
1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 1

ML-FOREST: A Multi-label Tree Ensemble
Method for Multi-Label Classification

Qingyao Wu, Mingkui Tan, Hengjie Song, Jian Chen, Michael K. Ng

Abstract—Multi-label classification studies the problem where each example is associated with multiple class labels. Since the labels
are often dependent to other labels, exploiting label dependencies can greatly help to improve the multi-label classification
performance. The label dependency in existing studies is often given as prior knowledge or learnt from the labels only. However, in
many real applications, such prior knowledge may not be available, or the labeled information might be very limited. In this paper, we
propose a new algorithm, called ML-FOREST, to learn an ensemble of hierarchical multi-label classifier trees to reveal the intrinsic label
dependencies. In ML-FOREST, we construct a set of hierarchical trees, and develop a label transfer mechanism to identify the multiple
relevant labels in a hierarchy way. In general, the relevant labels at higher levels of the trees capture more discriminable label concepts,
and they will be transferred into lower level children nodes, which characterize label concepts that are harder to discriminate. The
relevant labels in the hierarchy are then aggregated to compute the label dependency and make classification prediction. Our empirical
study shows encouraging results of the proposed algorithm in comparison with the state-of-the-art multi-label classification algorithms
under Friedman test and post-hoc Nemenyi test.

Index Terms—Multi-label classification, label dependency, label transfer, tree classifier, ensemble methods.

F

1 INTRODUCTION

MULTI-LABEL classification aims to predict the presence
or absence of certain labels of an example which

is associated with multiple classes. Different from classi-
cal multi-class problems, where an example is associated
with only one single label, the multi-label classification is
more general since real-world objects often contain multiple
semantic objects. For example, a real-world image usually
belongs to multiple categories based on different context,
such as water, ship, etc.; while a text document can be
classified into a set of topics, such as news, sports, etc. In the
last decades, multi-label classification problem has received
broad attention from various research domains, such as text
categorization [1], [2], [3], bioinformatics [4], [5], [6], and
computer vision [7], [8], [9].

A straightforward multi-label classification approach is
the binary relevance (BR) [10], which decomposes the prob-
lem into a set of single-label multi-class problems. In this
way, existing multi-class classifiers are leant and then ap-
plied to do prediction. This simple method, however, to-
tally neglects the dependencies among multiple labels. In
practice, multiple objects in an example (such as an image)
may have strong relations or dependencies. For example,
if ship category is presented in an image, it is very likely
that the water category is also in that image. Exploiting such
label dependency may significantly improve the prediction
performance for multi-label classification.

Plenty of previous studies [11], [12] have tried to exploit
the label dependency to improve the prediction perfor-
mance. However, how to effectively model the label de-

• Q. Wu, H. Song, J. Chen and M. Tan are with the School of Software
Engineering, South China University of Technology, China.
E-mail: {qyw, sehjsong, ellachen}@scut.edu.cn, tanmingkui@gmail.com;

• M. K. Ng is with the Mathematics Department, Hong Kong Baptist
University E-mail: mng@math.hkbu.edu.hk

pendency explicitly is still a challenging problem. In [13],
the authors simply assume that the label dependency is
provided as prior knowledge by external resources e.g., a
hierarchical label structure. However, such prior knowledge
is often unavailable in real-world situations. Some other
approaches, like [14], [15], consider learning the label depen-
dency from very limited information, e.g., the co-occurrence
of the labels in the training set. However, these kind of
learning methods may cause over-fitting issues [11].

In this paper, we propose a new tree ensemble algorithm,
called Ml-Forest, to explicitly exploit the label dependency
for multi-label classification. In ML-FOREST, a set of hierar-
chical trees are constructed to learn the label dependency,
and then combined as an ensemble to do multi-label pre-
diction. In other words, the primary focus of this paper is
to find a good hierarchical structure so that two relevant
instances of with strong label dependency will be located
in the same node of the tree. To achieve this, we design a
new tree generation algorithm to partition the learning data
into smaller subsets from the root to the leaves, and then
identify relevant labels for each node with a label transfer
mechanism.

For the first task of the algorithm, we train multi-class
classifiers at each node to divide the data into child nodes.
Here, each data instance is partitioned into one child node
according to the classifier prediction results, and the class la-
bel with highest probability given at the node is considered
as its relevant label.

For the second task of the algorithm, a label transfer
mechanism is involved to recursively propagate the relevant
labels from the root down to the leaf node. For example, if
a relevant label is found at a node, all of its child nodes
would automatically belong to this relevant label, and we
seek a new relevant label (if any) which respects the label
dependencies of the instances in the child node. In the end,

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 2

water

sand

water

water&sand

1 0
relevant labels

10
relevant labels

sand

1 0
relevant labels

1 1
relevant labels

10
relevant labels

1 1
relevant labels

Node BNode A

Node C Node D Node E Node F

Root node

Fig. 1. An example of a hierarchical tree for scene classification.

each leaf node is characterized by multiple relevant labels
given by the nodes at different levels of the tree. This leads
to a new label dependency representation, where the learn-
ing models at different levels work together effectively to
reveal multiple label concepts belonging to the given data.
Intuitively, the relevant labels at high levels in the hierarchy
may tend to capture “more significant” label concepts and
hence are thematically more general, while the relevant
labels at low levels would capture “less significant” label
concepts and hence are thematically more specific.

In Fig. 1 we illustrate the above ideas by showing an
example of a hierarchical tree constructed in a multi-label
scene classification task. In this figure, the instances at the
root node belong to water or sand or both these two classes
simultaneously (e.g., a beach scene contains both water and
sand). A hierarchical tree then is constructed to partition the
data from the root to the leaf nodes, and we identify the
relevant labels at each node to capture the label concepts
based on the label transfer mechanism. In particular, the
data instances are partitioned into the same node if they are
close to each other and they would be labeled hierarchically
such that the label concepts at the higher layers are often
more easier to characterized.

In the above example, part of the beach images would
be partitioned into node A and labeled as water at the first
layer of the tree; while the rest beach images would be
labeled as sand in node B, depending on which class the
images belong to. The resulting class decision hyperplanes
will further split the data of node A into nodes C and D. It
is worth mentioning that the water class associated to node
D is inherited from node A, whilst the sand class associated
to node E is given by node B. For convenience, hereafter this
hierarchical multi-label tree is referred to (Ml-Tree).

The major contributions of this paper are as follows.

• We propose a new hierarchical tree algorithm, called
ML-TREE, to solve the multi-label classification task.
Unlike the BR method which transforms the data into
independent binary problems, our algorithm exploits
the intrinsic label dependency of the data and incor-
porates the ML-TREE structure to find the relevant
labels of an instance with multiple labels. Therefore,

the proposed approach provides a principled way for
modeling the intrinsic label dependency of the data
into a tree structure.

• We design a label transfer mechanism to find the
relevant labels in the hierarchy. The labels of the high
levels in the hierarchy will be used as priors for the
nodes in the low levels to reduce the label space.
Therefore, building the classifier model for low levels
can be very efficient.

• We develop an ensemble strategy to construct mul-
tiple hierarchical multi-label trees and combine the
predictions of different trees as an ensemble to make
predictions.

• We evaluate the empirical performance by conduct-
ing an extensive set of experiments on real-world
problems in text classification, computer vision and
bioinformatics. Experimental results have demon-
strated that the ML-FOREST approach is highly
competitive to the state-of-the-art approaches under
Friedman and Nemenyi tests [16].

The rest of this paper is organized as follows. The problem
of multi-label classification and related work are introduced
in Section 2. The proposed methodology is then described
in Section 3. The data sets, the experimental setup and
experimental results are discussed in Section 4. Finally,
conclusions are drawn in Section 5.

2 RELATED WORK

Let X = Rd be the d-dimensional input space. Given a
labeled data set {(xi,yi)}mi=1, where xi ∈ X contains d
input features and yi ∈ Y = {0, 1}q consists of q possible
labels, the multi-label learning aims to learn a hypothesis
f : X → Y that maps an input x ∈ X to outputs y ∈ Y .
Regarding the label yi of the i-th example, yji = 1 if xi
contains the j-th target, and yji = 0 otherwise.

In the past decades, a number of multi-label classification
approaches have been developed regarding various areas,
such as text categorization [1], [2], [3], bioinformatics [4],
[5], [6], and computer vision [7], [8], [9]. These works have
revealed that exploiting the dependency among differen-
t labels is crucial to improve the good performance for
multi-label classification. For example, Zhang et al. [14]
summarized the existing multi-label approaches into three
categories based on the orders of dependencies exploited
in the system, including First-order approaches, Second-order
approaches and Higher-order approaches.

First-order approaches decompose the multi-label clas-
sification task into a number of independent tasks [17],
[18]. The most common method is the binary relevance (BR)
method [10], which transforms a multi-label problem into
multiple separate and independent binary problems, one for
each label. It is clear that the first-order methods are inca-
pable of label dependency, which might cause a degradation
of the predictive performance.

Second-order approaches consider the pairwise relations
between labels, such as the interaction between any pair of
labels [19], [20]. In general, such pairwise label dependency
is estimated by the co-occurrence or some other equivalent
measures of the labels. However, these approaches might

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 3

over-fit the training data since these dependencies are usu-
ally inaccurate.

High-order approaches consider even higher order of
relations among labels, such as the full-order style imposed
on all the labels [21], [22], [23], [24]. For example, Clare and
King [25] applied the dependencies between all labels to
enhance the multi-label classification performance. Howev-
er, the full-order approaches are usually impossible when the
number of labels is large, where the number of possible label
subset combinations can be exponentially huge.

Hierarchical tree based model is a family of learning al-
gorithms with simple theoretical foundation, and it has been
widely applied in multi-label classification [22], [25], [26],
[27], [28], [29], [30]. For instance, Clare and King [25] adapt-
ed the C4.5 algorithm for multi-label data by modifying the
formula of entropy calculation. Comité et al. [31] learned a
multi-label alternating decision trees from texts and data.
Blockeel et al. [32] proposed predictive clustering trees (PC-
T) to make multi-target prediction/multi-label classification;
while Vens et al. [23] introduced a high-order approach to
extend PCT algorithm to deal with multi-label classification
problem where these classes are organized in a hierarchy
form. But the hierarchical label dependencies should be
provided by external information as the prior knowledge.
Tsoumakas et al. [22] proposed a HOMER algorithm using
a tree structure to handle problems with a large number
of labels, in which the whole label set is disjointed into
subsets to construct the tree by using a balance clustering
algorithm. This method is a high-order approach and it does
not require the label structure as a prior knowledge, but it
is computationally inefficent to fine-tuning the parameters
involved in bulidng the hierarchical model.

Recently, various researchers (see [33], [34], [35])have
exploited the random forest type ensemble methods for
multi-label classification to enhance the learning perfor-
mance. Motivated by recent progress in ensemble learning,
we propose to exploit the label dependencies to improve
the multi-label prediction performance via the ensemble of
hierarchical trees, namely ML-FOREST. Our proposed ML-
FOREST method is a high-order method, where each classifier
tree addresses dependency among a subset of labels based
on relevant labels generated from the root to the leaves.
Note that in this way, the size of the label subset is much
reduced when considering their dependencies, and such
intrinsic label dependencies will be explicitly presented in
the hierarchical trees. More importantly, the learnt depen-
dency which offers a natural way to gain more insights
into the multi-label classification, will lead to improvement
in predictive performance and lower computational cost
compared to other state-of-the-art tree based multi-label
learning algorithms.

The proposed ML-FOREST algorithm is different from
the PCT [32], HOMER [22], and TSA [36].

• In PCT [32], a variance function is employed to split
the learning data by maximizing the cluster homo-
geneity, and a prototype function is used to compute
a label for each leaf. In our proposed method, classi-
fier models are constructed to partition the data into
child nodes, and we identify the relevant labels at
each node and transfer the labels from the root to

leaves in a top-down manner to preserve the label
dependence in the hierarchy.

• Tsoumakas et al. [22] construct a hierarchy of multi-
label classifiers (i.e., HOMER) to handle the task with
a large number of labels. HOMER starts with a root
node containing all the possible classes, and follows
a recursive process to partition the classes into the
leaves (each class corresponds to one leaf). Each
internal node contains the union of the label of its
children. While our proposed algorithm recursively
partitions learning data into child nodes, in which
every internal node consists of all instances of its
children. In addition, for a multi-label instance x,
HOMER forwards x into multiple leaves, and the
union of the single-labels in the corresponding leaves
is used as the multi-label output of the HOMER
approach. On the other hand, in our proposed al-
gorithm, the multi-label instance x is forwarded into
only one leaf node, and the corresponding labels of
nodes in the path from the root to this leaf are taken
as the multi-label output of the proposed approach.

• Madjarov et al. [36] propose a Two Stage Architecture
(TSA) algorithm for multi-label learning. The algo-
rithm is implemented using two layers. In particular,
binary relevance models are built in the first layer
to reduce the complexity of the training of pair-wise
models in the second layer. This method is a second-
order approach. While in our proposed algorithm,
we construct a hierarchical tree structure, which
models the label dependency following the divide-
and-conquer paradigm. We use a recursive process
to partition the data into smaller subsets, and this
process continues until the remaining instances at the
node cannot be further split by the induced classifier.
Therefore, our algorithm is a high-order approach
that constructs multiple-layer models.

3 METHODOLOGY

In this section, we present the ML-FOREST method for multi-
label classification in details. We first describe the classifier
tree construction algorithm as well as the label transfer
mechanism for exploiting label dependencies. Next, we in-
corporate the classifier trees into a forest via a new ensemble
framework to further improve the prediction performance,
and give the computational complexity of the proposed
algorithm.

3.1 THE ML-TREE ALGORITHM

Statistically, the label dependency can be categorized into
two groups, namely conditional and unconditional depen-
dency. Here the conditional label dependency captures the
dependency of the labels given a specific instance x ∈ X ;
while the unconditional label dependency is the expected
dependency averaged over the marginal distribution of all
instances [12].

The joint conditional probability distribution p(y|x),
which specifies the probability of the label combination for
a specific instance, provides a convenient point of departure

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 4

for analyzing the conditional label dependence. Mathemati-
cally, p(y|x) can be written as:

p(y|x) = p(y1|x)p(y2, · · · , yq|y1,x)
= p(y1|x)p(y2|y1,x)p(y3, · · · , yq|y1, y2,x)
= p(y1|x)p(y2|y1,x) · · · p(yq|y1, · · · , yq−1,x)

(1)

where the elements of y = (y1, y2, . . . , yq) can be arranged
by arbitrary order. Based on the above formulation, the joint
conditional probability p(y|x) can be estimated by multiple
steps, with each step for one class. To be more specific, we
can build a model to compute a prediction probability for
one label given x (e.g. p(y1|x)), then the output is used as
the prior to help the estimation of the probability for another
label (e.g. p(y2|y1,x)).

Recently, researchers have considered the classifier chain
idea (see [37], [38]) to model the underlying label dependen-
cy, such as Probabilistic classifier chain (PCC) [37] which is
a representative algorithm to estimate the conditional joint
distribution, and the classifier chain (CC) [38] algorithm
which can be regarded as a deterministic approximation
of probability only using {0, 1} values [37]. All these t-
wo algorithms build q classifiers for estimation w.r.t. q
class labels, in which the j-th classifier is used to estimate
p(yj = 1|x, y1, · · · , yj−1) and the result is further propagat-
ed to the (j + 1)-th classifier by constructing a new feature
vector augmented by the value of j-th label. The (j + 1)-
th classifier is to estimate p(yj+1 = 1|x, y1, · · · , yj) and
it generates a new feature vector (x, y1, · · · , yj+1) for the
next classifier. It has been shown that the order of labels
to be computed in PCC and CC has a great effect on the
classification performance, and how to determine the order
of labels is still an open question [38].

Motivated by recent progress in exploiting label depen-
dency, in this paper, we propose a new hierarchical tree
algorithm, called ML-TREE, which explicitly considers the
intrinsic label dependency in a hierarchy way. The pseudo-
code of the algorithm is described in Algorithm 1 and
2. More specifically, there are three folds constructing the
hierarchical structure: 1) At each internal node, a multi-class
classifier model is built to partition the training data into
smaller subsets according to the predictions of the model;
2) A set of relevant labels are identified at each node for
multi-label classification; 3) The relevant labels of a node in
high levels will be transferred into its child nodes, which
consider the remained labels according to the classifier built
in this phase.

Our goal is to find the relevant labels to be associated
with the data examples at each node. If no examples are
found, the majority class of its parent node is returned;
otherwise, the majority class of all examples at the node
is returned. After that, the relevant labels identified by the
nodes at higher levels are transferred into the nodes at lower
levels as prior label information. This major step of ML-
TREE, i.e., SPLITTEST, is detailed as follows.

i) When the ML-TREE function begins, it actually invokes
itself recursively for each partition using the SPLITTEST
function to train a multi-class classifier and identify the
relevant labels. At each node splitting, SPLITTEST builds
a group of one-against-all binary classifiers [39] for those

Algorithm 1 ML-TREE

Input: A training data setD, and a relevant label vector b =
none

Output: A hierarchical multi-label tree
1: (b, h, P) = SPLITTEST(D,b)
2: if h 6= none ∧ Acceptable(P) then
3: for Di ∈ P do
4: treei=ML-TREE(Di, b)
5: end for
6: return node(h, b, ∪i{treei})
7: else
8: return leaf(h, b)
9: end if

Algorithm 2 SPLITTEST

Input: A training data setD, a relevant label vector bp from
parent

Output: A classifier h, a new relevant label vector b, and a
partition P for current node

1: compute p using Eq. (2)
2: compute b using Eq. (3) and (4)
3: (h, P) = (none, φ)
4: h = build classifier on D for those labels which have not

been identified according to b
5: if h 6=none then
6: P= partition D using h
7: end if
8: return (b, h, P)

remained labels that have not been identified in any of its
parent nodes, i.e., the labels with bj = 0 (see Line 4 in
Algorithm 2) . Then, each example is classified into one
class with maximum confidence score from the multi-class
classifier, and it is partitioned into the corresponding child
node in below layer (see Line 6 in Algorithm 2). Note
that it is possible that the confidence scores of two (or
more) classifiers might be equally maximal. In this case, the
example is classified into the class with largest prior.

ii) In order to find the relevant labels for each node, we
design a a label purity vector, denoted by p = [p1, · · · , pq]>,
to represent the purities of different classes. Specifically, we
calculate each class label’s data purity by

pj =
1

|D|
∑
xi∈D

yji , (2)

where pj ∈ [0, 1] is the purity for the j-th class label,D is the
examples at the node, and |D| is the number of examples in
D.

Then we construct a relevant label vector, b =
[b1, · · · , bq]>, and incorporate the purities into its calcula-
tion to seek the majority labels as the relevant labels of a
node.

bj =

{
1, if pj ≥ λ,
0, otherwise.

(3)

where bj is the relevant label indicator for the j-th class
label, λ ∈ (0.5, 1.0) is a purity threshold.

iii) We also use a label transfer mechanism to trans-
fer the result of the relevant label vector to below layer.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 5

1

2 3 4

Fig. 2. An example of training procedure for multi-label classification.

Our idea is to preserve the identified relevant label vector
bp = [b1p, · · · , bqp]> from the parent node and incorporate
it as an additional indicator with the relevant label vector
bc = [b1c , · · · , bqc]> of a child node, which can be obtained
by (3), to obtain a final result of relevant labels b as follows:

bj =

{
1, if bjp = 1 or bjc = 1,
0, otherwise.

(4)

iv) The above process continues until a stopping crite-
rion is reached, i.e., the data cannot be further split by the
induced classifiers.

Fig. 2 shows an example of two-label problem regarding
Fig. 1 to illustrate the construction of ML-TREE. Note that
each node in ML-TREE is with a set of one-against-all clas-
sifiers which are used to partition the data into child nodes.
Without lose of generality, we use linear SVM as the base
classifier, and set the thresholding value λ = 0.9 as default
value. As shown in Fig. 2, the root node v1 contains all train-
ing instances, and we train two one-against-all classifiers
(i.e., w0 and w+) for the “0” and “+” classes, respectively
(see Line 4 in Alg. 2). We then classify the instance x
according to the confidence scores, i.e., the margin values
(w0 · x) and (w+ · x) (see Line 6 in Alg. 2). As illustrated in
node v1, the solid lines are the resulting decision boundaries
given by the binary classifiers, and the dash line is the
combined boundary decided by the relative magnitudes of
margins. Specifically, when (w0 · x) > (w+ · x) > 0, which
is the case in region ®, x will be classified as “0” class.
While if (w+ · x) > (w0 · x) > 0, which is the case in
region ­, x will be classified as “+” class. According to the
decision surface, the instances in regions ¬ and ­ would
be classified as “+” class; while the instances in regions ®

and ¯ would be classified as “0” class. Next, we use the
prediction function to compute a vector of label probabilities
p and a vector of relevant labels b w.r.t each child node (see
Lines 1 and 2 in Alg. 2). For v2, we have p = [1.0, 0.29]>

and b = [1, 0]>. According to the prediction criterion, the
“+” class is considered as the relevant label for the instances
in v2. When building the classifier models for v2, we do not
need to consider the “+” class any more. In other words,
we just need to train a classifier w.r.t. the “0” class for

further splitting. The identified relevant label “+” will be
transferred into the following child nodes, i.e. nodes v4 and
v5. The construction process is similar for nodes v3, v6 and
v7 in the right sub-tree.

3.2 THE ML-FOREST ALGORITHM

To improve the prediction performance, we further propose
a ML-FOREST algorithm which extends the tree model using
an ensemble method. A single standalone tree model can
be assumed to partition the whole data space into regions
belonging to different classes. However, it is likely that one
single tree may overfit the data in the local region. In partic-
ular, it may make the inference of a test example unreliable.
By applying an ensemble of trees, we first partition the
whole data set into multiple random data subsets, and then
construct multiple trees for each subset. In this way, we can
greatly reduce the risk of overfitting on training data, and
thus generally increase the overall prediction performance.
More importantly, such strategy can greatly improve the
scalability of the method over large-scale data sets. Lastly,
its complexity is linear w.r.t. the number of trees. The ML-
FOREST algorithm which builds an ensemble of K classifier
trees {T1, · · · , TK}. for multi-label classification is described
in Alg. 3,

It has been shown that an ensemble learner with ex-
cellent generalization accuracy has high diversity in com-
ponent learners. The theoretical and practical studies of
ensemble diversity are well documented [40], [41]. In order
to achieve diversity, we employ two randomization proce-
dures to generate multiple hierarchical trees in ML-FOREST.
First, each tree is trained on a data subset randomly drawn
from the entire training set D using sampled with replacement
[42]. In addition, the purity thresholding value λ for each
tree is selected randomly in the range (0.5, 1.0). Such a
randomization procedure also frees us from fine-tuning an
optimal λ value.

For the task of prediction, ML-FOREST outputs a confi-
dence vector c = [c1, · · · , cq]> ∈ Rq for a testing example x,
where cj represents the confidence for the j-th class. To this
end, we compute the predictions of all the trees regarding x.
For each tree, we seek a decision path from the root down
to a leaf node based on the prediction of classifier at each
node. Basing on the relevance label vectors (i.e., b1, · · · ,bK)
from the leaves w.r.t. all K trees, we compute the ensemble
confidence outputs c by

cj =
1

K

K∑
k=1

bjk. (5)

where bjk is the j-th element of the relevant label vector bk.
More details about the prediction are given below.

3.3 PREDICTION VIA THRESHOLDING STRATEGIES

For a testing example x, ML-FOREST outputs a prediction
vector y = [y1, · · · , yq]> with yj = 1 indicating the j-th
label is relevant regarding x. Consider a confidence vector
c = [c1, · · · , cq]> ∈ Rq for x, where each element of c
corresponds to a confidence value for one class label. Given
w, the prediction y of x can be completed by finding

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 6

Algorithm 3 ML-FOREST

Training Phase
Input: A training data set D, the number of trees K
Output: A forest of tree classifiers F

1: F = φ
2: for i = 1 to K do
3: prepare the training set Di = bootstrap(D)
4: build tree classifier Ti = ML-TREE(D, none)
5: F = F ∪ Ti
6: end for
7: return F

Classification Phase
1: For a given x, let b1, · · · ,bK be the predictions assigned

by the classifiers, calculate the confidence for each class,
cj , by the average combination method:

cj = 1
K

K∑
k=1

bjk

2: Assign x to the classes with the confidences larger than
a predefined threshold value

a bipartition of relevant and irrelevant labels based on a
threshold function ft(w) such that

yj =

{
1, if wj ≥ t,
0, otherwise.

(6)

where t ∈ [0, 1] is a predefined threshold value. There are
several ways to set the threshold value t. For example, we
set t = 0.5 for simplicity.

Besides the above simple thresholding value selection
strategy, we can apply a max-drop thresholding scheme,
called Maximum Cut (MCut) method [43], to find more
flexible thresholding values for different examples automat-
ically. In this scheme, a testing example is first assigned with
a set of relevant labels. Given the confidence outputs c for x,
we first sort the labels according to the values of c, and then
find two adjacent classes with the largest gap/difference in
terms of their confidences. Lastly, we use the mean value of
these two classes as a threshold value to do prediction.

3.4 COMPUTATIONAL COMPLEXITY

Given a training data set containing m instances, a node v
with a set of training data Dv , the proposed ML-TREE algo-
rithm uses the one-against-all paradigm to build classifiers
to partition the data at each node, the complexity of this
node depends on the numbers of data instances |Dv| and
the cost to train the classifiers.

To simplify the analysis, we assume that the number
of learning data in the hierarchical tree is m = Nd, and
the tree is a complete N -ary tree with d levels, which
means the average branch-out is N and all leaf nodes are
at the same level [22]. Let f(|Dv|) be the complexity for
training one binary classifier at node v. The current state-
of-the-art algorithms for training SVM classifier have a time
complexity scaling close to O(m2) [44]. At the root node, we
have a cost of Nm2, while at the second level we have N
additional cost of N(mN)2, i.e. an additional cost of m2. At
the next level, we have N2 additional cost of N(m

N2)
2, i.e.

an additional cost of m2

N , and so on. Therefore, the total cost

of the tree is Nm2(1 + 1
N + 1

N2 + · · ·+ 1
Nd), which leads to

O(Nm2) as a sum of a geometric series when d approaches
infinity.

For the ensemble classifier including K trees, let the
number of learning data in each tree be m′ = 0.632m, and
the average branch-out is N ′. Thus the cost of every tree is
O(N ′m′2). In addition, for each tree, we have an additional
cost of O(m) for the sampling. Consequently, the total com-
plexity of the ensemble classifier is K(O(N ′m′2) +O(m)).

Besides the complexity information of our approach, we
also briefly analyze the complexities of several other well-
known multi-label algorithms, i.e., binary relevance (BR)
[10], classifier chain (CC) [38], and hierarchy of multi-label
classifiers (HOMER) [22]. Similar to the analysis for ML-
FOREST, let the time complexity for training a base classifier
be O(m2) w.r.t. m training instances. BR decomposes a
multi-label classification problem into q independent bi-
nary classification problems, whose overall complexity is
O(qm2). CC algorithm successively trains q binary classi-
fiers, and appends the label focused by the last classifier as
a new attribute for training the next classifier. By ignoring
the extended label attribute, which is usually much smaller
than the dimension of the learning example, the complexity
of CC is alsoO(qm2). For HOMER, as each training instance
may pass through multiple paths from the root to leaves, it
is difficult to analyze the complexity w.r.t. the number of
data. In [22], it is shown that the complexity of HOMER is
O(f(q) + q), where q is the number of labels and f(q) is
the cost of the balanced clustering process used in HOMER.
The running time of these algorithms are provided in the
experiment section.

4 EXPERIMENTS

4.1 Experimental results on synthetic data sets
In this experiment, we first use two synthetic data sets to
investigate whether our proposed ML-FOREST algorithm
can generate reasonable label correlation or not. In the
proposed ML-FOREST algorithm, we can use the amount
of reused label co-occurrences in the leaf nodes of the tree
ensemble to automatically estimate the label correlation in
a multi-label data set. Specifically, we construct a m-by-
q matrix Q where m is the number of leaf nodes in the
ensemble and q is the number of possible labels. The i-th
row of Q is equivalent to the relevant label vector b of the
i-th leaf node, where the entries with 1 values correspond to
the non-zero elements of b. The i-th column of Q represents
the distribution of label li over the leaves in the ensemble.
The label correlation of two labels li and lj is measured
using the φ-coefficient defined as follows

φ(i, j) = (AD −BC)/
√
(A+B)(C +D)(A+ C)(B +D),

(7)
where A, B, C and D are the frequency counts of li ∧ lj ,
li ∧ ¬lj , ¬li ∧ lj and ¬li ∧ ¬lj , respectively.

As we have not given ground-truth label correlation
for real-world data so far, we study two synthetic data
sets [11] that we know the exact label relationship. In the
experiments, we use them to check the validity of our
proposed method for capturing the label correlation. The
data sets have 5000 instances and five labels from l1 to l5. l5

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 7

TABLE 1
Label correlation on the first synthetic data set, l1 = l2 and l3 = l4

labels l1 l2 l3 l4 l5
l1 1.00 1.00 -0.14 -0.14 -0.09
l2 1.00 1.00 -0.14 -0.14 -0.09
l3 -0.14 -0.14 1.00 1.00 -0.14
l4 -0.14 -0.14 1.00 1.00 -0.14
l5 -0.09 -0.09 -0.14 -0.14 1.00

TABLE 2
Label correlation on the second synthetic data set, l1 = l2 ∨ l3 ∨ l4

labels l1 l2 l3 l4 l5
l1 1.00 0.29 0.35 0.36 -0.03
l2 0.29 1.00 0.30 0.23 -0.06
l3 0.35 0.30 1.00 0.15 -0.03
l4 0.36 0.23 0.15 1.00 -0.03
l5 -0.03 -0.06 -0.03 -0.03 1.00

is assigned to an instance if it does not belong to l1 to l4. In
the first data set l1 = l2 and l3 = l4. In the second data set
l1 = l2 ∨ l3 ∨ l4. The label correlation for these two data sets
are given in Table 1 and 2, respectively. The diagonals are
1.0. The last row(column) of the tables for l5 has negative
references because l5 is assigned to an instance if it belongs
to none of l1 to l4. Table 1 shows that the entries (1, 2),
(2, 1), (3, 4) and (4, 3) are 1.0, while Table 2 shows that
the entries (1, 2), (1, 3), (1, 4) have relatively large positive
values. These results are consistent with the ground-truth
label correlation.

4.2 Experimental results on real data sets
In this experiment, we compare the performance of the
proposed ML-FOREST algorithm with 8 well-known multi-
label classification algorithms on 12 benchmark multi-label
data sets, and show that the proposed algorithm is able
to achieve competitive performance to the compared algo-
rithms. For the purpose of reproducibility, we provide the
code at: https://sites.google.com/site/qysite/.

4.2.1 DATA SETS

Twelve multi-label data sets are used in the experiments.
These data sets are benchmark data sets from different
application domains: scene, emotions and corel5k are image
data sets, genebase and yeast are biology data sets, and the
remaining seven are document corpus. Reuters(10), Reuter-
s(21), and Reuters(90) are the Reuters-21578 text data sets
w.r.t. the largest 10 classes, 21 classes, and 90 classes. All
the data sets are originally split into training and test set,
and we use such originally given training/test data split in
the experiments [45]. The characteristics of the data sets are
summarized in Table 3.

4.2.2 PARAMETER INSTANTIATION

We compare the proposed Algorithm with eight well-known
multi-label classification algorithms, i.e., binary relevance
(BR) [10], classifier chain (CC) [38], multi-label k nearest
neighbor (ML-kNN) [18], instance-based and logistic re-
gression (IBLR-ML) [21], hierarchy of multi-label classifiers
(HOMER) [22] and predictive clustering trees (PCT) [32],
random forest of predictive clustering trees (RF-PCT) [35]

TABLE 3
Description of the multi-label data sets in terms of the number of

training (#tr.e.) and test (#t.e.) examples, the number of features (f),
the total number of labels(q) and the label cardinality (lc). The data sets
are ordered by their label cardinality (i.e., average number of labels per

example)

data set domain #tr.e. #t.e. f q lc
scene Image 1,211 1,196 294 6 1.07
Reuters(10) Text 6,490 2,545 500 10 1.11
Reuters(21) Text 7,140 2,747 500 21 1.16
Reuters(90) Text 7,770 3,019 500 90 1.24
medical Text 333 645 1,449 45 1.25
genebase Biology 463 199 1,186 27 1.25
ohsumed Text 6,286 7,643 500 24 1.66
emotions Image 391 202 72 6 1.87
tmc2007 Text 21,519 7,077 500 22 2.16
bibtex Text 4,880 2,515 1,836 159 2.40
corel5k Image 4,500 500 499 374 3.52
yeast Biology 1,500 917 103 14 4.2

and Two stage architecture (TSA) [36]. The implementations
of the BR, CC, ML-kNN, IBLR-ML, HOMER, RF-PCT and
TSA algorithms are based on the MULAN library1 and the
implementation of the PCT algorithm is based on the CLUS
system2.

For the algorithms using base classifiers (i.e., BR, CC,
HOMER, TSA and ML-FOREST), SVM with linear kernel
in LIBSVM library [46] is used as the base classifier. The
LIBSVM with options “-b 1” is used to learn SVMs with
probability outputs in the experiments. For parameter tun-
ing, we use 5-fold cross validation on the training set to
select parameters in the experiments. In particular, for each
algorithm on each data set, the parameters yield the best
average hamming loss using cross validation are selected.
Then, the algorithm is trained again with the selected pa-
rameters on the whole training set and evaluated on the
test set for comparison. The parameter tunings of different
algorithms are given as follows. The number of neighbors
k in the ML-kNN and IBLR-ML is tuned from 5 to 30 with
an increment of 5. The number of clusters in the HOMER
is tuned within the range of 2 to 6. The values considered
for parameter C of SVM for BR, CC, TSA and HOMER are
tuned with the values 2−5, 2−3, ..., 23. For RF-PCT, we set
the number of models to 50. We try the feature subset sizes
of log2f +1,

√
f , f/10 and f/2, where f is the total number

of features. Such setting is similar to the testing in [47], and
we find that f/2 results in best performance, thus we use
f/2 as the feature subset size in the model.

Our ML-FOREST algorithm has three essential param-
eters: the number of trees K, the purity threshold λ and
the penalty parameter C of the SVM base classifiers. The
parameter λ does not need to be extensively tuned. For
each tree, we randomly selected λ in the range (0.9, 0.95).
We also simply set K = 50 and C = 2−5 as default. The
parameter setting will be discussed in the later section. We
set the number of trees K = 50 as the same in [48], and
we set C = 2−5 because it is usually used as default setting
for SVM [49]. Unless otherwise stated, we use these default
settings in the experiments.

1. http://mulan.sourceforge.net
2. http://clus.sourceforge.net

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 8

CD = 3.4681

123456789

BR

CC

ML−Forest

TSA

RF−PCT

HOMER

MLkNN

IBLR−ML

PCT

(a)

CD = 3.4681

123456789

ML−Forest

HOMER

CC

RF−PCT

TSA

BR

IBLR−ML

MLkNN

PCT

(b)

CD = 3.4681

123456789

ML−Forest

CC

HOMER

RF−PCT

BR

TSA

IBLR−ML

MLkNN

PCT

(c)

CD = 3.4681

123456789

HOMER

ML−Forest

TSA

CC

RF−PCT

BR

IBLR−ML

MLkNN

PCT

(d)

CD = 3.4681

123456789

ML−Forest

HOMER

CC

RF−PCT

TSA

BR

IBLR−ML

MLkNN

PCT

(e)

CD = 3.4681

123456789

ML−Forest

CC

HOMER

BR

RF−PCT

TSA

IBLR−ML

MLkNN

PCT

(f)

CD = 3.4681

123456789

RF−PCT

ML−Forest

BR

CC

TSA

IBLR−ML

HOMER

MLkNN

PCT

(g)

CD = 3.4681

12345678

HOMER

CC

TSA

RF−PCT

ML−Forest

BR

IBLR−ML

MLkNN

PCT

(h)

CD = 3.4681

12345678

HOMER

TSA

ML−Forest

CC

RF−PCT

BR

IBLR−ML

MLkNN

PCT

(i)

Fig. 3. The average ranks diagrams for the bipartition-based measures: (a) hamming loss, (b) accuracy, (c) precision, (d) recall, (e) F1-score, (f)
subset accuracy, (g) macro-precision, (h) macro-recall, (i) macro-F1.

4.2.3 PERFORMANCE MEASURES

The performance of multi-label classification is measured by
the bipartition-based metrics which are based on the compari-
son of the predicted labels of each example with the ground-
truth labels provided by the data set. In our experiments,
nine bipartition-based metrics (hamming loss, example-based
accuracy, example-based precision, example-based recall,
example-based F1, subset accuracy, macro-precision, macro-
recall and macro-F1) are used to measure the performance.
Please see [50] the detailed definitions of these metrics. On
the other hand, the ranking-based metrics (e.g., one-error,
coverage, ranking loss and average precision) compare the
predicted ranking of the labels with the ground truth rank-
ing.

We also consider four ranking-based metrics (one-error,
coverage, ranking loss, and average precision) for multi-
label ranking evaluation. Ranking-based metrics are thresh-

old independent. These measures compare the predicted
ranking of the labels with the ground truth ranking.

As multiple algorithms are compared on multiple data
sets in the experiments, we follow a two-step statistical test
procedure (the corrected Friedman test and the post-hoc
Nemenyi test) as recommended by Demšar [16] to compare
the algorithms in a pairwise way across multiple data sets.
The comparison results of the algorithms w.r.t. different
evaluation metrics are given in Tables 4 to 17. The Friedman
test is a non-parametric test for multiple hypotheses testing.
The procedure involves ranking the algorithms (each row
in each section of the table) in a descending order based on
their performance for each data set separately in which the
best performance for each data set gets the rank of 1.

The average rank of each algorithm across all the data
sets (each column in each section of the table) is computed.
Then, the Nemenyi post-hoc test is used in order to detect

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 9

which algorithms are significantly different from each other,
based upon the average ranks of the algorithms. The perfor-
mances of two algorithms is significantly different if their
average ranks differ by more than a critical distance (CD)
whose value is depended on the number of algorithms,
the number of data sets and a given significance level p.
The results of the Nemenyi post-hoc test can be visually
presented with diagrams [16] as shown in Fig. 3, where the
critical distance is 2.849 and the significant level is p = 0.05.
For each evaluation metric, the values on the horizontal axis
show the average ranks of the algorithms in a manner that
the algorithm has the best (worst) rank which is at the right-
most (left-most) side of the diagram. The algorithms that do
not differ significantly are connected by a bold horizontal
line.

4.2.4 RESULTS ON THE BIPARTITION-BASED METRICS

Fig. 3 shows the presentations of the results on the multi-
label classification data sets for the bipartition-based metrics.
Tables 4 to 12 show the complete comparison results of
the algorithms for different evaluation metrics. The table
is separated into several sections, each of them representing
a specific evaluation metric. For each evaluation metric, the
uparrow ↑ (downarrow ↓) indicates that a larger (smaller)
value is more useful for such a specific evaluation metric.
The numbers in brackets are the ranks of the algorithms in
terms of one particular evaluation metric, and the numbers
in boldface indicate the best ranking algorithms. The last
row in each section of the table is the average ranks of
the algorithms across all the data sets. According to the
experimental results, ML-FOREST is able to achieve compet-
itive performance with the compared algorithms, and the
experiments reveal a number of interesting points:

• The ML-FOREST, TSA, RF-PCT and HOMER meth-
ods are hierarchical methods using different strate-
gies to exploit the label dependency. ML-FOREST,
TSA and HOMER are based on problem transfor-
mation mechanism using SVM base classifiers to
solve a hierarchy of partial binary classification prob-
lems, whilst RF-PCT is to utilize multiple compo-
nent classifiers each deals with a partial data set.
We observe that this type of methods consistently
achieve better performance than the other methods,
such as MLkNN and PCT, though the bipartition-
based evaluation metrics that are used. MLkNN and
PCT are not competitive mainly due to the inade-
quacy of modeling label dependency. This suggests
the importance of leveraging label dependency for
multi-label classification.

• Comparing ML-FOREST and HOMER, we see that
both ML-FOREST and HOMER has excellent overall
performances. HOMER ranks 1st in terms of recall
and macro-recall, While ML-FOREST is better than
HOMER in terms of precision. Precision and recall
are two different quantitative measures evaluate the
algorithm performance from different aspects. Preci-
sion is the fraction of predicted labels that are also
relevant (evaluating the accurate of the prediction),
while recall is the fraction of relevant labels that are
predicted correctly (evaluating the completeness of

the prediction). This result indicates that the predic-
tions from ML-FOREST are more accurate than those
from HOMER, while the predictions from HOMER
are more complete than the ones from ML-FOREST. A
reasonable explanation of this finding is that, HOME-
R uses multiple-leaf labeling method to classify a
new multi-label example. Homer returns the union
of the predicted label set in multiple leaves, therefore
the prediction is more complete. Whilst ML-FOREST
is based on decision-path labeling method which
combines the predictive labels from the root to a leaf
as prediction result. The prediction at each node is
obtained by the purity threshold λ with a large value
in our experiments and therefore, is more accurate.

• Comparing ML-FOREST and RF-PCT, one observes
that both ML-FOREST and RF-PCT consistently yield
good, though perhaps not the best, performance in
terms of all the evaluation metrics. ML-FOREST and
RF-PCT perform well in terms of macro precision and
macro recall which take the average of the precision
and recall over different classes. This result implies
that these two tree ensemble methods are robust
across a range of different datasets and classes. Both
of them are able to achieve good overall performance
in the evaluation. The reason for this is that although
growing each individual tree in ML-FOREST and RF-
PCT may not be optimal, multiple fully grown trees
can make it up for good and robust performance.

• We further analyze the performance of the ML-
FOREST w.r.t. different types of data. We can see
that the performances of ML-FOREST on text data
sets (e.g., Reuters, ohsumed and bibtex) are better
than those of the image and biology data sets. A
reasonable explanation for this finding is that we use
SVMs with a linear kernel as base classifier for ML-
FOREST. Previous study [49] has shown that most
text categorization problems are linearly separable
and so linear kernel is often applied for text cate-
gorization tasks, while a radial basis kernel is more
appropriate for image and biology data. In practice,
the prior knowledge of which kernel function should
be used is difficult to obtain in advance.

4.2.5 Results on the ranking-based metrics

In this subsection, we present results w.r.t ranking evalu-
ation metrics. Fig. 4 shows the graphical presentation of
the results on the multi-label classification data sets for the
ranking-based metrics. Tables 13 to 16 show the complete
comparison results of the algorithms for these metrics.

The best performing methods are TSA and BR, followed
by RF-PCT and ML-Forest. RF-PCT is robust across both
bipartition-based metrics and ranking-based metrics. On
the other hand, even though the HOMER approach is able
to produce good results for the example-based measures,
it performs poorly across all the ranking-based evaluation
measures. A similar observation is also found in recent stud-
ies [50], where it is shown that even sophisticate approaches
are not able to outperform all other methods in all the
measures. The evaluation measures used in the experiments
assess the learning performance from different aspects and

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 10

TABLE 4
The performance of the multi-label classification algorithms in terms of hamming loss↓.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.1028(5) 0.1062(7) 0.0960(2) 0.0893(1) 0.1180(8) 0.1332(9) 0.0977(4) 0.1041(6) 0.0966(3)
Reuters(10) 0.0165(3) 0.0166(4) 0.0218(8) 0.0208(7) 0.0155(1) 0.0288(9) 0.0187(6) 0.0160(2) 0.0183(5)
Reuters(21) 0.0110(2) 0.0109(1) 0.0141(8) 0.0130(7) 0.0115(4) 0.0214(9) 0.0129(6) 0.0111(3) 0.0128(5)
Reuters(90) 0.0050(2) 0.0049(1) 0.0054(6) 0.0058(8) 0.0053(5) 0.0118(9) 0.0057(7) 0.0051(3) 0.0052(4)
medical 0.0119(1) 0.0120(2) 0.0197(7) 0.0299(9) 0.0141(6) 0.0230(8) 0.0130(4) 0.0131(5) 0.0121(3)
genbase 0.0746(9) 0.0744(8) 0.0015(3) 0.0016(4) 0.0030(5) 0.0078(7) 0.0007(1) 0.0011(2) 0.0037(6)
ohsumed norm 0.0434(2) 0.0431(1) 0.0564(5) 0.0569(6) 0.0480(4) 0.0624(9) 0.0595(8) 0.0580(7) 0.0450(3)
emotions 0.2137(3) 0.2459(4) 0.2830(9) 0.2797(8) 0.2112(2) 0.2591(6) 0.1972(1) 0.2632(7) 0.2564(5)
tmc2007 0.0553(3) 0.0554(4) 0.0611(8) 0.0583(6) 0.0578(5) 0.0759(9) 0.0495(1) 0.0550(2) 0.0601(7)
bibtex 0.0123(3) 0.0124(4) 0.0139(7) 0.0189(9) 0.0137(6) 0.0145(8) 0.0130(5) 0.0122(2) 0.0120(1)
corel5k 0.0092(1) 0.0093(2) 0.0094(3) 0.0231(9) 0.0103(7) 0.0096(5) 0.0095(4) 0.0119(8) 0.0100(6)
yeast 0.2048(4) 0.2196(8) 0.1980(1) 0.2005(3) 0.2119(7) 0.2426(9) 0.2065(6) 0.2060(5) 0.1985(2)
Avg. rank 3.17 3.83 5.58 6.42 5.00 8.08 4.42 4.33 4.17

TABLE 5
The performance of the multi-label classification algorithms in terms of accuracy ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.5811(7) 0.6702(2) 0.6240(5) 0.6495(4) 0.5838(6) 0.5698(9) 0.6608(3) 0.5811(8) 0.7189(1)
Reuters(10) 0.8945(6) 0.9038(3) 0.8600(9) 0.8706(7) 0.9054(2) 0.8602(8) 0.8991(5) 0.8994(4) 0.9153(1)
Reuters(21) 0.8689(4) 0.8796(2) 0.8553(6) 0.8511(8) 0.8731(3) 0.7794(9) 0.8537(7) 0.8684(5) 0.8837(1)
Reuters(90) 0.7741(6) 0.7874(3) 0.7788(5) 0.7860(4) 0.7972(1) 0.5678(9) 0.7295(8) 0.7738(7) 0.7932(2)
medical 0.7048(3) 0.7074(2) 0.3731(8) 0.4225(7) 0.6712(5) 0.2036(9) 0.6740(4) 0.6488(6) 0.7590(1)
genbase 0.3595(9) 0.3600(8) 0.9782(4) 0.9849(3) 0.9652(6) 0.9284(7) 0.9916(1) 0.9866(2) 0.9673(5)
ohsumed 0.5028(4) 0.5219(3) 0.3241(6) 0.2761(7) 0.5290(2) 0.1878(9) 0.2349(8) 0.3649(5) 0.5571(1)
emotions 0.5173(2) 0.5035(3) 0.3177(8) 0.3160(9) 0.4917(4) 0.4827(5) 0.5804(1) 0.4344(6) 0.4287(7)
tmc2007 0.5953(5) 0.5987(4) 0.5567(7) 0.5651(6) 0.6024(2) 0.4544(9) 0.6393(1) 0.5997(3) 0.5243(8)
bibtex 0.2865(5) 0.3067(4) 0.1294(8) 0.1651(7) 0.3352(2) 0.0462(9) 0.2299(6) 0.3179(3) 0.3568(1)
corel5k 0.0501(5) 0.0553(4) 0.0184(8) 0.0412(6) 0.1055(3) 0.0000(9) 0.0222(7) 0.1934(1) 0.1194(2)
yeast 0.4984(6) 0.4352(9) 0.4920(7) 0.5031(3) 0.5195(2) 0.4530(8) 0.5341(1) 0.4991(5) 0.5009(4)
Avg. rank 5.17 3.92 6.75 5.92 3.17 8.33 4.33 4.58 2.83

TABLE 6
The performance of the multi-label classification algorithms in terms of precision ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.6063(7) 0.7032(2) 0.6547(5) 0.6798(4) 0.6127(6) 0.5991(9) 0.6898(3) 0.6060(8) 0.7573(1)
Reuters(10) 0.9075(6) 0.9158(3) 0.8726(8) 0.8819(7) 0.9168(2) 0.8725(9) 0.9155(4) 0.9104(5) 0.9409(1)
Reuters(21) 0.8890(4) 0.8989(2) 0.8766(6) 0.8713(8) 0.8905(3) 0.8129(9) 0.8732(7) 0.8870(5) 0.9340(1)
Reuters(90) 0.8045(6) 0.8179(3) 0.8111(5) 0.8163(4) 0.8245(2) 0.5790(9) 0.7607(8) 0.8018(7) 0.8524(1)
medical 0.7450(3) 0.7470(2) 0.4163(8) 0.4668(7) 0.7183(5) 0.2574(9) 0.7276(4) 0.6875(6) 0.8451(1)
genbase 0.3613(9) 0.3617(8) 0.9899(6) 0.9975(2) 0.9807(7) 0.9950(3) 1.0000(1) 0.9950(4) 0.9941(5)
ohsumed 0.6373(4) 0.6609(2) 0.4339(6) 0.3708(7) 0.6473(3) 0.2656(9) 0.3387(8) 0.4646(5) 0.7785(1)
emotions 0.6229(4) 0.6007(5) 0.5107(8) 0.4942(9) 0.6345(3) 0.5817(6) 0.6980(1) 0.5489(7) 0.6619(2)
tmc2007 0.7607(4) 0.7627(3) 0.7243(8) 0.7283(7) 0.7337(6) 0.6481(9) 0.7699(2) 0.7603(5) 0.7779(1)
bibtex 0.4575(5) 0.4679(4) 0.2543(7) 0.2531(8) 0.4767(3) 0.1396(9) 0.3839(6) 0.4832(2) 0.5656(1)
corel5k 0.1298(4) 0.1157(5) 0.0425(8) 0.0680(7) 0.2146(3) 0.0000(9) 0.0770(6) 0.3242(1) 0.2680(2)
yeast 0.6994(4) 0.6966(5) 0.7322(1) 0.7069(3) 0.6686(7) 0.6370(9) 0.6678(8) 0.6941(6) 0.7171(2)
Avg. rank 5.00 3.67 6.33 6.08 4.17 8.25 4.83 5.08 1.58

TABLE 7
The performance of the multi-label classification algorithms in terms of recall ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.6217(8) 0.6877(3) 0.6488(5) 0.6576(4) 0.6346(6) 0.5711(9) 0.6948(2) 0.6325(7) 0.7441(1)
Reuters(10) 0.9111(6) 0.9183(5) 0.8750(8) 0.8849(7) 0.9244(1) 0.8714(9) 0.9200(4) 0.9213(3) 0.9227(2)
Reuters(21) 0.8897(5) 0.8993(2) 0.8743(6) 0.8668(8) 0.8968(3) 0.7816(9) 0.8710(7) 0.8933(4) 0.9093(1)
Reuters(90) 0.7942(7) 0.8056(2) 0.7963(5) 0.8027(4) 0.8227(1) 0.5683(9) 0.7383(8) 0.7963(6) 0.8051(3)
medical 0.7628(2) 0.7509(3) 0.3953(8) 0.5339(7) 0.7186(4) 0.2036(9) 0.7116(5) 0.6997(6) 0.7822(1)
genbase 0.9891(3) 0.9890(4) 0.9782(7) 0.9874(5) 0.9795(6) 0.9284(9) 0.9916(1) 0.9915(2) 0.9732(8)
ohsumed norm 0.5479(4) 0.5679(3) 0.3579(6) 0.2961(7) 0.6234(1) 0.1878(9) 0.2417(8) 0.4484(5) 0.5681(2)
emotions 0.6089(2) 0.5965(4) 0.3639(8) 0.3622(9) 0.5371(6) 0.5842(5) 0.7005(1) 0.5998(3) 0.4893(7)
tmc2007 0.6940(4) 0.6930(5) 0.6542(7) 0.6546(6) 0.7383(2) 0.5322(9) 0.7477(1) 0.7036(3) 0.5334(8)
bibtex 0.2949(5) 0.3199(4) 0.1335(8) 0.2095(7) 0.3800(2) 0.0462(9) 0.2453(6) 0.3393(3) 0.3952(1)
corel5k 0.0515(6) 0.0587(5) 0.0190(8) 0.0772(4) 0.1225(3) 0.0000(9) 0.0223(7) 0.2625(1) 0.1423(2)
yeast 0.5822(5) 0.4950(9) 0.5491(8) 0.5783(6) 0.6327(2) 0.5860(4) 0.6749(1) 0.5903(3) 0.5730(7)
Avg. rank 4.75 4.08 7.00 6.17 3.08 8.25 4.25 3.83 3.58

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 11

TABLE 8
The performance of the multi-label classification algorithms in terms of F1 score ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.6030(8) 0.6870(2) 0.6426(5) 0.6623(4) 0.6102(6) 0.5800(9) 0.6819(3) 0.6062(7) 0.7400(1)
Reuters(10) 0.9045(6) 0.9128(3) 0.8694(8) 0.8792(7) 0.9156(2) 0.8682(9) 0.9115(4) 0.9103(5) 0.9261(1)
Reuters(21) 0.8826(5) 0.8927(2) 0.8691(6) 0.8631(8) 0.8870(3) 0.7913(9) 0.8661(7) 0.8828(4) 0.9013(1)
Reuters(90) 0.7907(6) 0.8035(3) 0.7949(5) 0.8012(4) 0.8148(2) 0.5712(9) 0.7421(8) 0.7902(7) 0.8151(1)
medical 0.7380(2) 0.7361(3) 0.3951(8) 0.4733(7) 0.7040(5) 0.2209(9) 0.7043(4) 0.6793(6) 0.7945(1)
genbase 0.5235(9) 0.5240(8) 0.9821(4) 0.9900(3) 0.9749(6) 0.9467(7) 0.9941(1) 0.9908(2) 0.9769(5)
ohsumed 0.5615(4) 0.5824(3) 0.3703(6) 0.3125(7) 0.6018(2) 0.2107(9) 0.2679(8) 0.4260(5) 0.6265(1)
emotions 0.5901(2) 0.5766(3) 0.3959(8) 0.3911(9) 0.5576(4) 0.5559(5) 0.6675(1) 0.5323(6) 0.5236(7)
tmc2007 0.6863(5) 0.6867(4) 0.6475(7) 0.6513(6) 0.6961(2) 0.5444(9) 0.7265(1) 0.6906(3) 0.6052(8)
bibtex 0.3343(5) 0.3559(4) 0.1619(8) 0.2087(7) 0.3944(2) 0.0671(9) 0.2764(6) 0.3718(3) 0.4270(1)
corel5k 0.0704(5) 0.0733(4) 0.0249(8) 0.0606(6) 0.1436(3) 0.0000(9) 0.0344(7) 0.2774(1) 0.1722(2)
yeast 0.6087(5) 0.5420(9) 0.5993(7) 0.6085(6) 0.6243(2) 0.5668(8) 0.6459(1) 0.6103(3) 0.6090(4)
Avg. rank 5.17 4.00 6.67 6.17 3.25 8.42 4.25 4.33 2.75

TABLE 9
The performance of the multi-label classification algorithms in terms of subset accuracy ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.5159(7) 0.6196(2) 0.5686(5) 0.6112(3) 0.5050(9) 0.5393(6) 0.5978(4) 0.5075(8) 0.6564(1)
Reuters(10) 0.8633(5) 0.8758(2) 0.8295(9) 0.8428(7) 0.8739(3) 0.8354(8) 0.8613(6) 0.8656(4) 0.8833(1)
Reuters(21) 0.8260(4) 0.8391(1) 0.8133(7) 0.8129(8) 0.8296(3) 0.7426(9) 0.8147(6) 0.8231(5) 0.8333(2)
Reuters(90) 0.7237(6) 0.7393(3) 0.7307(5) 0.7406(2) 0.7436(1) 0.5588(9) 0.6916(8) 0.7235(7) 0.7317(4)
medical 0.6078(3) 0.6248(2) 0.3070(7) 0.2853(8) 0.5736(5) 0.1535(9) 0.5829(4) 0.5581(6) 0.6543(1)
genbase 0.0000(8.5) 0.0000(8.5) 0.9648(3) 0.9648(4) 0.9296(6) 0.8844(7) 0.9849(1) 0.9749(2) 0.9397(5)
ohsumed norm 0.3318(3) 0.3463(2) 0.1973(5) 0.1748(7) 0.3187(4) 0.1267(9) 0.1468(8) 0.1934(6) 0.3718(1)
emotions 0.2921(2) 0.2772(3) 0.1040(8) 0.1040(9) 0.2772(4) 0.2624(5) 0.3119(1) 0.1287(7) 0.1683(6)
tmc2007 0.3144(4) 0.3277(2) 0.2816(7) 0.2960(6) 0.3054(5) 0.2025(9) 0.3534(1) 0.3164(3) 0.2778(8)
bibtex 0.1678(5) 0.1817(3) 0.0549(8) 0.0708(7) 0.1825(2) 0.0036(9) 0.1125(6) 0.1765(4) 0.2073(1)
corel5k 0.0040(5) 0.0060(4) 0.0001(7) 0.0020(6) 0.0180(1) 0.0000(8.5) 0.0000(8.5) 0.0120(2) 0.0100(3)
yeast 0.1516(6) 0.1396(8) 0.1592(4) 0.1778(2) 0.1963(1) 0.1178(9) 0.1559(5) 0.1407(7) 0.1658(3)
Avg. rank 4.83 3.42 6.25 5.75 3.67 8.13 4.88 5.08 3.00

TABLE 10
The performance of the multi-label classification algorithms in terms of macro-precision ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.7781(4) 0.7453(7) 0.7931(3) 0.8314(1) 0.6943(8) 0.6561(9) 0.7970(2) 0.7641(5) 0.7486(6)
Reuters(10) 0.9123(1) 0.9083(2) 0.8740(8) 0.8812(7) 0.9014(3) 0.8250(9) 0.8916(5) 0.9007(4) 0.8868(6)
Reuters(21) 0.8690(3) 0.8605(4) 0.8230(8) 0.8584(5) 0.8291(7) 0.6492(9) 0.9202(1) 0.8572(6) 0.8895(2)
Reuters(90) 0.5723(4) 0.5952(1) 0.5429(5) 0.4503(7) 0.5771(3) 0.0337(9) 0.4291(8) 0.5344(6) 0.5942(2)
medical 0.3372(4) 0.3571(3) 0.1477(8) 0.2023(7) 0.3130(5) 0.0185(9) 0.3810(1) 0.2665(6) 0.3665(2)
genbase 0.6994(7) 0.7041(4) 0.7037(5) 0.7391(2) 0.6139(8) 0.4059(9) 0.8519(1) 0.7325(3) 0.7037(6)
ohsumed 0.7206(2) 0.7077(3) 0.6331(5) 0.6524(4) 0.6288(6) 0.1189(9) 0.5935(8) 0.6016(7) 0.7898(1)
emotions 0.6842(3) 0.5956(7) 0.4751(9) 0.4773(8) 0.7051(2) 0.6194(4) 0.7165(1) 0.6006(6) 0.6043(5)
tmc2007 0.7812(5) 0.7664(6) 0.7376(7) 0.7828(4) 0.6951(8) 0.3948(9) 0.8458(2) 0.8042(3) 0.9237(1)
bibtex 0.5220(3) 0.5027(4) 0.1941(7) 0.1698(8) 0.4311(6) 0.0063(9) 0.4410(5) 0.5301(2) 0.6249(1)
corel5k 0.0516(5) 0.0523(4) 0.0334(7) 0.0329(8) 0.0553(3) 0.0000(9) 0.3105(1) 0.0616(2) 0.0516(6)
yeast 0.3729(6) 0.3231(9) 0.6003(1) 0.5101(3) 0.3460(8) 0.4099(4) 0.5626(2) 0.3677(7) 0.3932(5)
Avg. rank 3.92 4.50 6.08 5.33 5.58 8.17 3.08 4.75 3.58

TABLE 11
The performance of the multi-label classification algorithms in terms of macro-recall ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.6134(8) 0.6770(3) 0.6374(5) 0.6442(4) 0.6270(6) 0.5605(9) 0.6792(2) 0.6250(7) 0.7297(1)
Reuters(10) 0.8237(4) 0.8368(3) 0.7539(8) 0.7415(9) 0.8571(1) 0.8062(5) 0.7886(6) 0.8487(2) 0.7769(7)
Reuters(21) 0.7460(4) 0.7579(1) 0.6980(5) 0.6952(6) 0.7564(3) 0.5442(9) 0.6171(8) 0.7577(2) 0.6875(7)
Reuters(90) 0.3983(4) 0.4014(3) 0.3551(7) 0.4058(2) 0.4427(1) 0.0375(9) 0.2161(8) 0.3772(6) 0.3809(5)
medical 0.3066(4) 0.3191(3) 0.0859(8) 0.2141(7) 0.2557(5) 0.0220(9) 0.3498(1) 0.2353(6) 0.3266(2)
genbase 0.7755(2) 0.7755(3) 0.6961(6) 0.7189(5) 0.6366(8) 0.4021(9) 0.8519(1) 0.7407(4) 0.6479(7)
ohsumed 0.4100(4) 0.4383(2) 0.2365(6) 0.2087(7) 0.5308(1) 0.0822(9) 0.1403(8) 0.3148(5) 0.4276(3)
emotions 0.6048(3) 0.5880(4) 0.3129(9) 0.3284(8) 0.5286(6) 0.5853(5) 0.6824(1) 0.6131(2) 0.4772(7)
tmc2007 0.4878(5) 0.5006(4) 0.4073(7) 0.4269(6) 0.5614(2) 0.2601(9) 0.3945(8) 0.5021(3) 0.6275(1)
bibtex 0.1698(5) 0.1922(4) 0.0508(8) 0.1177(7) 0.2600(1) 0.0063(9) 0.1366(6) 0.2098(3) 0.2372(2)
corel5k 0.0135(7) 0.0216(6) 0.0090(8) 0.0428(2) 0.0307(4) 0.0000(9) 0.2995(1) 0.0387(3) 0.0298(5)
yeast 0.3233(6) 0.2705(9) 0.3075(8) 0.3379(4) 0.3682(3) 0.3842(2) 0.3980(1) 0.3333(5) 0.3195(7)
Avg. rank 4.67 3.75 7.08 5.58 3.42 7.75 4.25 4.00 4.50

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 12

TABLE 12
The performance of the multi-label classification algorithms in terms of macro-F1 ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.6853(7) 0.7063(4) 0.7003(5) 0.7226(3) 0.6575(8) 0.6025(9) 0.7322(2) 0.6865(6) 0.7375(1)
Reuters(10) 0.8635(4) 0.8692(3) 0.8050(8) 0.7998(9) 0.8769(1) 0.8132(7) 0.8338(5) 0.8720(2) 0.8239(6)
Reuters(21) 0.7996(3) 0.8028(1) 0.7408(7) 0.7612(6) 0.7876(4) 0.5576(9) 0.7112(8) 0.8005(2) 0.7780(5)
Reuters(90) 0.4503(3) 0.4574(2) 0.4077(7) 0.4090(6) 0.4749(1) 0.0336(9) 0.2630(8) 0.4256(5) 0.4403(4)
medical 0.3124(4) 0.3271(3) 0.1037(8) 0.1815(7) 0.2687(5) 0.0201(9) 0.3581(1) 0.2431(6) 0.3358(2)
genbase 0.7008(5) 0.7032(4) 0.6998(6) 0.7258(3) 0.6183(8) 0.4038(9) 0.8519(1) 0.7361(2) 0.6718(7)
ohsumed 0.5023(4) 0.5267(2) 0.3174(6) 0.3046(7) 0.5437(1) 0.0958(9) 0.1753(8) 0.3934(5) 0.5227(3)
emotions 0.6072(2) 0.5568(6) 0.3469(9) 0.3705(8) 0.5781(5) 0.5957(4) 0.6800(1) 0.6027(3) 0.5249(7)
tmc2007 0.5691(5) 0.5803(4) 0.4850(7) 0.5212(6) 0.6051(2) 0.2938(9) 0.4460(8) 0.5813(3) 0.7009(1)
bibtex 0.2241(5) 0.2470(4) 0.0692(8) 0.1308(7) 0.3007(2) 0.0063(9) 0.1834(6) 0.2678(3) 0.3129(1)
corel5k 0.0185(7) 0.0263(6) 0.0128(8) 0.0295(5) 0.0333(4) 0.0000(9) 0.3008(1) 0.0412(2) 0.0345(3)
yeast 0.3247(8) 0.2785(9) 0.3361(5) 0.3651(3) 0.3467(4) 0.3914(1) 0.3784(2) 0.3354(6) 0.3332(7)
Avg. rank 4.75 4.00 7.00 5.83 3.75 7.75 4.25 3.75 3.92

TABLE 13
The performance of the multi-label classification algorithms in terms of one-error ↓.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.2425(3) 0.2776(7) 0.2533(6) 0.2341(1) 0.3294(8) 0.3813(9) 0.2475(4) 0.2366(2) 0.2475(5)
Reuters(10) 0.0530(2) 0.0534(4) 0.0896(8) 0.0864(7) 0.0727(6) 0.1218(9) 0.0625(5) 0.0515(1) 0.0531(3)
Reuters(21) 0.0641(2) 0.0648(3) 0.1012(8) 0.0910(6) 0.0961(7) 0.1744(9) 0.0823(5) 0.0593(1) 0.0673(4)
Reuters(90) 0.1447(3) 0.1414(2) 0.1534(5) 0.1613(6) 0.1650(8) 0.4193(9) 0.1630(7) 0.1395(1) 0.1467(4)
medical 0.1597(2) 0.1690(3) 0.3612(7) 0.5256(8) 0.2465(6) 0.6279(9) 0.2016(5) 0.1721(4) 0.1504(1)
genbase 0.0000(2.5) 0.0000(2.5) 0.0000(2.5) 0.0000(2.5) 0.0050(7) 0.0050(8) 0.0000(5) 0.0000(6) 0.0050(9)
ohsumed norm 0.2281(3) 0.2224(1) 0.3892(6) 0.4117(7) 0.3202(4) 0.5393(9) 0.4438(8) 0.3598(5) 0.2239(2)
emotions 0.2921(1) 0.3614(7) 0.3615(8) 0.3564(6) 0.3515(5) 0.3812(9) 0.2970(2) 0.3020(3) 0.3020(4)
tmc2007 0.1710(4) 0.1749(5) 0.2040(7) 0.1946(6) 0.2374(8) 0.2984(9) 0.1542(2) 0.1600(3) 0.1170(1)
bibtex 0.3575(2) 0.3586(3) 0.6020(7) 0.6294(8) 0.4584(6) 0.7829(9) 0.4123(5) 0.3718(4) 0.3458(1)
corel5k 0.6760(3) 0.6860(4) 0.6940(5) 0.8820(9) 0.7580(7) 0.7680(8) 0.6400(2) 0.5980(1) 0.7140(6)
yeast 0.2443(7) 0.3162(9) 0.2345(2) 0.2410(4) 0.2497(8) 0.2334(1) 0.2443(6) 0.2356(3) 0.2410(5)
Avg. rank 3.04 4.21 5.96 5.88 6.67 8.17 4.67 2.83 3.75

TABLE 14
The performance of the multi-label classification algorithms in terms of coverage ↓.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.5017(2) 0.5761(6) 0.5326(4) 0.5485(5) 1.1204(9) 0.9607(8) 0.5284(3) 0.4900(1) 0.6806(7)
Reuters(10) 0.2016(2) 0.2059(3) 0.3434(7) 0.3324(6) 0.5839(9) 0.3937(8) 0.2122(4) 0.1737(1) 0.3136(5)
Reuters(21) 0.3611(2) 0.3648(3) 0.7197(7) 0.5643(5) 1.6702(9) 0.9425(8) 0.3702(4) 0.3189(1) 0.6309(6)
Reuters(90) 2.0768(3) 2.1007(4) 2.9248(5) 3.1977(7) 12.7410(9) 7.1332(8) 1.7857(2) 1.4495(1) 3.0113(6)
medical 2.1349(1) 2.2977(3) 3.2775(6) 5.5488(7) 5.9922(9) 5.8977(8) 2.1457(2) 2.3752(4) 3.2000(5)
genbase 0.4925(3) 0.4925(4) 0.5678(8) 0.5025(5) 0.5226(6) 0.3116(1) 0.5477(7) 0.5779(9) 0.4774(2)
ohsumed 2.6219(2) 2.4900(1) 4.1917(4) 4.6049(7) 9.8917(9) 6.6931(8) 4.3671(5) 3.3690(3) 4.3869(6)
emotions 1.9455(2) 1.9851(4) 2.5149(8) 2.2970(6) 2.6634(9) 2.3515(7) 1.9208(1) 1.9505(3) 2.0545(5)
tmc2007 2.4972(6) 2.5796(7) 2.4054(5) 2.3213(4) 7.8205(9) 4.1345(8) 1.8273(1) 2.1683(2) 2.3071(3)
bibtex 23.5730(3) 24.2592(4) 61.0501(8) 48.7797(6) 74.1217(9) 58.5996(7) 18.6720(2) 16.4091(1) 25.4803(5)
corel5k 107.0980(3) 120.1340(6) 111.2760(4) 199.0800(8) 320.5720(9) 120.5880(7) 96.3340(2) 92.1240(1) 114.5120(5)
yeast 6.5638(7) 7.1145(9) 6.4144(2) 6.4264(3) 6.9586(8) 6.5354(5) 6.2443(1) 6.5431(6) 6.4885(4)
Avg. rank 3.00 4.50 5.67 5.75 8.67 6.92 2.83 2.75 4.92

TABLE 15
The performance of the multi-label classification algorithms in terms of ranking loss ↓.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.0799(2) 0.0953(6) 0.0866(4) 0.0892(5) 0.2000(9) 0.1720(8) 0.0861(3) 0.0780(1) 0.1150(7)
Reuters(10) 0.0105(2) 0.0110(3) 0.0258(7) 0.0244(6) 0.0496(9) 0.0316(8) 0.0119(4) 0.0084(1) 0.0207(5)
Reuters(21) 0.0082(2) 0.0084(3) 0.0220(7) 0.0176(5) 0.0642(9) 0.0351(8) 0.0091(4) 0.0069(1) 0.0187(6)
Reuters(90) 0.0140(3) 0.0141(4) 0.0201(5) 0.0242(7) 0.1143(9) 0.0652(8) 0.0127(2) 0.0095(1) 0.0224(6)
medical 0.0325(1) 0.0351(3) 0.0540(6) 0.1029(7) 0.1030(8) 0.1135(9) 0.0344(2) 0.0366(4) 0.0507(5)
genbase 0.0045(4) 0.0046(5) 0.0060(7) 0.0037(2) 0.0059(6) 0.0018(1) 0.0061(8) 0.0077(9) 0.0043(3)
ohsumed norm 0.0540(2) 0.0507(1) 0.1094(5) 0.1236(7) 0.2883(9) 0.2041(8) 0.1170(6) 0.0831(3) 0.1059(4)
emotions 0.1791(3) 0.1942(4) 0.2795(8) 0.2571(6) 0.3111(9) 0.2648(7) 0.1711(1) 0.1761(2) 0.2033(5)
tmc2007 0.0363(5) 0.0385(7) 0.0380(6) 0.0348(4) 0.1829(9) 0.0889(8) 0.0208(1) 0.0287(2) 0.0316(3)
bibtex 0.0781(3) 0.0792(4) 0.2399(7) 0.1961(6) 0.2972(9) 0.2556(8) 0.0620(2) 0.0556(1) 0.1085(5)
corel5k 0.1194(3) 0.1329(5) 0.1269(4) 0.2525(8) 0.5798(9) 0.1415(7) 0.1072(2) 0.1009(1) 0.1344(6)
yeast 0.1786(6) 0.2079(9) 0.1715(2) 0.1734(3) 0.2040(8) 0.1844(7) 0.1706(1) 0.1759(5) 0.1756(4)
Avg. rank 3.00 4.50 5.67 5.50 8.58 7.25 3.00 2.58 4.92

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 13

TABLE 16
The performance of the multi-label classification algorithms in terms of average precision ↑.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.8561(3) 0.8346(7) 0.8492(5) 0.8563(2) 0.7626(8) 0.7548(9) 0.8525(4) 0.8591(1) 0.8354(6)
Reuters(10) 0.9680(2) 0.9675(3) 0.9412(7) 0.9441(6) 0.9365(8) 0.9230(9) 0.9630(4) 0.9711(1) 0.9578(5)
Reuters(21) 0.9576(2) 0.9569(3) 0.9274(7) 0.9358(6) 0.9076(8) 0.8716(9) 0.9472(4) 0.9612(1) 0.9447(5)
Reuters(90) 0.8899(3) 0.8912(2) 0.8770(6) 0.8748(7) 0.8284(8) 0.6579(9) 0.8783(4) 0.8989(1) 0.8780(5)
medical 0.8719(1) 0.8646(2) 0.7289(7) 0.6049(8) 0.7581(6) 0.4915(9) 0.8393(5) 0.8572(3) 0.8438(4)
genbase 0.9945(1) 0.9943(2) 0.9939(3) 0.9924(6) 0.9864(9) 0.9912(8) 0.9927(5) 0.9924(7) 0.9938(4)
ohsumed norm 0.8052(2) 0.8115(1) 0.6667(5) 0.6421(6) 0.6258(7) 0.4998(9) 0.6238(8) 0.7097(4) 0.7419(3)
emotions 0.7857(2) 0.7660(5) 0.7088(9) 0.7314(6) 0.7092(8) 0.7208(7) 0.7942(1) 0.7832(3) 0.7688(4)
tmc2007 0.8498(4) 0.8451(5) 0.8277(7) 0.8380(6) 0.7244(8) 0.7215(9) 0.8782(2) 0.8642(3) 0.8793(1)
bibtex 0.5699(3) 0.5697(4) 0.3291(8) 0.3349(7) 0.4151(6) 0.2118(9) 0.5612(5) 0.5925(2) 0.6072(1)
corel5k 0.2890(3) 0.2762(5) 0.2770(4) 0.1624(8) 0.1479(9) 0.2163(7) 0.3089(2) 0.3471(1) 0.2647(6)
yeast 0.7526(5) 0.7022(9) 0.7585(1) 0.7570(2) 0.7344(8) 0.7488(7) 0.7544(3) 0.7524(6) 0.7542(4)
Avg. rank 2.58 4.00 5.75 5.83 7.75 8.42 3.92 2.75 4.00

TABLE 17
The performance of the multi-label classification algorithms in terms of training time (in hours) ↓.

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-Forest
scene 0.5468(6) 0.8686(7) 0.0313(4) 0.0175(3) 3.1079(9) 0.0004(1) 0.0106(2) 0.0402(5) 2.4658(8)
Reuters(10) 0.3058(6) 0.4330(7) 0.1532(4) 0.1890(5) 3.5188(9) 0.0019(1) 0.0333(2) 0.0357(3) 1.6901(8)
Reuters(21) 0.6063(6) 0.7417(7) 0.1867(5) 0.1740(4) 7.5049(9) 0.0049(1) 0.0857(3) 0.0551(2) 2.9268(8)
Reuters(90) 1.0601(6) 1.1896(7) 0.0830(4) 0.6115(5) 16.9018(9) 0.0173(1) 0.0813(3) 0.0447(2) 2.0974(8)
medical 0.0092(5) 0.0098(6) 0.0010(2) 0.0054(4) 0.1623(8) 0.0004(1) 0.0016(3) 0.0619(7) 0.2783(9)
genbase 0.0943(6) 0.0912(5) 0.0214(4) 0.0011(3) 0.8938(7) 0.0001(1) 0.0006(2) 12.2302(9) 4.8198(8)
ohsumed 7.6682(5) 8.1229(6) 0.9197(3) 0.7229(2) 42.5799(8) 0.2098(1) 5.5266(4) 99.3969(9) 33.4865(7)
emotions 0.3317(7) 0.4120(8) 0.0009(3) 0.0015(4) 3.4787(9) 0.0001(1) 0.0004(2) 0.2355(6) 0.1796(5)
tmc2007 1.3500(3) 1.4708(4) 2.6801(7) 1.8375(5) 13.5168(8) 0.0139(1) 0.1480(2) 2.4727(6) 166.0751(9)
bibtex 22.6319(6) 29.4215(7) 0.4625(2) 2.5392(5) 39.7952(8) 0.0541(1) 0.9940(3) 1.7673(4) 59.8075(9)
corel5k 6.7812(5) 8.9521(6) 0.1062(2) 11.1200(8) 39.4257(9) 0.0715(1) 0.7692(4) 0.4930(3) 9.7242(7)
yeast 7.1219(7) 7.1248(8) 0.0266(5) 0.0015(2) 0.0216(4) 0.0005(1) 0.0057(3) 0.0630(6) 7.3917(9)
Avg. rank 5.67 6.5 3.75 4.17 8.08 1.00 2.75 5.17 7.92

one algorithm rarely outperforms another algorithm on all
criteria. With the results shown in Fig. 4 and Tables 13 to
16, we find that the performance of our proposed method
is not significantly affected, it still can achieve competitive
performance against TSA, BR, CC and RF-PCT in terms of
the ranking-based metrics.

TABLE 18
The accuracy of ML-FOREST using different kernel functions against

different number of trees K on the medical and scene data sets.

Data set Kernel 1 5 10 20 50

medical
linear 0.696 0.728 0.734 0.743 0.751
radial basis 0.719 0.719 0.728 0.737 0.742
polynominal 0.729 0.732 0.738 0.744 0.747

scene
linear 0.608 0.705 0.717 0.718 0.719
radial basis 0.585 0.714 0.718 0.718 0.718
polynominal 0.609 0.612 0.710 0.715 0.719

4.2.6 PARAMETER SENSITIVITY AND TRAINING TIME

In this experiment, we investigate how different values of
the number of tree K affect the classification performances
of the proposed ML-FOREST algorithm. We vary the values
of K from 1 to 50. The accuracy results of ML-FOREST using
different kernel functions against different number of trees
K on the medical and scene data sets can be found in Table
18. One observe that when the number of trees increases,
the accuracy of the ML-FOREST algorithm increases. It has
been shown that learning performance can be significantly
enhanced when the ensemble has sufficient base learners.

We try linear kernel, radial basis kernel, and polynomial
kernel with parameters selected using cross-validation. We
can see from Table 18 that the performance of ML-FOREST
does not have significant difference while training with
different kernel functions.

We also evaluate the robustness of ML-FOREST against
the other two input parameters: the purity threshold λ
and the SVM penalty C. The values 2−5, 2−3, . . . 2 were
considered for C and 0.4 to 0.9 for λ. The 3D graph in Fig.
5 shows how the accuracy of ML-FOREST varies against
different values of λ and C. We can see that the accuracy
of ML-FOREST increases when the value of λ increases and
meanwhile the value of C decreases. We observe that the
accuracy is degraded when λ is small. In this case, a number
of irrelevant classes with confidences larger than λ are
included within predicted labels, and thus the performance
is degraded drastically. As a result, we randomly selected
λ in the range (0.9, 0.95) to set λ with a large value. The
results on other data sets are similar. We also find that the
performance of ML-FOREST will decrease if the penalty C is
chosen too large or too small. In our experiment, we have
used the value C = 2−5 as default setting.

We also report the training times of each algorithm (see
Table 17). The experiments are conducted on an Intel Xeon
2.4 GHz machine with 128 GB RAM running Windows
Server 2012. The results show that PCT is the fastest method.
The RF-PCT algorithm is implemented using multi-thread
programming, and it ranks 2nd in terms of training time (the
code is available at https://sites.google.com/site/qysite/).

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 14

CD = 3.4681

123456789

TSA

BR

ML−Forest

CC

RF−PCT

IBLR−ML

MLkNN

HOMER

PCT

(a)

CD = 3.4681

123456789

TSA

RF−PCT

BR

CC

ML−Forest

MLkNN

IBLR−ML

PCT

HOMER

(b)

CD = 3.4681

123456789

TSA

BR

RF−PCT

CC

ML−Forest

IBLR−ML

MLkNN

PCT

HOMER

(c)

CD = 3.4681

123456789

BR

TSA

RF−PCT

CC

ML−Forest

MLkNN

IBLR−ML

HOMER

PCT

(d)

Fig. 4. The average ranks diagrams for the ranking-based measures: (a)
one-error, (b) coverage, (c) ranking loss, and (d) average precision.

Tree based learning methods, such as ML-FOREST and
HOMER, have the largest training time. HOMER is mainly
due to the high computational cost in tuning the param-

0.03
0.125

0.25
0.5

1
2 0.4

0.5

0.6

0.7

0.8

0.9
0.7

0.75

0.8

 λ
 C

 A
cc

ur
ac

y
(%

)

0.73

0.735

0.74

0.745

0.75

0.755

0.76

Fig. 5. The accurate of ML-FOREST with respects to the threshold λ and
penalty C parameters.

eters in the model, while ML-FOREST is due to the high
computational cost in learning multiple tree classifiers. The
ML-FOREST algorithm is easy to be parallelized and thus
the running time can be significantly improved in case
using multi-thread parallel mechanism to implement it on
computer with multi-core processors.

5 CONCLUSION

In this paper, we have presented a new multi-label classifica-
tion method, called ML-FOREST, to build an ensemble clas-
sifier. In ML-FOREST, we construct a set of hierarchical trees
that is able to automatically exploit the label correlation,
and develop a label transfer mechanism which identifies the
relevant labels hierarchically.

ML-FOREST models the label dependency as a hierar-
chical scheme and performs the multi-label classification
on this tree structure as a hierarchical decision process. As
a result, ML-FOREST can have more discriminating ability
than the first-order multi-label classification methods which
only transform a multi-label problem into multiple sepa-
rate and independent binary problems. Experimental results
show that the proposed tree ensemble method is highly
competitive to the state-of-the-art multi-label classification
algorithms. Several works remain to be investigated in our
future work:

1) ML-FOREST is a hierarchical tree ensemble algo-
rithm to model the label dependency. Instead of
using the linear SVM as base classifier in the hierar-
chy, utilizing some probabilistic base classifier (such
as Bayesian approach) might fit more to estimate
the conditional probability distribution p(y|x). This
suggests one way to extend ML-FOREST.

2) Tsoumakas et al. [22] show that a hierarchical multi-
label classifier model can be very efficiency on the
tasks with a large number of labels if clustering tech-
nique is considered to organize the labels in grow-
ing the tree. It is interesting to apply Tsoumakas’s
idea to ML-FOREST approach.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 15

3) In practice, the acquired multi-label data set can be
imbalanced and noisy, and thus the hierarchical tree
can be imbalanced, which degrades the generaliza-
tion ability of the learning performance. Thus it is
important to consider this challenging problem in
the future.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
useful and constructive suggestions. We also thank Prof.
Huaqing Min and Dr. Yuguang Yan for their contributions
towards the revision of this work.

REFERENCES

[1] T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers, “Statistical
topic models for multi-label document classification,” Machine
learning, vol. 88, no. 1-2, pp. 157–208, 2012.

[2] J. Nam, J. Kim, E. L. Mencı́a, I. Gurevych, and J. Fürnkranz,
“Large-scale multi-label text classification–revisiting neural net-
works,” in Machine Learning and Knowledge Discovery in Databases,
2014, pp. 437–452.

[3] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li, “Multi-instance
multi-label learning,” Artificial Intelligence, vol. 176, no. 1, pp. 2291–
2320, 2012.

[4] K.-C. Chou, “Some remarks on predicting multi-label attributes
in molecular biosystems,” Molecular Biosystems, vol. 9, no. 6, pp.
1092–1100, 2013.

[5] X. Xiao, P. Wang, W.-Z. Lin, J.-H. Jia, and K.-C. Chou, “iamp-
2l: a two-level multi-label classifier for identifying antimicrobial
peptides and their functional types,” Analytical biochemistry, vol.
436, no. 2, pp. 168–177, 2013.

[6] Y.-Y. Xu, F. Yang, Y. Zhang, and H.-B. Shen, “An image-based
multi-label human protein subcellular localization predictor (ilo-
cator) reveals protein mislocalizations in cancer tissues,” Bioinfor-
matics, vol. 29, no. 16, pp. 2032–2040, 2013.

[7] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Matrix
completion for weakly-supervised multi-label image classifica-
tion,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 37, no. 1, pp. 121–135, 2015.

[8] F. Sun, J. Tang, H. Li, G.-J. Qi, and T. S. Huang, “Multi-label image
categorization with sparse factor representation,” Image Processing,
IEEE Transactions on, vol. 23, no. 3, pp. 1028–1037, 2014.

[9] M. Liu, Y. Luo, D. Tao, C. Xu, and Y. Wen, “Low-rank multi-view
learning in matrix completion for multi-label image classification,”
in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[10] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” International Journal of Data Warehousing & Mining,
vol. 3, no. 3, pp. 1–13, 2007.

[11] S. Huang, Y. Yu, and Z. Zhou, “Multi-label hypothesis reuse,”
in Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2012, pp. 525–533.

[12] K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier,
“On label dependence in multi-label classification,” in Workshop
proceedings of learning from multi-label data, 2010, pp. 5–12.

[13] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Hierarchical clas-
sification: combining bayes with svm,” in Proceedings of the 23rd
international conference on Machine learning, 2006, pp. 177–184.

[14] M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting
label dependency,” in Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 2010, pp.
999–1008.

[15] L. Sun, S. Ji, and J. Ye, “Hypergraph spectral learning for multi-
label classification,” in Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 2008, pp.
668–676.

[16] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.

[17] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern recognition, vol. 37, no. 9, pp.
1757–1771, 2004.

[18] M. Zhang and Z. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern Recognition, vol. 40, no. 7, pp. 2038–
2048, 2007.

[19] G. Qi, X. Hua, Y. Rui, J. Tang, T. Mei, and H. Zhang, “Correlative
multi-label video annotation,” in Proceedings of the 15th Internation-
al Conference on Multimedia, 2007, pp. 17–26.

[20] S. Zhu, X. Ji, W. Xu, and Y. Gong, “Multi-labelled classification
using maximum entropy method,” in Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in
information retrieval, 2005, pp. 274–281.

[21] W. Cheng and E. Hüllermeier, “Combining instance-based learn-
ing and logistic regression for multilabel classification,” Machine
Learning, vol. 76, no. 2, pp. 211–225, 2009.

[22] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of label-
s,” in Proc. ECML/PKDD’08 Workshop on Mining Multidimensional
Data, 2008, pp. 30–44.

[23] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel,
“Decision trees for hierarchical multi-label classification,” Machine
Learning, vol. 73, no. 2, pp. 185–214, 2008.

[24] S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for
multi-label classification,” in Proceeding of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2008, pp. 381–389.

[25] A. Clare and R. King, “Knowledge discovery in multi-label pheno-
type data,” Principles of Data Mining and Knowledge Discovery, pp.
42–53, 2001.

[26] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for
large multi-class tasks,” Advances in Neural Information Processing
Systems, vol. 23, no. 1, pp. 163–171, 2010.

[27] J. Deng, S. Satheesh, A. C. Berg, and F. Li, “Fast and balanced:
Efficient label tree learning for large scale object recognition,” in
Advances in Neural Information Processing Systems, 2011, pp. 567–
575.

[28] G. Madjarov and D. Gjorgjevikj, “Hybrid decision tree architecture
utilizing local svms for multi-label classification,” Hybrid Artificial
Intelligent Systems, pp. 1–12, 2012.

[29] B. Fu, Z. Wang, R. Pan, G. Xu, and P. Dolog, “Learning tree
structure of label dependency for multi-label learning,” Advances
in Knowledge Discovery and Data Mining, pp. 159–170, 2012.

[30] W. Bi and J. T. Kwok, “Multi-label classification on tree-and dag-
structured hierarchies,” in Proceedings of ICML’11 the 28th Interna-
tional Conference on Machine Learning, 2011, pp. 17–24.

[31] F. De Comité, R. Gilleron, and M. Tommasi, “Learning multi-label
alternating decision trees from texts and data,” in Proceedings of
the 3rd MLDM International Conference on Machine learning and Data
Mining in Pattern Recognition, 2003, pp. 251–274.

[32] H. Blockeel, L. De Raedt, and J. Ramon, “Top-down induction of
clustering trees,” arXiv preprint cs/0011032, 2000.

[33] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma, “Multi-label
learning with millions of labels: Recommending advertiser bid
phrases for web pages,” in Proceedings of the 22nd international
conference on World Wide Web, 2013, pp. 13–24.

[34] J. Read, A. Puurula, and A. Bifet, “Multi-label classification with
meta-labels,” in Data Mining (ICDM), 2014 IEEE International Con-
ference on, 2014, pp. 941–946.

[35] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, “Tree ensembles for
predicting structured outputs,” Pattern Recognition, vol. 46, no. 3,
pp. 817–833, 2013.

[36] G. Madjarov, D. Gjorgjevikj, and S. Džeroski, “Two stage architec-
ture for multi-label learning,” Pattern Recognition, vol. 45, no. 3,
pp. 1019–1034, 2012.

[37] W. Cheng, E. Hüllermeier, and K. J. Dembczynski, “Bayes opti-
mal multilabel classification via probabilistic classifier chains,” in
Proceedings of ICML’10 the 27th International Conference on Machine
Learning, 2010, pp. 279–286.

[38] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine learning, vol. 85, no. 3, pp.
333–359, 2011.

[39] C. Hsu and C. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[40] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classi-
fier ensembles and their relationship with the ensemble accuracy,”
Machine learning, vol. 51, no. 2, pp. 181–207, 2003.

[41] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
Press, 2012.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2581161, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2016 16

[42] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[43] C. Largeron, C. Moulin, and M. Géry, “Mcut: a thresholding
strategy for multi-label classification,” in Advances in Intelligent
Data Analysis XI, 2012, pp. 172–183.

[44] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines:
Fast svm training on very large data sets,” in Journal of Machine
Learning Research, 2005, pp. 363–392.

[45] G. Tsoumakas, J. Vilcek, L. Spyromitros, and I. Vlahavas, “Mulan:
A java library for multi-label learning,” Journal of Machine Learning
Research, vol. 1, pp. 1–48, 2010.

[46] C. Chang and C. Lin, “Libsvm: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, p. 27, 2011.

[47] D. F. Schwarz, I. R. König, and A. Ziegler, “On safari to ran-
dom jungle: a fast implementation of random forests for high-
dimensional data,” Bioinformatics, vol. 26, no. 14, pp. 1752–1758,
2010.

[48] Y. Ye, Q. Wu, J. Z. Huang, M. K. Ng, and X. Li, “Stratified
sampling for feature subspace selection in random forests for high
dimensional data,” Pattern Recognition, vol. 46, no. 3, pp. 769–787,
2013.

[49] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” Proceeding ECML’98 Euro-
pean Conference on Machine Learning, pp. 137–142, 1998.

[50] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, “An
extensive experimental comparison of methods for multi-label
learning,” Pattern Recognition, vol. 45, no. 9, pp. 3084–3104, 2012.

Qingyao Wu is currently an Associate Professor
with the School of Software Engineering, South
China University of Technology, China. He re-
ceived the B.S. degree in software engineering
from the South China University of Technology,
and the M.S. and Ph.D. degrees in computer
science from the Harbin Institute of Technology,
China, in 2007, 2009, and 2013, respectively.
He was a Post-Doctoral Research Fellow with
the School of Computer Engineering, Nanyang
Technological University, Singapore, from 2014

to 2015. His current research interests include machine learning, data
mining, big data research and bioinformatics.

Mingkui Tan is currently working as a senior
research associate with the School of Computer
Science at The University of Adelaide in Aus-
tralia. He received his Ph.D. degree in Computer
Science from Nanyang Technological Universi-
ty, Singapore, in 2014. He received the Master
degree in Control Science and Engineering in
2009 and his Bachelor degree in Environmental
Science and Engineering in 2006, both from Hu-
nan University in Changsha, China. His research
interests include compressive sensing, big data

learning, and large-scale optimization.

Henjie Song is a Professor with the School
of Software Engineering, South China Universi-
ty of Technology, China. His research interests
include artificial intelligence, machine learning,
and data mining.

Jian Chen is currently a Professor with the
School of Software Engineering (SSE) at South
China University of Technology, China. She
joined SSE at South China University of Technol-
ogy as a faculty member in 2005. She received
her B.S. and Ph.D. degrees, both in Computer
Science, from Sun Yat-Sen University, China, in
2000 and 2005 respectively. Her research inter-
ests include data mining, information retrieval,
and recommendation techniques.

Michael K. Ng is the Head and Chair Pro-
fessor of the Department of Mathematics, and
Professor (Affiliate) of Department of Comput-
er Science at the Hong Kong Baptist Univer-
sity. He obtained his B.Sc. degree in 1990
and M.Phil. degree in 1992 at the University
of Hong Kong, and Ph.D. degree in 1995 at
Chinese University of Hong Kong. He was a
Research Fellow of Computer Sciences Labo-
ratory at Australian National University (1995-
1997), and an Assistant/Associate Professor

(1997-2005) of the University of Hong Kong before joining Hong Kong
Baptist University. His research interests include bioinformatics, da-
ta mining, image processing, scientific computing and data mining,
and he serves on the editorial boards of international journals, see
http://www.math.hkbu.edu.hk/∼mng.

