
Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 49

Issues in Concurrency Control for Different

Databases Concurrency Control Methods for

Different Databases a Survey of Concurrency Control

Protocols
Gitanjali Mishra* Jyotirmaya Mishra

Assistant Professor, Computer Science and Engineering,

Gandhi Institute of Engineering & Technology, Gunupur, Odisha, INDIA.

Abstract: This paper reviews the coverage of concurrency

control in different Databases. Database becomes more

popular, the need for improvement in database management

systems becomes even more important to maintain reliability.

The main challenges are identified as-: (1)Preserving the ACID

property atomicity, consistency, isolation and durability

property when concurrent transactions perform read and

write operation; (2) provides recovery method when

distributed data is fail; (3)whatever method that is chosen they

must provide feasible solutions with respect to performance.

Keywords:Centralized Database system, Distributed Database

System, object-oriented database System, Distributed Object-

Oriented Database System , Mobile Database System, Real-Time

Database System ,Multilevel Secure Databases, Replicated Real

Time Databases, Concurrency control, Transaction, Locking

protocol

I. INTRODUCTION

n today’s world of universal dependence on information

systems, with the rising need for secure, reliable and

accessible information in today’s business environment, the

need for databases and client/ server applications is also

increasing. This paper reviews the concurrency control in

dissimilar databases. Database becomes more trendy and to

supervise different types of database management systems

are required. Many transactions are accessing the databases

concurrently. The main challenges are identified for the

transactions are -: (1)Preserving the ACID property
atomicity, consistency, isolation and durability property

when concurrent transactions perform read and write

operation; (2) provides recovery method when data is failed;

(3)whatever method that is chosen they must provide

feasible solutions with respect to performance. One most

important mechanism to control the concurrent transactions

is concurrent control mechanism. Here we are focusing

different types of concurrency control mechanism for

different databases. In this paper weaddress lock concept in

different databases transactions.

II. CONCURRENCYCONTROL IN CENTRALIZED

DATABASESYSTEM

The basic idea of locking is that whenever a transaction
accesses a data item, it locks it, and that a transaction which

wants to lock a data item which is already locked by another

transaction must wait until the other transaction has released

the lock (unlock).

Let us see some important terminologies related to this

concept:

 Lock Mode: Transaction locks the data item in the

following modes:

o Shared Mode: Here the transaction wants only to
read the data item.

o Exclusive Mode: Here the transaction wants edit
the data item.

 The Well-formed Transactions:The transactions are

always well-formed if it always locks a data item

in shared mode before reading it, and it always

locks a data item in exclusive mode before writing

it

 Compatibility Rules existing between Lock Modes:

o A transaction can lock a data item in

shared mode if it is not locked at all or it

is locked in shared mode by another
transaction

o A transaction can lock a data item in

exclusive mode only if it is not locked at

all.

 Conflicts: Two transactions are in conflict if they

want to want to lock the same data item with two

compatible modes; two types of conflicts: Read-

Write conflict and Write-Write conflict.

 Granularity of Locking: This term relates to the

size of objects that are locked with a single lock

operation. In general, it is possible to lock at the
record level (i.e to lock individual tuples)or at the

File level (to lock at the fragment level).

 Concurrent transactions are successful if the

following rules are followed:

o mTransactions are well-formed

o Compatibility rules are observed

I

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 50

o Each transaction does not request new

locks after it has released a lock.

A sophisticated locking mechanism known as 2-Phase

locking which includes the above said principles is normally

used. According to this, there are two separate phases:

 Growing phase: Each transactions there is a first
phase during which new locks are acquired

 Shrinking Phase: A second phase during which

locks are only released.

We will simply assume that all transactions are performed

according to the following scheme:

(Begin Application)

Begin transaction

Acquire locks before reading or

writing

Commit
Release locks

(End application)

In this way the transactions are well formed, 2-Phase locked

and isolated.

Deadlock: A deadlock between two transactions arises if

each transaction has locked a data item and is waiting to

lock a different data item which has already been locked by

he other transaction in the conflicting mode. Both

transactions will wait forever in this situation, and system

intervention is required to unblock the situation. The system

must first find out the deadlock situation and force one

transaction to release its locks, so that the other one can
proceed. i.e one transaction is aborted. This method is called

as Deadlock detection.

III. CONCURRENCY CONTROL IN DISTRIBUTED
DATABASE SYSTEM

In distributed database systems, database is typically used

by many users. These systems usually allow multiple

transactions to run concurrently i.e. at the same time.

Concurrency control is the activity of coordinating

concurrent accesses to a database in a multiuser database

management system (DBMS). Concurrency control permits
users to access a database in a multi-programmed fashion

while preserving the illusion that each user is executing

alone on a dedicated system. The main technical difficulty

in attaining this goal is to prevent database updates

performed by one user from interfering with database

retrievals and updates performed by another. When the

transactions are updating data concurrently, it may lead to

several problems with the consistency of the data.

Distributed Transaction:

 A distributed transaction is a transaction that runs in

multiple processes. Distributed transaction processing

systems are designed to facilitate transactions that span

heterogeneous, transaction-aware resource managers in a

distributed environment. The execution of a distributed

transaction requires coordination between a global

transaction management system and all the local resource

managers of all the involved systems. The resource manager

and transaction processing monitor are the two primary
elements of any distributed transactional system. Distributed

transactions, like local transactions, must observe the ACID

properties. However, maintenance of these properties is

very complicated for distributed transactions because a

failure can occur in any process. If such a failure occurs,

each process must undo any work that has already been

done on behalf of the transaction. A distributed transaction

processing system maintains the ACID properties in

distributed transactions by using two features:

 Recoverable processes: Recoverable processes log

their actions and therefore can restore earlier states

if a failure occurs.

 A commit protocol: A commit protocol allows

multiple processes to coordinate the committing or

aborting of a transaction. The most common

commit protocol is the two-phase commit protocol.

Distributed Two-Phase Locking (2PL):

In order to ensure serializability of parallel executed

transactions states different methods of concurrency control.

One of these methods is locking method. There are different

forms of locking method. Two phase locking protocol is one

of the basic concurrency control protocols in distributed
database systems which will ensure serializability. The main

approach of this protocol is “read any, write all”.

Transactions set read locks on items that they read, and they

convert their read locks to write locks on items that need to

be updated. To read an item, it suffices to set a read lock on

any copy of the item, so the local copy is locked; to update

anitem, write locks are required on all copies. Write locks

are obtained as the transaction executes, with the transaction

blocking on a write request until all of the copies of the item

to be updated have been successfully locked. All locks are

held until the transaction has successfully committed or
aborted [3].

The 2PL Protocol oversees locks by determining when

transactions can acquire and release locks. The 2PL protocol

forces each transaction to make a lock or unlock request in

two steps:

o Growing Phase: A transaction may obtain locks

but may not release any locks.

o Shrinking Phase: A transaction may release locks

but not obtain any new lock.

The transaction first enters into the Growing Phase, makes

requests for required locks, then gets into the Shrinking

phase where it releases all locks and cannot make any more

requests. Transactions in 2PL Protocol should get all needed

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 51

locks before getting into the unlock phase. While the 2PL

protocol guarantees serializability, it does not ensure that

deadlocks do not happen. So deadlock is a possibility in this

algorithm, Local deadlocks are checked for any time a

transaction blocks, and are resolved when necessary by

restarting the transaction with the most recent initial startup
time among those involved in the deadlock cycle. Global

deadlock detection is handled by a “Snoop” process, which

periodically requests waits-for information from all sites

and then checks for and resolves any global deadlocks.

Wound-Wait (WW):

The second algorithm is the distributed wound-wait locking

algorithm. It follows the same approach as the 2PL protocol.

The difference lies in the fact that it differs from 2PL in its

handling of the deadlock problem: unlike 2PL protocol,

rather than maintaining waits-for information and then
checking for local and global deadlocks, deadlocks are

prevented via the use of timestamps in this algorithm. Each

transaction is numbered according to its initial startup time,

and younger transactions are prevented from making older

ones wait. If an older transaction requests a lock, and if the

request would lead to the older transaction waiting for a

younger transaction, the younger transaction is “wounded”

– it is restarted unless it is already in the second phase of its

commit protocol. Younger transactions can wait for older

transactions so that the possibility of deadlocks is

eliminated [3].

t(T1) > t(T2) -: If requesting transaction [t(T1)] is younger

than the transaction [t(T2)] that has holds lock on requested

data item then requesting transaction [t(T1)] has to wait.

t(T1) < t(T2) -: If requesting transaction [t(T1)] is older than

the transaction [t(T2)] that has holds lock on requested data

item then requesting transaction [t(T1)] has to abort or

rollback.

IV. CONCURRENCY CONTROL IN OBJECT-

ORIENTED DATABASESYSTEM

An object-oriented database management system is defined

as acollection of classes and instances of these classes. A

class contains the definitions of the variables that will take

values in the instances of this class togetherwith the
methods used to access these variables. A method execution

is considered to be a partial order of sub method calls. It is

assumed that the databaseenvironment allows for

extensibility, permitting users to dynamically modify the

class definitions. As such, we can regard class definitions as

objects accessible by the users of the database. Both the

class objects and the instance objects(objects derived by

instantiating a class object) will be referred to as objectsthus
providing uniform treatment for all objects in the

database.The objects are assumed to be autonomous entities,

internally concurrent, with full control over the methods

they are running at any time. They are organized in a

hierarchy. Relationships among methodsare described in

terms of standard tree terminology (recursive method calls

arenot allowed)with a method m2 being a child of a method

m1 if m1 invokes m2. The notions of parent and ancestor

are defined in the same manner. In this environment the

methods of one object can invoke only methods of objects

thatare lower the hierarchy and every object inherits the

methods of all its ancestors.

As mentioned before, in a OODBMS a transaction (a user

program)consists of a series of method invocations on

different objects, which in turncan invoke other methods on

different objects, this leading to a tree structureof method

calls. As in traditional database systems a transaction is

representedas a partially ordered set of method calls which

are related among them byconflict, commutatively and

concurrency conditions specified by the OODBMSdesigner

or by the users who extend the database with new objects.

The Basic Protocol

The protocol presented in this paper is an extension of the

protocol introducedby Agrawalet all [47].

1. A method t' can execute an atomic operation t on an

object o if it canacquire a lock on o.

2. A method execution cannot commit until all its children

have terminated. When a method terminates:

 If it is not the top-level, its locks are inherited by

its parent.

 If it is not top-level and it aborts, its locks are

discarded.

 If it is top-level, its locks are discarded.

3. A lock on an atomic operation o is granted to a method if

and only if :

 The current state of the object permits the

execution of the requesting method.

 If there exist non-ancestors methods holding

inherited locks on o,there are some ancestors of
these methods and the requesting methodthat

commute.

 Granting locks and scheduling for execution in the

same time all other concurrently runnable methods

preserves the partial order devised bythe central

transaction manager.

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 52

The novelty of this protocol consists of forcing parent

methods to inherit the locks of terminated children methods,

allowing conflicting operations toshare locks if they have

commuting ancestors and permitting objects to executemore

than one method call at a time, according to the
specifications designedby the users and the system designer.

V. CONCURRENCY CONTROL IN DISTRIBUTED

OBJECT-ORIENTED DATABASESYSTEM

One scheduler module is availablein thissystem, that is a

black box, it communicates with the other modules only via

a well defined interface. In the distributed version of the

simulator, two-phase locking and timestamp ordering

schedulers are implemented. The scheduler receives an

operation from the transaction manager, and processes it

according to its scheduling technique. When the scheduler

decides that an operation can be sent to the data manager,

the data manager is called. When the operation has

completed, the scheduler will be notified by a call from the

data manager. The following distributed schedulers are
implemented:

 Strict Two-Phase Locking Scheduler:

Anice feature with non-replicated distributed

databases is that each local scheduler can schedule

the data accesses as if it was a centralized

scheduler. But of course there are also some

problems that are more difficult to solve in the

distributed context than for a centralized scheduler.

For the 2PL scheduler the main problem which has

to be solved is deadlock.

 Strict Timestamp Ordering Scheduler:

We have implemented a strict TO scheduler.

Although deadlocks are no problem here, we have

another “global problem”. Assigning monotonous

increasing unique timestamps to transactions. In a

real implementationthiscould be done by

concatenating a local timestamp counter with the

node number. Keeping the clocks synchronized is

not trivial, but one solution to this problem is

discussed by Lomet in [4].

In a distributed database, it is common that more than one
scheduler participate in executing a transaction. Because of

this, a distributed commit protocol has to be used, to make

sure that all participating schedulers reach the same result.

Either all perform the commit, or all have to abort. Two

well-known protocols are two-phase commit (2PC) and

three-phase commit [5]. We have employed 2PC, which the

protocol is used by most commercially availabledistributed

database systems.

VI. CONCURRENCY CONTROL IN MOBILE

DATABASESYSTEM

Most of concurrency control strategies are based on three

mechanisms viz., locking, timestamps and optimistic

concurrency control. Though these schemes are well suited

for traditional database applications, they don’t work

efficiently in mobile environments. Due to various

constraints in the mobile environment and nature of
different online applications, traditional concurrency control

mechanism may not work effectively.

Concurrency control deals with the issues involved in

allowing Simultaneous accesses to shared data items.

Atomicity, consistency, and isolation of transactions are

achieved in the database through concurrency control

mechanisms. In particular, mobile applications have to

facedisconnections. It is expected that the transaction

continues when the mobile host is disconnected. Hence

there is a need of optimistic replication techniques.

In optimistic replication, shared data is replicated on mobile

hosts and users are allowed to continue their work while

disconnected. After successful completion of local

operations at mobile host, the results are later propagated to

fixed hosts. In the earlier approaches whenever a

concurrency violation occurs i.e. data items are updated at

fixed host the conflicting transaction using the similar data

items was aborted. In this approach the conflicting

transaction is notaborted but it is restated with new state of

the data items.

VII. CONCURRENCY CONTROL IN REAL-

TIMEDATABASE SYSTEM

The data access scheduling policies are commonly referred
as concurrency controlprotocols. These protocols have the

responsibility to ensure that although transactions are

executed concurrently with interleaving operations, the

committed or certified transactions canbe ordered or given a

certification time stamp ordering so that the net effect on the

database isequivalent to the execution of these transactions

in a serialized order one at a time. The generalapproach for

scheduling transactions in soft RTDBS is to use existing

techniques in CPUscheduling, buffer management, I/O

scheduling, and concurrency control, and by applying time

criticalscheduling methods to observe the timing
requirements of transactions. A lot of researchhas been

conducted in this regard (Agrawal et al, 1992; Son et al,

1995, Abbott and Garcia-Molina, 1989 & 1992; Lin and

Son, 1990, Huang et al, 1992 and Idoudi et al, 2009), which

have developed and analyzed many paradigms that ensure

timing constraints while schedulingtransactions.

In this paper CC protocols are for time criticaltransaction

(e.g. with deadline) and specialized CCP for RTDBS.

Conventional CCPsincludes: Pessimistic Concurrency

Control (modification of 2PL being used in

conventionalDBMS) (PCC), Optimistic Concurrency
Control (OCC), Timestamp Ordering (TO) andMultiversion

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 53

Concurrency Control (MCC). Whereas the specialized one’s

which we going tosurvey here includes: Speculative

Concurrency Control, Hybrid Algorithms and Real-

TimeIndex Concurrency Control (RICC).

2.1 Pessimistic Concurrency Control (PCC) Protocols

Two Phase locking (2PL) is the most common pessimistic

concurrency control protocolin conventional database

systems. In 2PL if there is a lock conflict, the requesting

transaction isblocked and put into a wait state. Most locking

protocols proposed for RTDBS are based on one

of the following two approaches: priority abort and priority

inheritance. The priority abortapproach aborts low priority

transactions when priority inversion occurs (Abbott and

Garcia-Molina, 1989). On the other hand, the priority

inheritance approach allows a low prioritytransaction to

execute at the highest priority of all the higher priority
transactions it blocks. Studies have shown better results of

priority inheritance than those based of priority abort.

Priority Abort PCC

This algorithm incorporates a conflict resolution scheme

that ensures that high prioritytransactions are not delayed by

the low priority transactions. In particular when a

transaction T(high priority one) requests a lock on an object

held by one or more lower priority transactions in a

conflicting mode, the lock-holding transactions are restarted
and T is granted the lock. If T’spriority is lower than that of

any of the lock holders, it awaits for the object to be

released (as in standard 2PL). The drawback of this protocol

is that transactions may be restarted by higherpriority

transactions, which are discarded later and these wasted

restarts results in performance degradation.

Priority Inheritance PCC

The priority inheritance resolves the priority problem by

considering only the actualConflict transactions (Sha et al,

1987). Whenever a requester blocks behind a lower priority
lockholder, the lock holder inherits the priority of the lock

requester, until it terminates and releasesthe lock. Because

of the increase in priority the lock-holding transaction may

finish sooner,resulting in reduced blocking time for the high

priority transaction. Since a high prioritytransaction requests

a lock on an object by a lower priority transaction in

conflicting mode. Thebiggest drawback of this protocol is

that the blocking time of high priority transactions

isUnpredictable in their duration.

VIII. CONCURRENCYCONTROL IN MULTIMEDIA

DATABASE

MMDBMS is that it provides simultaneousaccess to

information for many clients via TCP/IP network. The

problems thatshould be handled refers to process multiple

requests and access the same set ofdata in a

concurrentenvironment. The system must include a

synchronization algorithm to ensure that the information

doesn't get corrupted when multiple clients' requests access

concurrentlythe same set of data. However, in most of the
cases the information is frequentlyread and only

occasionally written. It is far more efficient to allow all

reading re-quests to be executed simultaneously and only

write requests to be executed in anexclusive manner.

The locking mechanism that was chosen for the system is

based on L. Lamport'sbakery algorithm. This algorithm was

chosen because it offers a good balance between

performances and implementation complexity.There are two

types of locks used: shared locks used for reading (e.g.:

SELECT)and exclusive locks used for writing (e.g.:

INSERT). These types of locks are usedonly at the table
level of granularity. There are not defined row-level locks

or otherslocks at a higher level of granularity.

If a SELECT command is retrieved (that implies reading

from database), aread-lock will be enabled on the tables

(files) involved in the operation. This lockwill be active

until the tables (files) will no longer be used. It is a non-

exclusive lock,meaning that all other reading requests will

be permitted, each of them activatingtheir own read-lock.

If an INSERT command or other command that involves
writing into databasewill be received meanwhile, it cannot

be executed. No writes are permitted whileany read-lock is

active. Instead it will be put in a waiting queue for a random

periodof time. The write operation can be executed only

when no other lock is active. Afterall locks are inactivated

for a specific table, the write-lock can be activated. Thistype

of lock is an exclusive one. No other request (read or write)

can be acceptedwhile this is active.

When an operation activates a lock, it can include one or

several tables. If thereis no foreign key defined on the

requested table, only one table will be locked. If thetable
includes foreign keys, all the connected tables will be

locked using the sametype of lock for all of them.

In order to override the critical section when locks are

activated or upgraded,it is used the Lamport's bakery

synchronization algorithm. This way it is notpossible for

two different users to lock accidentally the same

resources.When a lock is no longer needed, it will be

deactivated directly without usingany synchronization

algorithm.

The basic idea for the Lamport's bakery algorithm is quite

simple. Each user'srequest receives a serving number when

a lock is needed. The holder of the lowestnumber is the next

one that gets access to resources.

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 54

The implementation of the algorithm is presented in

pseudocode:

To implement this algorithm, two lists are used. There is

one entry in each listfor every lock request. The first array

stores the priority number. The other list contains a Boolean

value for each request specifying if that request is in line

toreceive a number. Each entry uniquely identifies the

requesting client and lockedresources by three values: the

user name, the running thread id, and the table namewhere

the lock is needed. The thread id is needed to avoid some

deadlocks whenan user locks a resource an then suddenly

disconnects. The resource's lock will beautomatically

released because the thread will no longer exist. Even if the

clientconnects again, it will be allocated on a different
thread and he will need anotherlock.

When a new lock request arrives and needs to be enabled,

first it sets its Booleanvalue to true. Then it is assigned the

next number available for waiting its turn.After it receives a

number, it’s no longer waiting so it sets its waiting value to

false.Next, the lock request goes through the first list and if

there is a request with alower number, or a request that's

waiting for a number, it waits until that requestis finished or

assigned a higher number. After the lock manager traverses

the list itsearches for the request with the lowest number in
order to be served and activatethe lock.After the operation

ends, the system automatically calls a "release lock"

command. This command will also include information

about: user, thread id, and table.

IX. CONCURRENCY CONTROL IN MULTILEVEL

SECUREDATABASES (MLS/DB)

Concurrency control is important for MLS/DBs becausea

covert channel can be easily created through collaboration
of multilevel secure transactions in most

traditionalconcurrency control protocols. In a MLS/DB, the

concurrency control protocol must ensure that there are

nocovert channels between the transactions at different

security levels. Traditional concurrency control

protocolssuch as 2PL and Timestamp Ordering protocols

are not suitable for MLS/DBs, because when those
concurrencycontrol mechanisms are applied to multilevel

secure trans-actions, problems such as covert channel, too

much delayor repeated aborts of high security level

transactions, andretrieval anomaly [27] can occur.

Consequently, concurrency control algorithms for MLS/DB

must address theproblems originated by the security and

availability issuesof the MLS/DB. Several protocols have

been proposed forconcurrency control in MLS/DBMS. Due

to the influx ofthese protocols, we have classified the

protocols into fol-lowing five categories:

Secure Locking Protocol

In the locking-based approaches, in order to prevent timing

channels, the executions of transactions at lower security

level are never delayed by the actions of a transactionat a

higher security level. This can be accomplished byproviding

a high priority to a low transaction whenever adata conflict

occurs between a high transaction and a lowtransaction.

In [35], Keefe, Tsai and Srivastava examined the security

issues and present a formal framework for

secureconcurrency control in multilevel databases. In this,
theyhave characterized several level of assurance in secure

system and show how a scheduler can affect the security in

this framework.

A secure locking-based protocol called S2PL was proposed

by Jajodia and McCollum [32], which modified thestrict

two phases locking protocol to covert channel freeprotocol.

In this protocol, a high security level transactionmust

release its lock on a data item when a low securitylevel

transaction requests a write lock on the same dataitem.

When a read lock by a high security level transaction is

broken, high security level transaction is to beaborted. Since
a low security level transaction is neverblocked or restarted

by a high security level transaction,this protocol satisfies the

secrecy (covert channel free) andintegrity requirement, but a

malicious low security leveltransaction may cause a high

security level transaction tobe aborted repeatedly, resulting

in starvation.

McDermott and Jajodia [37] provide a way to reducethe

amount of starvation. According to their approach,whenever

a high security level transaction prematurelyreleases its read

lock on a low security level data itemdue to security
reasons, it does not abort and roll-backentirely, but holds its

write locks on high security leveldata items, marks the low

security level data item in itsprivate workspace as unread

and retries reading this dataitem by entering into a queue.

This queue maintains thelist of all high security level

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 55

transactions waiting for retrialto read that particular data

item and enables the first transaction in the queue to be

serviced first. The modifiedapproach, however, does not

always produce serializableschedules [33].

Another secure two-phase locking-based protocol(S2PL), is
based on a completely different approach wasproposed by

Son and David [38]. The basic principlebehind this S2PL is

to try to simulate the execution ofconventional 2PL without

blocking the actions of low security level transactions by

high security level transactions. This is accomplished by

providing a new lock typecalled virtual lock, which is used

by low security leveltransactions that develop conflicts with

high security level transactions. The actions corresponding

to setting of virtual locks are implemented on private

versions of the dataitem. When the conflicting high security

level transactioncommits and releases the data item, the

virtual lock of thelow security level transaction is upgraded
to a real lockand the operation is performed on the original

data item.To complete this scheme, an additional lock type

calleddependent virtual lock is required apart from

maintaining, for each executing transaction Ti, lists of the

activetransactions that precede or follow Ti in the

serializationorder.

Another solution that has been proposed is to allowusers to

read and write information at multiple classification levels

by decomposing the original transaction intomultiple sub-

transactions, each of which is assigned a single
classification level, and all actions performed by sub

transactions obey the Bell-LaPadula properties. However,

even in such a scenario, it is impossible to simultaneously

guarantee both transaction atomicity and absenceof covert

channels [30, 36, 39].

Jajodia et al. [33] proposed two secure locking protocolthat

attempts to detect all cycles in the serialization graphby

painting certain transactions and data items accessedby the

high security level transactions whose low securitylevel

locks are broken and by detecting a cycle at the moment.

The first protocol produces pair-wise serializable histories
while the second protocol produces serializable histories if

the security levels form a total order.

E. Bertino et al. [37] presented an approach to

secureconcurrency control for transactions in a multilevel

secureenvironment. This approach, which uses

singleversiondata items, is based on the use of nested

transactions,application-level recovery, and notification-

based locking protocols. The notification protocol is based

on the useof signal locks. A signal lock is acquired by a

transactionwhenever it needs to read lower security level
data; such alock does not delay a write lock request by a

low securitylevel transaction on the same data item. Hence,

timingcovert channels arising from synchronization are

eliminated. When a data item on which a write lock is

acquiredby a transaction is modified, all high security level

transactions holding signal locks on that data are notified

bythe trusted lock manager, and thus may perform

recoveryactions. To better support recovery activity,

transactionsare organized according to the nested

transaction modelextended with specific primitives for

supporting the notification protocol. The proposed approach
satisfies most ofthe properties pointed out in Atluri et al.

[36], as basic requirements for a secure concurrency control

mechanism ina multilevel environment: it avoids starvation

and timing channels, and guarantees serializability.

X. CONCURRENCY CONTROLPROTOCOL FOR

REPLICATED REAL TIME DATABASES

Even thoughS2PL(Static Two Phase Locking) [41] is a

deadlock free mechanism but it slows down the concurrent

processing of multitransactions. This is due to locking of all

the data till the end of the commit phase. Also if a higher
transactionarrives at a site than executing one then current

transaction is aborted and lock is made available to higher

priorityone. This makes the wastage resources. Hence we

propose here a new mechanism with augmentation of S2PL.

We will use here a term Healthy Point(HP) with

Block(B)/Donot Abort(DA) which means if a cohort

reachesits Healthy Point(HP) than it will not be aborted

against a higher priority transaction at that site. It means DA

isused here. And if a lower priority transaction demands a

lock then it will be blocked against a higher
priorityexecuting one. It means B is used here.

The proposed mechanism is:

HP of a cohort:

A cohort reaches its HP after sending a PREPARE message

to its replica updaters in its execution phase i.e. infirst phase

of 2PC.

HP of a replica updater:

A replica updater reaches HP after gaining locks on needed

data items.

By this mechanism some significant improvements can be

noted in S2PL.Since after HP a cohort has a lessprobability

of abortion hence a blocked transaction can borrow data

from executing one. It means waiting andexecuting time of

blocked transaction will get reduced which is very needed in

a firm RTDBMS. Also by sendingPREPARE message to its

replica updaters as shown in Figure 3 the waiting time of a

cohort between sendingPREPARE message to its updaters

and receiving COMMIT message from them will get

reduced. Hence over alltime of execution of transaction will
get reduced.

Algorithm:

For a cohort:

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 56

HP=false;

EXfinish (execution finished) =false;

If (message=INITIATE COHORT) {

Start execution of cohort;

EXfinish=true;

}
If (EXfinish=true) {

Send PREPARE message to its replica updaters;

HP=true;

Send WORKDONE message to its coordinator;

}

For a replica updater:

If (message=PREPARE&&lock obtained=true) {

HP=true;

After execution send COMMIT message to its cohort;

}

Here we present CIRS (Concurrency control In Replicated

real-time Systems) a state conscious

Concurrency control protocol in replicated distributed

environment which is specially for firm real-timedatabase

system. CIRS mechanism uses S2PL (Static Two Phase

Locking) for deadlock free environment. It also includes
veto power given to a cohort after receiving PREPARE

message from its coordinator.

XI. CONCLUSIONS

This paper is an attempt to summarize available

literaturepertaining to work in the direction of developing

concurrency control protocols for different database

systems.In distributed database system that is considered to
be more reliable than centralized database system. It is

really important for database to have the ACID properties to

perform. Indistributed object-oriented

databaseOnescheduler module is available, that is a black

box, it communicates with the other modules

throughinterface. In the distributed version of the simulator,

two-phase locking and timestamp ordering schedulers are

implemented. The scheduler receives an operation from the

transaction manager, and processes it according to its

scheduling technique. When the scheduler decides that an

operation can be sent to the data manager, the data manager
is called. When the operation has completed, the scheduler

will be notified by a call from the data manager.

In a distributed database, it is common that more than one

scheduler participate in executing a transaction. Because of

this, a distributed commit protocol has to be used, to make

sure that all participating schedulers reach the same result.

Either all perform the commit, or all have to abort. Two

well-known protocols are two-phase commit (2PC) and

three-phase commit [5]. We have employed 2PC, which the

protocol is used by most commercially availabledistributed
database systems.In Real Time Data Base each transaction

is associated with a priority, high priority transaction has

earlier deadline. Higher priority transaction obtains the lock

first. Lower priority transaction has to sacrifice the lock. If

transaction confronts the same priority transaction, then

lock is obtained by timestamp ordering.

Concurrency control in Mobile Databases has thesame

behaviors with those in multidatabase systems in

manyaspects. Many approaches in multidatabase systems

can beextended to mobile multidatabase environment.

Thedifferences in Mobile Databases are that transactions
inMobile Databases have mobility and long-lived nature.

In this paper we present CIRS (Concurrency control In

Replicated realtime Systems) a state consciousconcurrency

control protocol in replicated distributed environment which

is specially for firm realtimedatabase system. CIRS

mechanism uses S2PL (Static Two Phase Locking) for

deadlock free environment.It also includes veto power given

to a cohort after receiving PREPARE message from its

coordinator.Also with some more assumptions like sending

an extra message in execution phase but after completionof
execution at local copy which is described later in this paper

the proposed mechanism has a significantincreased

performance over O2PL and MIRROR in decreasing

execution time of the currenttransaction and it also

decreases the waiting time of transactions in wait queue.

Volume II, Issue IV, April 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org/IJRSI.html Page 57

In Multi-level secure database systems (MLS/DBSs)

areshared by concurrent transactions with different

clearancelevels and manage data objects with different

classification levels. We proposed andevaluated a new

secure multiversion concurrency controlprotocol. It was

observed that our protocol has betterresponse than SMVCC.
In addition to this, results showthat our protocol achieve fair

performance than SMVCCacross different security levels.

Here we implemented a new lock that is virtual lock.

REFERENCES

[1]. NavatheElmasri, Database Concepts, Pearson Education, V edition

(2008)

[2]. Fundamentals of DBMS, Lakhanpal Publisher, III edition (2008)

[3]. Arun Kumar Yadav& Ajay Agarwal, An Approach for Concurrency

Control in Distributed Database System, Vol. 1, No. 1, pp. 137-141,

January-June (2010)

[4]. D. B. Lomet. Consistent Timestamping for Transactions in

Distributed Systems. Technical Report CRL 90/3,Digital Equipment

Corporation, Cambridge Research Lab, 1990.

[5]. M. T. O¨ zsu and P. Valduriez. Principles of Distributed Database

Systems. Prentice-Hall, 1991.

[6]. Salman Abdul Moiz and Dr. Lakshmi Rajamani, “AReal Time

Concurrancy control in mobileEnviroments using on demand

Multicasting “,IJWMN.

[7]. Acharya, S., Alonso, R., Franklin, M. and Zdonik, S.,"Broadcast

disks: data management for asymmetriccommunication

environments", Proc. ACMSIGMOD 1993 Int. Conf. on Management

of Data,pp.199-210, 1999.

[8]. Acharya, S., Franklin, M. and Zdonik, S,"Disseminating Updates on

Broadcast Disk", Proc.22nd VLDB Conference, pp.354-365,

1996.Acharya, S., Franklin, M. and Zdonik, S, "BalancingPush and

Pull for Data Broadcast", Proc. ACMSIGMODlani, pp.183-194, 1997

[9]. D. Agrawal, A. El Abbadi and R. Jeffers. Using Delayed

Commitment in Locking Protocols forReal-Time Databases. In Proc.

of ACM SIGMOD Conference, June 1992.

[10]. L. Sha, R. Rajkumar and J. Lehoczky. Priority inheritance protocols:

an approach to real-timesynchronization. Technical Report CMU-CS-

87-181, Depts. of CS, ECE and Statistics, CarnegieMellon

University, 1987..

[11]. J. Haritsa, M. Carey and M. Livny. Data Access Scheduling in Firm

Real-Time DatabaseSystems. In Journal of Real-Time Systems,

September 1992.

[12]. L. Sha, R. Rajkumar and J. Lehoczky. Priority inheritance protocols:

an approach to real-timesynchronization. Technical Report CMU-CS-

87-181, Depts. of CS, ECE and Statistics, CarnegieMellon

University, 1987.

[13]. Haritsa, J., Carey, M., &Livny, M. (1993). Value-based sheduling in

real-time database systems.VLDB Journal, 2, 117.

[14]. R. Abbott and H. Garcia-Molina, “Scheduling real-time transactions

with disk resident data.” InProceedings of the 15th international

conference on Very large data bases (VLDB '89). MorganKaufmann

Publishers Inc., San Francisco, CA, USA, 385-395. 1989.

[15]. Y. Lin and S.H. Son, “Concurrency Control in Real-Time Databases

by Dynamic Adjustment ofSerialization Order,” Proc. Real-Time

Systems Symp., pp. 104-112, Dec. 1990

[16]. L. Lamport, A New Solution of Dijkstra's Concurrent Programming

Problem, Communications of the ACM 17(8), pp. 453-455, 1974.

[17]. A.S. Tanenbaum, Modern Operating Systems (Second

Edition),Prentice Hall, 2001.

[18]. Haritsa, J.R., Carey, M.J., and Livny, M., "Data Access Scheduling in

Firm Real-Time DatabaseSystems", The Journal of Real-Time

Systems, no. 4, 1992, pp. 203-241.

[19]. Chen, H., & Chin, Y. H. (2003). An adaptive scheduler for distributed

real-time database systems.Information Sciences, 153, 55.
doi:10.1016/S0020-0255(03)00073-2

