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a b s t r a c t

Multi-label classification problems usually occur in tasks related to information retrieval, like text and
image annotation, and are receiving increasing attention from the machine learning and pattern re-
cognition fields. One of the main issues under investigation is the development of classification algo-
rithms capable of maximizing specific accuracy measures based on precision and recall. We focus on the
widely used F measure, defined for binary, single-label problems as the weighted harmonic mean of
precision and recall, and later extended to multi-label problems in three ways: macro-averaged, micro-
averaged and instance-wise. In this paper we give a comprehensive survey of theoretical results and
algorithms aimed at maximizing F measures. We subdivide it according to the two main existing ap-
proaches: empirical utility maximization, and decision-theoretic. Under the former approach, we also
derive the optimal (Bayes) classifier at the population level for the instance-wise and micro-averaged F,
extending recent results about the single-label F. In a companion paper we shall focus on the micro-
averaged F measure, for which relatively fewer solutions exist, and shall develop novel maximization
algorithms under both approaches.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-label (M-L) classification problems, like document cate-
gorization, and image and video annotation, usually occur in the
design of information retrieval (IR) systems. They consist of de-
ciding whether an instance (e.g., a document) is relevant or not to
a given set of queries, which can be viewed as non-mutually ex-
clusive labels. An instance can thus be assigned more than one
label. Over the past ten years, M-L classification problems have
received an increasing attention from the pattern recognition and
machine learning research communities (see, e.g., [33,36]). One of
the main topics under investigation is the development of learning
algorithms tailored to specific M-L accuracy measures. Such
measures are mostly based on precision and recall, which are the
main metrics used for evaluating the performance of IR systems.
They are different from the ones used in single-label (S-L) pro-
blems, like the misclassification probability.

In this work we focus on the widely used F measure. It has been
originally proposed to evaluate IR systems in [30,34], and is de-
fined as the weighted harmonic mean of precision and recall. It is
F. Roli).
also used to evaluate the accuracy of S-L binary classifiers aimed at
discriminating instances relevant to a query from non-relevant
ones.1

Three different versions of the F measure have subsequently
been defined for M-L problems: instance-wise, macro- and micro-
averaged. Under the viewpoint of the target accuracy measure, the
existing approaches to M-L classifier design can be subdivided into
two groups. Works in the first group (including most of the earlier
ones) do not focus on a specific measure; they use S-L learning
algorithms, and deal with multiple labels per sample using pro-
blem transformation or algorithm adaptation strategies (see the
surveys of [33,36]). Among the former, the simplest one is binary
relevance (BR), which consists of independently learning a binary
classifier for each label, disregarding label correlation; other ap-
proaches have been proposed to attain a trade-off between taking
into account label dependencies and keeping computational
complexity low. Works in the second group focus on developing
algorithms to maximize a specific accuracy measure, most often
one of the M-L F measures. Maximizing the F measures (including
the S-L one) is however particularly difficult since, contrary to S-L
1 The S-L F measure is also used in binary problems not related to IR, but
characterized by relevant class imbalance. In this case the misclassification prob-
ability is not a suitable performance measure, since a classifier that always predicts
the majority class attains an accuracy equal to the corresponding prior.
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measures like accuracy, they do not decompose either over sam-
ples, or over labels, or both. Two different approaches for max-
imizing the S-L and M-L F measures have been considered, in turn
[19]. The empirical utility maximization (EUM) approach aims at
finding the decision rule which maximizes the chosen F measure
on a finite sample of labelled instances; this approach has been
used to develop several learning algorithms. The decision-theo-
retic approach (DTA) aims instead at finding the label assignments
that maximize the expected value of the chosen F measure on a
fixed set of unlabeled instances, with respect to their joint label-
conditional probability; in practice, this probability is estimated
from training data, whereas the unlabeled instances correspond to
testing data.

In the present paper we give a comprehensive survey of ex-
isting algorithms for maximizing the F measures, which is still
lacking in the literature. Nearly all works published in pattern
recognition venues follow the EUM approach. Both EUM and DTA
have been considered in machine learning venues, instead, where
different EUM algorithms have been proposed, and the optimal
(Bayes) classifier at the population level has also been recently
derived for some of the F measures. Moreover, most of the earlier
works focused on a single version of the F measure, and only re-
cently (since [5]) the distinction between the S-L and M-L F, and
between the three M-L versions, was clearly pointed out. Our
survey can be useful for further developments in this field, espe-
cially for the pattern recognition community. As a by-product, we
also derive the optimal classifier at the population level for the
M-L instance-wise and micro-averaged F, under the EUM ap-
proach, extending recent results about the S-L F.

In a companion paper [28] we shall focus on the M-L micro-
averaged F, for which relatively fewer solutions exist, and shall
develop both learning algorithms based on EUM and an inference
algorithm based on DTA.

The rest of this paper is structured as follows. After giving a
formal definition of the F measures in Section 2, in Section 3 we
describe EUM and DTA. We then survey existing works based on
such approaches, respectively in Sections 4 and 5, for each of the F
Table 1
Notation used in this paper.

instance space (e.g., a vector space)
∈x a single instance (e.g., a feature vector)

m number of labels

= { }0, 1 m label space

= { … } ∈y yy , , m1
label vector of
an instance
(ground
truth)
∈ { }y 0, 1i i-th label of an instance, = …i m1, ,

n number of instances in a given data set

( )x y,j j j-th instance of a given data set, = …j n1, ,

θ(· ) ↦h ; : multi-label classifier with parameters θ

θ(· ) ↦{ }h ; : 0, 1i

i-th label as-
signed by
classifier

θ(· )h ; ,
= …i m1, ,

hi, hij short-hand notation respectively for θ(· )h ;i and θ( )h x ;i
j

∈ { }h h, 0, 1j m label vectors, respectively ( … )h h, , m1 and ( … )h h, ,j
m
j

1

βFb S-L, binary Fβ (Eq.(4))

βFi M-L, instance-wise Fβ (Eq.(5))

βFM M-L, macro-averaged Fβ (Eq.(6))

βFm M-L, micro-averaged Fβ (Eq.(7))
measures (including the S-L F).
 

2. Definition of F measures

In Tables 1 and 2 we summarize respectively the notation and
the abbreviations used in this paper. We shall use upper-case
letters to denote random variables, and the corresponding lower-
case letters to denote their values.

For a given M-L problem, let m denote the number of labels,
the input space (e.g., a feature vector space), ∈x an instance
(e.g., a feature vector), and ∈ = { }y 0, 1 m the corresponding label
vector, where = ( )y 1 0i means that x is (not) relevant to the i-th
label. A M-L classifier is commonly formalized as a function

θ θ θ( ) = ( ( ) … ( )) ∈ ( )h h hx x x; ; , , ; , 1m1

where θ( ) = ( )h x; 1 0i means that x is deemed as (non-)relevant to
the i-th label, and θ denotes the parameter vector to be set by the
learning algorithm. Precision (p) and recall (r) are the main mea-
sures used for evaluating the quality of the results produced by IR
systems, in terms of the “degree of matching” between the true
and the estimated relevance to a given query. They are defined
respectively as the probability that a retrieved instance (e.g., a
document) is relevant, and as the probability of retrieving a re-
levant instance, which are complementary aspects of an IR sys-
tem's performance. Let = {( )} =S yx ,j j

j
n

1 be a set of instances, where

∈ { }y 0, 1j denotes the relevance of xj to the considered query,
and let ∈ { }h 0, 1j denote the estimated relevance. Let TP, FP and
FN denote the corresponding number of true positive (when

= =h y 1j j ), false positive (hj¼1, yj¼0) and false negative (hj¼0,
yj¼1) decisions. Precision and recall can be estimated on the finite
sample S as:

=
+

=
∑

∑ ( )

=

=

p
TP

TP FP

y h

h
,

2

j
n j j

j
n j

1

1

=
+

=
∑

∑ ( )

=

=

r
TP

TP FN

y h

y
.

3

j
n j j

j
n j

1

1

Single-label, binary F measure: The F measure has been ori-
ginally proposed for IR systems, to combine p and r into a scalar
[30,34]. Based on principled arguments, it is defined as the
weighted harmonic mean of p and r. It is also often used to eval-
uate the accuracy of S-L, binary classifiers (m¼1) whose goal is to
discriminate between relevant instances to a given query and non-
relevant ones. The S-L F is defined on a finite sample as (the su-
perscript ‘b’ stands for ‘binary’):

β
β

β
β β

β

β
= +

+
= ( + )

( + ) + +
=

( + ) ∑

∑ + ∑ ( )
β

=

= =

F
TP

TP FN FP

y h

y h

1 1
1

1
,

4p r

j
n j j

j
n j

j
n j

b
2

1 2 1

2

2 2

2
1

2
1 1

where β ∈ [ + ∞)0, controls the trade-off between p and r. Note
that =F p0

b and =+∞F rb . For β = 1 one obtains the unweighted

harmonic mean: = +F
p r1

b 2
1 / 1 /

.

 

Table 2
List of the abbreviations used in this paper.

IR Information retrieval

S-L, M-L Single-label, multi-label
BR Binary relevance
EUM Empirical utility maximization
DTA Decision-theoretic approach

 



Table 3
Summary of existing EUM- and DTA-based methods (described respectively in

Sections 4 and 5) for maximizing the S-L Fb measure and the three M-L Fmeasures.

Empirical utility maximization approach (Section 4)

Works Measure Main characteristics

[9,17,20] Fb Non-convex optimization

[11,18] Fb SVM-like classifier, convex objective function

[13,13,15,19,23,37] Fb Optimal classifier, reduction to cost-sensitive
problem

[22,13,12] Fb Consistency analysis of maximization
algorithms

[32,25,24] Fi, FM SVM-like classifier, convex objective function

[6,26,27] Fm Tuning of binary classifiers’ thresholds

[13,23] FM, Fm Optimal classifier, reduction to cost-sensitive
problem

Decision-theoretic approach (Section 5)

Measure Works and main characteristics

Fb [14]: ( )O n2n complexity, approximate solution

[1] ( )O n3 , [10] ( )O n4 , [19] ( )O n2 complexity, exact
solution

FM Same algorithms for Fb, independently for each
label

Fi [5,2,35]: ( )O m3 complexity

Fi [29] (limited to a specific decision rule): ( )O m3

complexity
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Multi-label F measures: Three different M-L versions of the F
measure have been defined. The instance-wise F views instances as
queries, whose relevant labels have to be retrieved. It is thus de-
fined for a single instance ( )x y, as:

β

β
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( + ) ∑
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The macro-averaged F is computed on a set of instances; it is de-
fined as the average of the S-L Fmeasures computed for each label,
and gives the same weight to each label:

∑ ∑β
β β

β

β
=

( + )
( + ) + +
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( + ) ∑
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The micro-averaged F is computed after pooling the labels of all
instances of a given set, and gives equal weight to each labeling
decision:
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To simplify the notation, from now on we will omit the sub-
script β in the symbols denoting the F measures, when it is not
necessary.

Choice between the multi-label F measures: The three M-L F
measures evaluate different aspects of classifier performance, and
thus the choice between them is application-dependent. With
regard to the problem of designing classifiers that maximize the
M-L F measures, quoting from [5]: “One should carefully distin-
guish these versions, as algorithms optimized with a given ob-
jective are usually performing sub-optimally for other (target)
evaluation measures.” An empirical evidence of this fact was for-
merly reported in [6], where it was observed that tuning the de-
cision thresholds of a classifier to maximize FM can decrease the
corresponding Fm. In particular, it is known that the differences
between FM and Fm can be large on data sets with rare labels [16]:
since the F measures disregard true negatives (i.e., instance-label
pairs such that = =y h 0i

j
i
j ) and their magnitude is mostly de-

termined by the number of true positives, frequent labels dom-
inate rare ones in Fm, whereas FM is much more sensitive to rare
labels. Further insights have been given in [15]: for a rare label, a
perfect classifier only marginally improves Fm over a (trivial)
classifier that labels all instances as non-relevant; moreover, for
rare labels with an “uninformative predictive model” (i.e., a clas-
sifier which outputs the same score for all instances), Fm and FM

are maximized by classifying all instances respectively as non-re-
levant and as relevant.

Maximizing the F measures: Under the viewpoint of classifier
design, maximizing the S-L and M-L F measures is more difficult
than maximizing traditional S-L measures based on the 0–1 loss
function and the corresponding misclassification probability, or
their variants. The latter are uni-variate measures, i.e., they de-
compose over instances. This means that the optimal label as-
signment to any given instance is independent of other instances.
On the contrary, FM (as well as Fb) does not decompose over in-
stances; F i does not decompose over labels; and Fm does not de-
compose over either. Therefore, FM and Fm (as well as Fb) are
multi-variate, which implies that the optimal label assignments to
a given instance depend also on the assignments to the other in-
stances on which these measures are computed. Additionally, in
the case of Fm the different label assignments, even for different
instances, influence each other. Accordingly, the maximization of
these measures is in principle computationally demanding, or
even infeasible. Moreover, it fits only batch or off-line settings; in
on-line settings one should, e.g., classify the incoming samples in
batches, or consider a subset of the previously processed instances
when labeling an incoming one [14]. Similarly, although F i is uni-
variate, its maximization requires in principle to consider all
possible 2m label assignments, which is feasible only when the
number of labels is small.

 

 

3. Approaches to F measure maximization

As mentioned in Section 1, two approaches for maximizing the
F measures, both in S-L (Fb) and in M-L classification problems (F i,
FM and Fm), have been proposed so far: EUM and DTA [4,19]. The
existing maximization algorithms are surveyed in the next two
sections, and are summarized in Table 3. We point out that, with
the only exception of [29], all works published in pattern re-
cognition venues follow the EUM approach.

The EUM approach consists of learning a classifier of the form
θ(· ) ↦h ; : that maximizes the chosen F measure on a given

training set of labelled instances = {( )} =S x y,j j
j
n

1; the learnt clas-
sifier is then used to predict the label assignments of testing data.
In principle, this requires one to jointly evaluate all possible label
assignments to S, which amount to 2n for Fb, ×n 2m for F i, ×m 2n

for FM, and 2mn for Fm. Learning algorithms based on EUM have
been developed for all F measures, except Fm, and the consistency
of several learning algorithms has also been investigated. In some
of the most recent works, the optimal (Bayes) classifier at the
population level has also been derived for the S-L F (which also
applies to the M-L, macro-averaged F); it has also been shown that
all F measures but the instance-wise can be maximized by re-
duction to a cost-sensitive problem.

The DTA (also called plug-in rule approach in [4]) focuses in-
stead on a fixed, unlabeled sample (testing data) = { } =S xj

j
n

1 (n¼1
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in the case of F i), and predicts through an inference procedure the
label assignments that maximize the expectation of the chosen F
measure on S, with respect to the joint label-conditional prob-
ability distribution ( … | … ) Y Y x x, , , ,n n n1 . In practice, this dis-
tribution is estimated from training data. The corresponding
maximization problem is computationally very demanding as
well, since the expectation has to be computed over all possible
combinations of true and assigned labels. The number of such
combinations is 22n for Fb, 22m for F i, m22n for FM, and 22mn for Fm.
Maximization algorithms based on DTA have been proposed so far
for Fb (they also apply to FM) and F i, but not for Fm. The con-
sistency of DTA has also been investigated in recent works.

EUM and DTA have been compared in [19], focusing on the S-L
Fb. These approaches were found to be equivalent asymptotically
(i.e., for large training and test sets), provided that the underlying
models are accurate. An empirical analysis also provided evidence
that EUM is more robust against model misspecification; on the
other hand, if an accurate model is chosen, DTA was found to be
better in the presence of rare classes, as well as in the common
domain adaptation scenario where ( ) X changes while ( | ) Y X re-
mains constant.

A comparison between EUM and DTA focused on M-L problems
has later been carried out in [4], limited to the instance-wise F i. In
this comparison the EUM framework for structured loss mini-
mization of [32] was considered, together with two specific im-
plementations based on surrogate, convex loss functions [24,25]
(see Section 4.2). The analysis of the infinite sample case showed
that the DTA is consistent, i.e., it converges to the Bayes optimal
classifier for the F i measure, whereas the considered EUM algo-
rithms are not. A further analysis on finite data sets was carried
out in [4], by comparing the exact DTA-based inference algorithms
for the two cases of conditionally independent and conditionally
dependent labels (see Section 5.2), and the EUM-based learning
algorithms mentioned above. DTA-based algorithms were found to
be more effective than EUM-based ones; they also exhibited a
higher efficiency in the training step and for parameter tuning, but
a lower efficiency in the inference step.
4. Empirical utility maximization approach

In this section we describe learning algorithms developed for
the S-L and M-L F measures, and then summarize recent theore-
tical results about the EUM approach. We finally complement such
results by deriving the optimal classifier at the population level for
the micro-averaged and the instance-wise F.

Learning algorithms proposed so far can be subdivided into
four categories: variants of the SVM learning algorithm (based on
the maximum-margin approach) [18,11,32,24,25], whose objective
function is (except for [18]) a convex approximation of an F
measure; optimization algorithms whose objective function is a
non-convex approximation [9,17,20]; algorithms that tune the
decision thresholds of binary classifiers [6,26,27,22,13,12]; and
cost-sensitive algorithms [13,23].

4.1. Single-label F measure

The first learning algorithm was proposed in [18], as a mod-
ification of the SVM learning algorithm. The objective function of
the latter includes a penalty termwhich upper bounds the number
of misclassified training instances. This term was replaced by the
following approximation of ( − )F2 1/ 11

b , which is a possible loss

function corresponding to the use of F1
b as the accuracy measure:
αξ

αξ

∑ ( − ( ))

− ∑ [ = ]( − ( )) ( )

= +

+ = +n y

1 exp

1 1 exp
,

8

j
n

j

j
n j

j

1

1

where [ ] = ( ) a 1 0 if =a true (false), =+x x ( )0 if ≥x 0 ( < )0 , +n is the
number of instances with label 1, and α is a positive constant.
However, Eq. (8) is non-convex: finding the global minimum of the
resulting objective function is not guaranteed, and the optimiza-
tion problem exhibits a much higher computational complexity
than the one of SVMs. Another interesting result was given in [18],
related to a different, heuristic modification to the SVM penalty
term, formerly proposed by other authors for balancing precision
and recall. It consists of assigning different weights to misclassified
instances of the two classes:

∑ ∑ξ ξ[ = ] + [ = ]
( )

+
=

−
=

 C y C y1 0 ,
9j

n
j

j
j

n
j

j
1 1

where ξj is the hinge loss for the j-th training instance. The solu-
tion of the corresponding learning problem turned out to ap-
proximate the one obtained using (8), for suitable values of +C and

−C . In Section 4.3 we shall see that recent theoretical results have
proven the equivalence between maximizing Fb at the population
level and minimizing the expected error with suitable asymmetric
misclassification costs.

In [11] an extension of the SVM learning algorithm to perfor-
mance measures that do not decompose into expectations over
instances, including Fb, was proposed. It minimizes a convex upper
bound of the corresponding loss function, and uses a multi-variate
decision function which jointly labels all training instances (the
class labels are conveniently denoted here as −1 and +1):

∑( … ) =
( )… ∈{− + } =

h hx x w w x, , ; arg max , ,
10

n

h h j

n
j j1

, , 1, 1 1
n n1

where 〈· ·〉, denotes the dot product. The learning problem is:

( )∑ ∑

ξ

Δ ξ

∥ ∥ +

∀ ( … ) ∈ { − + } ⧹{( … )}

−

≥ ( … … ) − ( )

ξ≥

= =

C

h h y y

y h

h h y y

w

w x x

min
1
2

s. t. , , 1, 1 , , :

,

, , , , , 11

n n n

j

n j j
j

n j j

n n

w, 0
2

1 1

1 1

1 1

where Δ denotes the loss function. If the performance measure is
Fb, then Δ = − F1 b. In principle, Eq. (10) requires one to evaluate
2n different label assignments; moreover, the learning problem
(11) has −2 1n constraints. Nevertheless, since (10) is a linear
function, its maximum can be computed by independently con-
sidering each of the n assignments ( … )h h, , n1 . Moreover, problem
(11) can be solved with ( )O n2 computational complexity, thanks to
the properties of Fb, using an optimization strategy proposed in
[31]. SVMs turns out to be a particular case of the above classifier,
when the error rate is used in (11) as the loss function.

In [9,17] learning algorithms that maximize continuous but
non-convex approximations of Fb were proposed, using numerical
optimization techniques. In [9] the linear discriminant function of
logistic regression classifiers was used, and Fb is approximated
similarly to Eq. (8). To deal with non-convexity, the optimization
algorithm was run several times, starting from randomly chosen
parameter values. In [17] the class-conditional distribution ( | ) YX
is first estimated, then the TP, FP and FN counts are approximated,
for a given discriminant function, by integrating ( | ) YX in the
corresponding decision regions. The parameters of the dis-
criminant function that maximize Fb are finally estimated by an
optimization algorithm.
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4.2. Multi-label F measures

In the following we review existing EUM-based learning algo-
rithms, separately for each of the three M-L F measures.

4.2.1. Instance-wise F
In [32] a SVM-like classifier was proposed for structured-out-

put problems with instance-wise performance measures, includ-
ing F i. The proposed discriminant function exploits the structure
and dependencies within the output values:

Ψ( ) = 〈 ( )〉 ( )∈
h x w w x h; arg max , , ,

12h

where Ψ ( )x h, is a feature mapping (a combined feature re-
presentation of inputs and outputs), and Ψ〈 ( )〉w x h, , measures
how “compatible” a pair ( )x h, is. The learning problem is:

( )( ) ( )

∑ ξ

Ψ Ψ ξ ξ

∥ ∥ +

∀ ∈ ⧹ = …

− ≥ Δ − ≥
( )

ξ =

⎛
⎝⎜

⎞
⎠⎟

n
C

j n

w

h y

w x y x h y h

min
1
2

1

s. t. , 1, , :

, , , , , 0.
13

j

n
j

j

j j
j j

w,
2

1

When the performance measure is F i, then Δ = − F1 i. An ef-
ficient optimization algorithm was also developed, that explicitly
examines only a small subset of the constraints in (13), which are

× ( − )n 2 1m in the case of F i.2

A similar approach was proposed in [25], which explicitly
models the dependencies (only the positive correlations) between
pairs of labels. The decision function is defined as:

θ( ) = ( )∈

⊤h Ax h h; arg max ,
14h

where A is an ×m m upper-triangular matrix defined as
θ= 〈 〉A x,ii i , and θ=A Cik ik ik, ≠i k; the parameter vector θi weighs

the features for the i-th class; Cij is the normalized counts of co-
occurrence of labels i and j in training instances; and θik is a scalar
parameter which is forced to be non-negative, implying that

>A 0ik for ≠i k, which allows (14) to be efficiently solved. The
parameter θ in the left-hand side of (14) is defined as
θ θ θ θ θ( … … )−, , , , , ,m m m1 1,2 1,3 1, . The learning problem and the pro-
posed optimization strategy are similar respectively to (13) and to
the one of [32], to efficiently handle the constraints:

∑λ θ ξ

Δ ξ ξ

∥ ∥ +

∀ ∈ ⧹ = …

( ) − ≥ ( ) − ≥ ( )

θ ξ =

⊤ ⊤

n

j n

y A A

h y

y h h y h

min
2

1

s. t. , 1, , :

, , 0. 15

j

n
j

j

j j
j j

,
2

1

Finally, the specific setting in which an ensemble of in-
dependently trained binary classifiers are used for each label, and
their scores are linearly combined, was considered in [8]. A non-
convex approximation of F i was devised, and an algorithm for
maximizing it with respect to the combination weights was de-
veloped. We shall describe it in Section 4.2.3, since it was applied
also to Fm.

4.2.2. Macro-averaged F
In [24] a SVM-like approach similar to the one of [32] was

proposed for M-L loss functions that decompose over labels, in-
cluding FM. The classification problem is formulated as a reverse
prediction: given a set of instances {( )} =x y,j j

j
n

1, the m labels are
2 An alternative formulation was also proposed, in which the right-hand side of
each constraint is ( )ξ− Δ y h1 / ,j , as well as equivalent formulations in which
quadratic terms ξj2 are used in the objective function for penalizing margin
violations.
considered as the set of inputs, and the instances that are relevant
to a label are considered as the corresponding output. The input
value corresponding to the i-th label is encoded as an m-dimen-
sional vector ∈ { }a 0, 1i m, with =a 1i

i , and =a 0k
i for ≠k i; the

corresponding output values are encoded as ∈ { }b 0, 1i n, with
=b 1j

i ( )0 if the j-th instance is (not) relevant to the i-th label. A
given data set is then transformed into a set of m instances
{( )} =a b,i i

i
m

1 made up of all possible input values and the corre-
sponding output vectors. The decision function for the i-th label is
defined as:

ϕ θ= 〈 ( ) 〉
( )∈{ }

b a barg max , , ,
16

i i

b 0,1 n

where

∑ϕ( ) = ( ⊗ ) ∈
( )=

×ba b x a, ,
17

i

j

n

j
j i d m

1

d is the dimensionality of , and θ ∈ ×Rd m is a parameter matrix.
Similarly to [25], the learning problem is:

∑λ θ ξ

ϕ θ ϕ θ Δ ξ ξ

∥ ∥ +

∀ ∈ { } ⧹ = …

〈 ( ) 〉 − 〈 ( ) 〉 ≥ ( ) − ≥ ( )

θ ξ =m

i mb b

a b a b b b

min
2

1

s. t. 0, 1 , 1, , :

, , , , , , 0, 18

i

m

i

n i

i i i i
i i

,

2

1

where the loss function is defined as Δ( ) = − Fb b, 1i ic, . The term
ξ∑ =m i

m
i

1
1 in the objective function is a convex upper bound on Δ.

An efficient, ( )O n2 optimization algorithm was developed for sol-
ving problem (18). It was also shown that the decision function
(16) can be computed in O(n) time.

Since the M-L FM measure is the average of the corresponding
S-L Fb measures, it is pertinent to investigate the relationship
between the maximum-margin approach of [24] (described above)
and the one formerly developed in [11] (Section 4.1), aimed at
maximizing respectively FM and Fb. No comparison between these
approaches was reported in [24]. As a contribution of this paper,
here we show that these approaches are equivalent, as stated in
the following Proposition:

Proposition 1. For =
λ

C
m

1
4

, the M - L decision function (16) ob-
tained by solving the learning problem (18) of [24] coincides with
the set of decision functions (10) of independently trained binary
classifiers (i.e., using BR) obtained by solving the learning problem
(11) of [11].

Proof. We first prove that their decision functions are equivalent.
Since ai in [24] is defined as an m-dimensional column vector in
which the i-th element is 1 and all the other ones equal 0, it fol-
lows that ⊗x aj i in Eq. (17) is a ×d m matrix in which the i-th
column equals xj, and all the other elements are zero. Therefore,
also ϕ( )a b,i in Eq. (17) is a ×d m matrix, in which the i-th column
equals ∑ = b xj

n
j

j
1 and all the other elements are zero. The argument

of the arg max in (16) can thus be rewritten as:

∑ϕ θ θ〈 ( ) 〉 =
( )=

ba b x, , , .
19

i

j

n

j
j

i
1

This means that the assignment for the i-th label depends only
on θi. We can thus rewrite the decision function (16) for the i-th
label as:

∑ θ=
( )∈{ } =

bb xarg max , .
20

i n

j

n

j
j

i
b 0,1 1

We now make the following change of variables:

 

 

 



In

O

u

3 Recently, it has been shown that the optimal solution can also be obtained by
solving a cost-sensitive problem with respect to the 2 m error counts FPi and FNi

(see Eq. (7)) [23], but no algorithm has been developed so far to implement it. This
approach will be described in Section 4.3.
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θ= − = − = ( )h b h b w2 1, 2 1,
1
2

. 21i
j

j
i j

j i i

Note that this implies that ∈ { − + }h 1, 1j . The decision func-
tion (20) for the i-th label can be rewritten as:

∑

∑ ∑

… = +

= +
( )

… ∈{− }
=

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

h h
h

h

x w

x w x w

, , arg max
1

2
, 2

arg max , , .
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i i
n

h h
j

n j
j

i

j

n
j j

i
j

n
j

i

1
, , 1,1

1

1 1

n n1

The last term 〈 ∑ 〉= x w,j
n j

i1 is constant with respect to …h h, , n1 ,
which makes the decision function (22) identical to (10).

We now prove that the learning problems are equivalent, for a
proper choice of their parameters λ and C. The objective function
of problem (18) can be rewritten by explicitly indicating the Fro-
benius norm of the parameter matrix θ as a function of the 2-norm
of its columns, denoted as θi, = …i m1, , :

∑ ∑λ θ ξ∥ ∥ +
( )θ ξ = =m

min
2

1
.

23i

m

i
i

m

i
,

1

2

1

Using (19), the constraints of (18) can be rewritten as:

( )∑ ∑ θ ξ ξ

∀ ∈ { } ⧹ = …

− ≥ ( − ) − ≥
( )β= =

i m

b b F

b b

x x

0, 1 , 1, , :

, 1 , 0.
24
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j
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j

n
j

j
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i
i i1 1

c,

It is now evident that minimizing (23) under constraints (24)
amounts to solving the following m independent optimization
problems, one for each label:

( )∑ ∑

λ θ ξ

θ

ξ

∥ ∥ +

∀ ∈ { } ⧹ −

≥ ( − ) − ( )

θ ξ

β

≥

= =

m

b b

F

b b x x

min
2

1

s. t. 0, 1 : ,

1 . 25
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i
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2

1 1

c,

i i

We now make another change of variables:

= − ( )y b2 1. 26i
j

j
i

Together with (21), this allows us to rewrite the constraints of
(25) as:

( )

∑

∑ξ

ξ

∀ ( … ) ∈ { − } ⧹{( … )}

+
− +

≥ ( − ) − ≡ ( − )

≥ ( − ) − ( )

β
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which are identical to the constraints of (11), for the i-th label.
Finally, using (21), the objective function of (25) becomes:

λ ξ λ ξ∥ ∥ + = ( )∥ ∥ + ( )m m
w w

2
2

1 1
2

4
1

. 28i i i i
2 2

The solution of the corresponding learning problem does not
change by rescaling the objective function (28); dividing it by λ4 , it
becomes identical to the objective function of (11) when =

λ
C

m
1

4
,

which completes our proof. □.

4.2.3. Micro-averaged F
Fm is the most challenging measure, since it does not decom-

pose over instances nor over labels. Existing EUM-based
approaches consist of using a M-L decision function defined as
θ( ) = [ ( ) − ]h fx xsigni i i , = …i m1, , , where ( )f xi are real-valued dis-

criminant functions obtained by independently training one bin-
ary classifier for each label (using any performance measure),
whereas θ ∈ i are decision thresholds that are tuned afterwards
(i.e., keeping fixed the (·)fi 's) to maximize Fm on validation data.3

Let θ θ( … )F S, , ;m
m

1 denote the value of Fm computed on a given
data set S (e.g., a validation set) as a function of the decision
thresholds. The optimal threshold values are the solution of the
following optimization problem:

θ θ θ θ* … * = ( … )
( )θ θ…

F S, , arg max , , ; .
29m m1

, ,

m
1

m1

This approach was first proposed in [6], where a heuristic op-
timization procedure shown as Algorithm 1 was developed.
Algorithm 1 consists of iteratively updating a single threshold at
each step by maximizing the corresponding Fm, while keeping all
the other thresholds at their current values, until some stopping
criterion is met. Since θ θ( … )F S, , ;m

m
1 can attain up to | | +S 1 dis-

tinct values with respect to any single threshold, the correspond-
ing maximization step (the arg max step of Algorithm 1) can be
solved by a simple line search with complexity (| |)O S . This ap-
proach was proposed in [6] without theoretical support nor op-
timality guarantees.

Algorithm 1. Fm maximization algorithm of [6].

 

 

put: m trained binary classifiers fi, a data set S, a constant
ϵ > 0
utput: m decision thresholds

θ θ← … ←( ) ( )0, , 0m1
0 0 , θ θ← ( … )( ) ( ) ( )F F S, , ;m

0 m
1

0 0 , ←t 1
repeat

for = …i m1, , do

θ θ θ θ θ θ← ( … … )θ
( ) ( )

−
( )

+
( − ) ( − )F Sargmax , , , , , , ;i

t t
i

t
i

t
m

tm
1 1 1

1 1

end for

θ θ← ( … )( ) ( ) ( )F F S, , ;t t
m

tm
1

ntil < ϵ−( ) ( − )

( )
F F

F

t t 1

0

eturn θ θ…( ) ( ), ,t
m

t
1
r

In [26,27] we analyzed the optimization problem (29), by
studying the behavior of Fm as a function of θ θ…, , m1 on a given
sample S. Our main result was the following proposition (reported
in [27] as Property 1):

Proposition 2. Consider any given value θ θ′ … ′, , m1 of the decision
thresholds, and the corresponding value θ θ( ′ … ′ )F S, , ;m

m
1 . If no

higher value of Fm can be attained by changing any single
threshold, while keeping all the other −m 1 ones at their current
value, then θ θ θ θ( ′ … ′ ) = ( … )θ θ…F S F S, , ; max , , ;m m

m
1 , ,

m
1m1

.

Proposition 2 allows the exact solution of (29) to be found with
low computational complexity. Indeed, it implies that the global
maximum of Fm can be attained by starting from any threshold
values, and iteratively updating one threshold at a time to any
value that increases Fm (if any), until no further increase of Fm can
be achieved. As a by-product, Algorithm 1 of [6] turns out to be
one possible implementation of our optimization strategy above,
provided that no early stopping condition is used, i.e., if the
repeat-until. loop ends only when =( ) ( − )F Ft t 1 . We also proved
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that, if each threshold is initially set to −∞, 4 then the exact
solution of (29) is attained by considering at each step (e.g., in the
argmax step of Algorithm 1) only higher values of each threshold
than the current one [27]; this reduces the computational com-
plexity to no more than ( )O m n2 2 .

For the sake of completeness, we finally mention a similar
approach that was considered in [8] (we mentioned it also in
Section 4.2.1). It consists of independently learning an ensemble of
K binary classifiers which output a real-valued score for each label,

↦f :i k, , = …i m1, , , = …k K1, , . These classifiers are then lin-

early combined: ( ) = ∑ ( ) +=f w f wx xi k
K

k i k1 , 0. In [8], Fm was max-
imized with respect to the combination weights, that do not de-
pend on the label. To this aim, a non-convex approximation of all
three M-L F measures was defined, by approximating the TP, FP
and FN counts, on a given data set, using a logistic function of the
scores fi; a quasi-Newton optimization algorithm was then used.

4.3. Recent theoretical results about the single-label F measure

During the past two years several works have theoretically
investigated the F measure maximization problem under the EUM
approach, and have derived the optimal (Bayes) solution for the
S-L Fb, either on a finite sample or at the population level. Novel
maximization algorithms have also been developed, some of them
based on the above mentioned theoretical results, and their con-
sistency has been analyzed.

The optimal classifier at the population level has been derived
in [19,37,13,15]. The corresponding expression of Fb can be ob-
tained by replacing the TP, FP and FN counts in (4) with the cor-
responding probabilities, denoted as tp, fp and fn, and given by:

∫= ( ( ) = = ) = ( = ) ( | = )
( )( )=

 tp h Y Y p YX x x1, 1 1 1 d
30hx x: 1

∫= ( ( ) = = ) = ( = ) ( | = )
( )( )=

 fp h Y Y p YX x x1, 0 0 0 d
31hx x: 1

∫= ( ( ) = = ) = ( = ) ( | = )
( )( )=

 fn h Y Y p YX x x0, 1 1 1 d
32hx x: 0

Accordingly, =β
β

β β

( + )

( + ) + +
F tp

tp fn fp

b 1

1

2

2 2 . The optimal classifier h* consists

of thresholding the posterior probability:

θ*( ) = ( = | ) ≥ *

( )

⎧⎨⎩


h
Y

x
x1, if 1

0, otherwise 33

where θ* =
*
β+

βF

1

c

2 , and *βF c is the maximum S-L F. Since *βF c is un-

known in practice, also θ* is unknown. Note also that θ* is a po-
pulation-dependent value, i.e., the optimal decision whether la-
beling any instance as relevant or non-relevant depends not only
on that instance, but also on all the other instances on which Fb is
computed, as already pointed out in Section 2.5 Actually, this is
another way to express the fact that Fb does not decompose over
instances.

In practice, in the above mentioned works the optimal decision
function (33) was approximated by first estimating the posterior

( = | ) Y x1 , and then tuning the decision threshold on validation
data. The results in [7] allow to approximate it using a different
procedure based on the ROC curve of an underlying binary
4 In practice, if θ < ( )( )
∈ f xmini S ix

0 .
5 In [14] it had been already shown that the rule θ[ ( = | ) − ] Y xsign 1 , where θ is

any fixed threshold value, can not be optimal.
classifier. It amounts to thresholding *
( = | )

β

 Y

F

x1
c at

β+

1

1 2
, where the

calibrated estimate of ( = | ) Y x1 and the estimate of *βF c can be
obtained from the ROC convex hull; in this case, the threshold
depends only on β.6

Note that all the above results also apply to FM, whose optimal
classifier is obtained by independently using (33) for each label; in
this case, the optimal threshold can be different for each label.

An alternative solution was obtained in [23]: it was shown that
the optimal classifier, both at the population level or on a finite
sample, can be obtained by reduction to a cost-sensitive problem.
Such a problem consists of minimizing the expected weighted
error given by a linear combination of the fp and fn probabilities of
each label (or the corresponding FP and FN counts), for suitable
costs. Analogously to rule (33), such costs depend on the max-
imum Fb, and thus are unknown in practice. This implies that the
optimal solution can be obtained by wrapping a cost-sensitive
classification algorithm in an inner loop by an outer loop that sets
the appropriate costs [23]. Although this requires in principle to
solve an infinite series of cost-sensitive problems, it was shown
that the cost space can be discretized to approximate the optimal
solution with a desired accuracy level, by choosing the costs that
provide the maximum Fb value a posteriori. Interestingly, similar
results were derived in [23] for the M-L FM and Fm.

We finally summarize recent results about algorithms for
maximizing Fb (and thus also the M-L FM).

The theoretical result of [23] mentioned above was applied in
the same work to existing cost-sensitive algorithms for binary
problems. Interestingly, their results apply also to the M-L Fm;
however, exploiting them to develop specific cost-sensitive algo-
rithms for this measure is not straightforward, since the FP and FN
counts of each class are simultaneously involved, and was left in
[23] as a future work.

In [13,22] the consistency of “plug-in” algorithms for max-
imizing Fb, consisting of thresholding an estimate of the posterior

( = | ) Y x1 , and of empirically computing the threshold value, was
investigated. In [13] a different two-step approach was also con-
sidered (“Weighted Empirical Risk Minimization”), based on a
theoretical result analogous to the one of [23]. In the first step a
classifier with real-valued predictions ( )f x is learnt by minimizing
a surrogate weighted loss with label-dependent costs, defined as

δ δℓ( ( ) ) = ( − ) [ = ]ℓ( ( ) ) + [ = ]ℓ( ( ) ) ( ) f y y f y fx x x, 1 1 , 1 0 , 0 , 34

which is known to be consistent with the (ideal) classifier given by
( )δ[ = | ] − Y Xsign 1 . In the second step the empirical Fb is max-

imized with respect to δ. This algorithm is computationally less
demanding than the one of [23], since it only requires a single loop
to scan the values of δ.

In [12] a similar two-step approach as the above Weighted
Empirical Risk Minimization was investigated. Different possible
surrogate loss functions were considered to learn the classifier at
the first step, among strongly proper composite loss functions,
such as logistic, squared-error, and exponential loss. The results
provided in [12] are not limited to the consistency of the con-
sidered approach, as in [13], but are valid also for finite samples; in
particular, it was shown that the regret of the considered classifier,
measured with respect to the target metric, is upper bounded by
the regret of the score function (·)f measured with respect to the
surrogate loss.

A different algorithm was developed in [20], based on point-
based stochastic updates, and in particular on stochastic alternate
maximization. For the sake of completeness we also mention that
in [21] some algorithms were developed for maximizing versions

 

 

6 This result has been suggested by one of the reviewers.  



I. Pillai et al. / Pattern Recognition 61 (2017) 394–404 401
of the macro- and micro-averaged F defined for multi-class S-L
problems, which are different from the M-L versions considered in
this paper. In particular, we point out that if the micro-averaged F
of Eq. (7) (which is different from the one considered in [21]) is
used in a multi-class S-L problem, it reduces to classification ac-
curacy [16].

Finally, it is worth pointing out that most of the above results
apply to broad classes of performance measures based on ratios of
TP, FN and FP counts, beside the F measures.

4.4. Optimal classifier for the multi-label micro-averaged and in-
stance-wise F

Here we show that the above mentioned results of [19,37,13,15]
on the S-L Fb can be exploited to derive the optimal classifier at the
population level, under the EUM approach, also for the M-L Fm.7 To
this aim, we follow an analogous proof procedure as the one in
[15]. We then derive also the optimal classifier for F i. As men-
tioned above, whereas the optimal classifier for the S-L Fb, and for
the M-L FM and Fm, can also be obtained by reduction to cost-
sensitive problems, no analogous solution is known for the F i [23].

Micro-averaged F: Our result is given by the following
proposition.

Proposition 3. The optimal classifier at the population level for

βFm consists of deciding ( ) =h x 1i , if and only if:

β
( = | ) ≥

*

+ ( )
β

 Y
F

x1
1

,
35

i

m

2

where *βF m is the optimal value of βFm.

Proof. Assume that the optimal decisions for all labels have al-
ready been found on the whole instance space , except for the k-
th label in a region Δ ⊂ around a given *x . Now we write the βFm

at the population level, by separating the contribution of the de-
cision ( )h xk on Δ. Using Eq. (30), the term at the numerator of the
empirical βFm of Eq. (7) corresponding to ∑ = TPi

m
i1 , minus the con-

tribution of ( )h xk on Δ, is given by the following expression, which
we denote again as tp for the sake of simplicity:

∫
∫

∑= ( = ) ( | = )

+ ( = ) ( | = )
( )Δ

= ≠ ∈ ( )=

∈ − ( )=





tp Y p Y

Y p Y

x x

x x

1 1 d

1 1 d .
36

i i k

m
i

h
i

k
h

k

x x

x x

1, : 1

: 1

i

k

The terms corresponding to ∑ = FPi
m

i1 and ∑ = FNi
m

i1 in Eq. (7) can
be written similarly, using Eqs. (31) and (32); we denote them
respectively as fp and fn. To keep the following expressions simple,
we also write:

∫
∫

Δ

Δ

= ( = )

( ) = ( | = )

( ) = ( | = ) ( )

Δ

Δ

∈

∈

b Y

P p Y

P p Y

x x

x x

1 ,

1 d ,

0 d . 37

k k

k k

k k

x

x

1

0

The value of βFm can now be written by considering the two
possible choices for ( )h xk , Δ∈x . By choosing ( ) =h x 1k , we get:

β Δ

β Δ β Δ
′ =

( + ) + ( )

( + ) + ( ) + + + ( − ) ( ) ( )
β

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

F
tp b P

tp b P fn fp b P

1

1 1
.

38

k k

k k k k

m
2

1

2
1

2
0

By choosing ( ) =h x 0k , instead, we get:
7 This result has been suggested by one of the reviewers of a previous version
of this paper.
β
β β β Δ

″ = ( + )
( + ) + + ( ) + ( )

β ⎡⎣ ⎤⎦
F

tp

tp fn b P fp

1

1
.

39k k

m
2

2 2 2
1

Accordingly, the optimal decision rule for the k-th label in Δ is
( ) =h x 1k , if and only if ′ ≥ ″β βF Fm m. After some algebraic manipula-

tions, this amounts to:

Δ
Δ β β β Δ

( )
( − ) ( )

≥
+ + + ( ) ( )

b P
b P

tp
tp fn fp b P1

.
40

k k

k k k k

1

0
2 2 2 2

1
2

Let us now take the limit Δ → { *}x . The left-hand side of in-
equality (40) becomes (see also Eq. (37)):

∫
∫

Δ
Δ

( )
( − ) ( )

=
( = | ) ( )

( = | ) ( )

=
( = | *)
( = | *) ( )

Δ Δ

Δ

Δ
→{ *} →{ *}

∈

∈
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1 d
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41
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x x

x
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1
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Since Δ( ) =Δ→{ *}Plim 0kx 1
2 , for the right-hand side of inequality (40)

we get:

β β β Δ β β+ + + ( )
=

*
* + * + * ( )Δ→{ *}

tp
tp fn fp b P

tp
tp fn fp

lim ,
42k kx 2 2 2 2

1
2 2 2

where tp* denotes the value of Eq. (36) computed in the whole
instance space (except for the zero-measure element x), cor-
responding to the optimal micro-averaged F, and similarly for fn*

and fp*. Finally, taking into account that
( = | ) = − ( = | ) Y Yx x0 1 1k k , after some algebraic manipulations on

Eqs. (41) and (42) we obtain the claimed optimal decision rule:

β β β
( = | *) ≥

*

( + ) * + * + *
=

*

+ ( )
β

 Y
tp

tp fn fp

F
x1

1 1
.

43
k 2 2

m

2

Instance-wise F: In this case the optimal classifier is given by
the following proposition. □.

Proposition 4. For a given instance x , the optimal classifier at the
population level for βF i consists of deciding ( ) =h x 1i for the m*

labels exhibiting the highest posteriors, and ( ) =h x 0i to the re-
maining ones, where ≤ * ≤m m0 is given by:

β

β
* =

( + ) ∑ ( = | )
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where we write ( = | ) =( ) Y x1 00 , and …( ) ( )Y Y, , m1 denote the labels
sorted for decreasing values of the posteriors ( = | ) Y x1i .

Proof. Since F i is computed on a single instance x (see Eq. (5)), its
probabilistic definition involves only the posteriors ( | ) Y xi . For ease
of notation, let = { ( ) = }P i h x: 1i , = { ( ) = }N i h x: 0i , = ( = | )P Y x1i i1 ,
and = ( = | )P Y x0i i0 . We then have:

β

β β
=

( + ) ∑

( + ) ∑ + ∑ + ∑ ( )
β
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∈ ∈ ∈
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Since ( )∑ + = | |∈ P P Pi P i i1 0 , and ∑ + ∑ = ∑∈ ∈ =P P Pi P i i N i i
m

i1 1 1 1, we get:
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Note that, for any given | | >P 0, Eq. (46) is maximized by deciding
( ) =h x 1i for the | |P labels exhibiting the highest posteriors Pi1, and
( ) =h x 0i for the remaining labels. It immediately follows that βF i is

maximized by the decision rule claimed above. □

5. Decision-theoretic approach

F measure maximization algorithms based on DTA have been

 

 

 



8 This approach had already been proposed in [10], but their inference algo-
rithm exhibits a much higher computational complexity.
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proposed so far for Fb and F i. We point out that no specific algo-
rithm for FM has been developed under this approach, since the
same algorithms for Fb can be applied, independently for each
label (under the usual assumption of i.i.d. instances). No algorithm
based on the DTA has been developed yet for Fm, instead; we shall
fill this gap in our companion paper [28].

5.1. Single-label F

The label assignment that maximizes the expected value [ ]β Fb

on a given set of instances …x x, , n1 is given by:

∑
β

β

( * … * ) =

( … | … )
( + ) ∑

∑ + ∑ ( )

( … )∈{ }

… ∈{ }

=

= =



h h
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If the labels are conditionally independent, i.e.,
( … | … ) = ∏ ( | )= Y Y Yx x x, , , ,n n

j
n j j1 1

1 , then only up to n2n combina-
tions of true and assigned labels need to be evaluated, out of all
possible 22 n combinations [14]. This is because each summand in
(47) (i.e., the value of βFb for fixed …y y, , n1 ) is maximized by one of
the n label assignments in which the label 1 is given to the ′ ≤n n
instances exhibiting the ′n highest posteriors ( = | ) Y x1j j , for some

′ ∈ { … }n n0, , [14].
Exact inference algorithms with lower computational com-

plexity, under the assumption of conditionally independent labels,
were subsequently derived in [1], with ( )O n3 complexity; in [10],
with ( )O n4 complexity; and in [19], with ( )O n3 complexity, which
reduces to ( )O n2 time and O(n) space complexity when β2 is ra-
tional. We report this latter procedure as Algorithm 2, as it is the
one with lowest computational complexity. It provides the +n 1
values of the expected βFb, denoted as …β βf f, , n,0 , , corresponding to
assigning hj¼1 to the ′n instances exhibiting the highest poster-
iors, for ′ ∈ { … }n n0, , . The optimal label assignment is the one
corresponding to the highest

′βf n, .

Algorithm 2. Inference algorithm for maximizing [ ]β Fb for a ra-
tional β2 [19].

Input: p and q, where β = p q/2 ; the posteriors

≔ ( = | ) = …p Y j nx1 , 1, ,j
j j

Output: the values …β βf f, , n,1 ,

for ≤ ≤j n0 , set [ ]C j as the coefficient of zj in the polynomial
[ + ( − )]…[ + ( − )]p z p p z p1 1n n1 1

[ ] ←S j q j/ , = … ( + )j q r n1, ,
for ′ =n n to 1 do

′
← ∑ ( + ) [ ] [ + ]β =f r q k C k S rk qk1 /n k

n
; 0 1 1 11

for j ¼ 1 to ( + )( ′ − )q r n 1 do
[ ] ← ( −

′
) [ ] +

′
[ + ]S j p S j p S j q1 n n

end for
end for
return …β βf f, , n,1 ,

In the most general case when the independence assumptions
does not hold, one can use the exact inference algorithm devel-
oped in [5] for F i (described in Section 5.2), with ( )O n3 complexity.
This is possible because the expression of Fb (4), and thus problem
(47), are formally identical respectively to the expression of F i (see
Eq. (5) and to problem (48)).
5.2. Instance-wise F

The label assignment *h that maximizes [ ]β F i for a given in-
stance x is given by:

∑ β

β
* = ( | )

( + ) ∑
∑ + ∑ ( )∈ ∈
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This problem has the same form as (47), but in this case the
assumption of conditionally independent labels is not realistic, and
thus the inference algorithms of [14,1,10,19] do not provide the
exact solution. An exact solution with ( )O m3 complexity was de-
rived in [5,4,2,35]. It does not require the knowledge of the full
distribution ( | ) Y x , but only of the +m 12 probabilities ( = | ) Y 0 x
and ( = = | ) Y S s x1,i Y , = …i s m, 1, , , where = { }0 0 m, and

= ∑ =s Yi
m

iY 1 is the number of classes x is relevant to. The inference
algorithm of [5] consists of two nested maximization steps,8 and is
reported as Algorithm 3, where P and W denote the ×m m ma-
trices defined as:

= ( = = | ) = … ( )P Y S s i s mx1, , , 1, , , 49i s i Y,

β
=

+
= …

( )
W

i k
i k m

1
, , 1, , ,

50
i k, 2

and F denotes the matrix PW. It is worth noting that, when the
assumption of conditionally independent labels does not hold, the
difference between the exact solution provided by Algorithm 3
and the ones provided by algorithms based on such an assumption
can theoretically become arbitrarily large [5].

Algorithm 3. The inference algorithm of [5] for maximizing [ ] F i

Input: the matrix P of Eq.(49) and the value of ( = | ) Y 0 x
Output: the label assignment of Eq.(48)
compute the matrix W defined by Eq.(50)

←F PW , ←( )h 00 , ← ( = | )E Y 0 x0

for k ¼ 1 to m do

set ( )h k such that hi¼1 for the top-k elements Fi k, in the k-th
column of F,

and hi¼0 for the other elements

← ∑ =
( )E h F2k i

m
i
k

i k1 ,

end for
← = …q Eargmaxk m k0, ,

return ( )h q

In [5,2,35], ( = | ) Y 0 x and P are estimated by sampling from the
distribution ( | ) Y x . The latter is in turn estimated using the
Probabilistic Classifier Chains (PCC) method [3], which exploits the
product rule of probability:

∏( | ) = ( | … )
( )=

−  Y y yY x x, , , ,
51i

m

i i
1

1 1

and learns m probabilistic classifiers that independently estimate
each of the m terms in the right-hand side of Eq. (51). To this aim,
linear regularized logistic regression was used in [2,5]. In [4,35]

( = | ) Y 0 x and P were estimated using a reduction approach, by
independently solving the following +m 1 S-L multi-class prob-
ability estimation problems. For a given ∈ { … }i m1, , ,

( = | ) Y S x1,i Y can be rewritten as ( ′ | ) Y xi by defining a new
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random variable ′ = [ = ] × ∈ { … }Y Y S m1 0, ,i i Y ; then ( ′ | ) Y xi can
be estimated, e.g., using multinomial regression. Similarly,

( = | ) Y 0 x is obtained by a reduction to a binary problem asso-
ciated to a random variable ′ = [ = ] ∈ { }Y Y 0 0 1, , by estimating

( ′| ) Y x . On the one hand, the latter approach avoids a computa-
tionally demanding sampling step; on the other hand, it produces
non-calibrated probabilities; a post-processing step is thus re-
quired, or additional constraints have to be included in the above
learning problems [4].

A different approach was proposed in [29], focused on the
following decision rule:

θ
=

( = | ) ≥ ( )
= …

( )

⎧⎨⎩


h
Y

i m
x x1, if 1

0, otherwise
1, ,

52
i

i

It labels a sample as relevant to the labels whose marginal pos-
terior exceeds a threshold θ( )x which depends on the sample itself
(equivalently, to the labels exhibiting the top- ( )k x values of ( | ) y xi ,
where the value ( )k x depends again on the sample). A dynamic
programming strategy with ( )O m3 complexity was proposed to
find the value of θ( )x (or ( )k x ) that maximizes the expectation in
Eq. (48). Note however that, if the labels are not coernditionally
independent, the decision rule (52) is naot guaranteed to provide
the global maximum of [ ] F i [14].
6. Conclusions

We provided a unifying, comprehensive survey of the existing
approaches and algorithms aimed at maximizing the F measures
in multi-label classification problems. We believe this is a useful
contribution for further developments in this field, due to the in-
creasing interest on applications related to information retrieval,
and on the corresponding measures of classification accuracy, from
both the pattern recognition and machine learning research
communities.

Works published over the past few years considerably im-
proved the knowledge about F measures, and provided theoreti-
cally-grounded algorithms for their optimization. The optimal
(Bayes) classifier at the population level is now known both for the
S-L and for all three M-L F measures; in particular, the ones for the
M-L micro-averaged and instance-wise F were explicitly derived in
this paper. An equivalent solution based on a reduction to cost-
sensitive problems is also known, except for the M-L, instance-
wise F, and algorithms based on this approach have already been
derived for the S-L F and the M-L, macro-averaged F. Different
maximization algorithms have also been proposed for all these
measures, and the consistency of some of them has been proven.
Only for the M-L micro-averaged F relatively fewer solutions are
available: under the empirical utility maximization approach, only
maximization algorithms that tune the decision thresholds of
binary classifiers are known, and no maximization algorithm
based on the decision-theoretic approach has been derived so far.
We shall fill these gaps in our companion paper [28].
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