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Introduction

The mathematical science of facility locating has attracted much attention in dis-
crete and continuous optimization over nearly last four decades. Investigators have
focused on both algorithms and formulations in diverse settings in both the private
sectors (e.g., industrial plants, banks, retail facilities, etc.) and the public sectors
(e.g., hospitals, post stations, etc.).

Facility location problems locate a set of facilities (resources) to minimize the
cost of satisfying some set of demands (of the customers) with respect to some set of
constraints. Facility location decisions are critical elements in strategic planning for
a wide range of private and public firms. The branches of locating facilities are broad
and long-lasting, influencing numerous operational and logistical decisions. High
costs associated with property acquisition and facility construction make facility
location or relocation projects long-term investments. Decision makers must select
sites that will not only perform well according to the current system state, but also
will continue to be profitable for the facility’s lifetime, even as environmental factors
change, populations shift, and market trends evolve. Finding robust facility locations
is thus a difficult task, demanding decision makers to account for uncertain future
events.

Location science is an area of analytical study that can be traced back to Pierre de
Fermat, Evagelistica Torricelli (a student of Galileo), and Battista Cavallieri. Each
one independently proposed (and some say solved) the basic Euclidean spatial me-
dian problem early in the seventeenth century.

The study of location theory started formally in 1909 when Alfred Weber con-
sidered how to locate a single warehouse in order to minimize the total distance
between the warehouse and several customers. After that, location theory was driven
by a few applications. Location theory gained researchers’ interest again in 1964
with a publication by Hakimi (1964), who wanted to locate switching centers in a
communications network and police stations in a highway system.

The term “location problem” refers to the modeling, formulation, and solution of
a class of problems that can best be described as locating facilities in some given
spaces. Deployment, positioning, and locating are frequently used as synonymous.
There are differences between location and layout problems: the facilities in location
problems are small relative to the space in which they are sited and the interaction
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2 Introduction

among facilities may occur; but in layout problems, the facilities to be located are
large relative to the space in which they are positioned, and the interaction among
facilities is common.

There are four components that describe location problems: customers, who are
assumed to be already located at points or on routes, facilities that will be located,
a space in which customers and facilities are located, and a metric (standard) that
indicates distances or time between customers and facilities.

Facility location models are used in a variety of applications. Some of them in-
clude locating warehouses within a supply chain to minimize the average time to
market, locating noxious material to maximize their distances from the public, locat-
ing railroad stations to minimize the unpredictability of delivery schedules, locating
automatic teller machines to serve bank customers better, etc. Facility location mod-
els can differ in their objective function, the distance metric applied, the number and
size of the facilities to locate, and several other decision indices. Depending on the
specific application, inclusion and consideration of these various indices in the prob-
lem formulation will lead to very different location models.

Facility location books are numerous. Francis et al. (1992) introduced some
prevalent models such as single/multi facility location problems, quadratic assign-
ment location problems (QAP) and covering problems. Mirchandani and Francis
(1990) wrote about discrete location theory. The network based location theory
book by Daskin (1995) focused on discrete location problems. Drezner (1995)
represented some models and applications in location environments. Drezner and
Hamacher (2002) published a book about the theory and applications of facility
location. Nickel and Puerto (2005) extended a complete survey in the area of contin-
uous and network based location models especially about median location problems.

In this book, most of the subjects are seen in an equal trend; classical models
such as single facility location problem, multiple facility location problem, median
problem, center problem and covering problem, contemporary models such as hi-
erarchical facility location problem, hub location problem and competitive location
problem and advanced models such as location in supply chain.

The arrangement of the chapters has a reasonable style in which the predecessors
and successors have been regarded from concepts viewpoints; that is, to solve one
of the P-center models, it has to be converted to some covering problems, therefore
the covering chapter is followed by center chapter.

Most chapters have a similar trend to represent their concepts in which appli-
cation and classification are included in part one, mathematical modeling, solution
technique and some case studies in parts two, three and four, respectively.

Because of the importance of distances in objective functions of location prob-
lems, in Chap. 1 different kinds of distances in location problems are discussed.
Chap. 2 introduces complexities employed in location problems.

Chapters 3-9 discuss some prevalent and classic concepts in location theory. Sin-
gle facility and multiple facility location problems are treated in Chaps. 3 and 4,
respectively, in which traditional concepts of location problems are introduced.
Some prevalent models in both discrete and continuous spaces are introduced in
these chapters.
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Location area can be divided into three parts: location problems, allocation prob-
lems and location-allocation problems. We represent location-allocation problems
in Chap. 5. In some cases of location problems, locating needs to consider dis-
tances and interactions between facilities, therefore we face quadratic assignment
problems, which are discussed in Chap. 6. In covering problems, customers need
to be with a specific distance through facilities which are servicing; these prob-
lems introduced different kinds of covering problems that are discussed in Chap. 7.
Median problems are considered as the main topics in the location allocation prob-
lems. These problems try to find the median points among some candidate points
to minimize the sum of costs, and most of their applications are in private areas. In
Chap. 8, we study these kinds of problems as median problems. Public and emer-
gency services need to be located to satisfy all customers, thus center problems have
emerged to minimize the maximum distances between the facilities and the demand
points (customers). In Chap. 9 we introduce these problems and their applications.

After Chap. 9, we will introduce some contemporary concepts in location prob-
lems. The first of them is the hierarchical facility location problem, which is
discussed in Chap. 10. This chapter deals with different levels and categories of fa-
cilities, which have to be located with some relationships among them. In Chap. 11,
hub location problems have been addressed. In some cases we want to eliminate
some interactions between demand points (customers) and facilities to reduce the
complexity of their networks, therefore we introduce some facilities as hub points
and reduce these relations. This leads to minimizing the total cost of the network.

In Chap. 12, we cover some concepts about competitive areas not monopolized
as competitive location problems. In these areas, facilities that have to be located
need to compete with other facilities to gain a market share. In some areas facil-
ities are warehouses and have to be located to satisfy customer demands, thus in
Chap. 13 we will introduce warehouse location problems in which different kinds
of siting and solution methods are discussed. In some cases, we need to locate some
hazardous facilities that have to be far from public places. Their objectives mini-
mize these kinds of facilities” exposure and, are introduced in a separate chapter as
an obnoxious facility location problem (Chap. 14). The nature of facility location
problems leads to considering future uncertainty. Thus in real world, we face prob-
lems which have no definite planning horizon. In Chap. 15, we treat these problems
as dynamic facility location problems. In many real world cases, we face some in-
compatible objective functions, therefore a separate chapter is introduced as a multi
criteria location problem, which deals with conflicted objectives and includes most
facility location topics (Chap. 16).

In Chap. 17, we represent location routing problems which not only discuss locat-
ing some new facilities in some candidate points but also set routing between these
facilities and demand points (customers). In this, we treat vehicle routing problems
as a subordinate of the location routing problem. Inventory costs have a major effect
on location problems and there is a close relationship between objective functions
of delivery locating points and inventory costs, therefore it is better to consider in-
ventory costs determining minimum costs in dealing with satisfying demand points
(customers). Products need to be put into storage locations before they can be picked
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to fulfill customer orders, therefore the layout of storage will be an important matter
which leads to better efficiency and delivery. This concept (different with warehouse
location problem) which deals with siting of warehouses rather than their layouts
in location areas as storage system layout is represented in Chap. 18. We repre-
sent location-inventory problems in a specific chapter (Chap. 19) which explains
inventory concepts and their parameters in the siting of facilities. Nowadays, supply
chains have been expanded in modern environments. In Chap. 20, two separate con-
cepts are combined: supply chain and location. This chapter discusses relationships
between supply chains and siting problems in modern areas named supply chain in
location. The classification of facility location problems together with introducing
some prevalent facility location softwares are covered in Chap. 21. Location prob-
lems often interest to find locations of new facilities that provide services of some
kind to existing facilities. Sometimes finding all new facilities is not an econom-
ical task and an analysis is needed to aggregate the demand data by representing
a collection of individuals as one demand point. In Chap. 22, this kind of analy-
sis for demand point aggregation is represented. Finally, an appendix is introduced,
and it contains meta-heuristic algorithms employed to determine and solve facility
location models.

We express our appreciation for editorial who managed to edit successfully the
manuscripts that were characterized by a great variety of individual preferences in
style and layout, and to Dr. Werner A. Miiller, Springer Executive Vice President
in Business/Economics and Statistics, Dr. Niels Peter Thomas, Springer Editor in
Business/Economics, Alice Blanck, Business/Economics and Statistics Editorial
and also Indhu Arumugam, SPi Technologies India Private Ltd., project manager
for their support.
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Chapter 1
Distance Functions in Location Problems

Marzie Zarinbal

Distance is a numerical description of how far apart objects are at any given moment
in time. In physics or everyday discussion, distance may refer to a physical length,
a period of time, or it is estimated based on other criteria.

While making location decisions, the distribution of travel distances among the
service recipients (clients) is an important issue.

Most classical location studies focus on the minimization of the mean (or total)
distance (the median concept) or the minimization of the maximum distance (the
center concept) to the service facilities. (Ogryczak 2000) In these studies, the loca-
tion modeling is divided into four broad categories:

1. Analytic models. These models are based on a large number of simplifying as-
sumptions such as the fix cost of locating facility. The travel distances follow the
Manhattan metric.

2. Continuous models. These models are the oldest location models, deal with ge-
ometrical representations of reality, and are based on the continuity of location
area. The classic model in this area is the Weber problem. Distances in the Weber
problem are often taken to be straight-line or Euclidean distances but almost all
kind of the distance functions can be used here (Jiang and Xu 2006; Hamacher
and Nickel 1998).

In the study of continuous location theory, it is generally assumed that the customers
may be treated as points in space. This assumption is valid when the dimensions of
the customers are small relative to the distances between the new facility and the
customers. However, it is not always the case. Sometimes, we should not ignore
the dimensions of the customers. Some researchers have treated the customers as
demand regions representing the demand over a region.

Jiang and Xu (2006) discussed that some researchers such as Brimberg and
Wesolowsky in 1997, 2000 and 2002 and Nickel et al. in 2003 used the distance
between the facility and the closest point of a demand region; and in the others, the
distance between the facility and a demand region may be calculated as some form
of expected or average travel distance.

R.Z. Farahani and M. Hekmatfar (eds.), Facility Location: Concepts, Models, 5
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6 M. Zarinbal

3. Network models. Network models are composed of links and nodes. Absolute
I-median, un-weighted 2-center and g-criteria L-median on a tree models are
some well-known models in this area. Distances are measured with respect to the
shortest path.

4. Discrete models. In these models, there are a discrete set of candidate locations.
Discrete N-median, un-capacitated facility location, and coverage models are
some well-known models in this area. Like the distances in continuous models,
all kind of the distance functions can be used here but sometimes it could be spec-
ified exogenously (Hamacher and Nickel 1998; Fouard and Malandain 2005).

Distances and norms are usually defined on the finite space E” and take real values.
In discrete geometry, however, we sometimes need to have discrete distances defined
on Z" with their values in Z. Since Z” is not a vector space, the notion of distances
and norms had to be extended.

1.1 Distance and Norms Specifications

Assume X = (x1, y1) and Y = (x2, ¥2). Then d(X, Y) is the distance function be-
tween points X and Y, and has these characteristics (Fouard and Malandain 2005).

d(X,Y)>=0 VX,Y Possitivity, (1.1)
d(X,Y)=0«& X =Y VX,Y Definition, (1.2)
d(X,Y)=dY,X) VX,Y Symmetry, (1.3)
d(X,Y)<d(X,R)+d(R,Y) VX,Y TriangularInequality. (1.4)

1.2 Distances Function

The distances function between points X = (xi, X2,...,%,) and Y =(y,
Y2,...,yn) is called di ,(X,Y) the Minkowski distance of order p, which de-
fines as follows:

1
n r
dg (X, Y) = (Zk,- |x; —y,-|1’) : (1.5)
i=1

o IFky =k, =... =k, =k, then we have

dgp(X.Y) =K (Z |xi —J’i|p) : (1.6)

i=1
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Equation (1.6) is called the weighted dj ,-norm. (K is distance function’s weight)
o IFki =k, =... =k, = 1 then we have

1

dig p(X.Y) = (Z |xi — yi|p) : (1.7)

i=1

The parameters k; and k, of the dj ,-norm can be seen as unequal weights or
non symmetric distance irregularities along the axis directions. An empirical work
showed that the accuracy of distance estimations in the dj ,-norm is better than the
weighted dj_,-norm. (Uster and Love 2003)

In the situation of (1.7), we can define some famous distance functions such as:

e IF p = 1 the 1-norm, rectilinear, Manhattan or right angle distances can be
obtained: (1.8)

n

dx (X, Y) =" |xi — yil. (1.8)

i=1
Rectilinear distances are applicable when travel is allowed only on two perpendic-
ular directions such as North—South and East—West arteries. This distance is also
popular among researchers because the analysis is usually simpler than employing

other metrics (Drezner and Wesolowsky 2001).
The Rectilinear distance is also called Taxicab Norm distances; because it is the
distance a car would drive in a city lay-out in square blocks (if there are no one-way

streets).

e [F p = 2 the 2-Norm or Euclidean distances can be obtained by (1.9)

1

n 2
dg p(X,Y) = (Z |x; —)’i|2) : (1.9)

i=1

It is what would be obtained if the distance between two points were measured with
aruler: the “intuitive” idea of distance.

Air travel or travel over water can be exactly modeled by Euclidean distances
(Drezner and Wesolowsky 2001).

o [F p = oo the Infinity Norm or Chebyshev distance can be obtained (1.10)

n p
doo(X,Y) =1im 00 (Z |x; —y,-|p) = max(|x; — y1|,.... X0 — yul).

i=1

(1.10)

dy and d, are obviously discrete distances, but not d,. The parameter d is the most
commonly used continuous distance, because of its rotation invariance.
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1.3 Different Kinds of Distances

There are also other kinds of distances used in real problems. Some of them are as
follows:

1.3.1 Aisle Distance

As mentioned above Rectilinear or Euclidean distance function are the most com-
mon methods used in models, however, these distance measures are not realistic for
some applications such as material handling in plants. Figure 1.1 shows aisles in a
plant.

The interdepartmental aisle travel distances can be found by formulating and
finding the shortest path on a network problem and may be specified to provide
the necessary distance between resources. This makes it possible to evaluate the
actual aisle travel distance for each layout that is generated during the search process
(Norman et al. 2001).

For calculating aisle distance, the strategies of handling systems must be consid-
ered. “The routing of a picker follows selective one-way traffic in that he traverses
an entire length of the aisle containing the items to be picked and is not allowed
to turn around or reverse but ends up on the opposite side of the aisle after picking
the items. The optimal route in this strategy is to arrange the items within the batch
such that the items found in the aisle nearest to Input/output station are collected
first followed by the next nearest aisle. When the last item is picked, the picker will
return to the I/O station”. Chew and Tang (1999) is an example of these strategies.

1.3.2 Distance Matrix

Yu and Sarker (2003) indicated that Sarker in 1989 and Sarker et al. in 1994 and
1998 developed a number of amoebic properties of a distance matrix for equally

A
B
C
Fig. 1.1 Aisles in plant
layout
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spaced linear locations to generate different assignments of machines to locations
that minimize the total unidirectional and/or bi-directional flows. The form of a
distance matrix may vary as its corresponding location assignment changes.

X-Y if 1<Y<X<L
dy=|X-Y|={Y-Xif 1<X<Y<L . (1.11)
0 if l<sy=X<L

Each location distance can be decomposed into two directional distances that are
defined below.

e Backward: d? is a backward distance matrix, with its element d 5.

dfy:%X_Y 1f1§Y<X§L. (1.12)

0 else

e Forward: df is a forward distance matrix, with its element dyf, (Yu and
Sarker 2003)

— i < <
d;YZ%Y X if l_X<Y_L' (1.13)

0 else

1.3.3 Minimum Lengths Path

The distance between two points on P is the minimum length of any path between
those points that lies on P. The “facility center”, or “I-center”, of the facility is the
point of P that minimizes the maximum distance to a facility. There are some algo-
rithms to find minimum lengths path (shortest path) such as Dijkstra Algorithm and
the algorithm of Mitchell et al. which is a continuous version of Dijkstra Algorithm
(Aronov et al. 2005).

1.3.4 Block Distance

Dearing et al. (2005) discussed that block distances are a special case of norm dis-
tances which were introduced to location models by Witzgall et al. in 1964, and
Ward and Wendell in 1985. Block distances are used to model travel distance in ap-
plications where travel directions are restricted to the fundamental directions. Also
it has a wide usage in barriers problems.

They can also be viewed as a generalization of distances in fixed orientations as
introduced in 1987 by Widmayer et al. (Dearing et al. 2005) where it is assumed
that all fundamental directions have unit length, that is

lacl =1 Yk =1,2,.....2n, (1.14)

where ||ay|| is the Euclidean norm of a.
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The block distance between the points, X; and X, with respect to a given set of
fundamental directions a, a, . .. , @z, is denoted by d,, (X1, X») and is defined as

dp(X1, X2) = ann + Bia, (1.15)
where o1, and B, are nonnegative scalars so that (Dearing et al. 2005)

Xo — X1 = apai + ﬁlzakﬂ Vk=1,2,....,2n. (1.16)

1.3.5 Gauges Measures

Most of the references in the literature concerning continuous location problems
have considered distances induced by norms. There are also a number of papers
that consider the use of gauges defined by the Minkowski functional of a compact
convex set (not necessarily symmetric) containing the origin in its interior. These
functions have been used in location theory to model situations where the symmetry
property of a norm does not make sense.

There are also general models where the definiteness property of the gauge of
a compact convex set is relaxed. Relaxing definiteness introduces the existence of
zero-distance regions (Fig. 1.2).

Gauges of compact convex sets have a very interesting property: The distance
between two points is the shortest path between them using only fundamental direc-
tions of the unit ball.

Let ¥ be a closed convex set containing the origin. The function ¢ defined by

¢o(x) =infla >0:x € ay} (1.17)

is called the gauge of &. The set 7w will be called the unit ball associated with ¢. We
define the distance from y to x by ¢(y — x).

If in addition & is symmetric with respect to the origin, ¢ is a norm and the
symmetry property of a norm (¢(y —x) = ¢(x — y)) added to ¢(y — x) properties.
(Hinojosa and Puerto 2003).

Zero distance regions
o ————
- -~

/ Facility

Fig. 1.2 Zero-Distance ~
Region
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1.3.6 Variance of Distances

The Variance of the Distances seeks locations that equalize distances from the de-
mand points to the facility and thus seeks equitable location for all customers.

If the distance function is defines as Euclidean distance function, the variance of
the distances between the clients (x) and the facility (y), §%(x, y) is

n n 2

Z Nid?(x,y) Z Nidi(x,y)

Py =""", =", , (1.18)
> Ni 2N

i=1 i=1

where “n” is the number of demand points and “/N;” the number of clients at demand
pointi (i =1,2,...,n) (Drezner and Drezner 2007).

1.3.7 Hilbert Curve

Cantor was the first researcher to map the interval [0, 1] into the square [0, 112. Later
the first space-filling curve, the Peano curve, was presented to construct a curve
that passes through every entry of a two dimensional region. Afterwards, several
different space-filling curves were presented and the Hilbert curve is the most well
known (Chung et al. 2007).

Hilbert curve is a continuous curve that passes through each point in space ex-
actly once. It enables one to continuously map an image onto a line and is an
excellent 2D image to line mapping. The position of each pixel on the mapped line
is called the Hilbert order of that pixel (Song and Roussopoulos 2002). Figure 1.3
shows a simple example of Hilbert curve.

Fig. 1.3 The Hilbert Curve
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1.3.8 Mahalanobis Distance

Mahalanobis distance is introduced by Mahalanobis in 1936 and widely used in
cluster analysis and other classification techniques (De Maesschalck et al. 2000). It
is closely related to Hotelling’s 7'-Square Distribution used for multivariate statisti-
cal testing. Also, Mahalanobis distance and leverage are often used to detect outliers
especially in the development of linear regression models.

Euclidean and Mahalanobis distance can be calculated both in the original vari-
able space and in the principal component space.

The Euclidean is easy to compute and interpret, but this is less the case for
the Mahalanobis. In the original variable space, the Mahalanobis takes into ac-
count the correlation in the data, since it is calculated using the inverse of the
variance—covariance matrix of the data set of interest. However, the computation
of the variance—covariance matrix can cause problems.

The (1.19) shows the original Mahalanobis distance x; from the mean of data
or the center of class (dj(x;) and in the case of two variables, x; and, variance—
covariance matrix is shown in (1.2) («) is the mean of data or the center of classes)
(De Maesschalck et al., 2000).

dy () = I — ] A7 g — k[T, (1.19)
012 £120102
A= , ] (1.20)
P120102 0

1.3.9 Hamming Distance

The Hamming distance is introduced by Richard Hamming in 1950 and used in
telecommunication to count the number of flipped bits in a fixed-length binary word
as an estimate of error, and therefore is sometimes called the signal distance. Ham-
ming weight analysis of bits is used in several disciplines including information
theory, coding theory, and cryptography (Chae and Fromm 2005).

1.3.10 Levenshtein Distance

In 1965, Vladimir Levenshtein introduces the Levenshtein Distance (LD). In infor-
mation theory and computer science, the Levenshtein distance is a string metric,
which is one way to measure edit distance. The minimum number of operations
needed to transform one string into the other, where an operation is an insertion,
deletion, or substitution of a single character, gives the Levenshtein distance be-
tween two strings (Nickel and Puerto 2005). Thus,
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LD (“IBM”, “IBN”) = 1, since one substitution is needed to transform IBM to
IBN.
LD (“Success”, “Successful””) = 3, since three additions are needed to transform
Success to Successful.

LD is robust to spelling errors and small local differences between the strings
(Chae and Fromm 2005).

1.3.11 Hausdorff Distance

This kind of distance metric is used in continues models and is defines as follows:
If there are two compact sets, A and B, the Hausdorff distance between them is

dy (A, B) = max(max d,(x, B), max dy(y, A), (1.21)
X€A YEB

where (Nickel and Puerto 2005)

dy(x, B) = mind;(x, y). (1.22)
yEB

Table 1.1 shows various kinds of locations problems, the distance Functions used to
solve them and their developers.

Table 1.1 Distance functions used in location problems

Developed year  Problem Distance Developer References
1909 Continues location Euclidean Weber Hamacher and
problem distances Nickel (1998)
1937 Multi facility Euclidean Weiszfeld Munoz-Perez and
location problem distances Saameno-
Rodroguez (1999)
1963 Multifacility Rectilinear Francis Munoz-Perez and
location problem distances in a Saameno-
network of Rodroguez (1999)
aisles
1970 Private and public Lp distance ReVelle et al. Munoz-Perez and
sector location Saameno-
models Rodroguez (1999)
1973 Multifacility Euclidean & Eyster et al. Munoz-Perez and
location problem rectilinear Saameno-
distances Rodroguez (1999)
(HAP
procedure)

(continued)
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Table 1.1 (continued)

Developed year
1977

1978

1980

1980

1981

1981

1982

1983

1986

1986

1986

1987

1989

1992

Problem

Traveling salesman
location problem

Fixed charge plant
location problem
(using LP)
Unweighted
1-maximin problem
in a bounded &
convex polyhedron
in Rk

Weighted 1
maximin problem

Generalized
versions of
1-maximin models

Location problem
with barriers for
median problem

Traveling salesman
location problem

Location problem
with barriers for
median problem

Location of an
undesirable facility

Location of an
undesirable facility

Single facility
location problem

The median shortest
path problem

Assigning machines
to locations

Improved traveling
salesman location
problem

Distance

Rectilinear
sistances

Random and
euclidean
distances

Euclidean
distances

Euclidean
distances

Euclidean
distances

Euclidean
distances

Rectilinear,
euclidean, and
Lp distance
problems

Rectilinear
distances

Weighted
inverse square
distance

Euclidean &
rectilinear
distances
Minimizing
the variance of
distances
Shortest path
distance
Distance
matrix
Rectilinear
distances

Developer
Chan, Hearn

Morris

Dasarathy, White

Drezner,
Wesolowsky

Hansen et al.

Katz, Cooper

Drezner,
Wesolowsky

Larson, Sadiq

Melachrinoudis,
Cullinane

Melachrinoudis,
Cullinane

Maimon

Current et al.

Sarker

Tamir

M. Zarinbal

References

Munoz-Perez and
Saameno-
Rodroguez (1999)

Schilling et al.
(2000)

Chae and
Fromm (2005)

Chae and
Fromm (2005)

Munoz-Perez and
Saameno-
Rodroguez (1999)

Plastria and
Carrizosa (2004)

Munoz-Perez and
Saameno-
Rodroguez (1999)

Plastria and
Carrizosa (2004)

Munoz-Perez and
Saameno-
Rodroguez (1999)

Munoz-Perez and
Saameno-
Rodroguez (1999)

Chung et al. (2007)

Hamacher and
Nickel (1998)

Yu and
Sarker (2003)

Munoz-Perez and
Saameno-
Rodroguez (1999)

(continued)
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Table 1.1 (continued)

Developed year

1994

1994

1995

1995

1996

1996

1997

1998

1999

2000

2000

2001

2002

2008

Problem

Weber facility
location in the
presence of forbidden
regions

Competitive location
model

Undesirable facility
location by
generalized cutting
planes

Bi objective min
quantile max covering
problems

Locating a point in a
network

Location problem
with barriers for
median problem
P-Median problem
(new heuristic
approach)
Locating a new
facility in a
competitive
environment

A P-center grid
positioning
Designing distribution
systems

Location problem
with barriers for
median problem

The K-centrum multi
facility location
problem

Location problem
with barriers for
center problem
Quadratic assignment
problem

Distance

Lp distance

Euclidean
distances

Euclidean
distances

Euclidean
distances

Shortest path
distance

Euclidean
distances

Euclidean
distances

Euclidean
distances with
correction

Rectilinear
distances

Rectilinear
distances

Lp distance

K largest distances
in a graph

Rectilinear
distances

Number of
variables with
different values in
the population
members (Ga)

Developer

Aneja, Palar

T. Drezner

Carrizosa,
Plastria

Carrizosa,
Plastria

Drezner,
Wesolowsky

Butt, Cavalier

Dai, Cheung

Drezner T,
Drezner Z

Rayco et al.
Erlebacher,
Meller
Hamacher,

Klamroth

Tamir

Dearing et al.

Drezner Z

References

Hamacher and
Nickel (1998)

Plastria and
Carrizosa (2004)

Hamacher and
Nickel (1998)

Munoz-Perez and
Saameno-
Rodroguez
(1999)

Munoz-Perez and
Saameno-
Rodroguez
(1999)

Plastria and
Carrizosa (2004)

Hamacher and
Nickel (1998)

Drezner and
Drezner (1998)

Hamacher and
Nickel (1998)

Hamacher and
Nickel (1998)

Hamacher and
Nickel (1998)

Hamacher and
Nickel (1998)

Dearing et al.
(2005)

Drezner (2008)

15
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1.4 Summary

The distance functions and its definition play an important role in facility location
problems. As it is shown above, we have various kinds of distance function with dif-
ferent definitions. Each of them has its own domain, advantages, and disadvantages.
For defining the distance function, one must consider the semantic of the problem,
the distance characteristic, and its usage domain.

References

Aronov B, VanKreveld M, VanOostrum R, Varadarajan K (2005) Facility location on a polyhedral
surface. Discrete Comput Geom 30:357-372

Chae A, Fromm H (2005) Supply chain management on demand. Springer, Berlin

Chew EP, Tang LC (1999) Travel time analysis for general item location assignment in a rectangu-
lar warehouse. Eur J Oper Res 112:582-597

Chung KL, Huang YL, Liu YW (2007) Efficient algorithms for coding Hilbert curve of arbitrary-
sized image and application to window query. Inf Sci 177:2130-2151

Dearing PM, Klamroth K, Segars R Jr (2005) Planar location problems with block distance and
barriers. Ann Oper Res 136:117-143

De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The Mahalanobis distance. Chem Intell
Lab Syst 50:1-18

Drezner Z (2008) Extensive experiments with hybrid genetic algorithms for the solution of the
quadratic assignment problem. Comput Oper Res 35:717-736

Drezner T, Drezner Z (1998) Facility location in anticipation of future competition. Location Sci
6:155-173

Drezner T, Drezner Z (2007) Equity models in planar location. Comput Manage Sci 4:1-16

Drezner Z, Wesolowsky GO (2001) On the collection depots location problem. Eur J Oper Res
130:510-518

Fouard C, Malandain G (2005) 3-D chamfer distances and norms in anisotropic grids. Image Vision
Comput 23:143-158

Hamacher HW, Nickel S (1998) Classification of location models. Location Sci 6:229-242

Hinojosa Y, Puerto J (2003) Single facility location problems with unbounded unit balls. Math
Method Oper Res 58:87-104

Jiang J, Xu Y (2006) MiniSum location problem with farthest Euclidean distances. Math Methodol
Oper Res 64:285-308

Munoz-Perez J, Saameno-Rodroguez JJ (1999) Location of an undesirable facility in a polygonal
region with forbidden zones. Eur J Oper Res 114:372-379

Nickel S, Puerto J (2005) Location theory: A unified approach. Springer-Verlag, Berlin

Norman BA, Arapoglu R, Smith AE (2001) Integrated facilities design using a contour distance
metric. IIE Trans 33:337-344

Ogryczak W (2000) Inequality measures and equitable approaches to location problems. Eur
J Oper Res 122:347-391

Plastria F, Carrizosa E (2004) Optimal location and design of a competitive facility. Math Program
100:247-265

Schilling DA, Rosing KE, ReVelle CS (2000) Network distance characteristics that affect compu-
tational effort in p-median location problems. Eur J Oper Res 127:525-536



1 Distance Functions in Location Problems 17

Song Z, Roussopoulos N (2002) Using Hilbert curve in image storing and retrieving. Inf Syst

27:523-536
Uster H, Love RF (2003) Formulation of confidence intervals for estimated actual distances.

Eur J Oper Res 151:586-601
Yu J, Sarker BR (2003) Directional decomposition heuristic for a linear machine-cell location

problem. Eur J Oper Res 149:142-184



Chapter 2
An Overview of Complexity Theory

Milad Avazbeigi

Computational complexity theory (Shortly: Complexity Theory) has been a central
area of theoretical computer science since its early development in the mid-1960s.
Its subsequent rapid development in the next three decades, has not only established
it as a rich, exciting theory, but also has shown strong influence on many other
related areas in computer science, mathematics, and operation research (Du and
Ko 2000). However, the notions of algorithms and complexity are meaningful only
when they are defined in terms of formal computation models (Du and Ko 2000).

Apparently, we need some models to base the foundation of complexity theory
on them. In this chapter, we introduce only three basic models: deterministic tur-
ing machine (DTM), non-deterministic turing machine (NTM) and Oracle machine
models. It should be noted there are also some other models (see Du and Ko 2000).

Using such models, allows us to separate the complexity notion from any phys-
ical machine. Hence, we can measure the time complexity of algorithms and
hardness of problems independent from a specific machine which runs the algo-
rithm(s). It should be noted that these are just abstract models; means, are defined
mathematically (Sipser 1996).

The structure of this chapter is as follows. We first discuss why we actually need
complexity theory. Then, we introduce three basic models of computation: DTM
and NTM and Oracle model. Then we present a brief introduction about the concept
of big O notation which is widely used in the complexity theory. In Sect. 2.5, the de-
cision problems as a special form of problems are described. Following this section,
the basic concepts of reduction are presented, which help us to make relationships
between different classes of complexity and also provide a rich tool to identify the
unknown complexity class of a new problem. Finally, we introduce the most popular
classes of complexity: P, NP, NP-complete and NP-hard. In each class, also, some
known problems are presented.

R.Z. Farahani and M. Hekmatfar (eds.), Facility Location: Concepts, Models, 19
Algorithms and Case Studies, Contributions to Management Science,
DOI 10.1007/978-3-7908-2151-2 2, (© Physica-Verlag Heidelberg 2009
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2.1 Advantage of Complexity Theory

As quoted in previous section, by using computation models, we try to generalize
our results of algorithms runs to other problem instances, computers and imple-
mentations. However, without such computational models, and by just relying on
physical machines, it would be difficult however to base a theory on the detailed
specification of the physical objects and even if we could, the theory might not be
very useful, because we would need to modify it for every different set of hardware
(Martin 1996). In doing so, we attempt to define the execution time as a function
of the size of the problem. Also Time is not measured in second, minutes or any
another similar measures. Roughly speaking, we try to measure it as the number of
steps that has to be taken to resolve an instance of the problem at hand which is
apparently independent from any specific computer or machine.

2.1.1 Computational Complexity

1. Defines clearly what solving a problem “efficiently” means.

2. Categorizes problems into those that can be solved efficiently and those that
cannot.

3. Estimates the amount of time (or memory) needed to solve problems (Daskin
1995).

These are main reasons underlying the use of “complexity theory”. Using complex-
ity theory, we can evaluate an algorithm in front of the problem at hand to understand
whether the existing algorithm can resolve the given problem completely as the size
of the problem grows or not. Also, we can compare algorithms in respect to the time
and resources they need, to resolve a given problem. Recognition of the complexity
class of a problem is another important help of this theory (2). Most of the time,
the recognized complexity class of a problem, determines our future approach we
choose to resolve the problem. For example, if we realize that the problem at hand is
NP-complete (which is described in next sections), we shift our concentration from
exact solutions to approximate and usually so called heuristic and meta-heuristic
approaches.

2.2 Abstract Models of Computation: Abstract Machines

2.2.1 Preliminary Definitions

2.2.1.1 String

The basic data structure in complexity theory is usually considered as “String”. All
other data structure can be encoded and presented by strings. A string is a finite
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sequence of symbols. For instance, the word “string” is a string of over the symbols
of English letters (Du and Ko 2000).

2.2.1.2 Language

If A is the set of strings that machine M accepts, we say that A is the language of
machine M and write L(M) = A (Sipser 1996); we say that M accepts A or M
recognizes.

A machine may accept several strings, but it always accepts only one language.
For convenience, we often work only on strings of the alphabet {0, 1} (Du and
Ko 2000). To show that this does not impose a serious restriction on the theory, we
note that a simple method can be constructed of encoding strings over any finite
alphabet into the strings over {0, 1}.

2.2.2 Turing Machine Models

The standard computer model in computability theory is the Turing machine, intro-
duced by Alan Turing in 1936 (Turing 1936).

2.2.2.1 Deterministic Turing Machine (DTM) (Du and Ko 2000)

DTM consists of two basic units: the control unit and the memory unit. The con-
trol unit contains a finite number of states. The memory unit is a tape that extends
infinitely to both ends. The tape is divided into an infinite number of tape squares
(or tape cells). Each tape square stores one of a finite number of tape symbols. The
communication between the control unit and the tape is through a read/write tape
head that scans a tape square at a time. Figure 2.1 shows a simple single-tape DTM.

An important concept about Turing machine is the concept of configuration. A
configuration of a TM is a record of all information of the computation of the ma-
chine at a specific moment, which includes the current state, the current symbols in
the tape, and the current position of the tape head.

B B a b a a B B B Tape

Finite control
(Control unit)

Fig. 2.1 Single-tape deterministic Turing Machine



22 M. Avazbeigi

2.2.2.2 Non-Deterministic Turing Machine (NTM) (Du and Ko 2000)

The Turing machine described in the previous section is a deterministic machine,
because for each configuration of a machine there is at most one move to make,
and hence there is at most one next configuration. If we allow more than one moves
for some configurations, and hence those configurations have more than one next
configuration, then the machine is called a nondeterministic Turing machine (NTM).

In complexity theory, we use the concept of Turing machines to model our com-
putations and as described in Sect. 2.1, to make independent the computations from
hardware of computer. To see examples about these models, see example of Du
and Ko (2000) and Sipser (1997). Speaking in an imprecise manner, a computation
changes the configuration of a machine and takes the machine from one configura-
tion to a new configuration. Finally, a finite number of computations take us from an
initial state of machine to target (desired) state of machine which can be considered
as the answer to the problem to be resolved.

2.2.2.3 Oracle Turing Machine (Du and Ko 2000)

A function-oracle DTM is an ordinary DTM equipped with an extra tape, called the
query tape, and two extra states, called the query state and the answer state. The
oracle machine M works as follows: First, on input x and with oracle function f, it
begins the computation at the initial state and behaves exactly like the ordinary TM
when it is not in any of the special states.

The machine is allowed to enter the query state to make queries to the oracle, but
it is not allowed to enter the answer state from any ordinary state. Before it enters the
query state, machine M needs to prepare the query string y by writing the string y
on the query tape and leaving the tape head of the query tape scanning the square to
the right of the rightmost square of y. After the oracle machine M enters the query
state, the computation is taken over by the “oracle” f, which will do the following
for the machine: it reads the string y on query tape; it replaces y by the string f(y);
and it puts the tape head of the query tape back scanning the leftmost square of
f(y); it puts the tape head of the query tape back scanning the left most square of
f(»); and it puts the machine into answer state. Then the machine continues from
the answer state as usual. The actions taken by the oracle count as only one unit
of time.

2.3 Big-O Notation (Wood 1987)

The complexity of computational problems can be discussed by fixing a model of
computation and then considering how much of the machines resources are required
for the solutions. In order to make a meaningful comparison of the inherent com-
plexity of two problems, it is necessary to look at instances over a range of sizes.
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The most common approach is to compare the growth rates of the two runtimes,
each viewed as a function of the instance size (Martin 1996).

We measure the time and space complexity of a problem or program by total
function from N to N, since time and space are measured in positive integral units
as is the size of input data. In order to compare time or space complexities of prob-
lems or programs we are usually interested only in their order, that is, multiplicative
constants and lower-order terms are ignored. The big-O notation is used for this
purpose.

Given the two functions f, g: N — N, we write f(n) = O(g(n)), if there are
positive integers ¢ and d such that, for alln > d,

f(n) <cg(n), 2.1)
cf(n) < gn). (2.2)

In this case f is said to be big-O of g.

Similarly, we write f(n) = $2(g(n)), if there are positive integers ¢ and d such
that, forall n > d,

In this case we say f is big-omega of g.

If f(n) = O(g(n)) and f(n) = §2(g(n)), then we write f(n) = @(g(n)), that
is, f is big-theta of g.

Whenever f(n) = O(g(n)), then g(n) is an upper bound for f(n) and whenever
f(n) = £2(g(n)), g(n) is a lower bound for f(n).

Remember that the big-O notation compares only the rate of growth of functions
rather than their values, so when f(n) = ®(g(n)), f(n) and g(n) have the same
rates of growth, but can be very different in their values.

2.3.1 Example

Take the polynomials f(x) = 6x* —2x3 + 5, g(x) = x*. We say f(x) has order
O(g(x)) or O(x*). From the definition of order, | f(x)| < c¢|g(x)| for all x > 1,
where c is a constant.

Proof.
|6x* —2x3 4 5| < 6x* 4+ 2x* + 5 where x.1, (2.3)
|6x4 —2x3 + 5] < 6x* + 2x* + 5x* because x* < x*, and so on, 2.4)
|6x* —2x3 4 5] < 13x*. (2.5)

So we can say:
f(x)is O(g(x)) as x — oo. (2.6)
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2.4 Time Complexity

Now, using big-O notation, we can talk about complexity of algorithms in front
of problems. As mentioned before, big-O notation gives us a tool to talk about
complexity of algorithms in respect to steps (approximately) they take to resolve
the problem at hand, so we make our models independent from a specific hardware
configuration or implementation.

Also it is important to say in analysis of algorithms, we are interested in worst
case analysis of algorithms; the longest time they take to resolve a problem.

2.4.1 Constant Time

In computational complexity theory, constant time, or O(1) time, refers to the com-
putation time of a problem when the time needed to solve that problem does not
depend on the size of the data it is given as input.

For example accessing any single element in an array takes constant time as only
one operation has to be made to locate it.

It can be noted, if the number of elements is known in advance and does not
change, however, such an algorithm can still be said to run in constant time. For
example, think about a problem as finding of an unknown chose square of a chess
board. It is clear that, growth of board size changes the number of steps has to be
taken to find the square. However, for any specific size of board, it is a constant
predefined value. So our algorithm in front of this problem takes constant time.

2.4.2 Linear Time (Sipser 1996)

In computational complexity theory, an algorithm is said to take linear time, or O (n)
time, if the asymptotic upper bound for the time it requires is proportional to the size
of the input, which is usually denoted n. Informally spoken, the running time in-
creases linearly with the size of the input. For example, finding the minimal value
in an unordered array takes O(n) time because all the items in array have to be
checked.

2.4.3 Polynomial Time (Papadimitriou 1994)

In computational complexity theory, polynomial time refers to the computation time
of a problem where the run time, m(n), is no greater than a polynomial function of
the problem size, n. Written mathematically using big O notation, this states that
m(n) = O(n*) where k is some constant that may depend on the problem.
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Mathematicians sometimes use the notion of “polynomial time on the length
of the input” as a definition of a “fast” or “feasible” computation, as opposed to
“super-polynomial time”, which is anything slower than that. Exponential time is
one example of a super-polynomial time.

2.4.4 Exponential Time (Sipser 1996)

In complexity theory, exponential time is the computation time of a problem where
the time to complete the computation, m(n), is bounded by an exponential function
of the problem size, n. In other words as the size of the problem increases linearly,
the time to solve the problem increases exponentially.

Written mathematically, there exists k& > 1 such that m(n) = O(k") and there
exists ¢ such that m(n) = O(c").

2.5 Decision Problems

In computability theory and computational complexity theory, a decision problem is
a question in some formal system with a yes-or-no answer, depending on the values
of some input parameters. For example, the problem “given two numbers x and y,
does x evenly divide y?” is a decision problem. The answer can be either “yes” or
“no”, and depends upon the values of x and y.

A formal definition of decision problem is “A decision problem is any arbitrary
yes-or-no question on an infinite set of inputs”. Because of this, it is traditional to
define the decision problem equivalently as: the set of inputs for which the problem
returns yes (Martin 1996).

For every optimization problem, there is a Decision Problem version. Hence,
we can convert an optimization problem into a decision problem which means a
question with answer “yes” or “no”. Satisfiability problem is a popular and classic
example of decision problems which is described in Sect. 2.7.

2.6 Reduction

A reduction is a way of converting one problem into another problem in such a
way that, if the second problem is solved, it can be used to solve the first problem
(Sipser 1996).

For example, suppose you want to find your way around a new city. You know
this would be easy if you had a map. This demonstrates reducibility. The problem
of finding your way around the city is reducible to the problem of obtaining a map
of the city (Sipser 1996).

Many examples also can be found in mathematics. For example the problem of
solving a system of linear equations reduces to the problem of inverting matrix.
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2.6.1 Linear Reduction

Linear reductions are used widely in complexity theory. Linear reduction in litera-
ture is defined as follows (Brassard and Bratley 1988):

Let A and B be two solvable problems. A is linearly reducible to B, denoted
A <! B, if the existence of an algorithm for B that works in a time in O(t(n)),
for any function ¢#(n), implies that there exists an algorithm for A that also works
in a time in O(¢(n)). When A <! B and B </ A both hold. 4 and B are linearly
equivalent, denoted 4 =’ B.

2.6.2 Polynomial Reduction

Another important definition is polynomial reduction (Brassard and Bratley 1988):

Let X and Y be two problems. Problem X is polynomially reducible to problem
Y in the sense of Turing, denoted X <7 Y, if there exists an algorithm for solving X
in a time that would be polynomial if we took no account of the time needed to solve
arbitrary instances of problem Y. In other words, the algorithm for solving problem
X may make whatever use it chooses of an imaginary procedure that can somehow
magically solve problem Y at no cost. When X <7 Y and Y <} X simultaneously,
then X and Y are equivalent in the sense of Turing, denoted Y E’; X.

2.6.3 Polynomial Reduction: Many-One Polynomially Reducible

We introduced the decision problems as the problems in which we simply look for
answer “yes” or “no”. The restriction to decision problems allows us to introduce a
simplified notion of polynomial reduction:

Let X € I and Y C J be two decision problems. Problem X is many-one
reducible to problem Y, denoted by X <, Y, if there exists a function f : I — J
computable in polynomial time, known as the reduction function between X and Y,
such that

When X </ Y andY =<} X bothhold, then X and Y are many-one polynomially
equivalent, denoted X =5, Y (Brassard and Bratley 1988).

2.7 Examples

In this section some classic problems that we would refer to them in Sect. 2.8, are
presented. Here our aim is just explanation of problems. In Sect. 2.8, we analyze
these problems from the view of complexity theory.
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2.7.1 Traveling Salesman Optimization Problem

Given: A graph G(N, A) with node set N and link set A. Associated with each link
(i, j) in A is a nonnegative link length d;; .

Find: circuit that visits all nodes and is of minimum total length (Daskin 1995).

As we said in Sect. 2.5, any optimization problem has a decision version. The
corresponding decision problem to Traveling Salesman Problem (TSP) is: “Given a
number n of cities, n > 3 integer, a non negative nxn distance matrix of integers
C = [cj;j], and a non negative integer L: Is there a closed tour passing from every
city exactly once, with total length < L?”.

This is the general form of TSP. By specifying the actual graph on which the
traveling salesman problem is to be solved, we are specifying an instance of the
problem.

When we speak of the size of an instance of a problem, we are referring to a way
of characterizing how big the problem is (Daskin 1995).

In TSP the number of nodes and the number of links in a problem will constitute
an adequate description of the size of a problem.

2.7.2 Satisfiability Problem

Given: A Boolean expression — a function of true/false variables.

Question: Is there an assignment of truth values (TRUE or FALSE) to the vari-
ables such that the expression is TRUE (Daskin 1995).

As the problem shows, satisfiability (SAT) problem is essentially expressed in
the form of a decision problem. We just need to acquire the answer “yes” or “no”.

A Boolean function is a function whose variable values and function value are
all in {TRUE, FALSE}. We often denote TRUE by 1 and FALSE by 0 (Du and
Ko 2000).

It can be shown that, given a general Boolean formula, we can construct an equiv-
alent one in conjunctive normal form (CNF), that is a formula like:

“C1 AND C2 AND... AND Cm”

where Ci, i = 1,..., m are clauses consisting of disjunctions of Boolean vari-
ables, simple or negated.

(x1 OR x2 OR x3) and (x1 OR —x2) and (x2 OR —x3) and (x3 OR —x1) and
(—=x1 OR —x2 OR —x3).

Now, the decision problem is:

Given a Boolean formula in conjunctive normal form (CNF), is it satisfiable?
That is, is there a set of “true-false” values to be assigned to the various variables,
such that the compound proposition is true?
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2.7.3 Hamiltonian Cycle Problem

Given: A graph G(N, A) where N is the set of nodes or vertices and A is the set of
links.

Question: Does the graph contain a cycle that visits every vertex (i.e., a path that
visits each node exactly once except the first node which is also visited at the last
node on the path)? (Daskin 1995).

2.7.4 Clique Problem

Given: An undirected graph G = (N, A) where N is the set of nodes or vertices
and A4 is the set of links.

Question: A clique in G is a set of nodes K € N such that {u, v} € A for every
pair of nodes u, v € K. Given a graph G and an integer k, the k-Clique problem
consists of determining whether there exists a clique of k nodes in G (Brassard and
Bratley 1988).

2.8 Complexity Classes

Now, after introduction of computation models (Turing machine models), big-O
notation, different time complexities, decision problems and concepts of reduction,
we are prepared to talk about complexity classes of problems.

First it is necessary to present a formal definition of complexity classes. Also it
is necessary to note that there are some other classes, which are not presented here
because this chapter aims to present an introduction to complexity theory. For more
information about other complexity classes see references at the end of chapter.

In computational complexity theory, a complexity class is a set of problems of
related complexity. A typical complexity class has a definition of the form: the set
of problems that can be solved by abstract machine M using O( f(n)) of resource
R (n is the size of the input) (Du and Ko 2000).

2.8.1 Class P

P is a class of languages that are decidable in a polynomial time on a deterministic
single-tape Turing machine (Sipser 1996).

The class P plays a central role in our theory and is important because:

P is invariant for all models of computation that are polynomially equivalent to
the deterministic single-tape Turing machine.
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P roughly corresponds to the class of problems that are realistically solvable on
a computer.

Item 1 indicates that problems in P class are not affected by the particulars of
the model of computation that we are using.

Item 2 indicates whenever we prove a problem falls in Class P, an algorithm can
be found which can solve the problem in polynomial time, means the run time, m(n),
is no greater than a polynomial function of the problem size, n. Written mathemati-
cally using big O notation, this states that m(n) = O (n*) where k is some constant
that may depend on the problem.

We describe algorithms with numbered stages. The notion of stage of an algo-
rithm is analogous to the step of a Turing machine, though of course, implementing
one stage of an algorithm on a Turing machine, in general require many Turing
machine steps (Sipser 1996).

To show an algorithm runs in polynomial time, we need to show two things. First,
we have to give a polynomial upper bound (see Sect. 2.3 about big-O notation) of
the stages that the algorithm uses when it runs on an input of length n. Then we
have to examine the individual stages in the description of the algorithm to be sure
each can be implemented in polynomial time on a reasonable deterministic model
(Sipser 1996). In fact, the number of stages and running time of each stage both are
bounded by polynomial functions. Kozen (2006) states that Cobham and Edmonds
are “generally credited with the invention of the notion of polynomial time”.

As quoted in Sect. 2.1, complexity theory helps us to determine whether an
algorithm is efficient or not. Now we can define an efficient algorithm as: An al-
gorithm is efficient (or polynomial-time) if there exists a polynomial p(7) such that
the algorithm can solve any instance of size n in a time in O(p(n)) (Brassard and
Bratley 1988).

2.8.1.1 Example of Problems in P

P is known to contain many natural problems, including the decision versions of
linear programming, calculating the greatest common divisor.

In 2002, it was shown that the problem of determining “if a number is prime” is
in P (Agrawal et al. 2004). It is clear that this is a decision problem requires “yes”
or “no” answer.

Sorting a set of integers also is another example of P class problems. This is
because, an algorithm can be found capable of solving the problem in polynomial
time. A classic known algorithm for sorting is select method.

2.8.2 Class NP

NP is the class of decision problems for which there exists a proof system such that
the proofs are succinct and easy to check.
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In fact, in order to prove a problem is in NP, we do not require that there should
exists an efficient way to find a proof of x when x € X, only there should ex-
its an efficient way to check the validity of a proposed short proof (Brassard and
Bratley 1988).

Equivalent to the verifier-based definition is the following characterization: NP
is the set of decision problems solvable in polynomial time by a non-deterministic
Turing machine.

The two definitions of NP as the class of problems solvable by a nondeterministic
Turing machine (TM) in polynomial time and the class of problems verifiable by
a deterministic Turing machine in polynomial time are equivalent (The proof is
described by many textbooks, Sipser 1997, Sect. 2.7.3).

If we remember the definition of Class P, we immediately realize that all prob-
lems in P are in NP also. This is because we can verify all decision versions of
problems in P in polynomial time.

2.8.2.1 Example of Problems in NP

For the class NP, we simply require that any “yes” answer is “easily” verifiable. In
order to explain the verifier-based definition of NP, let us consider the subset sum
problem:

Assume there is a set of integers. The task of deciding whether a subset with sum
zero exists is called the subset sum problem.

Assume that we are given some integers, such as { — 1, =2, 3, 9, 8}, and we
wish to know whether some of these integers sum up to zero. In this example, the
answer is “yes”, since the subset of integers { — 1, —2, 3} corresponds to the sum
(—1) + (=2) + 3 = 0. It is clear that evaluation of each possible answer with n
member take O (n) operation and hence can be verified in polynomial time.

Also the problem of Clique (described in Sect. 2.7) is in NP. The clique problem
is to determine whether a graph contains a clique of a specified size. To prove clique
is in NP, it is enough to generate a verifier which can check the correctness of an
answer in polynomial time.

For example in the undirected graph in Fig. 2.2, we have a 4-clique:

The decision version of the traveling salesman problem is in NP. The problem
is to determine if there is a route visiting all cities with total distance less than k.
Again the proof arises directly from the fact that for any given possible answer, we
can check whether the given circuit visits all nodes and is less than predetermined
constant k or not.

Fig. 2.2 A graph with
4-clique
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2.8.3 Class NP-Complete

A decision problem X is NP-complete if: X € NP; and for every problem Y € NP,
Y <% X (Brassard and Bratley 1988)

Item 1 indicates, first we need to prove the given problem belongs to class NP.
From definition of class NP, we need to prove that a certificate exists which can be
verified in polynomial time.

Item 2 indicates that all the other problems in NP, polynomially transform to it.
The concepts of reductions presented in Sect. 2.6.

So if the problem X is NP-complete and the problem Z is in NP,

Z is NP-complete if and only if X <7. Z.

If X <, Z then Z is NP-complete (Brassard and Bratley 1988).

This is so important to us, because suppose we have a pool of problems that have
already been shown to be NP-complete. To prove Z is NP-complete, we can choose
an appropriate problem X from the pool and show X is polynomially reducible to
Z (either many-one to in the sense of Turing). Several thousand problems have been
enumerated in this way.

From a historical view, the concept of “NP-complete” was introduced by Stephen
Cook in a paper entitled “The complexity of theorem-proving procedures” on pages
151-158 of the Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing in 1971.

2.8.3.1 Cooks Theorem

In the celebrated Cook—Levin theorem (independently proved by Leonid Levin),
Cook proved that the Boolean satisfiability problem is NP-complete (See Gary and
Johnson 1979 or Papadimitrious and Steiglits 1982 for proof). In 1972, Richard
Karp proved that several other problems were also NP-complete (Karp 1972); thus
there is a class of NP-complete problems (besides the Boolean satisfiability prob-
lem). Since Cook’s original results, thousands of other problems have been shown
to be NP-complete by reductions from other problems previously shown to be NP-
complete; many of these problems are collected in Garey and Johnson’s 1979 book
Computers and Intractability: A Guide to NP-completeness.

From reduction concepts, a key characteristic of NP-complete problems is that
if a polynomial time algorithm can be found for any such problem, then it will
also solve all NP-complete problems in polynomial time. If we could find such an
algorithm we would have shown that P = NP.

2.8.3.2 P = NP Problem

An important aspect of the complexity theory is to categorize computational prob-
lems and algorithms into complexity classes. The most important open question of
complexity theory is whether the complexity class P is the same as the complexity
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Fig. 2.3 Open problem

P = NP
NP

@

class NP, or is merely a subset as is generally believed (Fig. 2.3). Shortly after
the question was first posed, it was realized that many important industry prob-
lems in the field of operations research are of an NP subclass called NP-complete.
NP-complete problems have the property that solutions to these problems are quick
to check, yet the current methods to find solutions are not “efficiently scalable”.
More importantly, if the NP class is larger than P, then no efficiently scalable solu-
tions exist for these problems.

The openness of the P-NP problem prompts and justifies various research areas
in the computational complexity theory, such as identification of efficiently solvable
special cases of common computational problems, study of the computational com-
plexity of finding approximate or heuristic solutions, as well as research into the
hierarchies of complexity classes.

Nobody has yet been able to determine conclusively whether NP-complete prob-
lems are in fact solvable in polynomial time, making this one of the great unsolved
problems of mathematics.

The point is, because of many known unresolved problems in NP-complete class,
the trend is more toward P # NP.

2.8.3.3 The Importance of NP-completeness Phenomenon

The phenomenon of NP-completeness is important for both theoretical and practical
reasons (Sipser 1996):

On the theoretical side, a researcher trying to show that P is unequal to NP
only needs to look up to an NP-complete problem. If any problem in NP requires
more than polynomial time, an NP-complete one does. Furthermore, a researcher
attempting to prove that P equals NP only needs to find a polynomial time algorithm
for an NP-complete problem to achieve this goal.

On the practical side, the phenomenon of NP-completeness may prevent wast-
ing time searching for nonexistent polynomial time algorithm to solve a particular
problem. Even though we may not have necessary mathematics prove that the
problem is not polynomial time solvable (P = NP problem), we believe that P is
unequal to NP, so proving that a problem is NP-complete is strong evidence of its
nonpolynomiality.
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2.8.3.4 Example of Problems in NP-complete

Since the introduction of NP-complete class, many problems have been proved to
be in NP-complete class. Here there is an in-complete list of problems (Du and
Ko 2000):

Boolean satisfiability problem (SAT)
Knapsack problem

Hamiltonian cycle problem
Traveling salesman problem

Sub graph isomorphism problem
Subset sum problem

Clique problem

N -puzzle

Vertex cover problem
Independent set problem

Graph coloring problem

Figure 2.4 shows a diagram of some of the problems and the reductions typically
used to prove their NP-completeness. In this diagram, an arrow from one problem to
another indicates the direction of the reduction. Note that this diagram is misleading

Circuit - SAT

[ Subset problem ]

3-CNF SAT

Clique problem

.

[ Vertex cover problem ]

v

Hamiltonian Cycle

v

[ Travelling Salesman ]

Fig. 2.4 Some NP-complete problems, indicating the reductions typically used to prove their
NP-completeness (see http://en.wikipedia.org/wiki/NP-complete)
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as a description of the mathematical relationship between these problems, as there
exists a polynomial-time reduction between any two NP-complete problems; but it
indicates where demonstrating this polynomial-time reduction has been easiest.

The Hamiltonian cycle problem was shown to be NP-complete by Karp (1972).
As the Fig. 2.4 shows, TSP is also a NP-complete problem. To show that the TSP
decision problem is NP-complete, we need to show two things: (a) that the TSP-
decision problem is in class NP and (b) that a known NP-complete problem reduces
to the TSP-decision problem (For this problem Hamiltonian cycle problem). To
show (a), we note that, given any cycle, we can compute the cost of the cycle in
polynomial time and therefore determine in polynomial time if the cycle has length
less than or equal to B (in which case it would be a “yes” instance to the TSP-
decision problem). Thus the TSP-decision problem is in class NP. To show (b), we
construct a complete graph with the same vertex set as that found in the HCP. For
each link in the new graph, if the corresponding link exits in the instance of the HCP,
let the link length be 1; otherwise let the link length be 2. Clearly, the HCP has a
solution if and only if the TSP on this complete graph has a solution with values
less than or equal to n where n is the number of nodes in the vertex set (this proof is
chose from Daskin 1995).

2.8.4 Class NP-Hard

NP-hard (nondeterministic polynomial-time hard), in computational complexity
theory, is a class of problems informally “at least as hard as the hardest problems
in NP.” A problem H is NP-hard if and only if there is an NP-complete problem L
that is polynomial time Turing reducible to H, i.e. L <7 H. In other words, L can
be solved in polynomial time by an oracle machine with an oracle for H . Informally
we can think of an algorithm that can call such an oracle machine as subroutine for
solving H, and solves L in polynomial time if the subroutine call takes only one
step to compute (Gary and Johnson 1979). NP-hard problems may be of any type:
decision problems, search problems, optimization problems.

Such problems are ones such that an NP-complete problem polynomially reduces
to the problem in question, but the problem under study is not provable in the class
NP. Formally, the term NP-hard is also used to describe the optimization versions
of the decision problems that are NP-complete (Daskin 1995).

2.8.4.1 Example of Problems in NP-Hard

An example of an NP-hard problem is the decision problem SUBSET-SUM. We
already described this problem. The problem is, given a set of integers, does any
non-empty subset of them add up to zero? That is a yes/no question, and happens
to be NP-complete. Another example of an NP-hard problem is the optimization
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problem of finding the least-cost route through all nodes of a weighted graph or
traveling salesman problem that we described it in Sect. 2.7.

There are also decision problems that are NP-hard but not NP-complete, for ex-
ample the halting problem. This is the problem “given a program and its input, will
it run forever?” That’s a yes/no question and hence, a decision problem. It is easy
to prove that the halting problem is NP-hard but not NP-complete. For example the
Boolean satisfiability problem can be reduced to the halting problem by transform-
ing it to the description of a Turing machine that tries all truth value assignments
and when it finds one that satisfies the formula it halts and otherwise it goes into
an infinite loop. It is also easy to see that the halting problem is not in NP since
all problems in NP are decidable in a finite number of operations, while the halting
problem, in general, is not (Garey and Johnson 1979).

2.9 Further Reading

Some classic books on complexity theory and network flows are Garey and Johnson
(1979), Ahuja et al. (1993), Karp (1972), Papadimitriou and Steiglitz (1982), and
Sahni and Horowitz (1978).
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Chapter 3
Single Facility Location Problem

Esmaeel Moradi and Morteza Bidkhori

This chapter will focus on the simplest types of location problems, single facility
location problem. These problems occur on a regular basis when working, layout
problems (e.g., we may need to locate a machine in a shop, or items inside a ware-
house). Also, on a larger scale, they can occur in, say, choosing the location of a
warehouse to serve customers to whom goods must be delivered.

The models shall be studied as being “quick and dirty.” They are “quick” in the
sense that they can be used quickly and easily, and “dirty” in the send that they
are approximate. The use of these models should be considered particularly when
some location decision must be made quickly and with limited resource available
for decision analysis.

When we wish to locate a single new facility in the plane, we often would like
to minimize an objective function involving Euclidean or rectilinear distances be-
tween the new facility and a collection of existing facilities having known planar
locations. The first objective function we consider is that of total travel distance, or
total travel cost.

A number of interesting one-facility location problems exist and are amenable to
the analysis presented in this chapter. Some typical examples of one-facility location
problems are the location of:

New warehouse relative production facilities and customers.

Hospital, fire station or library in a metropolitan area.

New classroom building on a college campus.

New airfield to be used to provide supplies for a number of military bases.
Component in an electrical network.

Al

In practice, many factors have an impact on location decisions. The relative im-
portance of these factors depends on whether the scope of a particular location
problem is international, national, statewide, or communitywide. For example, if we
are trying to determine the location of a manufacturing facility in a foreign country,
factors such as political stability, foreign exchange rates, business climate, duties,
and taxes play a role. If the scope of the location problem is restricted to a few
communities, then factors like community services, property tax incentive, local
business climate, and local government regulations are more important.

R.Z. Farahani and M. Hekmatfar (eds.), Facility Location: Concepts, Models, 37
Algorithms and Case Studies, Contributions to Management Science,
DOI 10.1007/978-3-7908-2151-2 3, (© Physica-Verlag Heidelberg 2009
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It is often extremely difficult to find a single location that meets all these objec-
tives at the desired level. For example, a location in the Midwest may offer a highly
skilled labor pool, but construction and land costs may be too high.

This chapter is organized as follows. In Sect. 3.1, we consider a general problem
formulation with rectilinear or square Euclidean or Euclidian or Ip-norm distances,
and Sect. 3.2, we consider solution techniques for discrete and continuous space.
Continuous space is divided to MiniSum and MiniMax problem with various dis-
tances. MiniMax problem involving Euclidean distances is called the circle covering
problem, which can be interpreted as the problem of covering all existing facility lo-
cations with a circle of minimum radius. MiniMax problems are more specialized
than MiniSum problems and seem to be of interest, principally in cases where a
worst case analysis is quite important. Finally, Sect. 3.3 represents one real world
case studies briefly.

3.1 Problem Formulation

In this section, we represent a general problem formulation that is involving the dis-
tance traveled per trip with rectilinear or square Euclidean or Euclidian or lp-norm
distances. In final section we discus about regional facilities.

3.1.1 A General Formulation of the Problem

3.1.1.1 Model Inputs

Model inputs of this model are as follows:

i: the index of existing facilities
n: the number of existing facilities

3.1.1.2 Model Outputs (Decision Variables)

Model outputs of this model are as follows:

X = (x, y): coordinates of the location of new facility
d(x;, y;): the distance between of new facility and existing facility i

3.1.1.3 Parameters

Parameters of this model are as follows:

P; = (a;, b;): coordinates of the location of existing facility i
w; : weights of existing facility i
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3.1.1.4 A General Formulation

A general formulation of the problem considered in this chapter may be given as
follows:

fX) =) widX. Py). (3.1)
=1

The one-facility location problem is to determine the location of the new facility,
say X* that minimizes f(X), the annual transportation cost.

3.1.2 Rectilinear Distance with Point Facilities

The rectilinear distance location problem combines the property of being a very ap-
propriate distance measure for a large number of location problems and the property
of being very simple to treat analytically.

Figure 3.1 illustrates that several different paths between x, p; for each the recti-
linear distance are the same. The number of such paths is, of course, infinite (Francis
and White 1974).

The rectilinear distance location problem can be stated mathematically as

m
Min f(x.y) = > wi (|x —ai| + |y —bi]). (32)
i=1
From (2) it is seen that the problem can be equivalently stated as

Minf(x,y):MinZwi |x—a,-|+2w,~ |y — bi|. (3.3)

i=1 i=l1

X S

Fig. 3.1 Different rectilinear paths between X and P;
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where each quantity on the right-hand side can be treated as separate optimization
problems:

Min f(x.y) = > wi|x —ail. (3.4)
i=1

Min f(x.y) =Y wily —bil. (3.5)
i=1

3.1.3 Square Euclidean Distance with Point Facilities

In some facility location problems, cost is not a simple linear function of distance.
As an example, the cost associated with the response of a fire truck to a fire is
expected to be nonlinear with distance. Depending on the location problem, f(X)
can take on a number of different formulations. One nonlinear form of f(X) treated
in this chapter is the gravity problem. Suppose that cost is proportional to the square
of the Euclidean distance between X and P;. Thus, the function becomes

JX) = "wi[(x—a)*+ (y —b)’]. (3.6)

t=1

Location problem having the formulation given by (3.6) are referred to as gravity
problems (Francis and White 1974).

3.1.4 Euclidean Distance with Point Facilities
The function of Euclidean distance is
FX) = wi [ —an)? + (v — b)) (3.7)

t=1

Euclidian distance applies for some network location problems as well as some
instances involving conveyors and air travel. Some electrical wiring problems and
pipeline design problems are also examples of Euclidean distance problems (Francis
and White 1974).

3.1.5 LP-Norm Distance with Point Facilities

Norms are usually employed as the basis for distance predicting functions in con-
tinuous location models. Since norms are convex functions, incorporating a norm in
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the objective function of a continuous location problem provides the useful property
of convexity in the optimization model (Uster and Love 2001).

The /,-norm distance between any two points u = (u1, up) and v = (v1, v2) is
given by

Ly(u,v) = [lur —w|” + |uz —V2|p]l/p, p=>1. (3.8)

3.1.6 Regional Facilities Problem (Drezner 1986)

We consider the single-facility of the MiniSum type of location facilities on the
plane. Both demand location and the facilities to be located are assumed to have
circular shapes, and demand and service is assumed to have a uniform probability
density inside each shape.

The problem reduces to the question of the effective distance d, that should stand
for distance between the demand area and the facility. d, is actually the expected
distance between the shapes with uniform probability distribution of demand and
service. In Fig. 3.2, a circle of radius R representing a facility and a circle of radius
r representing a demand area depicted. The distance between the circles center is d.

Let d(x, y) be the distance between points X and Y (by any metric), F' be the fa-
cility, and D be the demand. The probability that service and demand are generated
at dF and dD, are dF/[xe F dF, and dD/fxeF dD, respectively. Therefore,

[ [ d(X.Y)dFdD

x€F yeD
d, = 39
' [ dF [ dD 3:9)
x€F y€eD

The MiniSum problem objective function is a sum of terms associated with pairs of
facilities and demand points. d, should represent the distance in the term associated
with the facility F' and the area demand D. This distance should be multiplied by
the appropriate weight and the sum of all these terms should be minimized (Drezner
1986).

Fig. 3.2 Facility demand area
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3.2 Solution Techniques

3.2.1 Techniques for Discrete Space Location Problems
(Heragu 1997)

Our focus is primarily on the single-facility location problem. We provide both dis-
crete space and continuous space models. The single facility for which we seek
a location may be the only one that will serve all the customers, or it may be an
addition to a network of existing facilities that are already serving customers.

3.2.1.1 Qualitative Analysis

The location scoring method is a very popular, subjective decision-making tool that
is relatively easy to use. It consists of these steps:

e Step 1. List all the factors that are important-that have an impact on the location
decision.

e Step 2. Assign an appropriate weight (typically between 0 and 1) to each factor
based on the relative importance of each.

e Step 3. Assign a score (typically between 0 and 100) to each location with respect
to each factor identified in step 1.

o Step 4. Compute the weighted score for each factor for each location by multi-
plying its weight by the corresponding score.

e Step 5. Compute the sum of the weighted scores for each location and choose a
location based on these scores.

Although step 5 calls for the location decision to be made solely on the basis
of the weighted scores, those scores were arrived at in a subjective manner, and
hence a final location decision must also take into account objective measures such
as transportation cost, loads, and operating costs (Heragu 1997).

3.2.1.2 Quantitative Analysis

Several quantitative techniques are available to solve the discrete space, single fa-
cility location problem. Each is appropriate for a specific set of objectives and
constraints.

For example, the so-called MiniMax location model is appropriate for determin-
ing the location of an emergency service facility, where the objective is to minimize
the maximum distance traveled between the facility and any customer.

The reader may be wondering: If the set of plants including their locations is
given, where is the location problem? To answer this question, consider the follow-
ing problem: We have m plants in a distribution network that serves n customers.
Due to an increase in demand at one or more of these n customers, it has become
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necessary to open an additional plant the new plant could be located at p possible
sites. To evaluate which of the p sites will minimize distribution (transportation)
costs, we can set up p transportation models, each with n customers and m + 1
plants, where the (m + 1) plant corresponds to the new location being evaluated.
Solving the model will tell us not only the distribution of goods from the m 4 1
plant (including the new one from the location being evaluated) but also the cost of
the distribution. The location that yields the least overall distribution cost is the one
where the new facility should be located (Heragu 1997).

3.2.1.3 Hybrid Analysis

A disadvantage of the qualitative method is that a location decision is made based
entirely on a subjective evaluation. Although the quantitative method overcomes this
disadvantage, it does not allow us to incorporate unquantifiable factors that have a
major impact on the location decision. For example, the quantitative techniques can
easily consider transportation and operational costs, but intangible factors, such as
the attitude of a community toward businesses, potential labor unrest, and reliability
of auxiliary service providers, though important in choosing a location, are difficult
to capture. We need a method that incorporates subjective as well as quantifiable
cost and other factors.

This model classifies the objective and subjective factors important to the specific
location problem being addressed as:

e C(ritical;
e Objective;
e Subjective.

The meaning of the latter two factors is obvious, but the meaning of critical
factors needs some discussion. In every location decision, at least one factor usually
determines whether or not a location will be considered for further evaluation. For
example, if water is used extensively in a manufacturing process (e.g., a brewery),
then a site that does not have an adequate water supply now or in the future is
automatically removed from consideration. This is an example of a critical factor.
Some factors can be objective and critical or subjective and critical. For example,
the adequacy of skilled labor may be a critical factor as well as a subjective factor.

After the factors are classified, they are assigned numeric values:

CF;: if location i satisfies critical factor j, O otherwise

OF;: cost of objective factor j at location i

SF;;: numeric value assigned (on a scale of 0-1) to subjective factor j for loca-
tion i.

W;: weight assigned to subjective factor J(0 < W; < 1).

Assume that we have m candidate locations and p critical, g objective, and r
subjective factors. We can determine the overall critical factor measure (CFM ),



44 E. Moradi and M. Bidkhori
objective factor measure (OFM ;) and subjective factor measure (CFM ;) for each

location i with these equations:

P
CFM; = CFi\CFyy...CFip = [ CFyi =1.....m, (3.10)
j=1

q q
max|:Z OF,,j| — Z OF,_']‘

j=1 j=i

OFM; = d=1,....m,  (3.11)
q q
max |:Z 0F,{| — min |:Z 0F,{|
j=l1 Jj=i
R
SFM; =Y w;SFj.i=1.....m. (3.12)
j=l

The location measure LM ; for each location is then calculated as:
LM; = CFM[aOFM; + (1 — a)SFM;], (3.13)

where is the weight assigned to the objective factor measure? Notice that even if one
critical factor is not satisfied by a location i, then CFM ; and hence LM ; are equal
to zero. The OFM ; values are calculated so that the location with the maximum
Y OF; gets an OFM ; value of zero and the one with the smallest ) © OF; value gets
an OFM ; value of one. Equation (3.13) assumes that the objective factors are cost
based. If any of these factors are profit based, then a negative sign has to be placed in
front of each such objective factor and (3.13) can still be used. This works because
maximizing a linear profit function z is the same as minimizing —z.

After LM ; is determined for each candidate location, the next step is to select
the one with the greatest LM ; value. Because the a weight is subjectively assigned
by the user, it may be a good idea for the user to evaluate the LM ; values for var-
ious appropriate a weights, analyze the trade off between objective and subjective
measures, and choose a location based on this analysis (Heragu 1997).

3.2.2 Techniques for Continues Space Location Problems

3.2.2.1 MiniSum Problems for Rectilinear Distance

Median method with point facilities. As the name implies, the median method finds
the median location (defined later) and assigns the new facility to it. This method
is used for single-facility location problems with rectilinear distance. Consider m
facilities in a distribution network. Due to marketplace reasons (e.g., increased cus-
tomer demand), it is desired to add another facility to this network. The interaction
between the new facility and existing ones is known. The problem is to locate the
new facility to minimize the total interaction cost between each existing facility and
the new one.
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We can rewrite expression (1) as follows:

Min f(X):Zwi |x,-—x|—|—Zw,- lvi =yl (3.14)

i=1 i=l1

Because the x and y terms can be separated, we can solve the optimal x and y
coordinates independently. Here is the median method:

Median method’s steps

e Step 1. List the existing facilities in no decreasing order of the x coordinates.
e Step 2. Find the jth x coordinate in the list (created in step I) at which the
cumulative weight equals or exceeds half the total weight for the first time;

m

Jj—1 m J
3w <Zv;" and ZWI‘ZZV;- (3.15)
i=1 i=1

i=1 i=1

e Step 3. List the existing facilities in no decreasing order of the y coordinate.

e Step 4. Find the kth y coordinate in the list (created in step 3) at which the
cumulative weight equals or exceeds half the total weight for the first time:

m

k—1 k
3w < Xm:v; and Y w; > Zv; (3.16)

i=1 i=1 i=l1 i=l1

The optimal location of the new facility is given by the jth x coordinate and the kth

y coordinate identified in steps 2 and 4, respectively.

Programmed mathematical method with point facilities. Although the median
method is the most efficient algorithm for the rectilinear distance, single facility
location problem, we present programmed mathematical method for solving it. It in-
volves transforming the nonlinear, unconstrained model given by (3.14) into an
equivalent linear. Consider the following notation:

= (xi —x) if(x,-—.x)>0 (3.17)
0 otherwise
i — if (x; —x) <0
X = (x —x) if (v —x) <0 (3.18)
0 otherwise
‘We can observe that
;=] = x4 (3.19)

Xi+x = xiJr — X . (3.20)

1
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A similar definition of yl.+, y; yield

i =yl =yt +y7. (3.21)
yi+y =yt—y. (3.22)

Thus the transformed linear model is:

n
Min Y “wi(x 4 X7+ yi 4 370, (3.23)
i=1
Subject to
x,-—i—x:x;r—l—xf,i:],...,n, (3.24)
vity=yt—yi=1,...n, (3.25)
x;r,xi_,yf,yi_zo,izl,...n, (3.26)
X, y unrestricted in sign. (3.27)

For this model to be equivalent to (3.14), the solution must be such that either xiJr
or x;, but not both, is greater than zero. [If both are, then the values of x and x
do not satisfy their definition in (3.17) and (3.18).] Similarly, only one of yl.+, yi
must be greater than zero. Fortunately these conditions are automatically satisfied
in the preceding linear model. This can be easily verified by contradiction. Assume
that in the solution to the transformed model, xl-+ and y;” take on values p and g,
where p, ¢ > 0. We can immediately observe that such a solution cannot be optimal
because one can choose another set of values for, x;r , x; as follows:

xi+ = p—min{p,q},x; =q —min{p,q}. (3.28)

And obtain a feasible solution to the model that yields a lower objective value than
before because the new x;7, x;~ values are less than their previously assumed val-
ues. More over, at least one of the new values of x;", x; is zero according to the
expression (3.28). This means that the original set of values for xl.+ , X; could not
have been optimal. Using a similar argument, we can show that either y™ or y~
will take on a value of zero in the optimal solution.

The model described by expressions (3.19), (3.21), (3.23) and (3.27), can be
simplified by noting that xi ™ can be substituted as x — x; + xl-Jr from equality
(3.20) and the fact that x is unrestricted in sign. Also y may be substituted similarly,
resulting in a model with 2n fewer constraints and variables.

Contour line method for point facilities. Contour lines are important because if
the optimal location determined is infeasible, we can move along the contour line
and choose a feasible point that will have a similar cost. Also, if subjective factors
need to be incorporated, we can use contour lines to move away from the optimal
location determined by the median method to another point that better satisfies the
subjective criteria.
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We now provide an algorithm to construct contour lines, describe the steps, and
illustrate with a numeric example. Algorithm for drawing contour lines is as follows:

e Step 1. Draw a vertical line through the x coordinate and a horizontal line through
the y coordinate of each facility.

e Step 2. Label each vertical line v;, i = 1,2,..., p, and horizontal line H;, i =
1,2,...,q, where

e V; = sum of weights of facilities whose x coordinates fall on vertical line i

e H; = sum of weights of facilities whose y coordinates fall on horizontal line j

e Step3.Seti = j =land Ng = Dy = — ) w;.

e Step4.Set N; = N;—1 +2V;;and D; = ll),-il + 2H;. Incrementi =i + 1 and
j=Jj+1L
Ifi < porj <gq,repeat4. Otherwise,seti = j = 0.

e Steps 5. Determine Sj;, the slope of the contour lines through the region bounded
by vertical lines i and i + 1 and horizontal lines j and j + 1 using the equation
S; = —N;/D;.Incrementi =i + land j = j + 1.

e Step 6.Ifi < porj < g, gotostep 5. Otherwise, select any point (x, y) and
draw a contour line with slope S;; in the region [i, j] in which (x, y) appears so
that the line touches the boundary of this region. From one of the endpoints of
this line, draw another contour line through the adjacent region with the corre-
sponding slope. Repeat this until you get a contour line ending at point (x, y).
You now have a region bounded by contour lines with (x, y) on the boundary of
the region.

There are four points about this algorithm. First, the numbers of vertical and
horizontal lines need not be equal. Two facilities may have the same x coordinate
but not the same y coordinate, thereby requiring one horizontal line and two vertical
lines. In fact, this is why the index i of V;; ranges from one to p and that of H;
ranges from one to gq.

Second, the N; and D; computed in steps 3 and 4 correspond to the numerator
and denominator, respectively, of the slope equation of any contour line through the
region bounded by the vertical lines i and i + 1 and the horizontal lines j and j + 1.
To verify this, consider the objective function (14) when the new facility is located
at some point (x, y) thatis, x = x,y = y:

S =Y wilxi = x|+ wilyi =y (3.29)
i=l1 i=l1

By noting that the ;s and H/s calculated in step 2 of the algorithm correspond
to the sum of the weights of facilities whose x, y coordinates are equal to the
X, y coordinates, respectively, of the i, j distinct lines and that we have p, g such
coordinates or lines (p < m, g < m), we can rewrite (29) as follows:

SX) =) Vilxi—x|+ Y Hilyi—yl. (3.30)
i=1 i=1
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Suppose that x is between the s and (S +/), (distinct) x coordinates or vertical lines
(since we have drawn vertical lines through these coordinates in step 1). Similarly,
let y be between the ¢ and (¢ + [) vertical lines, then

S P t q
fX) =) Vix—x)+ Y Vit —x)+ Y Hi(y—y)+ Y Hi(yi—y).
i=l1 i=S+1 i=l1 i=t+1

(3.31)

Rearranging the variable and constant terms and added and subtracted terms we can
reach this equation (for details see Heragu 1997):

f(X):|:22S:Vi_iwi:|x+|:2ZHi—§:Wi:|y+C. (3.32)

i=1 i=1 i=l1 i=l1

Equation (3.26) is f(X) = Ny;x + D,y + ¢, which can be rewritten as
N
y:—D x4+ (f(X)—o). (3.33)
t

This expression for the total cost function at x, y or, in fact, any other point in the
region [s, ¢] has the form y = mx + ¢, where the slope N = —N;/D;. This is
exactly how the slopes are computed in step 5 of the algorithm.

We have shown that the slope of any point x, y within a region [s, ¢] bounded by
vertical lines sand s + 1 and horizontal lines ¢ and ¢ 4+ 1 can be easily computed.
Thus the contour line (or is cost line) through x, y in region [s,¢] may be readily
drawn. Proceeding from one line in one region to the next line in the adjacent region
until we come back to the starting point (x, y) then gives us a region of points in
which any point has a total cost less than or equal to that of (x, y).

Third, the lines Vi, Vpyi and Hy, Hp4 are required for defining the “exterior”
regions. Although they are not included in the algorithm steps, the reader must take
care to draw these lines.

Fourth, once we have determined the slopes of all the regions, the user may
choose any point (x, y) other than a point that minimizes the objective function
and draw a series of contour lines in order to get a region that contains points (i.e.,
facility locations) yielding as good or better objective function values than (x, y).
Thus step 6 could be repeated for several points to yield several such regions. Begin-
ning with the innermost region, if any point in it is feasible, we use it as the optimal
location. If not, we can go to the next innermost region to identify a feasible point.
We repeat this procedure until we get a feasible point (Heragu 1997).

3.2.2.2 MiniSum Square Euclidean Distance

Programmed mathematical method with point facilities. This problem can be for-
mulated as follows:
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Min f(x,y) =Y wi[(x—a)* + (v = b:)’]. (3.34)

=1
Any point (x*, y*) that minimizes (34) must satisfy the conditions

(3f(X*,y*) If (x*, ™)

ox* ox

) = (0,0). (3.35)

Computing the partial derivatives of (3.34) with respect to x and y and then setting
them to zero gives the following unique solution:

m
Z widi
=" (3.36)
> Wi
i=1
m
Z wib;
yr=""0 (3.37)
> wi
i=1
The coordinates x* and y* of the new facility may thus be interpreted as weighted
averages of the x and y coordinates of the existing facilities, and are, in fact, the
coordinates that minimize (3.34). Conditions (3.35) can be shown to be both neces-
sary and sufficient for a minimum. Thus, the gravity problem has a simple solution.
The solution is sometimes referred to as the cancroids or center of gravity solution.

Contour line method for point facilities. Contour lines for this problem can be
obtained quite easily. We have two cases; in the first case there exists a single facility.
In the second case there is equal item movement between the new facility and each
of the two existing facilities. Consequently, it is easy to imagine that the contour
lines will be concentric circles centered on the optimum location.

Now, what do you think the contour lines will look like when we have any num-
ber of existing facilities with unequal item movement? If you suspect the contour
lines will still be concentric circles centered on the optimum location, your intuition
is remarkable, for that is the case. To see why this is true, notice that from (3.34) we
want to determine the set of all points (x, y) such that

k= "wi[(x—a) +(—b)]. (3.38)
i=l1

In this section k is a constant value. Consequently, on expanding the squared terms
we find that

k= xziwi —ZXiW,‘ai +iwiai2+y2iw,~ —2y iwibi -|—W,'bl-2.

i=1 i=1 i=1 i=1 i=1
(3.39)
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If we let ”
W = Zwi‘ (3.40)
i=1
Divide (3.40) b; W, and employ the relations (3.36) and (3.37), we find that
k ) " wia? " wib?
= x%* —2xx* ” 2 2yy* L 3.41
b= xx* + Z W +y yy© + Z W (3.41)

i=1 i=1

On adding (X*)? and (y*)? to both sides of (3.41) and simplifying, we obtain the
equation for a circle,
rP=(x—x*)?+ -y (3.42)

Centered on the point (x*, y*) with radius

mo (2 4 b2 0.5
r:|:§/+(x*)2+(y*)2—ZWl (a’W+ ’)] : (3.43)

i=1

This is an interesting and, to us, a nonnutritive result. Based on this result, if you are
unable to locate the new facility at the optimum location (x*, y*) and must evaluate
alternative sites, you should always choose the one that has the smallest straight-line
distance to the point (x*, y*) (Francis and White 1974).

Solution method for regional facilities. For simplicity of notation, the effective
distance is denoted in the square Euclidean case by De?. Polar coordinates are used.
A point inside the facility circle is (x, #), and a point inside the demand circle is
(y, 0) (where the origin is the center of that circle). Note that the denominator of
(3.9) is the product of the areas of the two circles. It follows from (3.9) that

2
{ I 02” j;)R [(d+y cos ¢ — x cos0)% + (y sin ¢ — x sin 8)%]x.dx.d6.y.dy.d¢

2
be = aR2mr? '
(3.44)
Straightforward calculations lead to
RZ 2
D? = d? ;” . (3.45)

Formula (3.45) leads to the following simple theorem:

When demand points and/or facilities have a circular area, then the squared-
Euclidean MiniSum problem has the same optimal locations of facilities as the
problem defined whit point at the center of the circles.

By (3.45), the objective function consists of two parts. The first (the weighted
sum of d?) is identical to that of the problem defined with points. The second part
[the weighted sum of (R? + r?)/2] is a constant for given weights and radii of
circles. The theorem clearly follows.
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Note that even though the optimal locations of the facilities are the same, the
minimal cost increase by the constant value of the second term of the objective
function (Drezner 1986).

3.2.2.3 MiniSum Euclidean Distance

Weisfeld method with point facilities. The approach that immediately comes to mind
in solving the Euclidean distance problem is again to compute the partial derivative
of (3.7) and set them to zero. Assuming (x,y) # (a;,b;),i = 1,2,...,m, the
partial derivatives are

af (x,y) =Xm: wi(x —a;)

, (3.46)
dx i=1 [(x —a)’ +(y - 191‘)2]0.5

of (x.y) _ ¥ wi (y = bi) _ (3.47)
dy i=1 [(x —a)’ +(y - bz‘)z]o-s

Notice that If, for any i, (x,y) = (a;,b;), then (3.46) and (3.47) are undefined.
Consequently, we see that difficulties arise when the location for the new facility
coincides (mathematically) with the location of some existing facility. If there were
some guarantee that any optimum location of the new facility would never be the
same as the location of an existing facility, then (3.46) and (3.47) would still give
necessary and sufficient conditions for a least cost location of the new facility. Un-
fortunately, there is no such guarantee available. Consequently, a modification of the
partial derivative approach is required. The modification is based on the two-tupelo
R(x, y), which is defined as follows, if (x, y) # (a;,b;), i =1,...,m

af (x, af (x,
R(x.y) = f(x )’), f(x,y) _ (3.48)
0x ady
Andif (x,y) = (ar,by), k=1,2,....m
(0,0), if ux < wy
R(x,y) = R(ax,by) = (”ku_kwksk, uk;{Wk lk) = wy (3.49)
where
_y Wi (@ —ar) 3.50
Sk = Z 5" (3.50)
= (@ + = 0?]
i
m - (b — by
f = Z Wi (b = bi) 3.51)

[ —an? + e —0]”

RN
=~
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The two-tuple R(x, y) is defined for all points in the plane. A necessary and suf-
ficient condition for (x*, y*) is established to be a least-cost new facility location
is that R(x*,y*) = (0,0), Consequently, the location of some existing facility
(ax, ax), will be the optimum location for the new facility if and only if u; < wy
Thus, one should compute the value of u; and compare it with the value of Wk if
it is suspected that the optimum new facility location coincides with the location of
existing facility k.

Although we have available necessary and sufficient conditions for an opti-
mum solution to the Euclidean problem, we still do not have a way of determining
(x*, y*). The two-tuple R(x, y), referred to subsequently as Kuhn’s modified gra-
dient, can also be manipulated to provide the basis for a computational procedure
for finding the location (x*, y*). Notice that, on setting (3.46) equal to zero, we
obtain the expression

m

" w; wid;
N _ . (352
x [ —ay+o—00]" z [ —ar+ o -002]"

If we let -
gi(x,y) = ’ : (3.53)
[(x —a)? + (v = b))
Then (3.53) can be given as
m
; aigi(x,y)
= l_g-(x o (3.54)
Likewise, from (3.47) we obtain
2. bigi(x.y)
y == . (3.55)
gi(x,y)

So long as g(x, y) is defined, we can employ the following iterative procedure:

> aigi(x D, &)
k=11 : (3.56)
> gi(x®=h, ylh)

i=1

m
> bigi(x7h, yTh)

yo="1 . (3.57)
> gi(x®k=h, yk=)
i=1
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The superscripts denote the iteration number. Thus, a starting value (x°, y°) is re-
quired to determine. The value of (x!, y!) is used to determine the value of (x?, y?),
and so forth. The iterative procedure continues until no appreciable improvement oc-
curs in the estimate of the optimum location for the new facility, or until a location
is found that satisfies Kuhn’s modified gradient condition.

HAP method with point facilities. An alternative iterative solution procedure can
be employed to solve the Euclidean problem without employing Kuhn’s modified
gradient procedure. The procedure is almost identical to that given by (3.56) and
(3.57). With the exception that g; (X, y) is defined as
wi .
gi(x,y) = o5l =12,...,m, (3.58)
[ =a)+ 0 -b)*+ €]
where ¢ is an arbitrarily small, it is positive valued constant. Notice that (3.58) is
always defined. Furthermore, as the value of ¢ approaches zero, the new function
approaches the original function. We have found that the use of (3.58) in (3.56) and
(3.57) produce a very efficient solution procedure for the Euclidean problem.

Contour line method for point facilities. Unfortunately, exact methods for con-
structing contour lines are not available for the Euclidean problem, except for
the simplest cases where there are one or two existing facilities. As illustrated in
Fig. 3.3. The contour lines for case (a) are for a single existing facility and for case
(b) are for two existing facilities, each having equal item movement with the new
facility.

It is relatively simple to obtain approximate contour lines by evaluating the cost
function over, say, a rectangular grid of points covering the ranges of (x, y) values of
interest. The contour lines can then be drawn by interpolating between grid points.
Alternatively, one can assign a given value k to f(x, y) in (7), pick a value of x,
and search over y for the two values that yield the value k. The process is continued
for successive values of x until a family of points is obtained for the contour line
having value k (Francis and White 1974).

Solution method for regional facilities. For similarity of notation, the expression
for d, in this case is similar to that of (3.44). The change is that the integrand in
(3.44) is put under a square root. This small change turns the four-dimensional inte-
gration into a real challenge.

Fig. 3.3 Contour lines for two simple Euclidean location problems (Francis and White 1974)
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First calculate an approximation for d2 for a large d, i.e., d > R, R.let I be
the integrand. Then

I =(d +y cos ¢ —x cos 0)> + (y sin ¢ —x sin 6)* (3.59)
With appropriate integrand, we have

Qe d 4 R>+7r2 (R*+r??

‘ 4 64d> (360

And if the last term is ignored (since d is large), then (3.60) is similar to (3.45).
Therefore, for a large d,

d, = \/d*> + (R? + r2) /4. (3.61)

Is a good approximation of d,. Note that the approximation (3.60) is not defined for
d = 0 and tat it is far off for a small d, while d, turns out to be quite accurate for
small d, also.

The exact calculation of d, is long and tedious. You can see the summarized of
exact calculation of d, in Drezner (1986).

The goodness of the approximation of d, to d, was checked in Drezner (1986),
the ratio between the two was calculated. The ratio d,./d, was found to be between
0.75 (forr = d = 0) and 1 (for large d and any r).

Finally, it was checked the goodness of the approximation:

4
dy= \/dz + o (R +17). (3.62)

The number 4/9 was chosen so that d4 = d, forr = d = 0. It was found that
d, < d4 <1.07d,, which is a better approximation than d,.

The point facilities location problem in two regions with different norms. Suppose
the plane is divided by a straight line into two regions with different norms. We
find the location of a single new facility such that the sum of the distances from
the existing facilities to this point is minimized. This is a non-convex optimization
problem. We have the optimal solution lies in the rectangular hull of the existing
points.

Suppose the plane, R?, is divided by a straight line, y = mx, into two region,
71, with an [ py, and 7, with an /P2 norm (p;, p» > 1). Suppose also that there are
respectively, n; and n, points on each side. The problem is to find the location of
a new point such that the sum of the weighted distances from the existing 7| + n;
points to this is minimized. Mathematically the problem can be stated as

prmin ¢ Y wid(xop) + Y wid(xp (3.63)

pi € pi€m2



3 Single Facility Location Problem 55

where d(x, p;) is the shortest distance, induced by the norms, between the existing
point p; = (a;,b;), and the new point x = (x,y); w;’s > 0 are given weights
assigned to the p;’s. when x and p; are both on the same side of the dividing line,
then the problem reduces to a single norm problem; for the /; and /5, d(x, p;) is the
rectilinear or Euclidean distances between them. The difficulty arises when x and
pi are on different sides of the boundary line.

We consider the special case of /; and I, with the boundary line y = mx. Note
that without loss of generality we assume that the line passes through the origin.
There are also make the more realistic assumption that for the points on the ; side,
the shortest distance may involve passing through the boundary.

Model properties. There are some properties of the problem for the special case of
[y and /; norms. We have a fixed point p € m,, an x € 7y, and a fixed (straight) line
segment L of any orientation. Let

d(x,p) = melln {ki(x,2) + ka(z, p)} s (3.64)

where k| and k; are arbitrary norms. Then d is a convex function of X.

There is a characterization of the crossing (gate) points on the boundary line and
the shortest path connecting two points on different sides of the line.

Suppose R? is divided by a straight line, y = mux, into two regions, 7, and 7,
whit /1, and /; norms, respectively. Assume, without loss of generality, that m > 0.
Then for any pair of given points p; = (a;, b;) € 7 and p» = (a1, b)) € m
the shortest path form p; to p, passes through the line segment connecting points
(a1, m ay) and (by/m, by) on the boundary line.

The intersection of the shortest path connecting points p; € m; and p, € m;
whit the boundary line y = mx (m > 0) is either one of the points (a;,ma;) and
(b1/m, by), or the point (x, mx), with x given above, ifa; < x < b;/m.

There is optimal solution to the overall problem in the rectangular hull of the
existing points. The rectangular hull of a set of points is defined as the smallest
rectangle with sides parallel to the (x and y axes) containing the set.

Solution procedure. Big square small square (BSSS) method is a geometrical branch
and bound algorithm.

The procedure start with the rectangular hull, R, of the existing points, it contains
the optimal solution then we partition R into four rectangles by drawing vertical and
horizontal lines through the middle of its sides. At partitioning level k, denote these
rectangles by Ry, Rk2, Rks, and, Rrs. We take the points at the center of each
rectangle and evaluate the objective at these points. The best solution provides an
upper bound for the overall problem.

The distance between points inside a rectangle is taken to be zero. The distance
between a point p; outside a rectangle R and the point inside that rectangle is taken
to be the distance between p; and the closest point to it on the boundary of R which
could either be a corner point of R, or the projection of p; onto R. note that since R
is closed and convex, such a point indeed exists.
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A sub-square for which the lower bound exceeds the value of the best known
solution is fathomed. The process continues until the larger side of the sub-rectangle
is less than a given tolerance, €. The steps of the algorithm are outlined below. The
input to the algorithm is a set of existing points, and the termination tolerance ¢.
The output is the optimal location of the new facility, X}, and the optimal objective
value, fp.

Algorithm

1. Find the rectangular hull of existing facilities, R; set L = 0, f, = o0; and let
d* = max {x_max Xmin y_max ymin};

2. Set! = I+1, and partition R into four equal sub-rectangles R; 1, R;2, R;3, Rja4.
Calculate the objective value fir at the midpoint of each sub-rectangle. If minr{fir}
< fp, update f; to this value.

3. For each demand point p; find the minimum distance dir from p; to R;,,
r=1,....4, Iy, =Y i w; dir. If I, , > fp, fathom Ry, and set [, , = oo.

4. Set I} = minr{ly; .} and r’ = argminr{l,; ,}. If [; = oo, go to step(6); else,
if (0.5)L d* < & go to step (5); else, set R = Ry ,s: fathom R; , and set
R ,» = 00, and go to step (2).

5.1f Ib" < fy, set f = I, define Xb as the center of sub-rectangle Ry ,’, and
fathom this rectangle.

6. Set L = L —1;if L = 0 go to step (7); else, if unfathomed sub-rectangles at
level L are found, choose the one with the most favorable /,; donet it as R, and
return to step (2); else, repeat step (6).

7. Terminate the algorithm with optimal new facility location X} having the objec-
tive function value f;, (Zaferanieh et al. 2008).

3.2.2.4 MiniSum LP-Norm Distance (Francis et al. 1992)

Weiszfeld procedures. The Weiszfeld procedure depends upon the convexity of the
Euclidean metric, and thus, utilizes the first order necessary and sufficient condi-
tions. Since it is impossible to express the unknown variables x; and x; in closed
form equations, the first order derivatives cannot be solved directly. Instead, an itera-
tion function is obtained by using these derivatives. In order to eliminate the obvious
difficulty caused by the discontinuities in the derivatives, we use an approximation
of the /,-norm in the objective function. We employ the following hyperbolic ap-
proximation of the /,-norm.

- /2 271/ P
Ip(u,v) = |:((u1 —v)?+ G)p +<(u2 —m)+ G)p :| ,where p > 0,e> 0.
(3.65)

We use the notation 5(X) to denote the objective functions of the approximated
[ ,-norm for single facility location problem.
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n (p/2)—1 _ _
Sy (6 —an)+e) " (G ()

k+1 _ J=1 B
A (p/2-1 _ L 1=1,2. (3.66)

i wj ((xzk _ajt)2 + e) ([p (xk,aj))l_p

j=1

It should be noted that in order to deal with a well-formulated problem, we assume
that all new facilities are chained. New facility i is chained if there exists a positive
wy;; where j is any existing facility or if there exists a positive wy; where r is any
chained new facility (Uster and Love 2001).

In addition, the convergence of the Weiszfeld algorithm is discussed in Uster and
Love (2000).

Bounding method. The Weiszfeld procedure is basically an iterative steepest-
descent algorithm with a predetermined step size. Therefore, to terminate the
iterative procedure, a stopping rule or a bound for the best objective function value is
required. The rectangular bound at iteration is obtained by solving a rectangular dis-
tance location problem. The bound problem involves locating the same number of
facilities in the original problem with respect to the existing facility locations with
newly created weights. At iterations, the percent difference between the optimum
objective function value of the rectangular bound problem and the current objective
function value of the original problem is calculated. If this difference is smaller than
a termination value that prespecified by the user, the procedure is terminated (Uster
and Love 2001). A rectangular bound for the iterative can be obtained by using the
Holder inequality given by

N N p , 1/q
D leifil < (Z |oez-|1’) (Z W) : (3.67)
i=1 i=1 i=1

where o and B are N-dimensional vectors, p > 1 and 1/p + 1/q = 1. Taking
N = 2 for the planar location model and letting

o = ((vi—ap) + e)l/z, (3.68)
Bl = ((xf —ap) + e)(’Hm, (3.69)
a = ((x2 —ap) + e)l/z, (3.70)
fo=((h —ap)’ + e)(lﬂ)/z. (3.71)

We obtain

@B+ axfa < ((a1)” + (@)")? x (BT + (B4 (3.72)
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Rearranging terms, we have

- 2 p/2 2 p/2\ V4
l,(x,a;) (((x{‘ —aj) + e) + ((x’z‘ —ap) + 6) ) > 1B + azps.
(3.73)
Rewriting the second term on the left-hand side, we obtain
- - -1
Lx,a)) (I, (x*,a;))"" = a1 + azfo. (3.74)
In order to obtain the cost function of the minimum model, we multiply both sides
by w; and sum for j = 1,...,n. Thus, we have
S(X):iwilp(x,aj)ziwi i pi —|—iwi P2 .
j=I j=I (lp(xk»ai))pil j=1 (lp(xk,ai))pil
(3.75)
Minimizing both sides of the inequality over x gives
n o ﬂ n o ﬁ
S(x*) > min Zw,- o + Zw,- P2 ) (3.76)
. j=I (lp(xk,ai))p_l j=l (lp(xkvai))p_l

Without changing the direction of the inequality, the terms ¢; and o, can be sim-
plified as |x; — «;i| and |x, — «;»|, respectively. Thus, the bound as a rectangular
distance problem, S B¥ (X), is found as

S BK(xR) = m}iQnZuj |x{t —aj| —|—r?}2n2uj |x{ —ajl, (3.77)

X2 =1 2 =1

where

Bi B B> o
w;i - and Vi =Ww; . , J=1,...,n.
(I, (xk, aj))r=t (Ip(x*,a;))r=!

P J P J

(3.78)

For notational convenience, we denote the solution of a rectangular distance location
problem by x®, and thus, the bound at an iteration k is given by S BX (x®*). Let
5;(X), j =1,...,n, denote the terms in §(X ). Then the first derivatives of §; (X)
with respect to x; and x; are

Mj=

B 2 (p—1)/2
05,00 _ ((XI —aj) + 6)

dx; Tk a ) )

((xl _“”)) . (3.79)
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And

~ 2 (p—l)/2
05,00 _ ((o—ap)+e€)

((xz—ajz)) .
j ~ B ) j=1...,n
(Ip(x*,a;))r=! o2

(3.80)

axz

By letting e — 0 and using the equality (x; — ;) = sign(x; — «j;)|x; — aj|, for
t = 1,2, we can simplify the last terms and obtain

» 2 (p—1)/2
9S8 (x) . ((X1 —an) + e)

j (ip(xk,aj))l’_l sign(x; —aji), (3.81)

8x|

And

B 2 (p—1)/2
05;(0) _ ((o=ap)+ )

T,k a )

Thus, u; and v; can be rewritten as

sign(xo —aj2), j=1,....n. (3.82)
axz

S (x*)
3)(1

S (x%)
3)(2

i =

i . j=1,....n. (3.83)

3.2.2.5 MiniMax Problems

There is another class of single facility location problems that we should mention,
called MiniMax problems. One of the best known such problems, called the circle
covering problem, involves enclosing m known points in the plane within a circle
of minimum radius. The circle covering problem is equivalent to the problem of
locating a new facility with respect to m existing facilities so as to minimize the
maximum Euclidean distance from the new facility to the existing facilities. The
circle covering problem may be of interest in locating a transmitter of some kind,
or a receiver, so as to “‘cover” m stations with as strong signal strength as possible.
Also, the problem of stationing a helicopter so as to minimize the maximum time
for it to respond to an emergency at anyone of m sites is closely related to the circle
covering problem. Contrary to what one might think, the circle covering problem
cannot be solved by inspection (or at least no one has yet been able to do so). There
are, however, very efficient and relatively simple algorithms for solving the problem.

If we draw a circle about each of the m points of radius r. The intersection of the
m circles. Consists of all points whose maximum Euclidean distance to the m given
points is r or less. If we imagine reducing r until the intersection of the circles
is a single point, we obtain the solution to the circle covering problem. Such an
approach is now quite feasible when one has a computer terminal with the facility
for displaying circles, provided that m is not too large.
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Another problem, which we might term the diamond covering problem, occur
when we replace the Euclidean distances of the circle covering problem by recti-
linear distances. Here by “diamond” we mean a square with each edge making an
angle of +45° with an axis; the radius of the diamond is half the length of the line
segment joining opposite vertices. The diamond covering problem is easy to solve
by applying a 45° rotation we obtain an equivalent square covering problem which
we solve by constructing a smallest enclosing rectangle. If the rectangle is square,
its center is a MiniMax location. Otherwise, we extend the shortest of a pair of edges
to have the same length as the longer pair, and take the center of a square so con-
structed as a MiniMax location. Of course, we must apply a revel 45° rotation to
translate our answer back to a solution of the original problem in some cases there
will be more than one smallest enclosing diamond, resulting in alternative optimum
locations. As with the circle covering problem, it is easy construct contour sets. The
set of all points such that the maximum rectilinear distance between the points and
the m existing facilities is at most r consists of ¢ intersection of m diamonds, with
diamond i having a center at point i and a radius of r, fori = 1,...,m. Much the
same comments apply to these contour sets as made above for the circle covering
problem.

Circle covering problem. In this section we consider two approaches for solving the
circle covering problem.The first approach is basically geometrical in nature and is
particularly well suited for planar circle covering problems. The second approach is
more general, in the sense that it can be used not only for planar problems but for
analogous problems in three or more dimensions. For the first approach we present
an algorithm. For the second approach we show how to convert the problem into
an equivalent quadratic programming problem. Most available algorithms for solv-
ing quadratic programming can then be applied to solve the equivalent problem.
Let, first state the problem of interest precisely. We wish to minimize the function
g(x, y) defined by

g(x,y) = max{[(x —a;)’ + (y— b,-)z]l/2 1 <i <mj. (3.84)

Here, as usual, the points (a;, b;) are m existing facility locations, and (x, y) is anew
facility to be located in such a way as to minimize g(x, y). A problem equivalent to
minimizing g(x, y) is as follows:

Min Z (3.85)

Subject to
[(x—a)’+(y—b)1"*<Z 1<i<m. (3.86)

The equivalent problem has the following geometrical interpretation. The con-
straints state that each existing facility location must lie in a circle with center (x, y)
and radius z, so that the geometrical problem is to find a smallest circles that encloses
all the existing facility locations.
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We now consider briefly an algebraic approach to the circle covering problem
which is valid in any number of dimensions. With X and P; denoting the location of
the new facility and existing facility i, respectively, the Euclidean distance between
the two locations is the square root of the following term (where the superscript
denotes the transpose operation):

(x—p)" (x = pi). (3.87)

Hence an equitant version of the circle covering problem is as follows:

Min u (3.88)
Subject to
x=—p)'(x=p)<u i=1...m. (3.89)
Because
(x—p)' (x—p)=x"x—2p/ X + P/ p;. (3.90)

An equivalent way to write the constraints is as follows:
x'x—2pIX + P/ pi<u, i=1,....m. (3.91)
But now if we make the following change of variables,
v=x"x—u. (3.92)
‘We obtain the following equivalent version of the problem:
Min x7 x — u. (3.93)
Subject to

2pfx—v=plP, i=1,....m (3.94)

The latter problem is a quadratic programming problem with a convex objective
function and linear constraints, and thus is solvable by most quadratic programming
algorithms.

MiniMax location problems with rectilinear distances. The problem we consider
now is one of finding a new facility location that will minimize the following
function:

glx,y) =max{W;[|x —a;|+ |y —=bi|[| + h; : 1 <i <m}. (3.95)

As a possible example of the problem, suppose that (x, y) is the location of a “con-
venience” center and that “users” of the center are located at the existing’ facility
locations, the points (a;, b;) through (a,,, b,,). User i require a time of /; to prepare
to go to the center and then travels to the center at a time per unit distance of w;, so
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that w; [|[x — a;| + |y — b:|] + h; is the total time to prepare to go to the center and
then go there. The center is to be located so that the maximum such time for any
user will be minimized.
An alternative but equivalent formulation of the problem of minimizing g(x, y)
is the following one:
Min z (3.96)

Subject to
Willx —ai| + 1y —bill+hi <z, i=1,...,m. (3.97)

Because all the weights are positive, we can also write the problem as follows:
Min z (3.98)

Subject to
z—h;i .
|x —a;i|+ |y —bi| < ,i=1,...,m (3.99)
Wi

The constraints of the latter formulation state that the existing facility location
(a;,b;) is to be in a diamond with center (x,y) and radius (z — h;)/w; for
i = 1,...,m. Let us denote the problem with all unit weights and all zero ad-
dends by UP, which represents “unweighed problem.” Similarly, we let WPA denote
the weighted problem with some nonzero addends, and we let UPA denote the un-
weighed problem with some nonzero addends. For UP, the simplest problem, we
conclude that the problem is one of finding a diamond of minimum radius that will
contain all the existing facility locations. We now give an approach to solve the more
general problem UPA. This approach is based on the fact inequality.

|x —ail+ |y —bi| <ri=z—h;. (3.100)

Equivalent is to the following four inequalities:

x—a;i+y—>b <r, (3.101)
x—a—y+b <r (3.102)
—Xx+a —y+b <r, (3.103)
—x+a+y—>b <r. (3.104)

We can use this fact to transform UPA to a linear program which can be solved as
follows. Compute the following numbers:

cy=min{a; +b; —h; :i =1,...,m}, (3.105)
cy=min{a; +b; + h; ;i =1,...,m}, (3.106)
c3 =min{—a; +b;, —h; :i =1,...,m}, (3.107)
cy =min{—a; +b; +h; :i =1,...,m}, (3.108)

¢s = min{c; — ¢y, ¢4 — C3}. (3.109)
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The minimum objective function value is ¢s5/2, and the MiniMax locations are the
locations on the line segment L joining the following two points:

* * 1
(xl’yl): 2(Cl—Ca,Cl+C3+Cs), (3.110)

(x;,y;)z;(Cz—C4,C2+C4—C5). (3.111)
Consider the construction of level lines for the function g(x, y) of the problem
WPA. To construct level lines we construct level sets; the boundaries of the level
sets are the level lines. Level lines are of interest for exactly the same reasons we
discussed earlier for the MiniSum problems; they allow us to evaluate easily location
other than the optimal locations [those that minimize the function g(x, y)]. Let us
denote a level set of g(x, y) of boundary value Z by S(z), so that S(z) = {(x, y) :
g(x,y) < z}. We construct S(z) as follows. Given a value of Z of interest, we first
compute the following numbers:

—h;
cl(z):min%ai+bi+z :izl,...,m}, (3.112)
—
cz(z)zmin%a,-+b,-+ et :i:l,...,m}, (3.113)
Wi
. z—h; .
¢3(z) = min{ —a; + b; + i=1,...,my, (3.114)
—
64(z)=min%—a,~+bi+ et :i:l,...,m}. (3.115)
Wi

The level S(z) is then as follows:
S@ ={x.y):c2@ <x+y=<ci(@,csd) <—x+y <c3(x)}. (3.116)

If at least one of the inequalities ¢,(z) < ¢1(2), cs(z) < c¢3(z) does not hold, you
have chosen a value of Z that is smaller than the minimum value of g(x, y) and the
level set will be empty; thus you mast pick another value of Z which is large enough
so that both of inequalities hold. Supposing the level set to be nonempty, you should
be able to see that the level set is a rectangle, with two parallel sides making a + 45°
angle with the x axis and the other two parallel sides making a — 45° angle with
the x axis. The vertices of the level set, starting at the top corner and proceeding
clockwise, are as follows:

vi(z) = _(c1(z) — c3(2), c1(z) + c3(2)), (3.117)

[N N R

n(z) = _(c1(z) — ca(2), c1(2) + ca(2)), (3.118)
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v3(z) = _(c2(2) — ca(2), c2(2) + ca(2)). (3.119)

v4(2) = _(c2(2) = €3(2), 2(2) + ¢3(2)). (3.120)

N =N =

Hence you can plot a level set of value Z by first choosing Z, computing ¢;(z)
through ¢ (z), checking to be sure that the inequalities ¢;(2) < ¢1(z), c4(2) < ¢3(2),
are satisfied by the Z you have chosen, computing v;(z) through v4(z) and plot-
ting the four points, and then constructing lines joining v (z) and v»(z), v2(z) and
v3(2), v3(z) and v4(z), va4(z) and vi(z). The rectangle the lines enclose is the level
set of value Z, and its boundary is the level lines of value Z.

MiniMax problems with Tchebychev and rectilinear distances. In Sect. 3.2.2.4 we
saw that the diamond covering problem could be interpreted, given a 45° rotation,
as a square covering problem, and that this interpretation led to a simple solution
procedure for the diamond covering problem. What we do now is to exploit this
discovery in a systematic way. As a result, we will obtain an efficient means of
solving WAP, the MiniMax weighted rectilinear distance problem with addends.

Consider two points X and Y in the plane. Suppose that X and Y are the end-
points of the hypotenuse H of a right triangle, with the other two sides of the
triangle, denoted by A and B, being parallel to the horizontal and vertical axes, re-
spectively. We have seen earlier that the length of the hypotenuse H is the Euclidean
distance between X and Y, while the sum of the lengths of sides A and B is the rec-
tilinear distance between X and Y. We now introduce a new distance, called the
Tchebychev distance between X and Y, defined to be the maximum of the lengths
of sides A and B. In other words, if A is longer than B, then A is the Tchebychev
distance between X and Y, while if A4 is not longer than B, then B is the Tcheby-
chev distance between X and Y. We denote the Tchebychev distance between X
and Y by t(X, V). Thus if X = (X, X3),and Y = (Y1, Y3), then

t(X,Y) = max{|x; — yi|, |x2 — »2|}. (3.121)

What does a contour set of Tchebychev distance look like? Consider the set of all
points X whose Tchebychev distance from the origin is at most 1, that is, the 1
set of all points X = (X, X») satisfying ¢(x,0) < 1, or, equivalently, satisfying
max {|X1||X2| < 1}. The latter inequality is equivalent to |X;| < 1 and |X5| < 1.
But these last two inequalities are in turn equivalent to

—1<x;1<land —1<x, <1. (3.122)

Hence the set of all points X whose Tchebychev distance from the origin is at most
1 is a square with its center at the origin and each side of length 2. This square is
the Tchebychev analog of a circle with center at the origin and radius 1 and the
Tchebychev analog (for rectilinear distance) of a diamond with center at the origin
and radius 1. Of course, if we rotate a diamond by 45°, we obtain a square, a result
that should give you a good clue about the relationship between Tchebychev, and
rectilinear distances.
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Let us now explore the relationship between Tchebychev and rectilinear dis-
tances. It is convenient to introduce the following linear transformation, which we
denote by Q(X, Y):

Q(x,y)=(x,y)“ ;1} =(x+y.—x+y). (3.123)

You should be able to verify that the inverse transformation, denoted by Q! (u, v),
is given by

R (3.124)

11
Quw=ww| 2 T |=

2 2

Another aspect is that the rectilinear distance between any two vertices of D, namely
2, is the same as the Tchebychev distance between the corresponding transformed
points, the vertices of the square S. This result is no coincidence. Given any points
X and Y in the plane, let r(x, y) denote the rectilinear distance between X and Y,
if we compute points X’ and Y’ using the equations x’ = Q(X) and Y’ = Q(X),
it is known that

r(X,Y)=t(X',Y'). (3.125)

That is, the rectilinear distance between X and Y is the same as the Tchebychev
distance between the transformed points X’ and Y'. Equivalently, given any points
X’ and Y’ in the plane, if we compute points X and Y using the equations.

X0 '(X)and Y = Q71(Y). (3.126)

‘We conclude that
tX,Y) =r(X,Y). (3.127)

The consequence of the two equations above is that we can transform a planar lo-
cation problem involving rectilinear distances into an equivalent problem involving
Tchebychev distances, and vice versa. Hence we obtain equivalence between planar
location problems involving Tchebychev and rectilinear distances. This equivalence
is useful since it is often the case that one problem is easier to analyze than the other.

Let us consider converting the general MiniMax problem with rectilinear dis-
tance, denoted by WPA, into an equivalent problem with Tchebychev distances.
Recall that WPA is the problem of minimizing the function g(x, y), where

gx,y) =max{W;[|x —a;|+ |y = bi|] + h;i : 1 <i <m}. (3.128)

Let (u, v) be the result of applying the transformation Q to the point(x, y), and let
(o, Bi) be the result of applying the transformation Q to the point («i, 8i). We
know that

Willx —ai| + |y — bill + hi = wi max[|lu—o4|,|v—Bi| +hi =

max[w,- |u—oz,-| + hi,w; |v — ,31| + hz] (3.129)
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We can thus conclude that
g(x,y) = max{max[w;[|u — o |[+hi, wi+|v—Bi|]l+hi] :i =1,...,m}. (3.130)
Suppose that we know define the function g («) and g, (u) as follows:

g1(w) =max{wy lu—o;|+h; i =1,...,m}, (3.131)
o) =max{w; lv—Bi|+h; i =1,...,m}. (3.132)

It then follows that

max{max[wy |u—o;| + h;j,wi [v—Bi|+hi]:i =1,...,m} =

maxig (). g2(u)}. (3.133)

The reason for the latter equality is that regardless of the order in which we compute
the maximum of a collection of numbers, we obtain the same result.

If you examine the latter equation, you can see that the term on the left is the
same as the term on the right in our most recent equation for g(x, y); hence we
obtain a very useful result as follows: Given

(u,v) = Q(x,y). (3.134)

We have
g(x,y) = max{gi(u), g2(u)}. (3.135)

The consequence of our result is that we can minimize g(x, y) by solving two inde-
pendent minimization problems as follows:

1. We minimize g|(u) and obtain a minimizing point, say u.

2. Next, we minimize g,(«) and obtain a minimizing point, say v.

3. We can then apply the inverse transformation to (u*, v*) to obtain a point, say
(x*, y*), and conclude that (x*, y*) minimizes g(x, y).

4. Further, the minimum value of g(x, y) is equal to max {g;(u™), g»(u*)} (Francis
et al. 1992).

3.3 Case Study (Heragu 1997)

We now present a relocation project undertaken by a small facility. A small manu-
facturing company currently located in a university “tech park™ has witnessed major
growth since introducing an innovative technology into the marketplace. Its owner
now wants to find a new location and build a bigger facility. In January she hired
senior industrial and management engineering (IME) students at the university to
investigate several potential locations and select the one that best suits her needs.
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The student group adopted the following five step approach, which is based on the
hybrid analysis discussed earlier.

e Step 1. Determination of requirements: The students conducted interviews with
the owner and facility manager to determine these company specific requirements
for the new facility:

— The company will relocate in New York or Vermont.

— Atleast 15,000 ft of space is required.

— A power source of three phase, 440 W, and 200 A electrical service is manda-
tory to power the atomizers used in the manufacturing process.

— The current rent is $7.50 per square foot per year; the company wants to pay
between $3.50 and $4.50 per square foot.

— The company wants to move within the next 8 months.

— All suppliers and vendors should be within 100 miles of the facility.

— Alease of 1-2 years is preferred.

— There should be adequate room for expansion.

— An industrial park or shared facility is preferred.

— The facility should be located close to major highways and airports.

— A loading bay is required; easy access to the bay is desired.

— The new facility should be built to suit.

— The facility maintenance costs should be low or the owner of the building
must pay the maintenance and related expenses.

— The general condition of the building should be good.

— The building should not be considered high risk by insurance companies.

— It is desirable to have secretarial services available nearby.

— The local and state taxes must be reasonable.

e Step 2. Classification of location factors: Based on the interview with the owner,
the IME students classified the requirements into three categories:

Critical factors

— Minimum space requirement
— Three phase, 440 W, 200 A electrical service
— Support service providers and vendors within 100 miles

Objective factors

— Rent
— Space rented or leased
— Maintenance and insurance costs and taxes

Subjective factors

— Shared facility

Build to suit

Condition of loading bay

Proximity to airport and major highways
Lease length
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— Secretarial support
— Condition of building

e Step 3. Data collection: This step requires the most time, but it is very important
and should be done carefully. Information on potential sites and locations was
obtained from sources such as these:

— Chamber of Commerce

— Economic Development Council
— Real estate brokers

— Facility owners

o Step 4. Elimination of sites not meeting critical objectives and development of
a rating chart: From the ten sites for which data were collected, four did not
satisfy the first or the second critical requirement. For the remaining six sites,
machine shops and other support service providers as well as vendors were within
100 miles. The IME student group devised a chart showing the weights of the
objective and subjective factor.

e Step 5. Site visits and site evaluation: The students visited all six sites. Data and
rated collected for the sites.

After careful evaluation, the six sites were rated on this evaluation; the Cohoes,
New York, site appears to be the best location, with Bennington, Vermont, as a
(close) second best location (Heragu 1997).
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Chapter 4
Multifacility Location Problem

Farzaneh Daneshzand and Razieh Shoeleh

In the previous chapter, we studied the case of a single new facility to be located
relative to a number of existing facilities. In this chapter we consider the problem
of optimally locating more than one new facilities with respect to locations of a
number of existing facilities (demand points), the locations of which are known.

While the problems are natural extension of those of single facility location, there
are two important conditions:

1. At least two facilities are to be located
2. Each new facility is linked to at least one other new facility

If the first condition contracted, this problem is considered as a single facility lo-
cation problem (SFLP) and if the second condition contracted, we can consider the
problem as some of independent single facility location problems. Thus the SFLP
can be considered as a spatial case of the multifacility location problem (MFLP).

4.1 Applications and Classifications

As it is expected, applications of MFLPs occur in the same contexts as discussed
in the chapter “Single Facility Location Problem” by Esmaeel Moradi and Morteza
Bidkhori, this volume for SFLP. Ostresh (1977) represented some applications of
the MFLP as follows:

1. A system of warehouses is to be established to serve a set of predetermined
regions.

2. Industrial and commercial establishments tend to be more concentrated than ex-
pected on the basis of minimizing transport costs alone.

3. Inlarge organizations (such as the Federal government) face to face communica-
tion must take place between adjacent (usually) levels of the hierarchy.

R.Z. Farahani and M. Hekmatfar (eds.), Facility Location: Concepts, Models, 69
Algorithms and Case Studies, Contributions to Management Science,
DOI 10.1007/978-3-7908-2151-2 4, (© Physica-Verlag Heidelberg 2009
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A classification of different types of MFLP and their properties is shown in the
following statement:

Area solution: discrete, continual

The space in which facilities are located: planer location, sphere location
Objective function: MiniMax, MiniSum

Type of the distance: rectangular distance, Euclidean distance, squared Euclidean
distance, [/, distance

e Parameters: stochastic, deterministic

e How facilities are assumed: point, region

Researchers have worked on a variety of MFLPs. However no research has been
conducted on many types of MFLPs resulted from multiplying the above items.

4.2 Models

In this section we introduce MFLP models represented and developed as mathemat-
ical models.

4.2.1 MiniSum

The MiniSum multifacility location problem consisting of finding locations of new
facilities which will minimize a total cost function consists of a sum of costs di-
rectly proportional to the distances between the new facilities, and costs directly
proportional to the distances between new and existing facilities.

The general-model for this problem can be stated as follows:

4.2.1.1 Model Assumptions

The assumptions of this model are as follows:

The area solution is continual

The space in which facilities are located is planer

The objective function is MiniSum

Type of the distance can be either rectangular, Euclidean, squared Euclidean or
[, distance

Parameters are deterministic

e Facilities are assumed as points
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4.2.1.2 Model Inputs

Model inputs of this model are:

n: Number of new facilities

m: Number of existing facilities

w;;: Nonnegative weight between new facility i and existing facility j by a unit
distance

vir: Nonnegative weight between new facilities i and k by a unit distance

d(X;, P;): Distance between the location of new facility j and existing facility i
d(X;, Xy ): Distance between the location of new facilities j and k

P; : (a;,b;) The location coordinates of existing facility j

4.2.1.3 Model Output (Decision Variable)

Model output of this model is:

X; 1 (x;, i) The location coordinates of new facility i

4.2.1.4 Objective Function

Min > vid (X, Xi) + )Y wind(X;, P). (4.1)

1<j<k=<n j=li=l

Thus each of the m new facilities is to be located with respect to the n existing
facilities and also with respect to the other new facilities. The location of X; may
depend on the location of some point X because of the terms involving vj. For
convenience in the presentation, we assume all the wj; and all the v are positive.

Notice that it is the cost proportional to the distance between new facilities which
distinguish the MFLP from SFLP. In fact, when terms v;; are zero then (4.1) may be
written as

MIHZ ij,d(Xj, Pl) (42)
j=li=l

And (4.2) just defines a one-facility total cost expression. So that (4.2) is the sum of
n different one-facility cost expression and may be written as

Min ) (Miniji.d(Xj, Pi)). (4.3)

j=1 i=1

Since the location of one new facility has no effect upon the cost of locating other
new facilities for the special case where all v;; are zero, locations of new facilities
may be found by solving n SFLP independently.
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4.2.1.5 Rectangular Distance MiniSum Location Problem

In this section, we consider MFLP when we have rectangular distance. The objec-
tive of this problem is minimization of the weighted sum of the rectangular distance
between the locations of new facilities and new and existing facilities. For formu-
lation of this problem if in (4.1) we replace the d(X, P;) and d(X;, Xi) by (4.4)
and (4.5) The Rectangular MFLP problem can be formulated as (4.6) this problem
is of added interest since it will be shown that its optimal solution can be used to
compute both a lower and an upper bound for the value of the optimal solution to
the Euclidean problem.

d(X;. Xi) = |xj — x| + |y; — vl (4.4)
d(X;, P) = |x; —ai| + |y; = bi]. (4.5)
Min D= v (b — x| + [ = i)

1<j<k=<n

+ ) > wi(|xs —ai| + |y, = bil). (4.6)

j=li=1

The objective function is converted into two minimum problems:

Min f = Min fi(x) + Min f5(x). 4.7)

where: noom
LX) = Z vjk|xj—xk|+ZZWji|xj—ai, (4.8)

I1<j<k<n j=li=l
LY) = Z ij|yj_yk|+ZZWji|yj_bi|- 4.9)

I1<j<k<n j=li=I

Just like single facility location case in the chapter “Single Facility Location Prob-
lem” by Esmaeel Moradi and Morteza Bidkhori, this volume, optimum x coordinate
of new facilities can be found independent from optimum y coordinates. As you
see the objective function is nonlinear and we should make it linear. The method
of linearization is very similar to the method we used in single facility location in
the chapter “Single Facility Location Problem” by Esmaeel Moradi and Morteza
Bidkhori, this volume.

Linearization

Given numbers a, b, p and ¢,
If

a—-b—p+qg=0,
p-9 =0,
p=0,¢=0.
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Then
la—bl=p+gq.

So minimizing the objective function is equivalent to the following problem:

Min > vilpi+ gi) + Y D wilri + 80, (4.10)
1<j<k<n j=li=1
Subject to

Xj—Xk — P +qik =0 1<j<k<n, 4.11)
Xj—ri+si=a; i=1,....mj=1...,n, (4.12)
Pk ik = 0 l<j<k=n, (4.13)
Tjiy 8ji > 0 i=1,....mj=1,...,n, (4.14)
Pixgik =0 1<j<k=n, (4.15)
rji.Sji = 0 i=1,....m,j=1,...,n, (4.16)
X; unrestricted, j=12,...,n. 4.17)

As in the single facility location for any basic feasible solution, if pj is in the basic
feasible solution, gj; will not be and vice versa. Likewise, if r;; is in the basic feasible
solution, s;; will not be and vice versa. Since variables not in the basic feasible
solution are zero, the multiplicative constraints will be therefore satisfied for every
feasible solution. Minimizing f; is the same as what was done for f;.

4.2.1.6 Squared Euclidean Distance MiniSum Location Problem

In this section, we consider MFLP when we have squared Euclidean distance. The
objective of this problem is minimization of the weighted sum of the square of the
Euclidean distance between the locations of new facilities and new and existing
facilities. The problem considered in this section is also referred to as a “quadratic
facility location problem” and the “gravity problem”.

Although there aren’t too many situations where there are physical reasons for
using squared Euclidean distance, there are at least two reasons for the gravity
problem. First, in some cases the solution to the gravity problem can be used
to approximate the solution to the location problem where costs increase linearly
with Euclidean distance. Second, there exist location problems where costs increase
quadratically with the Euclidean distance between facilities.

For formulation of this problem if in (4.1) we replace the d(X;, P;) and
d(X;, X) by (4.18) and (4.19) the squared Euclidean MFLP problem can formulate
as (4.20)

d(Xj, Xi) = (xj —x)” + (v — )%, (4.18)
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d(X;. X;) = (xj —a)* + (y; —bi)’, (4.19)
Min f = > v [ —x0)? + (v — 3]
1<j<k<n

+) 0> wi [y —a)? + (v = b)) (4.20)

j=li=1

4.2.1.7 Contour Lines for Squared Euclidean MFLP

In MFLP construction of contour lines is possible expect for certain special case
when n = 2. In this section we want to observe the property of contour lines for
squared Euclidean MFLP

Let f(x,y) given in (4.20) be written as f(x,y) = f(x) + f(») where

SO =Y vl —x)t Y Y wiley —an). 421

1<j<k<n j=li=l
And
n m
FO =Y vy =)+ )Y wily; — b (4.22)
1<j<k=n j=li=l1

If n = 2, contour lines for f(x) are concentric ellipses centered on (x*, y*) and
contour lines for f(y) are concentric ellipses centered on (x*, y™*)

Because of the squared Euclidean MFLP is separable and symmetric in x and y,
only f(x) is considered and contour line is defined as the set of all points (x1, x;)
for which

k =via(x; —x2) + Zwli(xl —a;)* + ZWli(xz —a;)”. (4.23)

i=1 i=l1

And k is a constant denoting the value of the contour line. By expanding and col-
lecting terms it is seen that (4.23) can be expressed in the form of a general conic
section:

Axl2 + Bx1xy + Cx% +Dxi+ Ex, + F =0, (4.24)

where

A=vp +ZW11‘,

i=1

B = —2vy,,

C =V12+ZW2;',

i=1
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D = —2iw1,~a,~,

i=1

m
E = —Zszl-ai,

i=1

m m
2 2
D = E wiia; + E woid; —k.

i=1 i=1

A sufficient condition given by Thomas (1968) for (4.24) to be an ellipse is for the
discriminate, B2 — 4AC, to be negative. Direct substitution gives

m m m m
B?>—4AC = 4v%2—4v%2—4v12 (Zw1i+ szi) —4 (ZW”) (Z wzl-) < 0.
(4.25)

i=1 i=1 i=l1 i=l1

Assuming the problem is well formulated (4.24) is the equation for a rotated ellipse
as noted by the presence of the x;x, term. Due to symmetry a similar result is found
for the y variables. Furthermore, by definition of a contour line since k achieves its
smallest value at (x{, x}') the contour line is centered on the optimum location with
respect to the nonrotated axes (Eyster and White 1973).

4.2.1.8 Euclidean Distance MiniSum Location Problem

The Euclidean multifacility location problem often assumes that the transportation
costs from the new facility to a demand point are proportional to the Euclidean
distance between these points, with the factor of proportionality (weight) depending
on the demand point.

Here, this problem is mathematically formulated:

1
Min > v [(xj —x0)? + (v — w)?] b
1<j<k=<n

- , (4.26)
+ 2 Y i [(xj —a)® + (v; —bi)*]

j=li=1

It is interesting to note that when all the existing facility locations are collinear, that
is, all lie on a single line, the Euclidean model essentially includes the rectilinear
distance model.

4.2.2 MiniMax

Minimization of a sum of weighted distances that was introduced in Sect. 4.1.1 may
not be a proper goal when the facilities to be located must provide services of an
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urgent nature. Therefore in this section we introduce some multifacility location
problems with MiniMax objective function and by different type of distances.

4.2.2.1 Model Assumptions

Model assumptions of this model are as follows:

The area solution is continual

The space in which facilities are located is planer

The objective function is MiniMax

Type of the distance can be either rectangular, Euclidean, squared Euclidean or
[, distance

e Parameters are deterministic

e Facilities are assumed as points

4.2.2.2 Model Inputs

We have all the inputs in previous model.

4.2.2.3 Model Outputs (Decision Variables)

The outputs of this model are similar to the previous model.
4.2.2.4 Objective Function
Min f = Max{ ij.d(Xj s Xk), Wji.d(Xj s Pl)} (427)

4.2.2.5 Rectangular Distance MiniMax Location Problem

The problem considered is that of locating n new facilities among m existing facil-
ities with the objective of minimizing the maximum weighed Rectangular distance
among all facilities.

Min f :Max{wﬁ|xj—a,~|—|—|yj—b,~|j =1,...,n, i=1,...,m;
vie |x; —xi| 4+ |y; —we|1<j <k <n}. (4.28)
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4.2.2.6 Euclidean Distance MiniMax Location Problem

The problem considered is that of locating n new facilities among m existing fa-
cilities with the objective of minimizing the maximum weighed Euclidean distance
among all facilities.

Elzinga et al. formulated this problem in 1976:

Min f = Max{wji[(xj —a;)’ + (v b)) j=1,....ni=1....m
viel(x; = x0)* + (v — )21 < j <k <n}. (4.29)

4.2.3 Other Models

4.2.3.1 Rectangular Multi Product Multifacility Location Problem

This model considers multi products in MFLP. Sherali and Shetty (1978) formulated
the rectangular multi product MFLP.

4.2.3.2 Model Assumptions

Model assumptions of this model are as follows:

The area solution is continual

The space in which facilities are located is planer
The objective function is MiniSum

The distances are rectangular

Parameters are deterministic

Facilities are assumed as points

4.2.3.3 Model Inputs and Outputs (Decision Variables)

Model inputs and outputs of this model are as follows:

ciik: The cost per unit of product k to be transported from a new facility i to a
new or existing facility j

ugi: The known amount of product k to be transported from a new facility i to a
new or existing facility j ata cost of ¢;; per unit of the product, per unit distance.

(x;,yi): decision variables fori = 1,2,..., n and are fixed and known for each
facilityn +i,i =1,2,...,m’.
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4.2.3.4 Objective Function

The objective function of this model and its related constraints are as follows:

p n n+m
Min Y 3 e {|xi — x; | + |y = vy} (430)
k=1i=1 j=I

The objective function may be written as:

P n
Min ZZWU{|Xi—Xj|+|yi_yj }, (4.31)
k=1i=1
P
wij = Z (C,_'/‘kul_'/‘k + Cjikﬂjik) j=n+1,....,n+ m'. (4.32)
k=1

4.2.3.5 Multifacility Location Problem on Sphere

As it is known, one of the assumptions when locating facilities is concerned with
the size of the area covering the destinations (or the demand points). If the area
covering the demand points is sufficiently small, then this part of the earth’s surface
can be approximated by a plane. When the destination points are widely separated,
the area covering these points can no longer be approximated by a plane and the
formulations we discussed so far is not suitable.

Problems concerning location of international headquarters, distribution/
marketing centers, detection station placement, and placement of radio transmitters
for long range communication may fall into this category.

The location problem on a sphere is more complicated than its counterpart on the
plane, because unlike on plane the solution space is not convex on sphere.

Dhar and Rao (1982) formulated this problem. Any point on the sphere can be
defined by its latitude —7/2 < @ < /2 and longitude — < 6 < 7 and d; is the
shortest distance between points i and j.

4.2.3.6 Model Assumptions

Model assumptions of this model are as follows:

The area solution is continual

The space in which facilities are located is on sphere
The objective function is MiniSum

Parameters are deterministic

Facilities are assumed as points

The distance is defined as

d;j = Arccos[cos @; cos @; cos(6; — 0;) + sin &; sin @;]. (4.33)
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4.2.3.7 Model Inputs

We have all the inputs in MiniSum models.

4.2.3.8 Model Outputs (Decision Variables)

The outputs of this model are similar to the MiniSum models.

4.2.3.9 Objective Function

The objective function of this model and its constraints are as follows:

n m
Mings, Y valdi) + > wildy). (4.34)
I<j<k<n j=li=I
Subject to
—n/2 <®; <m/2, (4.35)
-7 <0 <m. (4.36)

4.2.3.10 Multifacility Location Problem with Rectangular Regions

So far we assumed each existing and new facility as a point. Wesolowsky and Love
applied the concept of Rectangular regions to MFLP in 1971a, b. They stated that in
many different contexts it is proper to treat the destination to be served as a region,
rather than a point such as in the location of a library or emergency services or
other public service facility designed to serve either a neighborhood or a densely
populated urban area.

Even when the users of the new facility are discretely distributed, the number of
users may become so large that it may be infeasible in terms of data collection and
computational efficiency to represent each customer by a point. In this situation it is
necessary to assume regional destinations in order to solve the problem.

4.2.3.11 Model Assumptions

Model assumptions of this model are as follows:

The area solution is continual

The space in which facilities are located is planer
The objective function is MiniSum

The distances are rectangular
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e Parameters are deterministic
e Facilities are assumed as regions

4.2.3.12 Model Inputs

We have all the inputs in MiniSum models in addition to the following inputs:
R, = [a,-l ,a,-z] Rectangular region i, where a;, < a;, and b;; < b;,
A;: The area of R;

4.2.3.13 Model Outputs (Decision Variables)

The outputs of this model are similar to MiniSum models.

4.2.3.14 Objective Function

The objective function of this model and its constraints are as follows:

Min) 3" //(|xj —ai| +|y; - bi|)daidb,
J lRi

i=1i=lI

+ > vl = x|+ [y - ). @37

i<j<k=<n

4.2.3.15 Stochastic Multifacility Location Problem

In many cases the parameters of the model are not deterministic. This model is
represented and solved by Seppalla (1975). In order to define a stochastic decision
model, we should first determine the stochastic parameters, how they are distributed,
whether they are correlated, and which decision criterion will be used in industrial
applications. The set of stochastic elements of planning models are often restricted
to consist only of demands for products, while other parameters or variables, such
as unit costs, capacities and locations, are considered to be fixed.

4.2.3.16 Model Assumptions

Model assumptions of this model are as follows:

The area solution is continual

The space in which facilities are located is planer
The objective function is MiniSum

The distances are Euclidean
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Parameters are stochastic
Facilities are assumed as points

4.2.3.17 Model Inputs

81

The weights v, wy; for all i, j and k are normally distributed random variables

The inputs of this model are similar to the MiniSum model in addition to the fol-

lowing:
a: is a predetermined probability
d: is an assisting
P{.}: is a probability operator

4.2.3.18 Model Outputs (Decision Variables)

The output of this model is similar to the MiniSum model.

4.2.3.19 Objective Function

The objective function of this model and its constraints are as follows:
Min §.
Subject to

d Z vie- [(x; = x1)” + (v — J’k)z]l/z

1<j<k=<n

+ YD i [ —ai) + (v —bi)z]l/2 <8 ¢ >a.

j=li=1

4.3 Solution Techniques

4.3.1 MiniSum

4.3.1.1 Rectangular Distance MiniSum Location Problem

(4.38)

(4.39)

The rectangular distance multifacility location problem always has a minimum cost
solution where the x coordinate of each new facility is equal to the x coordinate of
some existing facility and the same is true for y coordinate (Francis et al. 1992).
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If we call p; the linear programming problem obtained in (4.10) a straight for-

ward linear programming of p; can be time consuming when a large number of new
and existing facilities are involved.

Depending on the characteristics of a particular multifacility Rectangular loca-

tion problem, the optimum solution can be sometimes obtained in an iterative mode
by solving some single facility location problems. Also, a dual formulation of the
linear programming problem (p;) can provide more efficient solution to the rectan-
gular MFLP (Francis et al. 1992).

Francis (1964) solved a special case of the MFLP, with rectilinear distance when
the weights are equal.

Cabot et al. (1970) decomposed the location problem into two independent sub-
problems, each of which is equivalent to a linear programming problem which
is essentially the dual of a minimal cost network flow problem. The dual vari-
ables in each of the optimum tableaus to the two flow problems give the x and y
coordinates respectively of the optimum locations of the new facilities.

Pritsker and Ghare (1970) suggested a gradient technique for this problem. The
basic contribution of them was a derivation of necessary conditions for an optimal
solution and an algorithm for obtaining optimal solutions to the decomposed
problems.

Rao (1973) considered a direct search approach to the RMFLP in detail, however
he demonstrated that the gradient technique was basically a primal simplex-based
linear programming approach, and in the presence of degeneracy, the optimality
conditions were not sufficient. A necessary condition for optimality to be suffi-
cient in special cases and the main difficulties associated with the direct search
approach were discussed.

Wesolowsky and Love (1971a, b) and Morris (1975) showed that the problem
with linear locational constraints could be solved by linear programming.

A thorough set of necessary and sufficient optimality conditions were developed
by Juel and Love (1976).

Idrissi et al. (1989) developed a dual problem for the constrained multifacility
minisum location problems involving mixed norms. General optimality condi-
tions were obtained providing new algorithms which are decomposition methods
based on the concept of partial inverse of a multifunction.

A nonlinear approximation method was developed by Wesolowsky and Love
(1972), where any number of linear and (or) nonlinear constraints defining a
convex feasible region can be included.

The hyperboloid approximation procedure for solving the perturbed rectilinear
distance MFLP was also proposed by Eyster et al. (1973).

Morris (1975) used the dual problem of Rectangular MFLP and then reduced it to
a problem with substantially fewer variables and constraints. He stated that linear
and pairwise constraints limiting distances between new points and between new
and existing points can be imposed to restrict the location of new points.

Picard and Ratliff (1978) solved the problem via at most (m — 1) minimum cut
problems on derived networks containing at most (n — 2) vertices. They showed
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that the optimum location of new facilities is dependent on the relative orderings
of old facilities but not on the distances between them.

e Subsequently, Kolen (1981) exhibited the equivalence of the method of Sherali
and Shetty and Picard and Ratliff. The main difference between these two proce-
dures was principally in the computational implementation. Moreover, this type
of approach is known to be the most effective way of solving the rectilinear dis-
tance MFLP.

o A modified version of the method of Picard and Ratliff (1978) was proposed by
Cheung (1980).

e Dax (1986) presented a new method that, as he stated, handles efficiently the
rectilinear distance Problem MFLP having large clusters, i.e. where several new
facilities are located together at one point. This paper states and proves a new nec-
essary and sufficient optimality condition. This condition transforms the problem
of computing a descent direction into a constrained linear least-squares prob-
lem. The latter problem is solved by a relaxation method that takes advantage
of its special structure. The new technique is incorporated into the direct search
method.

e As an alternative to linear programming, a simple approach which sometimes
finds optimal locations was presented by (Francis et al. 1992) as coordinate de-
scent. By deleting the term that shows the relationship between new facilities in
objective function, the problem is converted to some single facility location prob-
lems to which we can apply median conditions. The first coordinate we choose
is the first variable and the second coordinate is the second variable, and so on. It
is continued until we obtain the same vector by coordinate descent that we have
obtained previously by coordinate descent, at which point we stop.

e Allen (1995) developed a dual-based lower bound to the multifacility £p distance
location problem and he stated that the bound is as good or better than other
bounds.

4.3.1.2 Squared Euclidean Distance MiniSum Location Problem

In this problem, it is obvious that the function that is to be minimized is strictly con-
vex, and unlike the Euclidean distance case, it has continuous first partial derivatives
with respect to x and y.

Consequently the optimal solution is unique and the approach to finding optimal
solution is the same for the SFLP; partial derivation of (4.20) with respect to each
variable are computed and set to equal to zero.

The result of the partial derivation computation is two sets of line equation on
involving the x coordinate (and y coordinate) of the new facilities.

To compute the partial derivations, it is convenient to define a new quantity b;;
where

N Vij k > ]

Vik = Vi k < ] . (440)
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Computing the partial derivation of (4.21) with respect to x; and (4.22) with respect
to y; gives, for j = 1,...,n,

a " m
354:2§:W07_XU+2§:%&W—a& (4.41)
! k=1 i=1
And
d " m
a; =2 Py =y +2) wily; —bi). (4.42)
! k=1 i=1

If we set the (4.41) and (4.42) to zero and solve it, the optimum values of the x and
y coordinates for the new facilities are related by the following expressions:

m

n
> ViXe + ) wiid
k=1 i=1

xX; = " m . (4.43)
> Vit X wi
k=1

i=1

And

m

> Vavk + Z wjib;
y; = = . (4.44)

n m
2 Vit X wii
k=1 i=1
Furthermore, White (1971) established that the optimum solution to the multifacility
problem is given by
x* = A" 'Wa. (4.45)

and

y* = A"'Wb, (4.46)
where x* and y* are n x 1 column vectors giving the optimum coordinate locations
for the new facilities, a and b are m x 1 column vectors giving the x and y coordinate

locations, respectively, for the existing facilities W is an n X m matrix containing
the weights w;;, and A is an n X n nonsingular matrix given as follows:

n
3 Ve + D w V12 e —V1n
k=1 i

—Va Z Yok + Z Wi ... —Van
k= ’ (4.47)

n
—Vnl —Vn2 cee Z Vnk + Z Whi
k=1 i
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The matrix A is strictly diagonally dominant, allowing (4.45) and (4.46) to be solved
using the method of simultaneous displacements, an iterative solution procedure
based on (4.43) and (4.44) (Eyster and White 1973).

It is interesting to note that the solution of the squared Euclidean distance prob-
lem has been used to obtain a good starting solution for the corresponding Euclidean
MFLP (Francis et al. 1992).

4.3.1.3 Euclidean Distance MiniSum Location Problem

The objective function of Euclidean MFLP is convex, since it is the sum of norms
that are convex functions and Francis and Cabot (1972) have proven that a neces-
sary and sufficient condition for the objective function to be strictly convex is that
for each new facility i, the set S; = {j : w; > 0} is nonempty and that the lo-
cation of the points in S; are non-collinear. As it is known, the optimal solution of
Euclidean MFLP problem exists and lies in the convex hull of the existing facilities,
and therefore, this optimal solution can be expressed as the convex combination of
the existing facilities (Francis et al. 1983).

In the previous treatment of the rectilinear distance problem and the squared
Euclidean distance problem; we found that multifacility problems were not sub-
stantially more difficult to solve than the corresponding single facility version.
Such is not the case for Euclidean distance problem. The main difficulty with the
Euclidean SFLP arises because its objective function is not differentiable at the
points ay, .. ., a,, For Euclidean MFLP the function f is nondifferentiable not only
at a set of isolated points, but also on linear subspaces X; = Xk.

Eyster et al. (1973) used an extension of the Weiszfeld algorithm. In this proce-
dure, in order to avoid difficulties of the partial derivatives of the distance function
not existing at points P; and at points where other new facilities have been located

d(X;. Xx) = [(x; —x)* + (v — ) + €]'/2, (4.48)
d(X;. Xi) = [(x; —a)? + (v — bi)* + €] /2. (4.49)

This procedure is labeled the hyperboloid approximation procedure (HAP) and is
probably the most common procedure for solving the multifacility location prob-
lem, using Euclidean distances or even rectilinear distances. Rosen and Xue (1993)
proved the global convergence of HAP when applied to the problems MFLP. Hap
comes from computing partial derivatives of the function f, setting them to zero,
and solving for new facility locations.

To simplify, we define terms o (X1,..., Xu), B: (X1,..., Xu), [1( X1, ..., Xn),
and fort = 1,...,n as follows:

n X
Xi,....X,) = ; /
Olz( 1 n) ;vlj [(-xt _xj)z + (yt _yj)2 +8]1/2

ai;

i t=1,...,n, 4.50
M a4 (3 — b 4 ]2 o (330

i=1
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n

_ 4 Yj
PrXi o X =D Vi e (e e

j=1
+ ) wy ! t=1,....n, (451
; M0 =) + = b)? + €]
n
V,‘j
Fz(Xh---,Xn):Z 1
T —x)2 4 (e —yj)2 + el
+3° i t=1,....n. (4.52)

S0 —a)? + (v — bi)? + €]

Then it may be shown that the partial derivatives of f with respect to x; and y; is
as follows:

ad
8){ =Xy, ..., Xo)x —a (X, ..., Xy) t=1,...,n, (4.53)
t
and
af
oy =Xy, ..., X))y — B (X, ..., X)) t=1,...,n. (4.54)
t

By setting the partial derivatives to zero for x| and y; we have:

1
= X1, Xn t=1,...,n. 4.55
Xt E(Xl»“'»Xn)at( 1 ) n ( )
And |
= X1,..., Xy t=1,...,n. 4.56
Vi F,(Xl,...,X”)ﬁl( 1 ) n ( )
The iteration procedure determines x* ! and y¥*'in terms of x* and y* using the
following:
1
k+1 k k
X = o (X7, 00X, t=1,...,n, 4.57
! L(xk, ... Xk o ) (37
1
yEH = Bo(XF ..., X5y  t=1,...,n. (4.58)

L(XE . Xk

By making an initial choice of new facility locations, say o, (Xl(o), el X,SO)), use the
algorithm to compute new answers for new facility locations. In using HAP to solve
multifacility location problems, it has been observed that the larger the value of ¢
the faster the convergences to optimum value of approximating function. However,
the accuracy of approximation decrease with increasing values of € consequently, in



4 Multifacility Location Problem 87

solving location problem using HAP a large value of ¢ is used initially; the solution
obtained used as starting solution, using a smaller value of ¢; and the process is
continued by successively reducing the value of ¢ until no signification decrease in
the value of either (x;, x;).interestingly, HAP can be used to solve the rectangular
location problem and can also be used to handle situation involving a mixture of
recliner and Euclidean distance (Eyster et al. (1973).

4.3.1.4 Some other Kinds of Algorithms in Euclidean MFLP

e Eyster et al. (1973) used an extension of the Weiszfeld algorithm.

e (Calamai and Conn (1980) have proposed a pseudo-gradient technique that clas-
sifies the new facilities into distinct categories based on their coincidence with
other facilities in order to derive a descent method for solving Euclidean MFLP.

e Chatelon (1978) have also approached Euclidean MFLP by using a general
e-subgradient method in which search directions are generated based on the sub-
differential of the objective function over a neighborhood of the current iterate.

e Sequential unconstrained minimization techniques used by Love (1969) and the
Weiszfeld fixed-point iterative method as utilized by Rado (1988), are also among
other efforts to solve Euclidean MFLP.

e Several second-order methods have also been designed to solve the Euclidean
MFLP. Calamai and Conn (1980) were the first to propose a projected gradient-
based algorithm.

e Various quadratic convergence approaches have also been developed by Calamai
and Conn (1982, 1987), in which specialized line-searches are used in conjunc-
tion with projected second-order techniques.

e Rosen and Xue (1992) developed an algorithm which, from any initial point,
generates a sequence of points that converges to the closed convex set of optimal
solutions to the Problem Euclidean MFLP.

e For the multifacility location problem with no constraints on the location of the
new facilities, Juel and Love (1980) derived some sufficient conditions for the
coincidence of facilities that are valid in a general symmetric metric.

e The results of Juel and Love (1980) were later extended by Lefebvere et al.
(1991) to be applicable to some location problems having certain locational con-
straints.

e Mazzerella and Pesamosca (1996) have used the optimality conditions of
Euclidean MFLP as a tool for obtaining both stopping rules for some com-
putational algorithms such as the projected Newton procedure of Calamai and
Conn (1987), and the analytical solution of many simple problems.

o Love (1969) applied convex programming to the problem in three dimensions.

e Carrizosa et al. (1993) derived the geometrical characterizations for the set of
efficient, weakly efficient and properly efficient solutions of the Euclidean MFLP
when it includes certain convex locational constraints.

e Love and Yoeng (1981), Elzinga and Hearn (1983), Juel (1984), and Love and
Dowling (1989) explored the bounding method that continuously updates a lower
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bound on the optimal objective function value during each iteration. This method
is based on the idea that the convex hull and the current value of the gradient
determine an upper bound on the objective function’s improvement.

e Wendell and Petersen (1984) have derived a lower bound from the dual to
Euclidean MFLP.

e Love (1974) developed the dual problem corresponding to a hyperbolic approxi-
mation of the constrained multifacility location problem with /,, distances.

e White (1976) gave a Varignon frame interpretation of the dual problem.

e Sinha (1966) have used duality results involving general quadratic forms.

e Francis (1972) derived a differentiable, convex quadratically constrained dual
optimization problem, and achieved several useful relationships between the dual
and Euclidean MFLP.

e Xue et al. (1996) have suggested the use of polynomial-time interior point algo-
rithm to solve this dual problem based on this idea, they presented a procedure
in which an approximate optimum to Euclidean MFLP can be recovered by solv-
ing a sequence of linear equations, each associated with an iterate of the interior
point algorithm used to solve the dual problem.

e Love and Kraemer (1973) gave a dual decomposition method for solving the
constrained Euclidean MFLP.

e Love (1974) developed the dual problem corresponding to a hyperbolic approxi-
mation of the objective function for the constrained MFLP with /,, distance.

4.3.2 MiniMax

4.3.2.1 Rectangular Distance MiniMax Location Problem

Some procedures for solving rectangular MiniMax MFLP are shown here:

o Wesolowsky (1972) converted the rectangular MiniMax MFLP into a parametric
linear programming problem with 5mn 4 5/2n(n — 1) constraints and 2mn +
n(n — 1) + 2n variables in addition to the parameters.

e Elzinga and Hearn (1973) recognized some simplifications in linear program pre-
sented by Wesolowsky.

e Dearing and Francis (1974) showed that the problem can be decomposed into two
sub problems that have identical structures and that may be solved independently
each of which had 2mn 4 n(n — 1) constraints and n + 1 variables. Each problem
is solved efficiently by converting it into an equivalent network flow problem.

e Morris (1973) has introduced this problem with linear constraints which (a) limit
the new facilities location and (b) enforce upper bounds on the distances between
new and existing facilities and between new facilities. He uses dual variables that
provide information about the complete range of new facility locations which
satisfies the MiniMax criterion.
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e Drezner and Wesolowsky (1978) presented a method involved the numerical in-
tegration of ordinary differential equations and was computationally superior to
methods using nonlinear programming.

4.3.2.2 Euclidean Distance MiniMax Location Problem

The application of nonlinear duality theory shows Euclidean minimax MFLP can
always be solved by maximizing a continuously differentiable concave objective
subject to a small number of linear constraints. This leads to a solution procedure
which produces very good numerical results. Love et al. (1973) presented a non-
linear programming method for computing the solution to MFLPs using Euclidean
distances when the MiniMax criterion is to be satisfied.

4.3.3 Solution Techniques for other Models

In this section we introduce some solution techniques for the models shown in
Sect. 1.3

e A specialized simplex based-algorithm was derived by Sherali and Shetty (1978)
for solving rectangular multiproduct MFLP.

e Dhar and Rao (1982) presented an iterative solution for MFLP on sphere.
The procedure involved the approximation of the domain of objective function
which in the limit approaches to that of the original objective function. Aykin
and Babu (1987) considered Euclidean, squared Euclidean and the great circle
distances. They formulated an algorithm and investigated its convergence prop-
erties.

e Wesolowsky and Love (1971a, b) considered the problem of MFLP with rectan-
gular regions for the cases n = 1 or 2. They used a simple gradient reduction
technique to solve the single facility problem. As they stated, the procedure be-
comes very complex when n > 2. Aly and Marucheck (1982) stated that if
there is interfacility interaction among the new facilities, a gradient-free non-
linear search algorithm is utilized. Computational experience suggests that this
algorithm is expedient even in the solution of large problems.

e Seppalla (1975) stated that in order to be able to solve the stochastic MFLP, we
must transform it into the deterministic equivalent forms.

4.3.4 Some Heuristic and Metaheuristic Methods

There are a few heuristics methods for solving MFLP:

e Vergin and Rogers (1967) introduced a simple heuristic for solving MFLP with
Euclidean distance. This procedure locates each of new facilities in a temporary
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location at each step and locates the next new facility according to the facilities
located so far. After all n new facilities are located in this manner the process is
repeated and the readjustment process is continued until no further movements
occur during a complete round of adjustment evaluations.

e Davoud Pour and Nosraty (2006) solved the MFLP with ant-colony optimization
metaheuristic when the distances are rectangular and Euclidian. This algorithm
produces optimal solutions for problem instances of up to 20 new facilities.

4.4 Case Study

Smallwood (1965) introduced a model for the placement of n detection stations so
as to maximize the probability that at least one of them will detect any enemy event
occurring within the area. This research was done within boundaries of USA and
USSR. The model is based on five assumptions that one of them is the assumption
of plane area that was made in order to allow the use of the relatively convenient
Cartesian coordinate system. Each of these assumptions can be relaxed to reduce
the error of the model.
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