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Abstract:    As a new technique in ground improvement, geosynthetic-encased columns (GECs) have promising applications in 
soft soil foundation. By assuming yielding occurs in the columns while the surrounding soil and the geosynthetic remain elastic, 
an elastoplastic analytical procedure for foundations improved by GECs is proposed. The radial stresses that the geosynthetic 
provides and the elastoplastic deformations of the foundation resting on a rigid base are derived. A comparison with finite ele-
ment analysis shows that the proposed method is effective and can provide a reasonable prediction of a GEC’s deformation. 
Subsequent parametric analysis indicates that higher geosynthetic stiffness leads to better performance of the composite foun-
dation. The optimum length of encasement is related to the load acting on the foundation and the permissible vertical and radial 
displacements of the column. Moreover, as the dilation angle of the column increases, the settlement decreases, especially under 
high loading. The influence of the encasement is more significant in soils with smaller elastic modulus. 
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1  Introduction 
 

Granular columns are widely used for support-
ing flexible structures such as embankments and 
storage tanks which are sited on soft ground. 
Granular columns can improve the bearing capacity, 
reduce foundation settlement, and increase the time 
rate of settlement. Granular columns have been 
proven successful in soft soils with undrained shear 
strength of >15 kPa. However, bulging failure of the 
columns can occur due to a lack of lateral confine-
ment. To extend the applicability of granular col-
umns to very soft soils, van Impe and Silence (1986) 
suggested the use of a geosynthetic to encase the 
columns. A geosynthetic provides the desired lateral 

support for the granular materials, therefore im-
proving the performance of the columns. 

There have been many studies of the perform-
ance of geosynthetic-encased columns (GECs). Due 
to the difficulty of deriving analytical solutions for 
GECs, however, most studies have been conducted 
using a model test or numerical simulation. Model 
tests are effective for investigating the performance of 
a single GEC or a GEC’s composite foundation. Ra-
jagopal et al. (1999) performed a large number of 
triaxial compression tests on granular columns en-
cased in single and multiple geocells. Their study was 
focused on the strength of the encased-column, but 
they did not consider the load-deform relationship of 
the encased-column or the interaction between the 
column and the surrounding soil. Kempfert et al. 
(1999) conducted experimental investigations of the 
bearing capacity and deformation of GECs using 
large- and small-scale model tests under static and 
cyclic loading. Ayadat and Hanna (2005) reported the 
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load carrying capacity and settlement characteristics 
of GECs installed in a collapsible soil layer, based on 
experimental investigations. To investigate the 
qualitative and quantitative improvement of the load 
capacity of individual encased stone columns, Mu-
rugesan and Rajagopal (2007; 2010) performed 
laboratory model tests on a rigid unit cell and labo-
ratory model tests on a group of stone columns with 
or without encasement. All these studies used geo-
textiles as the encasement material. However, other 
geosynthetic materials, such as geogrid, can also be 
used. A series of small-scale model column tests were 
conducted by Gniel and Bouazza (2009) to investi-
gate the behavior of geogrid encased columns. Their 
experiments were focused on the effect of varying the 
length of the encasement and on the difference in 
behavior between a single encased column and a 
group of columns. Gniel and Bouazza (2010) then 
proposed a method of geogrid encasement construc-
tion and conducted a series of small-scale and  
medium-scale compression tests to investigate their 
technique. 

Numerical analysis is also commonly used to 
investigate the performance of GECs. Murugesan and 
Rajagopal (2006) investigated the qualitative and 
quantitative improvement in load capacity of a stone 
column by encasement, using a comprehensive pa-
rametric study involving finite element analysis. 
Malarvizhi and Ilamparuthi (2008) simulated triaxial 
tests on encapsulated stone columns and evaluated the 
behavior of a composite system using finite element 
analysis and PLAXIS software. The findings from a 
series of numerical studies on the contribution of 
geosynthetic encasement to the enhancement of the 
performance of stone columns in very soft clay soil 
were compiled by Lo et al. (2010). 3D finite element 
analyses were carried out to simulate the behavior of a 
single GEC in very soft clay using the software 
ABAQUS, and the influence of various factors on the 
performance of GECs were discussed by Khabbazian 
et al. (2009; 2010a; 2010b). Compared to model tests, 
numerical analysis can consider more complicated 
boundary conditions and investigate the influence of 
different factors. However, neither model tests nor 
numerical simulation can provide a convenient design 
method for GEC foundations, so the theoretical 
method appears very important. 

Compared with experimental and numerical 

studies on GECs, theoretical analysis is lagging be-
hind. Assuming that a composite foundation with 
GECs satisfies the equal strain condition and rests on 
a rigid layer, and that the volume of the column re-
mains constant, an analytical solution for deforma-
tions of GECs has been developed by Raithel and 
Kempfert (2000). Wu et al. (2009) adopted the Dun-
can and Chang model to describe the mechanical 
characteristics of the granular materials and establish 
the analytical procedures to investigate the axial 
stress-strain response of GECs. Their proposed ana-
lytical method was verified by subsequent triaxial 
compression tests (Wu and Hong, 2009). Based on the 
unit cell model and displacement governing equa-
tions, Zhang et al. (2011) proposed a theoretical 
elastic solution of stresses and displacements of a 
composite foundation with GECs. However, these 
analytical studies were based on elasticity theory, 
which is unrealistic. Recently, as an extension of 
Balaam and Booker (1985)’s classical elastoplastic 
analytical procedures for foundations with granular 
columns, Pulko et al. (2011) developed an analytical 
closed-form elastoplastic solution for a fully encased 
column. However, the effect of the radial stresses at 
different locations on the radial deflection of the soil 
was ignored to simplify calculation, and this simpli-
fication made their method inappropriate in the case 
of a partially encased granular column. 

To develop a more reasonable calculation 
method for a GEC composite foundation, by assum-
ing yielding occurs in columns while the surrounding 
soil and the geosynthetic remain elastic, this paper 
presents a more applicable analytical procedure for 
not only fully encased granular columns but also 
partially encased granular columns. To validate the 
derived solution, finite element analysis was carried 
out using PLAXIS, and the results show very good 
agreement with the analytical solution. Subsequently, 
parametric analyses based on the elastoplastic solu-
tion were carried out to study the effect of various 
factors on the performance of composite foundations 
with GECs. 

 
 

2  Methods of analysis system design 

2.1  Mathematical model 

The unit cell model in this study is composed of 
a granular column, a geosynthetic and surrounding 
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soil (Fig. 1). The computational model has a radius rc 

of the column, a radius re of the surrounding soil, a 
height h of the unit cell, and a length hf of the geo-
synthetic. A uniform load of p0 acts on the smooth 
rigid raft over the unit cell. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The following assumptions are made: 
1. The column-geosynthetic-soil system is sited 

on a smooth and rigid base. 
2. The equal strain hypothesis is satisfied, i.e., 

the horizontal sections of the unit cell model remain 
horizontal in the course of settlement. Previous stud-
ies (Balaam and booker, 1985; Raithel and Kempfert, 
2000; Wu and Hong, 2009; Pulko et al., 2011; Zhang 
et al., 2011) also made this assumption. Although the 
equal strain hypothesis is not applicable in all cases, it 
is most appropriate in cases when the end bearing is 
rigid or the column space is small. By making this 
assumption, we can infer that there is no shear stress 
at the column-geosynthetic-soil interfaces. 

3. The column material is an elastic-perfectly 
plastic solid satisfying the Mohr-Coulomb yield cri-
terion while the surrounding soil and the geosynthetic 
are assumed to be linear-elastic and homogeneous. 

4. Compressive stresses and deformations are 
taken as positive. 

The model for elastoplastic analysis of the unit 
cell is shown in Fig. 2. The displacements and stresses 
of the column, the geosynthetic, and the surrounding 
soil are analyzed separately. 

2.2  Analysis of the soil 

The surrounding soil, geosynthetic and column 
are all subdivided into a number of cylinders, 
zi≤z≤zi+1, i=1, 2, ···, n, and the radial stress on the 
inner surface of each soil element and on the outer 

surface of each column element are assumed to be 
constants and equal to (σrs)i and (σrc)i, respectively 
(Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 

 
Since the soil remains elastic, based on the su-

perposition principle of elastic theory, the average 
radial deflection ρi of the ith element (zi≤z≤zi+1) is the 
sum of the average radial deflection (ρ1)i caused by 
radial stress and the average radial deflection (ρ2)i 
caused by vertical displacement δ (Fig. 3), and is 
given by Balaam and Booker (1985) as 
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where Rj=2πΔzjrc(σrs)j is the total force on the inner 
surface of the jth element (zj≤z≤zj+1), and the coeffi-
cient Aij is as shown in the Appendix. According to 
the elastic solution (Zhang et al., 2011), the coeffi-
cient θ is given by 
 

2
c e

2
c

1 ,
r B r

h r


 
  

 
                         (2) 

 

where   2 2
s s s e c2 1 ,B G r r       where λs and 
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as (Balaam and Booker, 1985) 
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It is found that θ′=−θ due to reciprocal theorem and 
Eq. (3) is rewritten as 
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where the coefficient ξ is given by 
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2.3  Analysis of the encasement 

A geosynthetic of length hf can be subdivided 
into nf elements. Based on the condition of static 
equilibrium (Fig. 4), the average radial stress that the 
geosynthetic imposes on the column over the ith 
element (zi≤z≤zi+1, i=1, 2, ···, nf) is given by 
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where Jf is the stiffness of the encasement. Since ρi is 

far less than rc, then 2
c c c( )ir r r  , and Eq. (6) can 

be simplified as 
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2.4  Analysis of the column 

According to the equal strain hypothesis, the 
shear stresses on the surfaces of the granular columns 
are negligible and the column is under triaxial stress 
condition (σrc=σθc). Similar to the analysis of the soil, 
the column is subdivided into n elements and the 
stresses of the jth element of the column (zj≤z≤zj+1) 
are given by 
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where Fc is the force carried by the column, and 
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The incremental strains of the column can be 
approximated by 
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The stress-strain increment relation is given in 
matrix form: 
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where Gc, Ec, and νc are shear modulus, Young’s 
elastic modulus, and Poisson’s ratio of the column, 
respectively. When the element of the column is in an 
elastic state, the stress-strain relation complies with 
Hooke’s law. Moreover, when the column material 
yields, the incremental stress-strain relationship sat-
isfies the Mohr-Coulomb yield criterion with the 
non-associated flow rule. 

The yield function can be expressed as 
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where cc is the cohesion strength, φc the angle of in-
ternal friction of the column material, and σ1 and σ3  
the major and minor principal stresses, respectively. 

The potential function used for the non-associated 
flow rule is: 
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where ψc is the angle of dilatancy of the column  
material. 

The elastic elements and plastic elements of the 
matrix in Eq. (11) are shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5  Governing equations 

Substituting Eqs. (8)–(10) into Eq. (11), we can 
obtain: 
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If Eq. (15) is substituted into the incremental 
form of Eq. (1), it is found that 
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Eq. (14) can be used to calculate the settlement 
dδ of the column: 
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The increment of load acting on the unit cell dF 

=dFc+dFs. According to Eqs. (4) and (15), we can 
obtain: 
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Eqs. (16)–(18) are composed of a set of n+2 

equations with n+2 unknowns: dρj, dFc, and dδ. The 
equations can be solved when the applied load dF is 
given. Initially, both the column and the soil are in 
elastic equilibrium. As the load increases step by step, 
according to incremental plastic theory, the column 
elements become elastoplastic one by one. In each step, 
an appropriate load increment dF should be chosen so 
that only one additional element yields and the element 
is exactly on the verge of yielding at the end of the 
increment. In that case, the coefficients Xj, Yj, Zj, and Tj 

are independent of stress level, and an iteration is not 
needed (Balaam and Booker, 1985). The process of 
elastoplastic analysis is shown in Fig. 5. 

 
 

3  Validation of the analysis model 
 
To validate this approach, the results of the 

elastoplastic analysis were compared with the results 
of a finite element analysis of an axi-symmetric unit 
cell model of composite foundation using the soft-
ware package PLAXIS. A rigid plate with a uniform 
load is applied to the top of the unit cell model to 
ensure uniform vertical displacements (Fig. 6a). Ver-
tical constraint on the bottom boundary and horizon-
tal constraint on the lateral boundaries are set. Geo-
synthetics are modeled by membrane elements which 
sustain only tensile forces and no compression. In 
order not to limit the final state of the soil and the 
column, both the column and the soil are set to be 
elastoplastic materials satisfying the Mohr-Coulomb 
yield criterion. Fifteen-noded triangular elements 
were used in the FEM analyses. The finite element 
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mesh is shown in Fig. 6b. The model parameters in 
the elastoplastic analysis and the FEM are shown in 
Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The load-settlement curves of the foundations 
with GECs and with ordinary granular columns 
(OGCs, i.e., without encasement) obtained by elas-
toplastic analysis, elastic analysis (Zhang et al., 2011), 
and PLAXIS are shown in Fig. 7a. The radial dis-
placements of the columns obtained by elastoplastic 
analysis and PLAXIS are shown in Fig. 7b. The re-
sults of the elastoplastic analysis agree well with 
those of the numerical analysis (Figs. 7a and 7b). This 
implies that the soil behaves as if it is in an elastic 
state during loading. Otherwise, the results of the 
FEM should deviate from those of the analytical 
methods, since it has been set as elastoplastic material 
in the numerical analyses. It also shows that the dis-
placements of the composite foundation have been 
underestimated in the elastic analysis. This indicates 
that the influence of yielding in the column material 
cannot be neglected. The results demonstrate that the 
assumption that yielding occurs in columns while 
little yielding occurs in the soil is reasonable, and the 
presented elastoplastic analysis is feasible. 
 
 

4  Parametric studies 
 

To investigate the influence of the model pa-
rameters on the behavior of the composite foundation, 
parametric analyses were performed. The basic pa-
rameters of the model are listed in Table 2. 

Note that δelas is the solution of the settlement of 
elastic analysis predicted by Zhang et al. (2011) and δ 

Calculate initial stress

All elements are elastic

Calculate the stress increment of all 
elements under unit pressure

The ikth element yields at the kth step. 
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Total stress and displacement of all 
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Fig. 5  Flow diagram of elastoplastic analysis

Fig. 6  Axi-symmetric unit cell model in PLAXIS
(a) Unit cell model; (b) Finite element mesh 

(b) (a) 

Table 2  Parameters of models 
Value 

Parameter 
Analytical method FEM 

rc (m) 0.5 0.5 

re (m) 1 1 

h (m) 5 5 

Ec (MPa) 60.0 60.0 

Es (MPa) 2.0 2.0 

νc 0.3 0.3 

νs 0.3 0.3 

φc (°) 35 35 

φs (°) – 25 

cc (kPa) 0 0.01 

cs (kPa) – 13.00 

ψc (°) 5 5 

ψs (°) – 0 
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is the solution of the settlement of elastoplastic 
analysis in this study. A plastic settlement correction 
factor N is defined as 
 

elas

.N



                               (19) 

 
The value of N reflects the effect of yielding of 

the column on the displacement. The bigger is the N 
value, the more significant is the effect. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.1  Effect of geosynthetic stiffness 

The load-settlement response of the foundations 
with GECs with various encasement stiffnesses is 
shown in Fig. 8. Increasing the stiffness of the en-
casement can obviously reduce the settlement. This 
result is different from that of the elastic analyses 
(Zhang et al., 2011). In the elastoplastic analyses, the 
column gradually yields in the course of loading, and 
increasing the encasement stiffness can defer the 
yielding of the column. However, in the elastic 

analyses, the column always remains elastic regard-
less of the geosynthetic stiffness and the load. The 
plastic settlement correction factor N decreases with 
increasing encasement stiffness (Fig. 9). This means 
that the influence of the yielding of the column be-
comes smaller with an encasement of higher stiffness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The radial displacement of the column at a ver-

tical stress of 100 kPa with various encasement 
stiffnesses is shown in Fig. 10. Under a load of 
p0=100 kPa, the bottom of the column remains elastic 
when the stiffness of the encasement is over 
2000 kN/m. Also, most of the column remains elastic 
when the stiffness of the encasement reaches 
3000 kN/m. This result also highlights that increasing 
the encasement stiffness can delay the column’s 
change to a plastic state. 

Fig. 11 shows the mobilized load for geosyn-
thetics with different stiffnesses at vertical settlements 
of 25, 50 and 100 mm. It indicates that the geosyn-
thetic can improve the load carrying capacity of the 
composite foundation and that the mobilized load 
increases as the geosynthetic stiffness increases, es-
pecially for large settlements. We conclude that the 
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(a) Load-settlement behavior; (b) Radial displacement vs. 
depth (p0=100 kPa) 

(a) 

100 

80 

60 

40 

20 

0 
0 20 40 60 80 100

p0 (kPa) 

 PLAXIS results of OGCs 
 Elastoplastic analysis of OGCs 
 PLAXIS results of GECs (Jf=1000 kN/m) 

 Elastoplastic analysis of GECs (Jf=1000 kN/m) 

 Elastic analysis of GECs (Jf=1000 kN/m)  
(Zhang et al., 2011) 

δ
 (

m
m

) 

(b) 

5 

4 

3 

2 

1 

0 
0 1 2 3 4 5 6 7

ρ (mm) 

z 
(m

) 

 Elastoplastic analysis of OGCs 
 Elastoplastic analysis of GECs 
 PLAXIS results of OGCs 
 PLAXIS results of GECs 



Duan et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2012 13(7):506-518 
 

513

influence of the encasement increases with increasing 
settlement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Effect of the length of encasement 

Estimating the optimum length of an encasement 
is of wide interest. Murugesan and Rajagopal (2006; 
2007) concluded that the optimum length is 4rc based 
on numerical analysis, and 8rc based on a model test. 
Khabbazian et al. (2010) performed numerical 
analyses and suggested that the optimum length 
should be a function of the load that is applied to the 
column. Wu et al. (2009) proposed an optimum 
length depending on the characteristics of the in-situ 
soil and the stiffness and yield strength of the geo-
synthetic. However, the optimum length of encase-
ment of a composite foundation has not yet been 
discussed. 

To investigate the influence of the length of en-
casement on the performance of a composite founda-
tion, the deformation of a composite foundation with 
an encasement length from 1 to 5 times the column 
diameter was calculated using our proposed method. 
The results of load-settlement behavior are shown in 
Fig. 12. Under small loading, the settlements of the 

composite foundation with partially encased columns 
are almost the same as those of fully encased columns. 
However, as the load increases, the influence of the 
length of the encasement becomes more significant, 
i.e., a longer encasement results in a smaller settlement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The mobilized loads for different lengths of en-
casement at various settlements are shown in Fig. 13, 
which reveals the detailed effects of the length of 
encasement on the performance of the GECs. For a 
10 cm settlement, the effect of the encasement on the 
bearing capacity is no longer evident once the length 
reaches 4rc. For a 20 cm settlement, the optimal length 
of encasement should be taken as 6rc, and for a 50 cm 
settlement, any increase in the length of the encase-
ment will obviously increase the bearing capacity. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 shows the influence of the length of en-
casement on the radial displacement of the column. It 
is clear that the existence of the geosynthetic de-
creases the radial displacement of the column with 
full encasement (hf=10rc). For a partially encased 
column, the part of the column without encasement 
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bulges and produces a bigger deformation than that of 
the OGC. Compared to the OGC, the GEC is stiffer 
even when it is partially encased, and it shares more 
vertical load. Thus, more vertical load is transferred to 
the part of the column without encasement, causing a 
larger radial displacement. 
 
 
 
 
 
 
 
 
 
 
 
 
 

We conclude from the above analysis that the 
optimum encasing length should be determined by the 
permissible vertical and radial deformation, and the 
load acting on the foundation with GECs. 

4.3  Effect of the dilation angle of granular  
materials 

Analyses with different dilation angles of 0°, 5°, 
10°, and 15° were performed to examine the influence 
of the dilation of granular materials on the perform-
ance of composite foundations. The results indicate 
that the settlement decreases with increasing dilation 
angle (Fig. 15), especially for a large loading. The 
effect of the dilation angle of granular materials on 
the mobilized load at various vertical settlements is 
shown in Fig. 16. The effect is insignificant at small 
displacements, but becomes evident at large dis-
placements. The reason is that the dilatation of the 
column caused by shear dilation effect is more ob-
vious at larger displacements, and therefore larger 
loads (Fig. 17), and the confining effect of the en-
casement is more obvious at larger displacements, as 
stated above. 

4.4  Effect of the elastic modulus of the sur-
rounding soil 

To investigate the effect of GECs in different 
soils, the performance of a foundation with GECs was 
compared with that of a foundation with OGC. The 

ratio of mobilized load of foundation with GECs to 
that with OGCs (p0

GECs/p0
OGCs) was used to evaluate 

the performance of the GECs.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18 shows the ratios of mobilized load for 
different soils at different settlements. Clearly, the 
mobilized load ratio is larger and the GECs work 
more effectively when the elastic modulus of the soil 
is smaller, and vice versa. We conclude that the effect 
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of the encasement is more significant for weak soil. 
Thus, GECs are more appropriate and successful for 
treating very weak soil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4  Conclusions 

 
Based on the unit cell model and the assumption 

that yielding occurs in columns while no yielding 
occurs in the surrounding soil, an elastoplastic ana-
lytical procedure is proposed for analyzing the per-
formance of foundations with GECs. The proposed 
analytical method was verified by finite element 
analyses using PLAXIS. Parametric analyses were 
carried out to study the effect of geosynthetic stiffness, 
the length of encasement, the dilation angle of 
granular materials and the elastic modulus of the soil 
on the performance of the composite foundations. 
Through the parametric analyses, the following con-
clusions have been reached: 

1. The effect of the encasement on improving the 
performance of the composite foundations is signifi-
cant after yielding occurs in the column. The higher is 
the geosynthetic stiffness, the smaller is the settle-
ment of the composite foundations. 

2. When the column is partially encased, the part 
of the column without encasement bulges and pro-
duces a larger deformation than that of an OGC. The 
radial displacement is smaller and more uniform for a 
fully encased column. The optimum length of en-
casement depends on the load acting on the founda-
tion and the permissible vertical and radial deforma-
tion of the column. 

3. The dilatancy of the granular materials has 
some influence on the performance of the composite 

foundations. Increasing the dilation angle of the 
column material decreases the settlement. The influ-
ence is more significant at large loads and settlements. 

4. The mobilized load ratio (p0
GECs/p0

OGCs) is 
larger and the effect of the encasement is more sig-
nificant when the surrounding soil has smaller elastic 
modulus. This implies that GECs are more suitable 
for very soft soil. 
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Appendix 

 
The coefficient Aij was derived by Balaam and 

Booker (1985). However, there were some small 
mistakes (maybe misprints) which create difficulties 
for further study. Thus, this part of their work is re-
done here to give the correct expression of Aij. 

As shown in Fig. 3, the average radial dis-
placement over the interval zi≤z≤zi+1 caused by radial 
stress Rj, when no vertical displacement occurs on the 
upper surface, is derived as follows. 

Based on the P-N solution of the theory of elas-
ticity, the formula of the displacements in an axi-
symmetric problem can be expressed as (Lur′E, 
1964): 
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where ur and uz are the radial and vertical displace-

ments, respectively. The functions P0, Pz, and rP  are 

independent of θ. Let Pz=0, and the functions P0 and 

rP  satisfy:  
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Solving Eqs. (A3) and (A4) and substituting rP  

and P0 into Eqs. (A1) and (A2) obtains: 
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where =n/h, n is integer. 

The compressive stresses and deformations are 
taken as positive stresses and deformations. 

The corresponding physical equations are: 
 

rs s s s2 ,ru
G

r
  


 


                    (A7) 



Duan et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2012 13(7):506-518 
 

517

rzs s ,r zu u
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                     (A8) 

 

where s ,r r zu u u

r r z


 
   

 
 is the volume strain. 

Substituting Eqs. (A3) and (A4) into Eqs. (A7) 
and (A8), we obtain: 
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where c1, c2, c3, and c4 are constants and the functions 
Φi, Ψi, χi, and Ωi are given in Table A1. 

Assuming the radial stress on the inner surface is 
rσrs=cos(z) (=n/h, n is integer), when n≠0, ac-
cording to the displacement and stress boundary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

conditions, the constants c1, c2, c3, and c4 must satisfy 
the following equation (Balaam and Booker, 1985): 
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(A11) 

 
So the radial deflection of the inner boundary 

ur(rc) is given by 
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The specific case =0 can be obtained from the 
elastic solution (Zhang et al., 2011): 
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Finally, the situation in which the inner surface is 

subjected to a radial stress distribution over the in-
terval zi≤z≤zi+1 caused by Rj can be expressed as 
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Then, using the theory of Fourier series, the radial 
stress on the inner boundary is subdivided into several 
cosine functions: 
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Table A1  Definitions of functions Φi, Ψi, χi, and Ωi
*
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functions, respectively; K0 and K1 are the second kind zero- and 
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where αn=nπ/h, fnj=(sin(αnzj+1)−sin(αnzj))/(αnΔzj). 
The radial deflection on the inner surface of the 

problem can be obtained by superposing the elemen-
tary solution: 
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So the average deflection (1)ij over the interval  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

zi≤z≤zi+1 caused by Rj is given by 
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Referring to Eq. (1), we obtain: 
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