
 Procedia Computer Science 9 (2012) 1523 – 1532

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.167

International Conference on Computational Science, ICCS 2012

Dynamic linear solver selection for transient simulations using

multi-label classifiers

Paul R. Eller, Jing-Ru C. Cheng, Robert S. Maier

Information Technology Laboratory
Engineer Research and Development Center, Vicksburg, MS

Abstract

Many transient simulations spend a significant portion of the overall runtime solving a linear system. A wide

variety of preconditioned linear solvers have been developed to quickly and accurately solve different types of linear

systems, each having options to customize the preconditioned solver for a given linear system. Transient simulations

may produce significantly different linear systems as the simulation progresses due to special events occurring that

make the linear systems more difficult to solve or move the model closer to a state of equilibrium with easier to solve

linear systems.

Machine learning algorithms provide the ability to dynamically select the preconditioned linear solver for each

linear system produced by a simulation. We test both single-label and multi-label classifiers, demonstrating that

multi-label classifiers achieve the best performance due to associating multiple fast linear solvers with each tested

linear system. For more difficult simulations, these classifiers produce significant speedups, while for less difficult

simulations these classifiers achieve performance similar to the fastest single preconditioned linear solvers. We test

classifiers generated using limited attribute sets, demonstrating that we can minimize overhead while still obtaining

fast, accurate simulations.

Keywords: machine learning, linear solvers, multi-label classifiers, ADH, MULAN, WEKA

1. Introduction

Many numerical models use transient simulations to accurately model how natural or manmade systems change

over time and how different events or designs may affect these systems. For many transient simulations, the largest

amount of running time is spent solving a linear system. Many preconditioners and solvers have been developed to

quickly solve different types of linear systems. As the linear systems produced by the transient simulations change,

the best preconditioned solver to solve each linear system also changes. Using the best preconditioned solver at each

point in the simulation will allow us to get the lowest possible running times.

Machine learning algorithms provide the ability to generate predictive models, allowing us to create classifiers

capable of taking a set of linear system attributes as input and outputting a preconditioned linear solver as the output.

Email addresses: Paul.R.Eller@usace.army.mil (Paul R. Eller), Ruth.C.Cheng@usace.army.mil (Jing-Ru C. Cheng),

Robert.S.Maier@usace.army.mil (Robert S. Maier)

Available online at www.sciencedirect.com

1524 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

We test both single-label classifiers that associate a single fast linear solver with each linear system and multi-label

classifiers that associate multiple fast linear solvers with each linear system.

We can generate databases by computing attributes for each linear system, physical attributes for the transient

simulation, computational attributes, and running times for a set of preconditioned solvers on each linear system.

Machine learning algorithms can then use these databases to generate classifiers capable of dynamically selecting a

preconditioned solver for each linear system given a set of attributes. This allows us to use different preconditioned

solvers throughout the simulation and provides the potential to produce speedups in comparison with using a single

preconditioned solver for an entire simulation.

2. Related Work

Previous studies have used machine learning algorithms to predict the best solver for a given linear system.

Bhowmick et al. 2006 [1] use alternating decision trees and boosting methods to generate single-label classifiers

to choose the best linear solver for a driven cavity flow model and a three-dimensional plasma simulation code.

Bhowmick et al. 2009 [2] expand on this work by evaluating the performance of multiple single-label classifiers with

matrices from a sparse matrix collection. Holloway and Chen [3] used neural networks to predict if a combination of

preconditioner and iterative method will correctly solve a given linear system from a sparse matrix collection. Kuefler

and Chen [4] use reinforcement learning to select the best preconditioned solver for sparse linear systems from a

sparse matrix collection.

In this work, we focus specifically on using both single-label and multi-label classifiers to improve the performance

of a numerical model using real-world problems instead of using a matrix collection. The linear systems generated

by the ADaptive Hydraulics (ADH) problems of interest are larger than the linear systems typically found in these

collections. We are interested in studying how physical attributes of the simulated system affect the solver selection

and how the solver selection must change over the course of a transient simulation in order to produce the best results.

This work further builds on the work of Nguyen et al. [5], who studied the performance of sparse linear solvers on

ADH for a model of the John Day Lock. They studied matrix attributes over the course of the simulation to better

understand the performance of linear solvers. They experiment with a number of preconditioned solvers, concluding

that the BiCGStab(�) solver is able to efficiently and reliably simulate the John Day Lock model.

3. Background

3.1. ADaptive Hydraulics Modeling System

ADaptive Hydraulics (ADH) provides users with the capability to simulate saturated and unsaturated groundwater

flow, overland flow, three-dimensional Navier-Stokes flow, and two- or three-dimensional shallow-water problems.

This work focuses on using the 3-D Navier-Stokes numerical flow solver to simulate free-surface flow in complex 3-

D structures for the evaluation of navigation locks [6, 5]. ADH uses the Galerkin least-squares finite element method

for solving the Reynolds-averaged incompressible turbulent 3-D Navier-Stokes equations. Turbulence is modeled

with an adverse pressure gradient eddy viscosity technique. ADH uses the Newton algorithm to solve the nonlinear

problem.

The Reynolds-average Navier-Stokes (RANS) equations for the conservation of mass and momentum to compute

the pressure and velocity components throughout the flow domain are

∂

∂xi
ui = 0 and

∂ρui

∂t
+
∂ρu jui

∂x j
= − ∂p
∂xi
+
∂

∂x j

(
μ
∂ui

∂xi
− ρu′

iu
′
j

)
, (1)

where ρ is density, p is mean time-averaged pressure, μ is molecular viscosity, u is mean time-averaged velocity, and

u
′
is the fluctuating component, and −ρu′

iu
′
j is Reynolds stresses. Reynolds stresses are modeled to achieve closure

by the eddy viscosity model to correctly account for turbulence. These equations are discretized using the Galerkin

least-squares finite element algorithms on tetrahedral elements with first-order accuracy.

1525 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

3.2. Numerical and Database Software

PETSc [8] provides users with access to a suite of data structures and routines for parallel scientific applications,

including a wide variety of fast, scalable linear solvers and preconditioners. ADH has been interfaced with PETSc,

providing ADH users with access to these fast linear solvers and preconditioners. We use the AnaMod library to help

compute numerical metadata. AnaMod is a part of the Self-Adapting Large-scale Solver Architecture (SALSA) [9]

software project, which aims to assist applications in finding suitable linear and nonlinear solvers based on analysis

of the application-generated data.

We generate Web Ontology Language (OWL) [10] databases using the OWL API [11, 12]. OWL provides a

language for developing ontology documents for use by applications that need greater information-processing capa-

bilities. Many tools exist for creating, editing, and reasoning with OWL ontologies, providing us with tools to access

the OWL ontology within ADH or to view and process the database on our own using an ontology editor. We use the

OWL API to access and modify the OWL ontologies from within the numerical model. The OWL API contains a set

of interfaces for inspecting, manipulating, and reasoning with OWL ontologies.

3.3. Machine Learning

We use the WEKA and MULAN data mining software packages to access a wide variety of single-label and

multi-label machine learning algorithms. These classifiers are generated by passing the machine learning algorithm

a collection of instances, with each instance containing a set of attribute values and one or more labels. Once the

classifier has been generated, we can pass the classifier a set of attributes as input and the classifier will return a

single label as the class value. In this case, the instances are linear systems produced by ADH, the attributes are the

properties of the linear system, and the labels are preconditioned linear solvers.

The WEKA [13] data mining software provides access to a comprehensive collection of machine learning algo-

rithms and data processing tools. WEKA provides tools for regression, classifications, clustering, association rule

mining, and attribute selection. WEKA provides access to single-label classifiers such as nearest neighbor classifiers

(IBk, KStar), decision trees (J48, RandomTree, RandomForest), support vector classification (SMO), clustering (Sim-

pleKMeans, EM, FarthestFirst), as well as boosting methods such as AdaBoost, each with a number of options to

customize the classifier. For WEKA classifiers, a single label is listed as the class value for each instance. In this case,

we use the fastest solver for each linear system as the label.

MULAN [14] is a data mining software library that provides access to a wide variety of machine learning algo-

rithms for multi-label classifiers. MULAN provides tools for classification, ranking, feature selection, and evaluation.

MULAN provides access to multi-label classifiers such as nearest neighbor classifiers (MLkNN, BRkNN, IBk), neural

network learners (BPMLL), as well as meta classifiers like RAkEL (RAndom k-labELsets) and RAkELd (RAndom

k Disjoint labELsets), each with a number of options to customize the classifier. MULAN also provides access

to transformation algorithms such as the LabelPowerset learner capable of using WEKA single-label classifiers for

multi-label learning problems. For multi-label classifiers, we can list one or more labels as the class value for each

instance, allowing us to set a threshold to determine which solvers are fast for each linear system, at times resulting

in a single solver being selected for the label and at times resulting in many solvers being selected for the label. This

allows us to provide the machine learning algorithms with more examples of which linear systems each linear solver

is capable of solving quickly and accurately.

4. Machine Learning Interface

The machine learning interface uses PETSc, AnaMod, and OWLAPI in addition to the machine learning software

to dynamically select the solver to use for each linear system produced during a simulation. In order to use machine

learning, we must generate a database containing simulation attributes and running times for a set of linear systems

tested against a set of solvers. This dataset is used to generate a classifier at the beginning of each machine learning

simulation. A number of command line options are provided to simplify this process.

1526 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

(a) Generate data (b) Update database (c) Run ADH with machine learning

Figure 1: Process to use machine learning with ADH. First we generate a database and linear system data, then test solvers with linear systems and

update database with running times, and finally use ADH with machine learning to dynamically select the solvers for each linear system.

Table 1: Matrix attributes computed by AnaMod

Category Attributes

Slow trace-asquared, n-nonzero-diags, avg-diag-dists, sigma-diag-dist

Non-Unique col-variability, n-dummy-rows, dummy-rows-kind, trace-abs, diagonal-sign, diag-definite diag-

zerostart, norm1, left-/right-bandwidth, positive-fraction, symmetry, nnzdia, nnzup, nnzlow, upband

Ritz-values ritz-values-r, ritz-values-c

Ritz-based ellipse-ax/-cx/-ay/-cy, kappa, sigma-max/-min, lambda-max/min-by-mag-re, lambda-max-by-

real/im-part-re, lambda-max/min-by-mag-im, lambda-max-by-real/im-part-im, ruhe75-bound

Unique row-variability, diagonal-average, diagonal-variance

Fast Unique trace, normInf, normF, diagonal-dominance, nrows, nnzeros, max-/min-nnzeros-per-row, blocksize,

avgdistfromdiag, nnz, avgnnzprow, loband

4.1. Generating Database

In order to use machine learning, we must first create a database containing training data for the machine learning

algorithm. Figure 1(a) shows how to generate a database and save the linear systems. We run simulations using input

options to save attributes to a database with a safe choice for the preconditioned solver that we are confident will

converge in a reasonable time. For this work, we use the BCGSL solver with the block-Jacobi preconditioner using

two search directions.

The -save stats or -save all stats commands create an OWL database containing attributes for each linear sys-

tem produced during the simulation. Using AnaMod, we compute attributes for each linear system for the categories

simple (normlike quantities), variance (heuristics estimating how different elements in the matrix are), normality (esti-

mates of the departure from normality), structure (nonzero structure properties), and spectrum (eigenvalue and singular

value estimates produced using GMRES iterations). Table 1 shows the attributes we compute based on uniqueness

and compute time. Using the full set of attributes results in high overhead, so we want to use a minimal number

of attributes while still generating accurate classifiers. Attributes related to the physical system and computational

methods (Table 2) are also added to the database. These attributes are passed directly from ADH, requiring minimal

additional computation. When generating the database, we use the input option -save systems to save the full linear

systems produced by the simulation to a binary data directory for further processing later.

4.2. Testing Preconditioned Solvers

Once we have created a database with attributes for many linear systems, we must determine the best precondi-

tioned solvers for each linear system. Figure 1(b) shows how to update the database with the running times for the

1527 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

Table 2: Simulation attributes computed by ADH

Category Attributes

Physical eddy viscosity, inflow velocity, inflow velocity change

Residual residual-l2-norm, residual-max-norm

Adaptation adapted, ref/unref-cycles, ref/unref-max-node-change, ref/unref-percent-change

Computational 3d-max/min-area, max/min-nodes, nonlin-iteration, percent-complete, procs, sim-time, time-step

preconditioned solvers. We can use a separate program to solve each saved linear system with many different precon-

ditioned solvers, adding the running times for each solver for each linear system to the database. The user passes the

program a list of PETSc preconditioned solvers that may perform well at some point during the simulation.

4.3. Using Machine Learning

Once the full database has been generated, simulations can be run using machine learning to select a solver for

each linear system. Figure 1(c) shows how to use machine learning with ADH. The machine learning command line

option -use ml <number>, using 1 for WEKA classifiers and 2 for MULAN classifiers, sets the numerical model

to use machine learning, while the command line option -ml classifer <classifier name> sets the machine learning

classifier to use.

A function to generate each machine learning classifier must be written and compiled in the machine learning

section of the code. This code must use WEKA or MULAN functions to create, build, and return a classifier. The user

can also define the attributes they want to compute in the input file ml.data. This allows the user to limit the number

of attributes computed for each linear system. Additional attributes specific to the simulation code can also be used

by the classifier. The user must add code to compute these values and pass the name of the attribute and its value to

the machine learning interface. This functionality allows the user to control which attributes are computed during the

simulation and choose the best classifier for their problem.

At the beginning of an ADH simulation with machine learning, the machine learning interface will access the

database and create a dataset. This dataset is used by the machine learning algorithm to create a classifier. A machine

learning input file is passed as input to the machine learning interface to determine which attributes and solvers are

used during the simulation.

5. Experimental Setup

5.1. Test Model

We test the effectiveness of the machine learning algorithms with the Watts Bar Lock model. ADH models are

frequently used to simulate locks filling with water, resulting in difficult to compute transient simulations due to rapid

changes in flow velocity and pressure at the beginning of the simulation. Many linear solvers have difficulty solving

the resulting linear systems, making linear solver selection an important factor in getting a fast, accurate solution. The

Watts Bar Lock model has a long culvert with a slope at the beginning that leads to a tainter valve with a valve well.

There are bulkheads before and after the valve well. The finite element mesh for this model uses 1,635,510 elements

to simulate a 23.0 x 0.888 x 3.778 ft area.

We change the values of the eddy viscosity parameter and inflow speed to create 12 variations on this model.

Eddy viscosity refers to the resistance or “thickness” of fluids in the model. Larger values for the eddy viscosity result

in simulating with less turbulence, allowing the user to focus on larger trends occurring in the model. We test eddy

viscosities of 2ft2/s, 5ft2/s, 10ft2/s, and 50ft2/s. We change the inflow speed by increasing or decreasing hydrostatic

pressure at the inflow boundary. We test inflow pressures of 725Pa, 740Pa, and 755Pa. Using lower eddy viscosities

and faster flows increases the turbulence of the fluid in the model, resulting in more difficult to compute transient

simulations.

1528 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

5.2. Preconditioned Solvers

We tested many PETSc solvers, preconditioners, and subpreconditioners against ADH-produced linear systems

and selected 70 preconditioned solvers that produced fast running times for a significant number of linear systems.

Many of the tested preconditioned solvers did not perform well for the tested ADH linear systems. Due to the large

amount of time needed to generate the data for each solver to add to the database, we must limit the number of solvers

in order to generate the full database in a reasonable amount of time. We test BiCGStab(�) (BCGSL) with 2, 4, 6, 8,

and 10 search directions and the -ksp bcgsl cxpoly option. We test the flexible generalized minimal residual method

(FGMRES) with 10, 25, 50, 100, and 200 search directions. We test the additive Schwarz method, block-Jacobi,

and Jacobi preconditioners. We test the incomplete LU subpreconditioner with 0 and 1 factor levels and the LU

subpreconditioner. If none of the tested solvers are able to solve a linear system, then the best solver for that linear

system is listed as “none”. If the classifier selects “none” as the solver, then the numerical simulation will skip solving

the linear system, causing the nonlinear iteration to fail and the time-step to be reduced.

5.3. Test Setup

We test the accuracy of the classifiers by generating full classifiers with knowledge of all variations of a model

and test classifiers with knowledge of all but one variation of a model. We test the full classifiers against all variations

of the model. This demonstrates the performance of the classifiers when they have prior knowledge of the transient

simulation being run and other similar transient simulations. We test each test classifier against the variations of the

model of which the test classifier does not have prior knowledge. This demonstrates the performance of the classifiers

when they do not have prior knowledge of the transient simulation being run, allowing us to better predict classifier

performance against new variations of a model.

We performed experiments testing classifiers without any knowledge of the model being run, but knowledge of

other models. However, we do not have access to enough models to generate linear systems that fully cover the space

of linear systems generated by ADH. These tests produced inaccurate results since the classifiers often did not have

knowledge of any linear systems similar to the ones produced by the model being run. In practice, scientists run

many variations of each model hundreds of times. Allowing them to get fast, accurate results after running some

preprocessing routines can greatly accelerate their work.

We perform tests using the WEKA J48, J48 AdaBoost, J48 AdaBoost with 50 iterations, IBk (1, 2, and 4 near-

est neighbors), IBk AdaBoost (1 nearest neighbor), KStar, RandomForest, RandomTree, and SMO classifiers. We

perform tests using the MULAN BPMLL (0.05, 0.10, and 0.20 learning rate), MLkNN (5, 20, and 40 nearest neigh-

bors), BRkNN with (5, 20, and 40 nearest neighbors), and MLkNN ClusteringBased classifiers with SimpleKMeans,

EM (Expectation Maximization), and FarthestFirst clusterers. We also generate multi-label classifiers for the WEKA

classifiers using LabelPowerset classifiers and the RAkEL and RAkELd meta classifiers.

In order to reduce the overhead of dynamic linear solver selection, we test classifiers generated with multiple sets

of attributes (Table 3). The normal attribute set eliminates non-unique and slow attributes, while reducing the number

of ritz-values. The reduced attribute set eliminates the ritz-values, but still uses the ritz-based values. The minimal

attribute set uses only attributes that are both fast and unique in an attempt to reduce the attribute computation time as

much as possible.

Tests are performed on Garnet, a Cray XT6 with 1260 compute nodes. Each node contains a 2.4-GHz AMD

Opteron 64-bit 16-core processor and 32 GB of dedicated memory. The nodes are connected using a Cray Gemini

Ethernet interconnect. We use 16 nodes (256 cores) for our tests to allow the most difficult simulations to finish in a

reasonable amount of time.

6. Results and Analysis

6.1. Classifier Performance

This section compares the performance of ADH using classifiers produced using WEKA and MULAN machine

learning algorithms with the performance using a single PETSc BCGSL and FGMRES solver for a full simulation.

First we determine the best performing PETSc solvers. Figure 2 shows the performance of the tested PETSc precondi-

tioned linear solvers on the Watts Bar Lock simulations. The fastest BCGSL solver outperforms the fastest FGMRES

solver for the more difficult simulations, while the fastest FGMRES solver outperforms the fastest BCGSL solver for

1529 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

Table 3: Attribute Sets

Name Attribute Categories

Full Non-Unique, 60 Ritz-values, 60 Ritz-based, Unique, Fast Unique

Normal 30 30 Ritz-values, 30 Ritz-based, Unique, Fast Unique

Reduced 30 30 Ritz-based, Unique, Fast Unique

Minimal Fast and Unique

Figure 2: Comparison of the fastest PETSc solver for each model variation with three individual PETSc solvers for ADH Watts Bar Lock simulations

with varying eddy viscosities (2ft2/s, 5ft2/s, 10ft2/s, and 50ft2/s) and inflow speeds ((L)ow, (M)edium, or (H)igh hydrostatic pressure at inflow

boundary).

the less difficult simulations. We see that BCGSL block-Jacobi with 2 search directions is the fastest or near fastest

BCGSL solver. For FGMRES, we see that FGMRES block-Jacobi with 100 search directions is the fastest or near

fastest FGMRES solver for the more difficult simulations, while FGMRES block-Jacobi with 50 search directions is

the fastest or near fastest solver for the less difficult simulations. This suggests that for the Watts Bar Lock simulations,

BCGSL block-Jacobi with 2 search directions is best for the more difficult simulations, while FGMRES block-Jacobi

with 50 search directions is best for the less difficult simulations.

Once we have determined the fastest PETSc solvers, we compare these solvers to the fastest solvers using machine

learning for dynamic linear solver selection. Figure 3 compares the fastest BCGSL and FGMRES solvers to the fastest

single-label and multi-label classifiers for both the test and full classifiers. We generate single-label classifiers using

WEKA. We see that the fastest single-label classifiers for WEKA and WEKA Full perform well for some model

variations, but do not perform as well for other model variations, producing slower running times than the fastest

BCGSL and FGMRES solvers. We also see that the test classifiers outperform the full classifiers in some situations.

The additional information that the full classifiers are given should allow them to outperform the test classifiers. This

suggests that the single-label solvers do not have enough data to accurately predict the best linear solvers in some

situations. Additional tests demonstrated that individual WEKA and WEKA Full classifiers would perform well for

some model variations, but would produce significantly slower running times than the best BCGSL and FGMRES

solvers for other model variations. At times, the WEKA and WEKA Full classifiers would fail to solve some linear

systems, preventing the ADH simulation from running to completion.

Therefore, we test the multi-label classifiers using MULAN. We see that the fastest multi-label classifiers outper-

form the fastest BCGSL and FGMRES solvers for every model variation and that the fastest MULAN Full classifiers

outperform the fastest MULAN classifiers in every case. The MULAN classifiers produce significant speedups for the

more difficult simulations, while the MULAN classifiers produced running times slightly faster than the best BCGSL

1530 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

Figure 3: Comparison of fastest PETSc BCGSL and FGMRES solvers for each model variation with the fastest WEKA single-label and MULAN

multi-label classifiers for each model variation for ADH Watts Bar Lock simulations with varying eddy viscosities (2ft2/s, 5ft2/s, 10ft2/s, and

50ft2/s) and inflow speeds ((L)ow, (M)edium, or (H)igh hydrostatic pressure at inflow boundary).

Figure 4: Comparison of the fastest MULAN multi-label classifier for each model variation with the J48 LP RAkEL, MLkNN with 5 nearest

neighbors, BPMLL with a 0.05 learning rate, and BPMLL with a 0.10 learning rate MULAN multi-label classifiers for ADH Watts Bar Lock

simulations with varying eddy viscosities (2ft2/s, 5ft2/s, 10ft2/s, and 50ft2/s) and inflow speeds ((L)ow, (M)edium, or (H)igh hydrostatic pressure

at inflow boundary).

and FGMERS solvers for the simpler simulations. This suggests that the additional information provided by listing

multiple fast preconditioned linear solvers for each linear system provides enough information to accurately predict

fast linear solvers for each linear system encountered by an ADH simulation.

Next we look at some specific multi-label classifiers and compare them to the fastest multi-label classifiers for

each model variation. In Figure 4 we see that for each classifier, there are some model variations where the classifier

performs well and others where it does not. In most cases, the classifiers do not perform significantly worse than the

fastest multi-label classifier, but there are some cases where we see significant slowdowns. Further experiments with

the machine learning algorithms are necessary to produce more consistent individual classifiers.

1531 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

Figure 5: Comparison of the fastest MULAN multi-label classifier for each model variation with the fastest MULAN multi-label classifiers gen-

erated using the Normal 30, Reduced 30, and Minimal attribute sets for ADH Watts Bar Lock simulations with varying eddy viscosities (2ft2/s,

5ft2/s, 10ft2/s, and 50ft2/s) and inflow speeds ((L)ow, (M)edium, or (H)igh hydrostatic pressure at inflow boundary).

Table 4: ADH machine learning classifier generation, solver selection, and attribute computation running times for the J48 Labelset RAkEL,

MLkNN with 5 nearest neighbors, and BPMLL with a learning rate of 0.10 classifiers for the Watts Bar Lock simulation with eddy viscosity 2 and

medium flow rate.

Classifier Attribute Set Classifier Generation Solver Selection Attribute Computation

J48 LP

RAkEL

Full 1231.08s 124.99s 921.81s

Normal 30 748.32s 80.65s 37.81s

Reduced 30 457.14s 49.67s 38.80s

Minimal 322.73s 35.43s 5.75s

MLkNN5

Full 24.97s 40.00s 867.51s

Normal 30 20.78s 25.41s 41.96s

Reduced 30 24.04s 11.27s 39.41s

Minimal 22.63s 11.07s 5.81s

BPMLL10

Normal 30 261.60s 57.19s 801.36s

Normal 30 181.40s 31.34s 44.45s

Reduced 30 197.91s 10.27s 42.79s

Minimal 187.88s 7.18s 5.77s

6.2. Classifier Overhead
Using machine learning to dynamically select linear solvers results in a significant amount of overhead. Therefore,

we want to limit the amount of overhead as much as possible. We first want to see if reducing the number of computed

attributes affects the ability of the classifiers to accurately select linear solvers. Figure 5 shows that the normal 30,

reduced 30, and minimal attribute sets result in classifiers that are about as fast as the classifiers generated by the full

attribute set. We see that in some cases we obtain a small speedup, while in other cases we get a slight reduction in

speed. This suggests that we can reduce the number of attributes we compute while still accurately predicting the best

linear solver for each linear system.

Next we want to see how much overhead using machine learning creates. Computing a large number of attributes

for each linear system encountered by a simulation has the potential to significantly increase the total running time of

1532 Paul R. Eller et al. / Procedia Computer Science 9 (2012) 1523 – 1532

the simulation, eliminating any speedups obtained by the classifiers. However, by carefully selecting which attributes

we compute, we can limit this overhead. Table 4 demonstrates that we can significantly reduce the overhead for

the more difficult Watts Bar Lock simulation with eddy viscosity 2 and medium flow rate by removing a couple of

attributes that are time-consuming to compute. Using the minimal number of attributes also results in some additional

speedups. We also see that reducing the number of attributes also reduces the time needed to generate the classifier and

select the solver. However, to obtain the best performance, we will need parallel versions of these machine learning

algorithms. At the moment, both WEKA and MULAN only run on a single processor when generating the classifier

and selecting the linear solver. Creating parallel versions of WEKA and MULAN classifiers would significantly

reduce the time spent generating the classifiers and selecting the solvers.

7. Conclusions

This work demonstrates that dynamic linear solver selection using multi-label classifiers allows us to outperform

the fastest BCGSL and FGMRES solvers for transient simulations. The single-label classifiers are not able to con-

sistently produce fast running times due to only being able to associate one solver with each linear system. The

multi-label classifiers are able to obtain fast running times due to their ability to associate multiple solvers with each

linear system, providing the machine learning algorithms with more examples of the linear systems each solver can

quickly and accurately solve.

Using machine learning can create a significant amount of overhead, but this work demonstrates that limited

attribute sets can be used to greatly reduce the amount of time spent computing attributes, as well as reducing the

amount of time needed to generate the classifier and select the linear solvers. However, in order to obtain the best

performance, we will need parallel versions of these machine learning algorithms.

Acknowledgment

We would like to thank Allen Hammack at the U.S. Army Engineer Research and Development Center Coastal

and Hydraulics Laboratory for providing us with ADH models. This study was supported by the U.S. Army Engineer

Research and Development Center Civil Works Basic Research Program and an allocation of computer time from the

DoD High Performance Computing Modernization Program.

References
[1] S. Bhowmick, V. Eijkhout, E. Fuentes, D. Keyes, Application of machine learning to the selection of sparse linear solvers, in: Int. J. of High

Performance Computing Applications, 2006.

[2] S. Bhowmick, B. Toth, P. Raghavan, Towards low-cost, high-accuracy classifiers for linear solver selection, in: Proceedings of the 9th Int.

Conf. on Computational Science, 2009.

[3] A. Holloway, T.-Y. Chen, Neural networks for predicting the behavior of preconditioned iterative solvers, in: Proceedings of the 7th Int. Conf.

on Computational Science, 2007.

[4] E. Kuefler, T.-Y. Chen, On using reinforcement learning to solve sparse linear systems, in: Proceedings of the 8th Int. Conf. on Computational

Science, 2008.

[5] H. V. Nguyen, J.-R. C. Cheng, E. A. Hammack, R. S. Maier, Parallel newton-krylov solvers for modeling of a navigation lock filling system,

in: Proceedings of the 10th Int. Conf. on Computational Science, 2010.

[6] E. A. Hammack, R. L. Stockstill, 3d numerical modeling of john day lock tainter valves, in: Proceedings of World Environmental and Water

Resources Congress, 2009.

[7] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, H. Zhang, Portable, extensible toolkit for

scientific computation, http://www.mcs.anl.gov/petsc (2009).

[8] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc users manual,

Tech. Rep. ANL-95/11 - Revision 3.0.0, Argonne National Laboratory (2008).

[9] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vudoc, R. C. Whaley, K. Yelick, Self adapting linear algebra algorithms and

software, Proceedings of the IEEE 93 (2).

[10] D. L. McGuinness, F. V. Harmelen, Owl web ontology language overview, w3C recommendation, http://www.w3.org/TR/owl-features (2004).

[11] M. Horridge, S. Bechhofer, The owl api: A java api for working with owl 2 ontologies, in: OWLED 2009, 6th OWL Experienced and

Directions Workshop, 2009.

[12] S. Bechhofer, P. Lord, R. Volz, Cooking the semantic web with the owl api, in: 2nd International Semantic Web Conference, 2003.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The weka data mining software: An update, SIGKDD Explorations

11 (1).

[14] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, I. Vlahavas, Mulan: A java library for multi-label learning, Journal of Machine Learning

Research 12 (2011) 2411–2414.

