
A novel hybrid P2P and cloud storage system for retrievability
and privacy enhancement

Gi Seok Park & Hwangjun Song

Received: 21 October 2013 /Accepted: 23 February 2015 /Published online: 7 March 2015
Springer Science+Business Media New York 2015

Abstract This paper presents a novel fountain code-based
hybrid P2P and cloud storage system. While most cloud stor-
age systems guarantees data retrievability of high level, they
may be vulnerable to data privacy since the stored data may be
exposed to others by accident or design. On the other hand,
P2P storage system keeps any peer from accessing the whole
data by dividing the data into small pieces and distributing
them to multiple participating peers, but may degrade data
retrievability due to unstable peers. The proposed hybrid stor-
age system attempts to enhance data retrievability and privacy
by effectively distributing fountain encoded symbols to cloud
server system and participating peers. It is demonstrated that
the proposed hybrid storage system achieves the desired level
of data retrievability with a short upload time, and enhance
privacy by preventing others from reading the contents.

Keywords Hybrid P2P and cloud storage . Fountain codes .

Data privacy . Hybrid storage system reliability . Data
retrievability

1 Introduction

In recent years, remote data storage systems that are accessible
over the Internet have attracted a huge amount of research
interest [1]. Many storage services such as Amazon Glacier
[2], Google Drive [3], and Microsoft SkyDrive [4] have al-
ready been successfully deployed over the Internet. Nowa-
days, these remote storage services are becoming more and
more popular since they make ubiquitous data access possible

[5]. For example, the number of storage customers for
Dropbox [6] reached 100 million in 2012. In general, remote
storage systems can be classified into two groups: cloud stor-
age systems and P2P storage systems. In cloud storage sys-
tems, a high level of data retrievability can be guaranteed
using a mirroring technique for data backup similar to repli-
cation. In this case, data retrievability means the probability
that the user can obtain his/her data successfully [7]. However,
private data may be exposed to other users since all data is
stored at the server. Therefore, data privacy is one of the most
important issues for cloud storage systems [8]. Storage scal-
ability is also a growing concern in cloud storage since the
number of cloud customers is increasing rapidly. According to
the report in [9], the total number of cloud storage customers is
likely to reach one billion in the near future. On the other hand,
in P2P storage systems, some of the problems that are inherent
in cloud storage can be solved. A unique characteristic of the
P2P system is that peers share their resources with each other
when they join a network. Therefore, as more peers participate
in the system, P2P storage can be extended constantly. In
addition, higher data retrieval download rates can be support-
ed as compared to a single source since users retrieve their
data from multiple peers simultaneously [10]. In the P2P stor-
age system, when multiple copies of whole data are stored to
peers, the privacy may be seriously degraded compared to
cloud storage. On the other hand, when the data are divided
into many small pieces and distributed to multiple participat-
ing peers, any peer cannot access the whole data. However,
the relatively low data retrievability is a serious obstacle to the
successful deployment of P2P storage [8]. Thus, data retriev-
ability is considered as one of the most important performance
measures for P2P storage systems. Mach research effort has
been devoted to provide data retrievability equal to that of
cloud storage systems [10–15]. Until now, the most efficient
method for achieving high data retrievability for P2P storage
is to use erasure protection codes such as LDPC (low-density

G. S. Park :H. Song (*)
Department of Computer Science and Engineering, POSTECH,
Pohang, Gyeongbuk, South Korea
e-mail: hwangjun@postech.ac.kr

Peer-to-Peer Netw. Appl. (2016) 9:299–312
DOI 10.1007/s12083-015-0337-z

parity-check) and LT (Luby transform) codes and to store
encoded data in multiple peers until the required data retriev-
ability is satisfied. However, this may increase the upload
time.

In this paper, we propose a fountain code-based hybrid P2P
and cloud storage system to provide data privacy, storage
scalability, and data retrievability. Some of the unique features
of the proposed algorithm are that it adopts rateless fountain
codes and includes a packet distribution algorithm in order to
guarantee the required level of data retrievability and privacy.
Furthermore, data is stored with a short upload time. The rest
of the paper is organized as follows. The background infor-
mation related to storage systems is described in Section 2.
The proposed hybrid P2P and cloud storage system is then
presented in Section 3. Simulation results are provided in Sec-
tion 4. Finally, concluding remarks are presented in Section 5.

2 Background

We survey research related to P2P and cloud storage systems
in Section 2.1, and briefly review the characteristics of erasure
protection codes in Section 2.2.

2.1 Remote storage systems

A remote storage system is one in whichmultiple clients share
and access remotely located data as if they were accessing
their own local storage system [16]. Two technologies for
remote storage systems are reviewed in this section: the CIFS
(common Internet file system) and the NFS (network file sys-
tem) [17, 18]. CIFS is Microsoft’s version of a distributed
system. It is an extended version of the SMB (server message
block) protocol that can provide shared access to files,
printers, serial ports, and miscellaneous communication be-
tween workstations over the Internet. The CIFS protocol is
based on a client–server service model, and is widely used
in local area networks. The client requests a file from a server
that is remotely located. In response to the client’s requests,
the server provides the appropriate file. On the other hand,
NFS is a distributed file system protocol developed by Sun
Microsystems. It is an open standard defined in RFCs. The
NFS protocol is designed for communication between multi-
ple workstations regardless of the kind of transport layer pro-
tocol, computer system, OS, or network architecture. It is used
between geographically distributed workstations, and it al-
lows multiple workstations to be operated as a single work-
station. Since the remote files are connected to the client di-
rectory through the network, the clients can access not only
their local file systems but also the local file systems of the
other workstations as if they were their own local file systems.
Hence, it is possible to save storage space.

In recent times, much research effort has been devoted to
effectively provide reliable remote storage system. Many re-
lated studies have proposed ad hoc solutions using redundant
data to build storage systems with high reliability. In [10], Li
et al. propose an adaptive erasure resilient code scheme that
uses an RS (Reed-Solomon) code to build a reliable P2P stor-
age system. In this scheme, the original data is spilt into k
original fragments, and coded fragments are then generated
from these original fragments. The coded fragments are dis-
tributed to peers to achieve the required data retrievability. The
appropriate fragment size is then adaptively chosen according
to the different file sizes in order to reduce the overall network
bandwidth needed to store the redundant data. When com-
pared to replication (non-ERC), the authors verified that the
adaptive ERC (erasure-resilient code) method improves the
overall bandwidth efficiency. In [11], Gaidioz et al. explore
the feasibility of implementing a distributed storage system
using a redundancy scheme with LDPC codes. The authors
conduct a comparison of the retrieval failure rates of original
data between replication and LDPC. In addition, they express
the retrieval failure rate as a function of the number of data
chunks for different LDPC code rates. In [14], Kim et al. in-
vestigate the performance of erasure protection codes (LDPC,
LT, and Raptor codes) for P2P storage. They show the retriev-
al failure rate with respect to the storage overhead. Kim et al.
verify that LDPC codes have an inferior performance when
compared to Raptor codes in the case of P2P storage, whereas
they are superior to LT codes. In [19], Cao et al. design an LT
code-based secure cloud storage service that addresses the
hybrid storage system reliability issue with near optimal per-
formance. To protect data confidentiality, existing encryption
techniques or data access control schemes are utilized prior to
the LT encoding process. This prevents the cloud server from
prying into outsourced data.

2.2 Erasure protection codes

Here, we review some of the erasure protection codes such as
RS codes, LT codes, and Raptor codes with Table 1.

Reed-Solomon codes RS codes can be used to develop reli-
able storage systems. RS codes belong to a class of MDS
(maximum-distance separable) codes [20]. A message
consisting of K symbols can be recovered after receiving K
distinct encoded symbols. In practice, however, there are sev-
eral complications. The field size imposes a limitation on the
number of distinct encoded symbols that can be created. In
addition, the decoding complexity of practical RS (K+r, K)
codes is O((K+r)2), thus making them too complex for real-
time applications.

LT codes LT codes were the first practical realization of
rateless codes that can generate an unlimited number of

300 Peer-to-Peer Netw. Appl. (2016) 9:299–312

encoded symbols [21]. In general, the source symbols can be
recovered with a high decoding success rate. This is made
possible by using a slightly larger number of encoded symbols
than the number of source symbols [22]. The code rate (c)
plays an important role as it determines the amount of redun-
dant data for error protection. That is

c ¼ Ksource=kencoded ; ð1Þ

where Ksource and kencoded are the number of source symbols
and encoded symbols, respectively. An encoded symbol is
generated in the following manner:

1) Choose a degree d for the encoded symbol, according to a
predetermined distribution.

2) Choose d distinct source symbols uniformly at random,
and generate the encoded symbols by conducting a
bitwise XOR of these d source symbols.

This process is repeated until the last encoded symbol is
generated. LT codes can generate each encoded symbol using
an average ofO(lnkencoded) symbol operations, and can recover
the source symbols using an average of O(kencoded⋅lnkencoded)
symbol operations.

Raptor codes Raptor codes are an extension of LT codes that
achieve a linear encoding/decoding processing time. Raptor
codes are a concatenation of pre-code and LT codes, as shown
in Fig. 1b. Initially, Raptor codes pre-code the source symbols
using a fixed high-rate systematic linear code. The resulting

intermediate symbols are then encoded using an LT code, and
a limitless sequence of encoded symbols can be generated
dynamically. Decoding can be perfectly conducted after re-
ceiving any set of encoded symbols whose cardinality is only
slightly greater than that of the source symbols. For these
reasons, Raptor codes have been adopted by the 3GPP (3rd
Generation Partnership Project) standard as a forward error
correction scheme in MBMS (multimedia broadcast/
multicast services) [23, 24].

3 Proposed hybrid P2P and cloud storage system

The main goal of the proposed hybrid P2P and cloud storage
system is to minimize the upload time while satisfying the
required data retrievability and supporting the privacy of user
data stored on P2P and cloud storage systems. The proposed
hybrid storage system adopts the use of fountain codes to
achieve our goal. Thanks to the generic characteristics of foun-
tain codes, we can achieve data privacy by controlling the
number of encoded symbols stored on cloud storage and peers
in P2P storage. The generic nature of fountain codes also helps
to improve data retrievability by distributing a sufficient num-
ber of encoded symbols on cloud storage and among peers.
Before presenting a detailed description of the proposed hy-
brid storage system, we define the following:
Definitions

& Cloud storage and peer availabilitymeans the probabil-
ity that the user is able to access the data stored on cloud
storage and peers for the given time interval.

Table 1 Comparison of RS, LT, and Raptor codes

Codes characteristics RS codes LT codes Raptor codes

Encoding complexity Quadratic complexity O(lnkencoded) Linear complexity

Decoding complexity Quadratic complexity O(kencoded⋅lnkencoded) Linear complexity

Decoding symbol overhead Zero O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksourece

p
ln2 Ksourece=δfailure

�� ��
with error probability δfailure close to zero

The number of encoding symbols that can be
generated from a given set of source symbols

Limited Rateless Rateless

Fig. 1 Examples of fountain
codes: (a) LT codes (b) Raptor
codes

Peer-to-Peer Netw. Appl. (2016) 9:299–312 301

& Storage system reliability denotes the probability that the
user retrieves more than the minimum number of encoded
symbols required for successful fountain decoding.

& Data retrievability stands for the probability that user
obtains his/her own data successfully without any errors.

3.1 System architecture

The symbol descriptions frequently used in the paper are sum-
marized in Table 2 and the proposed hybrid storage system
architecture is shown in Fig. 2. The proposed system consists
of four main components: a node manager, a parameter con-
trol unit, a fountain encoder and an upload scheduler. The
node manager receives the information of the server in cloud
storage and peers in P2P storage from the bootstrap server,
and estimates the bandwidth available with them. In the pro-
posed system, the pathChirp algorithm [25] is employed to
estimate the bandwidth. This algorithm is an estimation
scheme based on probe packet arrival intervals. The parameter
control unit determines the packet distribution vector (i.e. how
much data should be stored on the cloud storage server and
peers) and the code rate of the fountain encoder based on the
feedback information. The fountain encoder divides a file into
several blocks, and generates encoded symbols for every
source block at the code rate determined by the parameter

control unit. The upload scheduler allocates encoded symbols
to each node based on the estimated bandwidth and packet
distribution vector until the ACK message arrives. In the pro-
posed system, the FFDH (first-fit decreasing height) algorithm

Table 2 Symbol descriptions

Symbol Description

Kmin The minimum number of encoded symbols required for successful decoding (Refer to Eq. (6))

Ksource The number of source symbols

kencoded The number of generated encoded symbols

Ssymbol Symbols size

c n!pkt

� �
The ratio of Ksource to kencoded.

Uinitial_set The initial peer set randomly selected by the bootstrap server

Uadd The additional peer set for maintenance

Treq Time interval during which the user can requests data access

T i
stay Time that the ith peer has stayed in a system

Nps The number of encoded symbols in a packet

pretrieve
min The minimum required data retrievability

δfailure Fountain decoding failure rate

Tup n!pkt; bw
�!� �

The upload time

bw
�! ¼ bwcs; bw1; bw2;……; bw Uinitial setj j

� � The available bandwidth vector, where bwcs and bwi indicate the estimated bandwidth available with the
server in cloud storage and the ith peer in P2P storage, respectively.

n!pkt ¼ npkt
cs ; npkt

1 ; npkt
2 ;…; npkt

Uinitial setj j
� �

The packet distribution vector, where ncs
pkt and ni

pkt denote the number of packets including the encoded
symbols that the user allocates in cloud storage and the ith peer in P2P storage, respectively.

p!node ¼ pcs; p1; p2; …; p Uinitial setj j
� �

The node availability vector, where pcs and pi denote the probability of availability of cloud storage and
the ith peer during Treq, respectively.

hi The remaining storage space in the ith peer

SR n!pkt

� �
The hybrid storage system reliability

DR n!pkt

� �
The data retrievability

Fig. 2 Architecture of the proposed hybrid P2P and cloud storage system

302 Peer-to-Peer Netw. Appl. (2016) 9:299–312

[26, 27], which provides a near optimal solution for the sched-
uler design problem, is employed for an upload scheduler.

3.2 Problem description

In the proposed system, our control variables are c and n!pkt.
Generally, when Ssymbol and δfailure are fixed, the amount of
overhead (i.e. Kmin−Ksource) decreases, but the fountain coding
complexity increases as Ksource becomes larger. In this paper,
for the sake of simplicity, it is assumed that Ksource is appropri-
ately pre-determined while taking into account the coding com-
plexity and the overhead. Under this assumption, c has a strong
dependency on n!pkt since kencoded is the sum of all elements in

n!pkt. At this point, we need to describe the hybrid storage
system reliability and data retrievability because the fountain
decoding process may fail with a very low probability even
though Kmin encoded symbols are available.

Peer availability Until now, a large amount of research efforts
have been devoted to characterize P2P system in terms of
lifetime (session length) of peers. It is observed in [28–31]
that the distribution of peer lifetime is generally heavy-tailed
and the lifetime of peers depends on the time it stays in the
P2P system. Thus peer availability is defined as follows:

pi ¼ P X ≥T stay
i þ Treq X ≥T stay

i

��	
 ¼ P X ≥T stay
i þ Treq

	

P X ≥T stay

i

	
 ;

ð2Þ

where a random variable X represents the lifetime of a peer.
Eq. (2) gives the probability that a peer who has stayed for
T i
stay will survive longer than Treq in the system. Here, the

lifetime of a peer can be modeled by a Pareto distribution
since the distribution of peer lifetime is generally heavy-
tailed in real P2P system [28–31]. In our proposed system, a
Pareto distribution is adopted for modeling the lifetime of a
peer.

Hybrid storage system reliability The hybrid storage system
reliability is calculated based on p!node. Two vector matrices
are defined. The first matrix, the node combination matrix is
characterized by

A ¼ a!1 a!2 ⋅⋅⋅ a!i ⋅⋅⋅ a!Nrow

� �T
;

a!i ¼ ai;cs; ai;1; ai;2; ⋅⋅⋅; ai; j; ⋅⋅⋅; ai; Uinitial setj j
� �

;

Nrow ¼ 2⋅
XUinitial setj j

q¼1

Uinitial setj j
q

� �
:

ð3Þ

In the above equation, the corresponding element in the
available node status vector a!i is set to one if the cloud stor-
age or peers are consistently available in the system for the
time Treq; otherwise, it is fixed as zero. The second matrix, the
event matrix can be characterized by

E ¼ e!1 e!2 ⋅⋅⋅ e!i ⋅⋅⋅ e!Nrow

� �T
;

e!i ¼ ei;cs n!pkt

� �
; ei;1 n!pkt

� �
; ei;2 n!pkt

� �
; ⋅⋅⋅; ei; j n!pkt

� �
; ⋅⋅⋅; ei; Uinitial setj j n!pkt

� �� �
;

ei;cs n!pkt

� � ¼ pcs if Nps⋅ a!i• n
!

pkt

� �
≥Kmin and ai;cs ¼ 1

1−pcs if Nps⋅ a!i• n
!

pkt

� �
≥Kmin and ai;cs ¼ 0

0 otherwise
;

8<
:

ð4Þ

ei; j n!pkt

� � ¼ pj if Nps⋅ a!i• n
!

pkt

� �
≥Kmin and ai; j ¼ 1

1−pj if Nps⋅ a!i• n
!

pkt

� �
≥Kmin and ai; j ¼ 0

0 otherwise

8<
: ;

ð5Þ

where • denotes the vector inner product. The multiplica-
tion of all components in e!i denotes the probability that
more than Kmin encoded symbols can be obtained when the
available node status vector is a!i. Now, SR n!pkt

� �
is rep-

resented by

SR n!pkt

� � ¼ X
i¼1

Nrow

ei;cs n!pkt

� �
⋅ ∏
Uinitial setj j

j¼1
ei; j n!pkt

� �0
@

1
A: ð6Þ

Data retrievability As mentioned earlier, the fountain
decoding process may fail even thoughKmin encoded symbols
are obtained. In [23, 32], the relationship among δfailure, Kmin,
and Ksource is found as follows.

Kmin ¼ Ksource þ 2⋅ln
ω⋅ln

Ksource

δfailure

� �
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksource

p

δfailure

0
BB@

1
CCA⋅ω⋅ln

Ksource

δfailure

� �
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksource

p
;

ð7Þ
whereω is an extra parameter of the robust Soliton distribution
with a value less than one. Consequently, in this paper, data
retrievability is defined by combining Eqs. (6) and (7).

DR n!pkt

� � ¼ 1−δfailure
� �

⋅SR n!pkt

� �
: ð8Þ

Peer-to-Peer Netw. Appl. (2016) 9:299–312 303

The above DR n!pkt

� �
is the probability to obtain Ksource

source symbols successfully from the retrieved encoded sym-
bols. Now, we can formulate the problem as follows.

Problem formulation Determine n!pkt to minimize the total
upload time

Tup n!pkt; bw
�!� �

; ð9Þ

subject to DR n!pkt

� �
≥Pmin

retrive; ð10Þ

npkt
cs <

Ksource

Nps

 �
and npkt

l < min
hl

Ssymbol⋅Nps

 �
;

Ksource

Nps

 �� �
;

f or 1≤ l≤ Uinitial setj j; ð11Þ

where Eq. (10) is included in order to avoid the invasion of
data privacy since the decoding process is not performed

successfully with less than Ksource encoded symbols. ⌈x⌉ is
the smallest integer no less than x.

3.3 Determining algorithm of control parameters

The proposed algorithm consists of two parts that are required
to achieve a feasible solution: (1) the packet distribution pro-
cess to determine the initial peer set and the packet distribution
vector with low computational complexity, (2) on-the-fly
maintenance process to update the packet distribution vector
when there is a significant bandwidth change during transmis-
sion. First, we have to determine the initial peer set provided
by the bootstrap server. Whenever a service request is re-
ceived, the bootstrap server has to provide the user with the
peer set in which a feasible solution to the given problem
exists. However, it is quite complicated for the bootstrap serv-
er to always provide the initial peer set for satisfying the con-
straint in Eq. (10) since peer availability, available bandwidth,
and the network environment should be considered. Thus, in
the proposed system, a fixed number of randomly selected
peers are provided by the bootstrap server. If the constraint
in Eq. (10) cannot be satisfied with the given initial peer set,

Fig. 3 Example of the dynamic
step-size algorithm when Nint is 4

304 Peer-to-Peer Netw. Appl. (2016) 9:299–312

the user requests additional peers until an effective solution is
obtained.

Next, we control the number of encoded symbols stored on
cloud storage and each peer to minimize the upload time while
satisfying data retrievability and privacy constraints. Basically,
we adopt the Branch and Bound algorithm (B&B) [33] to
obtain the optimal solution of the given problem with a low
computational complexity. The Branch and Bound algorithm
is a well-known method for solving optimization problem. It
searches through a complete set of solutions to find the optimal
one. In the state space tree, the bound value of a vertex is cal-
culated to determine whether the vertex is promising or not. To
avoid unnecessary searching, the data retrievability and upload

time are calculated at each vertex. If the data retrievability is
smaller than Pretrive

min or the upload time is longer than the current
best solution, the sub-tree of the vertex is pruned. However, this
still requires a considerable amount of computation. Thus, we
propose the Branch and Bound algorithm with Dynamic
Step Size (B&B with DSS) for the fast convergence: This al-
gorithm addresses how to obtain a near optimal solution for
n!pkt with low computational complexity compared to the tra-
ditional Branch and Bound algorithm. The B&B with DSS al-
gorithm repeats the B&B algorithm with smaller step size in
only the selected interval at the previous iteration. And thus it
can significantly reduce the computational complexity by de-
creasing the number of searching points. To transmit the first

Fig. 4 Flow chart of the
determining algorithm of control
parameters

Peer-to-Peer Netw. Appl. (2016) 9:299–312 305

block of the file, the packet distribution algorithm is summarized
as follows and its structure is shown in Fig. 3.

Step 0: First, set the number of intervalsNint to 2
m, wherem is

an integer between 0 and log2
Ksource
Nps

j k
. For ∀i(0≤i≤

|Uinitial_set|), initialize ni
min=0, nmaxi ¼ log2

Ksource
Nps

j k
,

and N i
int=Nint. Then, calculate the interval points

using the equation

npkt
i kð Þ ¼ nmini þ k ⋅

nmaxi −nmini

N int
i

for 0≤k ≤N int
i ;

ð12Þ
where n i

pkt(k) represents the number of packets that
are transmitted to the ith peer. The exception case,
n 0
pkt(k), represents the number of packets that are

assigned to the cloud storage.
Step 1: Calculate the data retrievability and the upload time

for all possible combinations of the packet distribu-
tion vector determined by Eq. (12) when the FFDH
scheduler is adopted. If any combination does not
satisfy the constraint in Eq. (10), request for addi-
tional peer information from the bootstrap server,
and then go back to Step 0.

Step 2: When n!cur
pkt ¼ ðncur0 ; ncur1 ;…; ncuri ;…; ncurUinitial setj jÞ is

the packet distribution vector with the minimum
upload time that satisfies data retrievability
among all the possible combinations in Step 1,
the minimum point ni

min and the maximum point

ni
max are updated by max 0; ncuri −nmax

i −nmin
i

2⋅N int
i

n o
and

min ncuri þ nmax
i −nmin

i

2⋅N int
i

; 2
log2

Ksource
Nps

j k()
, respectively.

If ni
cur is 0 or 2

log2
Ksource
Nps

j k
, then N i

int is set to 1;
otherwise, N i

int is set to 2.

Step 3: Repeat Steps 1~2 until n i
pkt(k)−n i

pkt(k−1)=1.
Step 4: The current packet distribution vector n!cur

pkt is cho-
sen to transmit the first source block and the code
rate is determined by

c n!cur
pkt

� �
¼ Ksource

Nps⋅
XUinitial setj j

i¼0

ncuri

0
@

1
A
: ð13Þ

Next, we describe the on-the-fly maintenance process that
updates n!pkt under time-varying network conditions. The up-
load time is time-varying when the network conditions change
during transmission. The upload time of the proposed system
strongly depends on the available bandwidth with the server
and peers. However, it is inefficient to perform the packet
distribution algorithm with all the participating peers whenev-
er the estimated bandwidth is changed due to the computa-
tional complexity. To transmit all blocks except the first block
of the file, the maintenance algorithm is summarized as
follows.

Step 0: Monitor the available bandwidth vector bw
�! ¼

ðbwcs; bw1;…; bwi;…; bw Uinitial setj jÞ to transmit the
next block.

Step 1: Check whether a significant bandwidth decrease
occurs. If so, select more peers from Uadd, i.e. if
bwcs

bw pre
cs
≤εbw or bwi

bw pre
i
≤εbw for 1≤ i≤ |Uinitial_set| where

bw
�!

pre ¼ ðbwpre
cs ; bwpre

1 ;…; bwpre
i ;…; bwpre

Uinitial setj jÞ is

the previous bandwidth vector and εbw is a con-
stant (0 < εbw<1), then additional peers are

Table 3 Parameters for our simulation

Parameter Value

Uplink capacity of the user 100 [Mbps]

The size of initial peer set |Uiniial_set| 10

The size of additional peer set |Uadd| 100

Availability of cloud storage 0.999999

Source block size 33 [KB]

Symbol size 32 [Byte]

Packet payload size 1024 [Byte]

The number of source symbols in a source block 1056

The minimum number of encoded symbols 1120

Fountain decoding failure rate 9.10−10

εbw 0.95

Table 4 Information of server and peers in the initial state

Nodes measures Server Peer 1 Peer 2 Peer 3 Peer 4 Peer 5

Node availability 0.999999 0.9989 0.9992 0.9988 0.9987 0.9990

Bandwidth
[Mbps]

51.21 51.31 47.81 52.01 52.54 48.33

Table 5 Performance comparison of packet distribution algorithms in
the first block

Measures algorithms The number of
searching points

Upload time
[msec]

Full search 1,291,467,969 5.618

Branch and bound algorithm 58,703,521 5.618

Branch and bound algorithm
with dynamic step size

Nint=1 415 5.637

Nint=2 796 5.620

Nint=4 4264 5.620

Nint=8 71,602 5.620

Nint=16 1,900,253 5.618

306 Peer-to-Peer Netw. Appl. (2016) 9:299–312

selected from Uadd to Uinitial_set until the sum of
bandwidth between the user and additional peers
becomes larger than the decreased bandwidth.

Step 2: The packet distribution vector is re-calculated using
the B&Bwith DSS algorithm only for the additional
peers and the above server or peers with a serious

bandwidth reduction. Set bw
�!

pre to bw
�!

.

Step 3: Repeat Step 0~2 until all the blocks are transmitted.
Figure 4 shows the whole procedure for deter-

mining the control parameters.

4 Simulation results

The proposed hybrid storage system is implemented in JAVA
to demonstrate the performance of the proposed system. The
maximum uplink capacity of the user is set to 100 Mbps [34].
The sizes of Uinitial_set and Uadd are set to 10 and 100, respec-
tively. In general, commercial cloud storage systems such as
Amazon S3 are designed for 99.9999% reliability over a year,
which means that the average loss rate of data stored is
0.0001 % [35–37]. During the simulation, the cloud storage
availability is set to 0.999999 taking into consideration that of
commercial cloud storage systems. It is shown in [28–31] that
while most peers tend to stay in the system for very short time,
some peers take part in the system for long time. Especially, it
is observed in [30] that among the peers seen on the first day,
about 45 % peers have a lifetime longer than 3 months. Thus,
the peer availability is set up by taking into account the dy-
namics of peer participation: Case 1: only participating peers
of high availability are selected and Case 2: a few of partici-
pating peers of low availability are also chosen. The peer
bandwidth is set up based on the up-to-date OECD broadband
statistics since all peers use different access networks, where
DSL (Digital Subscriber Line), cable modem, and fiber/LAN
occupy 55.8, 30.0, and 13.7 %, respectively [38]. As men-
tioned earlier, to support data privacy, the number of encoded
symbols stored on cloud storage and on each peer is limited to
less than the number of source symbols. Ksource is set to 1056
and Kmin is determined to be 1120 by setting δfailure to 9⋅10−10

and ω to 0.00165 [32]. The symbol size and the packet pay-
load sizes are set to 32 and 1024 bytes (i.e., each packet con-
sists of 32 encoded symbols) taking into consideration the

Table 6 The number of allocated packets on server and peers

Nodes maintenance time[sec] Server Peers Additional peers Data retrievability

1 2 3 4 5 1 2 3 4 5 6 7

0 32 3 30 0 0 2 0.99999911451

0.33769 32 3 30 0 0 2 0 0.99999911451

1.44874 32 2 30 0 0 2 0 1 0.99999999409

1.59792 32 2 29 0 0 2 0 1 1 0.99999999476

3.1103 32 2 29 0 0 2 0 1 1 0 0.99999999476

6.14707 32 2 24 0 0 2 0 1 1 0 5 0.99999999472

10.5437 32 2 24 0 0 2 0 1 1 0 5 0 0.99999999472

11.1444 32 2 24 0 0 2 0 1 1 0 5 0 0 0.99999999472

(a)

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

2

4

6

8

10

12

14

File size [MB]

U
p

lo
ad

 t
im

e
[s

ec
]

Maintenance alg.
Non-maintenance alg.

(b)

Fig. 5 Performance comparison of maintenance algorithm and non-
maintenance algorithm: (a) available bandwidth (b) The upload time

Peer-to-Peer Netw. Appl. (2016) 9:299–312 307

fountain coding complexity and the amount of overhead. For
the execution of the maintenance algorithm, εbw is set to 0.95.
The detailed simulation environment is set up as shown in
Table 3.

4.1 Performance verification of the proposed algorithms

In this section, we examine the performance of packet distri-
bution and the maintenance algorithm for determining control
parameters. During the simulation, Pretrive

min is set to 0.999999
considering the data retrievability that commercial cloud stor-
age systems provide. First, we show that the B&B with DSS
algorithm provides a near optimal solution with a low compu-
tation complexity compared to the optimal solution as a
benchmark. Since the computational complexities of a full
search and the B&B algorithm increase exponentially as the
number of peers increases, the simulation is performed with a
relatively small number of five peers as shown in Table 4.
Table 5 shows that the B&B with DSS algorithm has much
smaller searching points in comparison with a full search and
the B&B algorithm. Compared to the conventional B&B al-
gorithm, the number of searching points is decreased by ap-
proximately 96.75 % when the number of intervals Nint is set
to 16. Moreover, the computational complexity of the B&B
with DSS algorithm generally decreases as the number of
intervals Nint decreases. On the other hand, the upload time
of the B&B with DSS algorithm monotonically increases as
the number of intervals Nint decreases. Consequently, it can

reduce the number of searching points at the expense of a little
extra upload time by selecting an adaptive initial interval.

Next, the performance verification of the maintenance al-
gorithm is provided. Figure 5a represents the time-varying
wired network states and the operating point for the mainte-
nance algorithm. Table 6 shows the execution results of the
maintenance algorithm at the maintenance points in Fig. 5a.
The maintenance algorithm adaptively selects additional peers
and allocates the number of packets to the selected additional
peers as well as peers whose available bandwidth significantly
decreases in order to avoid an increase in upload time. As
shown in Table 6, Pretrive

min is always satisfied in the mainte-
nance process. Figure 5b compares the upload time for the
non-maintenance algorithm with that of the maintenance al-
gorithm. The results of the comparison show that the

Table 8 The amount of stored data based on the information in the initial
state

Algorithms
nodes

Proposed
algorithm

LTCS
algorithm
[19]

Adaptive ERC
algorithm [10]

Replication
algorithm [13]

Server 32 32 24.75 33

Peer 1 13 6 8.25

Peer 2 3 6 8.25

Peer 3 3 6 8.25

Peer 4 5 6 8.25

Peer 5 3 6 8.25

Peer 6 13 6 8.25

Peer 7 3 6 8.25

Peer 8 3 6 8.25

Peer 9 5 6 8.25

Peer 10 5 6 8.25

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

5

10

15

20

25

File size [MB]

U
p

lo
ad

 t
im

e
[s

ec
]

Proosed alg.
LTCS alg.
Adaptive ERC alg.
Replication-based redundant alg.

(a)

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

20

40

60

80

100

120

140

160

180

File size [MB]

T
h

e
am

o
u

n
t

o
f

re
d

u
n

d
an

t
d

at
a

[M
B

] Proosed alg.
LTCS alg.
Adaptive ERC alg.

(b)

Fig. 6 Performance comparison between the proposed algorithm and
other existing algorithms for the environment in Table 7 when Pretrive

min is
0.999999: (a) the accumulated upload time (b) the amount of redundant
data

Table 7 Information of server and peers in the initial state

Nodes measures Server Peer 1 Peer 2 Peer 3 Peer 4 Peer 5 Peer 6 Peer 7 Peer 8 Peer 9 Peer 10

Node availability 0.999999 0.749 0.767 0.760 0.790 0.769 0.728 0.698 0.782 0.750 0.689

Bandwidth [Mbps] 96.12 15.83 16.74 14.66 42.83 14.79 41.35 42.28 14.64 15.70 41.86

308 Peer-to-Peer Netw. Appl. (2016) 9:299–312

maintenance algorithm is effective in decreasing the upload
time under time-varying network conditions.

4.2 Performance comparison with other algorithms

In this section, we compare the proposed algorithm with
existing algorithms: the LTCS (LT code-based secure cloud
storage service) algorithm [19], the adaptive ERC algorithm
[10, 12], and a replication-based redundant algorithm [13].
The existing algorithms are briefly summarized below.

& LTCS algorithm: To recover all the source symbols from
the distributed encoded symbols that can be retrieved from
any m combination of peers, Kmin=m encoded symbols are
uniformly distributed to each storage device.

& Adaptive ERC algorithm: The appropriate fragment size
of an RS code is adaptively chosen to efficiently store data
in P2P storage. The encoded fragments are uniformly dis-
tributed to multiple participating peers.

& Replication-based redundant algorithm: The peer is se-
lected and the replicated data is stored in the selected peer
until the data retrievability is satisfied. The user can re-
trieve the original data from only one replica.

Since these existing algorithms are proposed for P2P or
cloud storage systems, they are simply modified for the purpose
of conducting a fair comparison with the proposed hybrid stor-
age system. Thus, in LTCS and Adaptive ERC algorithm, the
cloud storage stores the maximum amount of encoded data that
the original data cannot be perfectly decoded without peer sup-
port in order to avoid the invasion of data privacy.

During the simulation, P retrive
min is set to 0.999999 and

0.9999999 to verify the enhancement of data retrievability.
The upload time and the amount of redundant data are mea-
sured to provide a comparison of the performance with that of
existing algorithms.

First, we compare the proposed algorithm with existing algo-
rithms when Pretrive

min is 0.999999. Table 7 shows the initial band-
width and the availability of server and peers. Further, Table 8
shows the amount of data stored in the first block based on the
information given in Table 7. As shown in Table 8, we can see
that the original data cannot be perfectly decoded at any node
when fountain codes are adopted since the amount of stored data
at each node is smaller than the source block size of 33 KB.

Figure 6 shows the upload time and the amount of total
redundant data stored on the server and peers for the environ-
ment given in Table 7. As shown in Fig. 6, the proposed
algorithm exhibits the best performance among all the algo-
rithms with respect to upload time and storage efficiency ex-
cept for replication algorithm. As the amount of transmitted
file grows, the performance improvement of the upload time
becomes more obvious. The upload time is reduced by about
3.5 and 15.3 % compared to LTCS and adaptive ERC algo-
rithm, respectively. The amount of redundant data is also re-
duced by 6.3 and 21.2 % compared to LTCS and adaptive
ERC algorithm, respectively. Data privacy cannot be support-
ed by the replication-based redundant algorithm because the
original data is stored entirely on the cloud storage. In addi-
tion, redundant data is not required in the replication algorithm
since data retrievability is provided by the cloud storage itself.

Table 9 Information of server and peers in the initial state

Nodes measures Server Peer 1 Peer 2 Peer 3 Peer 4 Peer 5 Peer 6 Peer 7 Peer 8 Peer 9 Peer 10

Node availability 0.999999 0.902 0.933 0.920 0.905 0.904 0.874 0.899 0.925 0.899 0.923

Bandwidth [Mbps] 96.12 15.83 16.74 14.66 42.83 14.79 41.35 42.28 14.64 15.70 41.86

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

2

4

6

8

10

12

14

16

18

File size [MB]

U
p

lo
ad

 t
im

e
[s

ec
]

Proosed alg.
LTCS alg.
Adaptive ERC alg.
Replication-based redundant alg.

(a)

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

10

20

30

40

50

60

70

80

90

100

File size [MB]

T
h

e
am

o
u

n
t

o
f

re
d

u
n

d
an

t
d

at
a

[M
B

] Proosed alg.
LTCS alg.
Adaptive ERC alg.

(b)

Fig. 7 Performance comparison between the proposed algorithm and other
existing algorithms for the environment in Table 9 whenP retrive

min is 0.999999:
(a) the accumulated upload time (b) the amount of redundant data

Peer-to-Peer Netw. Appl. (2016) 9:299–312 309

Figure 7 represents the performance comparisons as peer
availability increases, when P retrive

min is 0.999999. As shown in
Table 9, the network conditions are the same as in the previous
environment (Table 7). As the peer availability increases, the
amount of redundant data decreases, since Pretrive

min can be sat-
isfied by a relatively lower amount of redundant data. This
implies that the performance of storage efficiency improves as
the peer availability increases. As shown in Fig. 7a, the upload
time is also less than that of the previous results since the
amount of transmitted redundant data decreases. The upload
time is decreased by 12.2 and 35.9 % compared to LTCS and
adaptive ERC algorithm, respectively. The amount of redun-
dant data is also decreased by 28.2 and 39.1 % compared to
LTCS and adaptive ERC algorithm, respectively.

As shown in Table 10, a few of peers in Table 9 are
replaced with peers of low availability. Figure 8 shows
the upload time and the amount of total redundant data
with the participating peers in Table 10. It is apparently
observed that both upload time and the amount of re-
dundant data are increased compared with Fig. 7. In this
case, the upload time is reduced by 8.4 and 19.6 %
compared to LTCS and adaptive ERC algorithm, respec-
tively. The amount of redundant data is also reduced by
15.1 and 28.5 % compared to LTCS and adaptive ERC
algorithm, respectively. In summary, as peer availability
increases, the upload time and the amount of redundant
data decrease, and vice versa. When only peers of low
availability are participating as an extreme case, the
gain of the proposed system may be decreased. Howev-
er, in a community having the same interest and pur-
pose, peers are willing to stay at the session for long
time and share their resources with other peers. In this
situation, the achievement of the proposed system can
be significantly improved.

Next, we examine the performance of the proposed
algorithm as Pretrive

min increases. By efficiently utilizing
the P2P storage system, the proposed hybrid storage
system can guarantee a higher data retrievability than
that of the cloud storage system. P retrive

min is set to
0.9999999, which is ten times lower than the average
loss rate of a commercial cloud storage system. The
network conditions and the peer availability are the
same as given in Table 9. The results are summarized
in Fig. 9. Since a higher amount of redundant data is

required to satisfy higher data retrievability, both the
upload time and the amount of redundant data increase
as compared to Fig. 7. Compared to the Figs. 7 and 9,
the performance of the replication algorithm deteriorates
in the current scenario. This is because the replicated
data has to be stored on the peers as well as on cloud
storage. As shown in the Fig. 9, the upload time is
decreased by 6.3, 34.2, and 64.7 % compared to LTCS,
adaptive ERC, and replication-based redundant algo-
rithm, respectively. The amount of redundant data is
decreased by 24.5 and 32.7 % compared to LTCS and
adaptive ERC algorithm, respectively.

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

5

10

15

20

25

File size [MB]

U
p

lo
ad

 t
im

e
[s

ec
]

Proosed alg.
LTCS alg.
Adaptive ERC alg.
Replication-based redundant alg.

(a)

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

20

40

60

80

100

120

140

160

180

File size [MB]

T
h

e
am

o
u

n
t

o
f

re
d

u
n

d
an

t
d

at
a

[M
B

] Proosed alg.
LTCS alg.
Adaptive ERC alg.

(b)

Fig. 8 Performance comparison between the proposed algorithm and
other existing algorithms for the environment in Table 10 when Pretrive

min

is 0.999999: (a) the accumulated upload time (b) the amount of
redundant data

Table 10 Information of server and peers in the initial state

Nodes Measures Server Peer 1 Peer 2 Peer 3 Peer 4 Peer 5 Peer 6 Peer 7 Peer 8 Peer 9 Peer 10

Node availability 0.999999 0.155 0.933 0.920 0.294 0.904 0.298 0.178 0.925 0.150 0.923

Bandwidth [Mbps] 96.12 15.83 16.74 14.66 42.83 14.79 41.35 42.28 14.64 15.70 41.86

310 Peer-to-Peer Netw. Appl. (2016) 9:299–312

5 Conclusion

An effective hybrid P2P and cloud storage system has been
proposed in this paper. There are several significant advan-
tages with hybrid P2P and cloud storage system. The pro-
posed system can satisfy a higher data retrievability require-
ment than that of the conventional cloud storage by control-
ling the amount of distributed fountain encoded symbols to
cloud storage system and participating peers. And the pro-
posed system is able to prevent others from reading the data
by individually regulating the amount of fountain encoded
symbols stored at cloud storage system and participating
peers. Furthermore, the proposed system can decrease the data
upload time by considering the network conditions. It has
been observed during the simulation that the proposed algo-
rithm enables the fast completion of data upload transmission
while satisfying the required data retrievability and enhancing
the privacy of user data, i.e. in the given simulation environ-
ments, the upload time of the proposed algorithm is reduced

by up to 12.2, 35.9, and 64.7 % compare to LTCS, adaptive
ERC, and replication-based redundant algorithm, respectively.

Acknowledgement This research was supported by Basic Science Re-
search Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education (NRF-
2013R1A1A2006732) and the MSIP (Ministry of Science, ICT & Future
Planning), Korea in the ICT R&D Program 2014.

References

1. Caceres J, Vaquero LM, RoderoMerino L, Polo A, Hierro JJ (2010)
Service scalability over the cloud. Handb Cloud Comput 357–377

2. Amazon Glacier. Available: http://aws.amazon.com/ec2/reserved-
instances/#3. Accessed 18 Oct 2013

3. Google Drive. Available: http://drive.google.com/. Accessed 18 Oct 2013
4. Microsoft SkyDrive. Available: http://skydrive.live.com/. Accessed

18 Oct 2013
5. Baca S (2010) Cloud Computing: What it is and what it can do for

you (pp. 1–6). www.globalknowledge.com/. Accessed 18 Oct 2013
6. Dropbox. Available: http://dropbox.com/. Accessed 18 Oct 2013
7. Harihara SG, Janakiram B, Chandra MG, Aravind KG, Kadhe S,

Balamuralidhar P, Adiga BS (2010) SpreadStore: a LDPC erasure
code scheme for distributed storage system. Int Conf Data Storage
Data Eng 154–158

8. Spoor R, Peddemors A (2010) Cloud storage and peer-to-peer stor-
age. [Online]. Available: http://www.surf.nl/binaries/content/assets/
surf/en/knowledgebase/2010/EDS-3R+Cloud+and+p2p+storage-v1.
1.pdf/. Accessed 18 Oct 2013

9. iSuppli. Available: http://isuppli.com/. Accessed 18 Oct 2013
10. Li J, Huang Q (2006) Erasure resilient codes in peer-to-peer storage

cloud. IEEE Int Conf Acoust Speech Signal Process 4:4
11. Gaidioz B, Koblitz B, Santaos N (2007) Exploring high performance

distributed file storage using LDPC codes. Parallel Comput 33:264–274
12. Li J (2006) Adaptive erasure resilient coding in distributed storage.

IEEE Int Conf Multimedia Expo 561–564
13. Rodrigues R, Liskov B (2005) High availability in DHTs: erasure

coding vs. replication. Peer-to-Peer Syst IV 3640:226–239
14. Kim S, Lee S (2009) Rateless erasure resilient codes for content

storage and distribution in P2P networks. 11th International
Conference on Advanced Communication Technology 1:444–446

15. Ji W, Jian Z, Tong W, Qian S (2011) Study on redundant strategies in
peer to peer cloud storage systems. Appl Math Inf Sci Int J 5-2S:
235S–242S

16. Park S, Moon B, Park M (2004) Design, implementation, and perfor-
mance analysis of the remote storage system inmobile environment. 2nd
International Conference on Information Technology for Application

17. Hertel CR (2003) Implementing CIFS: the common internet file sys-
tem. Prentice Hall, Englewood Cliffs

18. Radkov P, Yin L, Goyal P, Sarkar P, Shenoy P (2004) BA
Performance comparison of NFS and iSCSI for IP-networked
storage^, 3rd USENIX conference on file and storage technologies.
USENIX Assoc 3640:101–114

19. Cao N, Yu S, Yang Z, Lou W, Hou YT (2012) LT code-based secure
and reliable cloud storage service. IEEE INFOCOM 693–701

20. Blömer J, Kalfane M, Karpinski M Karp R, Luby M, Zuckerman D
(1995) An XOR-based erasure-resilient coding scheme. ICSI
Technical Report No. TR–950048

21. Luby M (2002) LT codes. Ann Symp Found Comput Sci 271–280.
doi:10.1109/SFCS.2002.1181950. Accessed 18 Oct 2013

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

5

10

15

20

25

30

35

40

File size [MB]

U
p

lo
ad

 t
im

e
[s

ec
]

Proosed alg.
LTCS alg.
Adaptive ERC alg.
Replication-based redundant alg.

(a)

0 6.6 13.2 19.8 26.4 33 39.6 46.2 52.8 59.4 66
0

20

40

60

80

100

120

File size [MB]

T
h

e
am

o
u

n
t

o
f

re
d

u
n

d
an

t
d

at
a

[M
B

] Proosed alg.
LTCS alg.
Adaptive ERC alg.
Replication-based redundant alg.

(b)

Fig. 9 Performance comparison between the proposed algorithm and other
existing algorithms for the environment in Table 9whenPretrive

min is 0.9999999:
(a) the accumulated upload time (b) the amount of redundant data

Peer-to-Peer Netw. Appl. (2016) 9:299–312 311

http://aws.amazon.com/ec2/reserved-instances/%233
http://aws.amazon.com/ec2/reserved-instances/%233
http://drive.google.com/
http://skydrive.live.com/
http://www.globalknowledge.com/
http://dropbox.com/
http://www.surf.nl/binaries/content/assets/surf/en/knowledgebase/2010/EDS-3R+Cloud+and+p2p+storage-v1.1.pdf/
http://www.surf.nl/binaries/content/assets/surf/en/knowledgebase/2010/EDS-3R+Cloud+and+p2p+storage-v1.1.pdf/
http://www.surf.nl/binaries/content/assets/surf/en/knowledgebase/2010/EDS-3R+Cloud+and+p2p+storage-v1.1.pdf/
http://isuppli.com/
http://dx.doi.org/10.1109/SFCS.2002.1181950

Gi Seok Park Gi Seok Park re-
ceived the B.S. degree in Electri-
cal Engineering from Dongguk
University in 2010 and the M.S.
degree in IT Convergence Engi-
neering from POSTECH (Pohang
University of Science and Tech-
nology) in 2013. Currently, he is
a Ph. D. student in Division of IT
Convergence Engineer ing,
POSTECH. His research interests
include P2P networking, cloud
computing and future network.

Dr. Hwangjun Song received the
B.S. and M.S. degrees from Dept.
of Control and Instrumentation
(EE), Seoul National University,
Korea in 1990 and 1992, respec-
tively, and Ph.D. degree in Electri-
cal Engineering-Systems, Univer-
sity of Southern California, Los
Angeles, CA, USA in 1999. From
1995 to 1999, he was a research
assistant in SIPI (Signal and Image
Processing Institute) and IMSC
(Integrated Media Systems Cen-
ter), Univ. of Southern California.
From 2000 to 2005, he was an as-

sistant professor/vice dean of admission affairs at Hongik University,
Seoul, Korea. Since Feb. 2005, he has been with Dept. of Computer
Science and Engineering, POSTECH (Pohang University of Science and
Technology), Korea. He received Haedong Outstanding Paper Award
from Korean Institute of Communication Science in 2005. He is an edito-
rial board member of Journal of Visual Communication and Image Rep-
resentation and an associate editor of Journal of Communications and
Networks, and served as an editorial board member of International Jour-
nal of Vehicular Technology and a guest editor of Special Issue on
BNetwork technologies for emerging broadband multimedia services^ in
the Journal of Visual Communication and Image Representation and Spe-
cial Issue on BWireless &Mobile networks^ in the International Journal of
Ad Hoc and Ubiquitous Computing His research interests include multi-
media signal processing and communication, image/video compression,
digital signal processing, network protocols necessary to implement func-
tional image/video applications, control system and fuzzy-neural system.

312 Peer-to-Peer Netw. Appl. (2016) 9:299–312

22. Han S, Joo H, Lee D, Song H (2011) An end-to-end virtual path
construction system for stable live video streaming over heteroge-
neous wireless networks. IEEE J Sel Areas Commun 29:1032–1041

23. Shokrollahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):
2551–2567. doi:10.1109/TIT.2006.874390. Accessed 18 Oct 2013

24. Xu Q, Stanković V, Xiong Z (2007) Distributed joint source-channel
coding of video using Raptor codes. IEEE J Sel Areas Commun 25:
851–861

25. Ribeiro V, Riedi R, Baraniuk R, Navratil J, Cottrell L (2003)
pathChirp: efficient available bandwidth estimation for network
paths. Passive and Active Measurement Workshop. doi:10.2172/
813038. Accessed 18 Oct 2013

26. Ntene N, Vuuren JHV (2009) A survey and comparison of guillotine
heuristics for the 2D oriented offline strip packing problem. Discret
Optim 6:174–188

27. Lodi A, Martello S, Monaci M (2002) Two-dimensional packing
problems: a survey. Eur J Oper Res 141:241–252

28. Bustamante FE, Qiao Y (2004) Friendships that last: peer lifespan
and its role in P2P protocols. Int Work Web Content Caching Distrib
233–246

29. Stutzbach D, Rejaie R (2006) Understanding churn in peer-to-peer
network. The 6th ACM SIGCOMM Conference on Internet
Measurement, pp. 189–202

30. Steiner M, En-Najjary T, Biersack E (2009) Long term study of peer
behavior in the KAD DHT. IEEE/ACM Trans Netw 17(6):1371–
1384. doi:10.1109/TNET.2008.2009053. Accessed 18 Oct 2013

31. Leonard D, Yao Z, Rai V, Loguinov D (2007) On lifetime-based node
failure and stochastic resilience of decentralized peer-to-peer net-
works. IEEE/ACM Trans Networking 15:644–656

32. Mackay DJC (2005) Fountain codes. IEE Proc Commun 152:1062–
1068

33. Lawler EW, Wood DE (1966) Branch–and–bound method—a sur-
vey. Oper Res 14:669–719

34. Lunttila T, Lindholm J, Pajukoski K, Tiirola E, Toskala A (2007)
EUTRAN uplink performance. Int Symp Wirel Pervasive Comput.
doi:10.1109/ISWPC.2007.342658. Accessed 18 Oct 2013

35. Turner WP, IV, Seader JH, Renaud V, Brill KG (2006) Tier classifi-
cations define site infrastructure performance. White Paper, The
Uptime Institute

36. Ping L, GeX,WangY, Fu J (2010) Cloud storage as the infrastructure
of cloud computing. Intell Comput Cogn Inform380–383

37. Yang Y, Yuan D (2011) A novel cost-effective dynamic data replica-
tion strategy for reliability in cloud data centers. IEEE Dependable
Auton Secure Comput

38. OECD Broadband Portal (2012). http://www.oecd.org/sti/ict/
broadband. Accessed 18 Oct 2013

http://dx.doi.org/10.1109/TIT.2006.874390
http://dx.doi.org/10.2172/813038
http://dx.doi.org/10.2172/813038
http://dx.doi.org/10.1109/TNET.2008.2009053
http://dx.doi.org/10.1109/ISWPC.2007.342658
http://www.oecd.org/sti/ict/broadband
http://www.oecd.org/sti/ict/broadband

	A novel hybrid P2P and cloud storage system for retrievability and privacy enhancement
	Abstract
	Introduction
	Background
	Remote storage systems
	Erasure protection codes

	Proposed hybrid P2P and cloud storage system
	System architecture
	Problem description
	Determining algorithm of control parameters

	Simulation results
	Performance verification of the proposed algorithms
	Performance comparison with other algorithms

	Conclusion
	References

