before any lock is released. When

Figure 3: System architecture

the partition generates a snapshot before a subtransac-

tion is committed, the subtransaction can not see the

modifications by itself. So for a given transaction, the

partition generates a snapshot only when the system

requires the partitions to commit the subtransaction. At

the same time, a global snapshot version is generated.

• Executing Reads with a version: When a transaction

arrives, the system assigns to it a global consistent snap-

shot version which involves all the partitions. To read

data on a partition, a snapshot read in this transaction

needs to refer to the version number related to this

partition.

Furthermore, a system using DMVCC not only reads

a global consistent snapshot, but also reduces read-write

conflicts and the chance of global deadlocks[6].

III. DESIGN

To realize DMVCC protocol, we design a system which

can read global consistent snapshots. Figure 3 depicts the

proposed architecture of our design. The distributed database

system consists of three main components: the partitions,

the DTMs and the consistency coordinator. The partitions

are a number of local databases which store a portion of

data items. They execute subtransactions from the DTMs

and generate snapshots. Clients access the system with

the DTMs. The DTMs break down the transactions into

subtransactions and assign snapshot versions to them ac-

cordingly. The consistency coordinator is the center node

that calculates the global consistent snapshot versions. Next

we will describe the design of each component.

A. Partitions

The whole database is partitioned, with items stored

across multiple servers and each partition storing only a

portion of items. The partitions are independent from each

144

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

other, that is, a distributed transaction only contacts parti-

tions which store the items it needs. So when a partition

fails, it does not affect the data stored on others.

1) Snapshot: As is analyzed in Section II-B, the parti-

tion should generate a snapshot when the subtransaction is

committed. The snapshot should have the following features:

• Transactions not yet committed cannot be seen from

this snapshot. Since our partition is a multi-thread

database, there might be many transactions being exe-

cuted at the same time. A partition scans a transaction

list to see whether a transaction is committed. If the

transaction is not committed, its modifications on the

data items should not be seen by other transactions.

• When a transaction starts after the snapshot is created,

other transactions cannot see the modifications by that

transaction from this snapshot.

• Conversely, when a transaction is committed before

the snapshot is created, the snapshot can display the

modifications by that transaction.

• A snapshot can display the modifications by the trans-

action that creates it.

Read-My-Write: Furthermore, when a snapshot read in

a subtransaction requires to read a previous snapshot, it

should not only read the version of data stored in the

snapshot, but also the modifications made by the ongoing

subtransaction that contains the snapshot read. To achieve

that, the partition combines the data stored in the snapshot

and the modifications made by the ongoing subtransaction.

2) Local Transaction IDentifier: Since the partitions have

created a number of snapshots, the client should be able

to determine which snapshot to read. One solution is to

transmit the complete snapshot between the DTM and the

partition[7]. But it is very hard to realize and the transmis-

sion may increase the network load. So the partition needs to

generate a number for each snapshot. In this paper, we name

this number LTID (Local Transaction IDentifier), which

is also called snapshot version number. The generation of

LTIDs is a serializable process and the numbers of LTIDs

are sequential. When a subtransaction acquires a lock as it is

to be committed, the partition generates a snapshot and the

corresponding LTID during the lock time. Then the partition

links the snapshot with the LTID by a hashtable. When the

subtransaction ends, the LTID value is returned to the DTM.

3) Snapshot Reads With LTIDs: When a transaction ar-

rives, the DTM gets a set of LTIDs which form a consistent

snapshot (we will describe that process in the following

subsection). If a read operation is a snapshot read, the DTM

will specify LTIDs for it and sends them to the partitions.

When a partition gets a read operation with an LTID, the

partition looks up the hashtable using this LTID to get

the corresponding snapshot. In this way, clients can read

a distributed consistent snapshot version.

Figure 4: The process of the DTM executing a transaction

B. Distributed Transaction Manager

Clients connect the DMVCC based distributed database

system with DTMs. DTMs split the transactions of clients

into subtransactions and send them to the corresponding

partitions.

DTMs execute distributed transactions with the two-

phase commit (2PC) protocol[6], [19]. 2PC is one of the

most common distributed control protocols regarding atomic

communication in distributed systems. That is because it is

quite simple and straightforward. To support DMVCC, we

add more features to the 2PC protocol which are shown as

follows. Figure 4 demonstrates the process of a transaction

being executed.

• When a transaction arrives at a DTM, the DTM con-

nects to the consistency coordinator to get the global

consistent snapshot version. The consistent version is a

set of LTIDs collected from the partitions which present

the snapshots on the partitions.

• When a transaction is committed, the partition sends

the LTID to the DTM. After the DTM collects all the

LTIDs from the partitions, it sends the LTIDs to the

consistency coordinator. The consistency coordinator

then uses the LTIDs to calculate a global consistent

snapshot version.

Our partitions have a mechanism to detect and recover

from local dead locks[1], [7]. However, in a distributed

145

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

Table I: LTIDs of transactions involving all partitions

Transactions

LTIDs Partitions

S1 S2 S3

Initial 0 0 0
T1 1 2 3
T2 2 3 1
T3 3 1 2

database system, there might be a global dead lock which

cannot be detected actively by the DTMs[6], [7]. The time-

out mechanism is adopted in our system to ensure that

other partitions do not need to wait too long when a global

dead lock occurs. In future researches, active detection

mechanism might be used, with which the system aborts

the transactions actively when a dead lock is detected.

C. Consistency Coordinator

Being the core part of the system, the consistency coordi-

nator enables the system to get a global consistent snapshot.

Since we already have a good design in the partitions, the

algorithm for the calculation of a consistent version is very

simple and lightweight. It takes two steps:

I. Every time the coordinator receives the LTID value

pairs (S1:LTID1, S2:LTID2, ..., Sn:LTIDn) sent

from each DTM, it sorts the LTIDs by partition im-

mediately, including the ones that have been stored on

the coordinator. For example, when an LTID value of

partition S1 is sent to the coordinator, it compares and

sorts the received LTID with others that are previously

stored on it.

II. A global consistent state is achieved if the LTIDs gen-

erated by each partition are consecutive and holes-free.

Therefore, snapshots related to the maximum LTID

values of each partition form a global consistent state

(S1:LTID1max, S2:LTID2max, ..., Sn:LTIDnmax).

The correctness of this algorithm is proved in Sec-

tion IV.

After the coordinator figures out the consistent snapshot

version, another set of LTID values arrives. The coordinator

then starts a new round of calculation. To alleviate the

burden of calculation, the coordinator only needs to sort

with the maximum LTID values of the previous round as the

initial values in the new round. In this way the system gets

a number of consistent snapshots. When a new transaction

starts, the latest consistent snapshot version is sent.

Next we present two examples to explain how the algo-

rithm functions in transactions involving all the partitions

and in ones involving only a few.

The first example contains transaction T1, T2 and T3 and

partition S1, S2 and S3. Each transaction involves all three

partitions.

Since all partitions are multi-thread databases, a set of

transactions may be committed in different orders on each

Table II: LTIDs of transactions involving portion partitions

Transactions

LTIDs Partitions

S1 S2 S3

Initial 0 0 0
T1 1 2 -
T2 - 1 2
T3 2 - 1

partition, that is, they may generate LTID values in different

orders. Now suppose the initial LTID values on each parti-

tion are 0, which means they are in a global consistent state

in the beginning.

When the transactions are committed, the LTID values are

generated on each partition. One of the possibilities is shown

in Table I. The consistency coordinator receives the LTID

values in the order of T1, T2 and T3. The numbers next to

them are the LTID values generated on each partition when

transaction T1, T2, T3 are committed.

• Commission of transaction T1: The LTID values of T1

are sent to the consistency coordinator. The consistency

coordinator determines, with the LTID values of T1,

whether a consistent version can be achieved. As is

shown in Table I, the sequence of LTIDs on S1 is

(0,1), which is consecutive. But the sequence of LTIDS

on S2 is (0,2), which is inconsecutive. This means a

consistent version is not accessible on S2 now and the

next transaction is expected.

• Commission of transaction T2: In this phase, the

sequence of LTIDs on S1 is (0,1,2), which is consecu-

tive. But that of LTIDs on S2 is (0,2,3), which is still

inconsecutive and in need of the next transaction.

• Commission of transaction T3: The sequences of

LTIDs on S1, S2 and S3 all become (0,1,2,3) when the

LTID values of T3 arrive. A global consistent version

is now accessible.

With the maximum LTID values, a global consistent ver-

sion (S1:3,S2:3,S3:3) comes into being. Now the coordinator

is ready to send the latest consistent snapshot versions to

another transaction if there is a request. When the next set

of LTID values arrives, the coordinator uses (S1:3,S2:3,S3:3)

as the initial LTID values to judge consecutiveness.

In the second example, all three partitions are not involved

in each transaction. Suppose that T1 only involves S1 and S2,

that T2 only involves S2 and S3, and that T3 only involves

S1 and S2, as is shown in Table II.

The coordinator still receives the LTID values in the order

of T1, T2 and T3 while the way it judges consecutiveness

remains the same. Again, only when T3 arrives do the LTID

values on S1, S2 and S3 become consecutive and holes-free.

Now the coordinator is able to find the consistent version of

(S1:2, S2:2, S3:2).

The consistency coordinator will not be the bottleneck

since it only interacts with the DTMs at transaction start

146

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

and commit time and conducts simple calculations which

operate fast.

D. Garbage Collection

In our design, there are many historical versions of snap-

shots. So clients can read any consistent snapshot with the

suitable version. But without an effective garbage collection

mechanism, the storage of these snapshots will become a

burden to the system and impair its performance. While in

our design, when the system gets a new consistent snapshot,

the consistency coordinator sends its version number to the

DTM, which then sends it to the corresponding partition.

Since the partition may have a long-lived transaction which

requires older snapshot versions, the partition compares

the received LTID with the each LTID in the long-lived

transactions to determine a deletable LTID value (which

is the smaller one of the two). The partition then deletes

the snapshots whose numbers are smaller than that deletable

value. After that, the partition refers to the snapshot to delete

the historical data items. Eventually, there are only a few

snapshots on each partition.

E. Fault Tolerance

To tolerate failure, each partition, DTM and the coor-

dinator needs to persist its transaction log to disks. Each

partition and DTM log the transaction statements and the

decision of each phase in case it fails during execution. The

consistency coordinator also logs the LTID values of each

transaction. There are also two standby coordinators in case

the leading one fails. All of coordinators replicate logs using

Paxos algorithm[13].

If DTM fails, it will judge whether the transactions are in

prepare state or committed state after it recovers. If the trans-

action has been prepared, it will request partitions to commit.

If it has not been prepared or committed, the transaction will

be executed from the beginning. If the partition fails, it needs

to recover all the prepared transactions after it recovers and

then responds to other requests. If a transaction has been

decided to be committed, it should be committed after the

partition recovers. If the coordinator fails, the system will

switch to a standby coordinator which has the same records.

There are other failures, such as network partition and

abnormal connection closure. We have methods to deal with

all of them. But we cannot discuss them in detail because

of the page limit.

IV. CORRECTNESS

Like transactions in a single database, distributed trans-

actions also need to satisfy the consistency requirements,

including write consistency and read consistency[4], [7],

[8]. In this section, we will prove the effectiveness of

our algorithm in ensuring read consistency and explain the

transaction isolation level the system can achieve.

A. Distributed Read Consistency
The purpose of this paper is to design a system which

supports a distributed read consistency protocol on partitions

using MVCC as the concurrency control. We prove why

consistency can be achieved when the LTIDs generated by

each partition are consecutive and holes-free. But to do that,

we have to prove a proposition first.

The proposition:
There are two subtransactions T1 and T2 on one partition.

When they are committed, they get two LTID values LTID1

and LTID2 , which correspond to two snapshots snapshot1
and snapshot2. If LTID2 >= LTID1, snapshot2 is

able to capture the modifications which have been made by

transaction T1.

Proof:
If LTID2 = LTID1, then T1 and T2 are the same

transaction and the snapshot it creates is able to capture

the modifications made by the transaction itself. Therefore,

we mainly focus on LTID2 > LTID1.
Suppose that snapshot2 cannot capture the modifications

made by T1. This might be caused by two conditions

according to the definition of snapshot.

1. T1 is an active transaction;

2. The start time of T1 is later than the time when

snapshot2 is created.

In condition one, when T2 is committed, T1 has not been

committed yet. So when T1 is committed, the LTID value

of T1 is larger than that of T2 because the LTID values

are generated in a serializable way. But this contradicts with

LTID2 > LTID1. In condition two, transaction T1 has not

started yet when T2 is committed. So the LTID value of T1

is larger than that of T2, which leads to contradiction again.
Therefore, we can conclude that for any transaction, the

snapshot with a larger LTID can capture the modifications

made by the transaction with a smaller LTID.
On the other hand, it is also self-evident that if snapshot2

can capture the modifications made by transaction T1,

LTID2 is larger than LTID1.
With the proposition proved, we will now move on to

prove that a global consistent state can be formed when all

the LTIDs generated by the partitions are consecutive.
Proof:
Suppose the amount of the distributed transactions

is m (T1,T2,...,Tm) and the amount of partitions is n
(S1,S2,...,Sn). LTIDi,j represents the snapshot number of

transaction Ti generated on partition Sj .
Without loss of generality, the committed order received

by the consistency coordinator is T1,T2,...,Tm, with the

initial snapshot version number as 0. Because the partition

is a multi-thread database, the committed order on each

partition may not be the same. When the consistency co-

ordinator receives transaction Ti, the coordinator sorts the

147

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

LTID values. One situation is that the LTID values are

consecutive on partition Sj but not consecutive on other

partitions, such as Sk. This means transaction T1,T2,...,Ti

are all committed on Sj , but at least the LTID value of

one transaction Ta(a ≤ i) committed on partition Sk is

larger than i. If now the consistency coordinator considers

the system to be in a consistent state, the system uses

the snapshots corresponding to the maximum LTID values

on each partition (according to the above proposition, a

transaction can read the modifications made by another

transaction with a smaller LTID) to read data items when the

next transactions arrive. On partition Sj , the new transaction

can read the modifications by T1,T2,...,Ti. But on partition

Sk, the new transaction can read the modifications by other

transactions which might include but are not limited to

T1,T2,...,Ti. That leads to inconsistency. Another situation

is that the LTID values on every partition are consecutive.

When the system uses the snapshots corresponding to the

maximum LTID values on each partition, the new transaction

can read the modifications by all transactions T1,T2,...,Ti on

all the partitions, which is a consistent state.

Table I shows an example. The LTID value on S1 is 1

after the results of T1 are sent to the consistency coordinator,

which means only T1 is executed on S1. But the LTID value

on S2 is 2, which means another subtransaction (T3) has

been executed on S2 before T1. Similarly, the LTID value

on S3 is 3, meaning another two subtransactions (T2,T3)

have been executed on S3 before T1. Now suppose the

consistency coordinator determines (S1:1,S2:2,S3:3) as a

consistent snapshot version. A new transaction T4 involving

S1, S2 and S3 will use the above-mentioned LTIDs as

version numbers to read data items on the partitions. With

the proposition we have proved before, we can infer that

the results T4 reads on S1 only involve data modified by

T1, while those on S2 involve data modified by both T1 and

T3 and those on S3 involve data modified by T1, T2 and T3.

This leads to inconsistency presented in Section II-A.

Conversely, the LTIDs on each partition are consecutive

after the consistency coordinator receives T3, as is shown in

Table I. Using (S1:3,S2:3,S3:3), a new transaction T4 is able

to read all the modifications made by T1, T2 and T3, which

is similar to the proposition we have proved. So when the

LTIDs on each partition are consecutive, a new transaction is

able to read global consistent snapshots corresponding to the

maximum LTIDs on each partition and the read statement

using the consistent version is a distributed consistent read.

B. Snapshot Isolation Level

All snapshot read operations in a transaction can see a

global consistent snapshot of the database. Read operations

in one transaction are personal snapshots of the database.

For write operations, they acquire write locks that are

incompatible with other transactions which update the same

data item. Instead of simply being aborted, the transactions

wait until they acquire the locks and modify the data. This

means the system has achieved the snapshot isolation level

according to [4], [8].

V. EVALUATION

To gain a quantitative understanding of the benefits of

using DMVCC in a distributed database system, we set up

a series of experiments. The partition is realized by mod-

ifying MySQL[1], a popular open-source relation database

management system. Many systems like Google’s F1[18]

and Salt[23] use MySQL as the backend database.

Our experiments explore three key questions:

1. How is the throughput of the distributed system us-

ing DMVCC comparing to that of the system using

standard 2PL under varying levels of contention?

2. How does the performance improve as the proportion

of read transactions increases?

3. Does the consistency coordinator become a bottleneck

when the system scales out?

The results show that 1) the system with DMVCC has

higher throughput than one with 2PL, especially when the

level of contention is high; 2) as the read transactions

increase, the performance of the system with 2PL drops

sharply while the DMVCC based system only shows minor

decrease in its performance; 3) the consistency coordinator

does not become the bottleneck as the system scales out.

A. Experimental Setup

In our experiments, each machine is equipped with a 12-

core Intel Xeon CPU E5-2620 running at 2.4GHz with 32G

RAM and Gigabit Ethernet. We use TPC-C[2], a popular

database benchmark that models on-line transaction process-

ing, as our benchmark. The performance metric reported by

TPC-C measures the number of new orders that can be fully

processed per minute and is expressed in tpm-C.

In this experiment, clients and servers run on different

machines. Each client machine runs 1 to 20 single-threaded

client processes while each server machine runs a single

server process. Like[20], [21], our experiments divide the

TPC-C database by warehouse. To test the performance in

all experiments, we assign five warehouses to each partition.

Each data point in the figure represents the median of at least

five trials. Each trial is run for over 120s with the first and

last quarter of each trial elided to avoid start up and cool

down artifacts.

B. Contention

In the contention experiment, we use 4 partitions, with

each partition serving five warehouses. Then we vary the

clients per partition from 1 to 50. As the number of

clients increases, there are more requests per partition and

thus higher contention. The results are shown in Figure 5.

Figure 5(a) shows the throughput of new-order transactions

148

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

(a) Throughput (b) Deadlock rate using 2PL

Figure 5: The characteristics of the system with 4 partitions as the client number increases

while Figure 5(b) shows the rate of deadlocks on the

partitions using 2PL.

Low Contention. When the number of concurrent requests

per partition is smaller than 10, the throughput of the system

shows no difference when using and not using DMVCC.

When the client number per partition is 10, the throughput

of the system is 53056 new-orders/min if it uses DMVCC,

while it is 42780 new-orders/min if it does not use DMVCC.

The system using DMVCC does not have deadlocks and

the CPU is never saturated, so the throughput of the new-

order transactions can increase linearly as the client number

goes up. Since a system using 2PL has almost no contention

or deadlocks (less than 7%), the throughput of the system

displays a similar growth pattern to one using DMVCC.

Medium Contention. When the number of concurrent re-

quests per partition increases from 10 to 20, the contention

level increases from low to medium. The system using

DMVCC is less sensitive to the increase of client number,

so the throughput keeps increasing in a linear fashion as

in the previous case, which is faster than the system using

2PL. This is because the system using DMVCC only has

write-write conflicts while the system using 2PL has both

read-write and write-write conflicts, where read operations

will block write operations and generate deadlocks easily.

When the client number increases, the chance of deadlocks

increases as well. As Figure 5(b) shows, the rate of dead-

locks increases to 17%. At the same time, when the request

number is 20, the throughput of the system using DMVCC

is 93898, 1.53x larger than that of the system using 2PL,

which is 60975.

High Contention. When the number of concurrent requests

per partition is over 20, the benchmark reflects a high level

of contention. The throughput displays almost no increase

in the system using 2PL. At the same time, the rate of

deadlocks increases sharply to about 60%. When the system

has plenty of deadlocks, it needs to spend a lot of time

dealing with it and retry multiple times. As a result, the

increase of the throughput is very slow. On the contrary, the

system using DMVCC is less sensitive to this increase. But

the throughput does not increase as fast as before because

of a larger amount of write-write conflicts and resource

limitation. Now the throughput of the system using DMVCC

is 152538 when there are 40 parallel clients per partition.

This is 2.0x larger than that of the system using 2PL, which

is 75780.

C. Effects of Varying Read/Write Ratio

To obtain more read operations, we vary the ratio of read-

only transactions to read-write transactions. In the regular

experiments, the ratio of read-only transactions to read-write

transactions is about 1:10 [2]. So we increase the proportion

of read-only transactions in this experiment.

In the previous experiment, we have learned that when

the client number is small, the throughput of the system

almost remains the same no matter whether it uses DMVCC

or not. In this experiment, we have 10 clients per partition

who only run read-write transactions. Then we have other

clients running read-only transactions. The client number per

partition increases from 0 to 10, so the ratio of read-only

transactions to read-write transactions is 0 to 1.

To measure the performance in this experiment, we not

only use tpm-C but also the throughput ratio in response to

the ratio of read-only transactions to read-write transactions.

The results are shown in Figure 6.

When there are few read-only transactions, the gap be-

149

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

Figure 6: The throughput and the throughput ratio as the

read/write varies

tween the throughput of the system using DMVCC and that

of the system using 2PL is small. With the proportion of

the read-only transactions increases, the gap becomes larger.

We can see that the throughput of the system using 2PL

decreases quickly, because as the read transactions increase,

the chance of read operations blocking write operations

increases and deadlocks occur. The throughput of the system

using DMVCC decreases as well, because when the clients

running read-only transactions increase, the system needs

more resources to deal with them, which decreases the

throughput of new-order transactions. However, the decrease

is slower than that of the system using 2PL. When the ratio

of read-only transactions to read-write transactions is 1:1,

the throughput of the system using DMVCC is 2.9x larger

than that of the system using 2PL.

D. Scalability

We evaluate the scalability by scaling out the number of

partitions, each of which has five warehouses. Due to the

limit of resources, we increase the number of machines from

2 to 8. We test the scalability of the system at low, medium

and high contention levels, or, when each partition has 10,

20 and 30 clients. The result is shown in Figure 7.

We find that as the partitions scale out, the throughput

of new-order transactions increases linearly at all contention

levels. The existence of the consistency coordinator is the

only possible cause of the system having a bottleneck.

But since it only has simple interactions with the DTMs

and conducts simple calculations, it is not likely to be a

bottleneck in our system.

VI. RELATED WORK

The key contribution of this design using DMVCC is

that an application is able to access a consistent snapshot

Figure 7: Throughput at different contention levels when

partitions scale out

version without read locks in a distributed database system.

In distributed database systems, it is very hard to get a global

consistent version if each partition is based on MVCC. Most

distributed systems like Lynx[24], Calvin[20] do not support

snapshot reads while systems like R∗[15] and Gamma[10]

use 2PL.

There are some attempts of supporting read consistency.

First, timestamps are adopted in distributed database sys-

tems as a type of ordering concurrency control known as

conservative T/O[5], [7], which allows transaction abort and

reorder. But unlike our design, they do not support snapshot

read. Spanner[9] designed by Google supports distributed

consistent reads. To make the global time synchronous, the

system uses a GPS and an atomic clock as clock references.

When using an atomic clock, there is little mistiming on each

machine. But there is also a problem: not all systems have

atomic clocks because of their high cost. Another solution

is presented in[17], which designs an additional protocol

for read-only transactions. OCC[12], a lock-free concurrency

control protocol, is used specially for read-only transactions

in that system.

There are also serveral algorithms that allow the sys-

tem using MVCC to have a distributed consistent read.

Distributed commit list is proposed in [7]. Clients connect

to each partition to get the commit list at the start of a

transaction. As the transaction is committed, the partition

generates a temporary commit list, in which case the next

query may see an inconsistent view. Bailis introduces Read

Atomic Multi-Partition transactions[3] which ensure that

none or all of the transaction updates are visible to other

transactions. But inconsistency may occur when a new

transaction starts before the prepare instruction of a previous

transaction arrives at all partitions. The last one which uses

global snapshot is similar to our design. In ecStore[22],

150

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

the snapshots are detained by the center node. When a

transaction is committed on one partition, the center node

will add a number to it and send the number to all the other

partitions. In our design, the version number is generated

on the partitions while the consistency coordinator is a

lightweight server which only conducts simple computation.

VII. CONCLUSION

This paper has designed the Distributed Multi-Version

Concurrency Control protocol, which supports consistency

and lock-free snapshot read operations. Not only in read-

only transactions but also in read-write transactions, clients

can read consistent snapshot without read-write conflicts.

When using TPC-C benchmark, a DMVCC based system

outperforms a conventional system at different contention

levels, especially when read/write ratio is high. Finally, we

design a system which adopts this protocol. The system has

been used in Baidu’s services such as Baidu Wallet, where

both performance and scale-out ability are ensured..

REFERENCES

[1] Mysql. http://dev.mysql.com/doc/.

[2] Transaction processing performance council. http://www.tpc.
org/tpcc/.

[3] P. Bailis, A. Fekete, J. M. Hellerstein, A. Ghodsi, and
I. Stoica. Scalable atomic visibility with ramp transactions.
In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 27–38. ACM,
2014.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ansi sql isolation levels. In ACM
SIGMOD Record, volume 24, pages 1–10. ACM, 1995.

[5] P. A. Bernstein and N. Goodman. Timestamp-based algo-
rithms for concurrency control in distributed database sys-
tems. In Proceedings of the sixth international conference
on Very Large Data Bases-Volume 6, pages 285–300. VLDB
Endowment, 1980.

[6] P. A. Bernstein and N. Goodman. Concurrency control
in distributed database systems. ACM Computing Surveys
(CSUR), 13(2):185–221, 1981.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency control and recovery in database systems, volume 370.
Addison-wesley New York, 1987.

[8] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. ACM Transactions on
Database Systems (TODS), 34(4):20, 2009.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
et al. Spanner: Googles globally distributed database. ACM
Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[10] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The gamma
database machine project. Knowledge and Data Engineering,
IEEE Transactions on, 2(1):44–62, 1990.

[11] F. D. Hinshaw, C. S. Harris, and S. K. Sarin. Controlling
visibility in multi-version database systems, Dec. 4 2007. US
Patent 7,305,386.

[12] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Systems
(TODS), 6(2):213–226, 1981.

[13] L. Lamport et al. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[14] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling. High-performance concurrency control
mechanisms for main-memory databases. Proceedings of the
VLDB Endowment, 5(4):298–309, 2011.

[15] C. Mohan, B. Lindsay, and R. Obermarck. Transaction man-
agement in the r* distributed database management system.
ACM Transactions on Database Systems (TODS), 11(4):378–
396, 1986.

[16] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible
methods for transient versioning of records to avoid locking
by read-only transactions, volume 21. ACM, 1992.

[17] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more
concurrency from distributed transactions. In 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 479–494, 2014.

[18] J. Shute, M. Oancea, S. Ellner, B. Handy, E. Rollins,
B. Samwel, R. Vingralek, C. Whipkey, X. Chen,
B. Jegerlehner, et al. F1: the fault-tolerant distributed
rdbms supporting google’s ad business. In Proceedings
of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 777–778. ACM, 2012.

[19] D. Skeen. Nonblocking commit protocols. In Proceedings
of the 1981 ACM SIGMOD international conference on
Management of data, pages 133–142. ACM, 1981.

[20] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions for
partitioned database systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of
Data, pages 1–12. ACM, 2012.

[21] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, pages 18–32. ACM, 2013.

[22] H. T. Vo, C. Chen, and B. C. Ooi. Towards elastic transac-
tional cloud storage with range query support. Proceedings
of the VLDB Endowment, 3(1-2):506–514, 2010.

[23] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining acid and base
in a distributed database. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
pages 495–509, 2014.

[24] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and
J. Li. Transaction chains: achieving serializability with low
latency in geo-distributed storage systems. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 276–291. ACM, 2013.

151

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

