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Remote voting permits an election to be carried out through telecommunication networks. In this way, its
participants are not required to physically move to the polling place. Votes are automatically collected and
counted so that once the election ends, the results can be published after a very short delay. Security is a
key aspect of any remote application. A remote voting system must be secure in the sense that the result of
the election cannot be manipulated and the privacy of participants is preserved. This paper presents a
novel mix-type remote voting system that permits to verify the correctness of a voting process without
requiring complex and costly zero-knowledge proofs. It is based on a very efficient and lightweight
hash-based construction that makes use of the homomorphic properties of ElGamal cryptosystem.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Classical on paper voting with manual counting is a slow and er-
ror-prone way of performing elections. Electronic voting arises as a
way to take advantage of technology in order to automate vote cast-
ing and counting. Electronic voting systems can be classified into
two groups. The first group is composed of systems that substitute
some components of traditional voting with some electronic pro-
cess. The second one refers to systems in which voters are able to cast
their votes remotely through telecommunication networks. Such
systems are called remote voting systems.

A remote voting system has to guarantee some basic security
properties:

� Authentication: Only voters listed in the electoral roll are able to
cast a vote.

� Unicity: Each voter can vote only once.
� Integrity: Any attempt to dishonestly manipulate the election

result is detected.
� Privacy: At the end of the voting procedure, no ballot can be

linked to the identity of the voter who has cast it.
� Verifiability: Fairness of the whole voting procedure can be

checked. A voting scheme is universally verifiable if anyone can
independently verify that all ballots have been counted correctly.
If voters can only verify that their own ballot has been counted, the
scheme is individually verifiable.
ll rights reserved.
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� Uncoercity: A voter cannot prove that she voted in a particular
way.

� Fairness: All ballots remain secret until the election is complete.

Current remote voting proposals in the literature achieve secu-
rity by using cryptography. They can be classified into three main
different paradigms:

� Blind signature-based schemes: First proposed in [11], in these
systems each participant composes her vote and authenticates
herself to a trusted party that checks the electoral roll and
blindly signs her vote. After that, the signed vote is encrypted
and sent to the Polling Station through an anonymous chan-
nel. Finally, each vote is decrypted and tallied. Privacy is pre-
served because the identity of the voter is kept confidential by
the anonymous channel. This paradigm presents a security
drawback permitting that a corrupted trusted party casts
votes for abstaining voters. This fact could be detected by an
auditor checking the signatures on all validation requests sub-
mitted but, after detection, there does not exist any procedure
to identify invalid ballots (its signature is indistinguishable
from that of valid ones) so that the election would have to
be repeated.

� Homomorphic tallying schemes: First proposed in [7], these sys-
tems are only suitable for elections with a small number of candi-
dates or choices. Each voter employs an additive homomorphic
encryption algorithm to encrypt her vote. Once the Polling Station
has collected all encrypted votes, they are homomorphically
added so that the sum of votes for any candidate can be recovered
with a single decryption. As no single vote is decrypted, privacy of
voters is protected. The drawback of this paradigm is that cast
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votes must be proven to be valid using a zero-knowledge proof. As
explained in [28], when the number of candidates or choices is
large (e.g. preferential voting), the cost for such a proof becomes
very high. So, this paradigm is accepted to be only suitable for
elections with a small number of candidates or choices (‘‘yes/
no” voting).

� Mix-type voting schemes: First proposed in [4], they start with
each voter authenticating herself and sending her vote in an
encrypted message. Once all encrypted votes have been col-
lected by the remote Polling Station, they are shuffled and
remasked so that the link between each vote and the participant
who cast it is lost. Finally, shuffled votes are decrypted and tal-
lied. This paradigm permits to perform flexible elections (unlike
the homomorphic tallying paradigm) with a very high security
level and without the possibility for any party to completely dis-
rupt the election (like in blind signature-based schemes). The
next subsection provides more details about it.

In the recent years, some e-voting systems have been proposed
for its use on highly dynamic networks. For instance, the proposals
[21,18] are designed for mobile ad hoc and P2P networks,
respectively.

1.1. Mix-type voting schemes

In mix-type voting schemes, there exists a trusted party storing
the private key that permits vote decryption. This entity is as-
sumed to be honest in the sense that it will only decrypt votes after
they have been shuffled and remasked. If honesty of a single entity
is difficult to achieve, the private key can be distributed between
several parties in such a way that simultaneous corruption of all
of them is very unlikely.

The Polling Station receives encrypted votes from voters. These
encrypted votes are sent in an authenticated manner so that the
authentication and unicity properties can be enforced. Once all en-
crypted votes have been collected, they are shuffled and remasked.
The result is a mixed set of cryptograms whose cleartexts are the
received votes. Due to the remasking operation, the initially re-
ceived and the mixed ciphertexts cannot be related. Finally, the
mixed cryptograms are decrypted and the tally process can be car-
ried out.

The privacy of the system would be compromised if the party
performing the mixing revealed the permutation applied to votes.
For instance, if the Mixing Party omitted the mixing phase, the or-
der of the decrypted votes would be the same as the original en-
crypted and signed votes. This would permit to link cleartext
votes to the identity of voters using the identity information in cer-
tificates attached to the signatures. In this example, the privacy
breach is due to the fact that the Mixing Party is known to have ap-
plied the identity (or null) permutation to votes. The same attack
could be applied after performing an arbitrary permutation if this
was revealed. In this sense, secrecy of the permutation is a manda-
tory aspect so as for privacy to be preserved. Privacy guarantees
can be increased by having a Mixing Party composed of several
Mixing Elements. In this way, the permutation applied to votes is
the result of composing the individual permutation of each Mixing
Element. Privacy is preserved as long as at least one of them main-
tains its permutation secret. In a real deployment, each political
party may provide its own Mixing Element so that a collusion of
all of them is very unlikely.

The voting system must also guarantee that votes will only be
decrypted after verifying they have been permuted by all Mixing
Elements. In some proposals, Mixing Elements store fragments of
the secret key and perform a partial decryption of votes after mix-
ing them. This ensures votes cannot be decrypted unless all Mixing
Elements have taken part in the process.
The mixing of encrypted votes has to be done verifiably. This
means that there must exist some method to prove that no manip-
ulation, such as vote replacement, has taken place during this pro-
cedure. This verification method has to accomplish two main
properties:

� A dishonest mixer will be caught with high probability even if a
single plain-text message gets modified.

� It does not endanger unlinkability.

Mixing verification methods should be efficient in terms of com-
putational effort and communication cost between the prover and
the verifier. Last but not least, as mentioned in [6], conceptual com-
plexity should also be reduced, otherwise users may not trust a sys-
tem they cannot fully understand.

Current mixing verification processes in the literature make use
of complex zero-knowledge proofs. The cost of such schemes be-
comes especially unaffordable when several Mixing Elements com-
pose the Mixing Party. This is because these systems require the
complex zero-knowledge proof of correct mixing to be performed
by each mixer. This drawback is partially solved by aggregate shuf-
fle argument schemes where the complexity at the verifier does not
depend on the number of Mixing Elements.
1.2. Contribution and plan of this paper

In this paper, we present a novel aggregate shuffle argument
scheme. Verifiers are only required to check a set of simple condi-
tions that are very difficult to be satisfied simultaneously when some
alteration has happened during the mixing procedure. The cost over-
head for verifiers (voters) due to mixing verification is reduced to a
linear quantity of lightweight modular products and hash computa-
tions (the number of costly modular exponentiations is reduced and
constant). Regarding Mixing Elements, its extra cost is given by the
addition of a constant and small number of dummy ciphertexts.
The cost for the party storing the private key is similar to that at ver-
ifiers. We claim its conceptual complexity is lower than that of other
proposals involving zero-knowledge proofs for correct mixing.

The paper is structured as follows. Section 2 reviews previous
related work on remote voting systems. Section 3 is an introduc-
tion to the cryptographic tools used by the scheme. Section 4 de-
scribes the novel proposal while a detailed security analysis is
presented in Section 5. Section 6 provides an assessment on
parameter tuning and Sections 7 and 8 analyse the computational
and communication costs of the proposal, respectively. Finally,
Section 9 concludes the paper.
2. Related work

Blind signature-based remote voting schemes [11] provide a
very simple way of carrying out an election. Such systems do not
require the use of complicated zero-knowledge proofs so that its
conceptual complexity is very low. Instead, they can be imple-
mented using very simple cryptographic primitives such as sym-
metric/public key encryption and digital (blind) signatures. Voter
privacy is provided as long as blindly signed votes are transmitted
to the Polling Station through an anonymous channel like [32].
Several platforms built on this paradigm, such as [3,8,19], exist.
Unfortunately, its theoretical impossibility of tracing illegal votes
cast by a dishonest party storing the secret key used for blind sig-
nature computation has made the scientific community advise
against it and recommend other paradigms offering tracing
capabilities.

Homomorphic tallying remote voting schemes [7] permit to
obtain the vote count very efficiently after the decryption of a
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cryptogram that contains the homomorphic addition of all single
votes. Since no single votes are decrypted, vote privacy is provided.
However, vote correctness has to be guaranteed using zero-knowl-
edge proofs that become very expensive in complex elections with
multiple choice or preferential voting [28]. In this sense, this para-
digm is only recommended for very simple elections (for instance,
‘‘yes/no” voting). In [2] a platform using this paradigm is described.

Mix-type remote voting is the most versatile and secure para-
digm. It permits to carry out complex elections with good security,
privacy and tracing properties. Its main drawback is the need for a
mechanism to guarantee that the result of the election has not been
altered during the vote shuffling process. Proposals in the literature
prove shuffling correctness by using very complex zero-knowledge
proofs that introduce a very high computational cost. This cost is
usually measured as the number of modular exponentiations to be
performed as a function of the number of cast ballots, n. For instance,
according to [6], 12n exponentiations are required in [26], 10n in
[13,27], 8n in [16] and about 6n in [29]. Communication cost of such
schemes is linear in n. For instance, 6388n bits for [13] and 2528n for
[16]. In [23], the system [26] was implemented and shown to require
more than an hour to prove the correct mixing of 4000 votes en-
crypted using ElGamal cryptosystem. This high and unaffordable de-
lay prevents these systems from being used in large scale elections.

Different techniques have been proposed in order to reduce this
delay. The proposal in [30] divides the ciphertexts in groups before
mixing. This reduces the cost of proving shuffling correctness, but
only a small fraction of permutations can be reached in this way, so
that privacy is reduced. Another proposal detailed in [20] asks Mix-
ing Elements to reveal part of the permutation they applied. This
technique keeps a non-negligible probability of small alterations
not being detected and requires most Mixing Elements to keep
honest, otherwise, privacy may be compromised (other systems,
like the one presented in this paper, maintain privacy as long as
at least one is not corrupted). The authors in [6] propose local fork-
ing as a technique in which each verifier only checks the correct-
ness of a small part of the mixing. Clearly, this technique does
fully satisfy the verifiability property.

Aggregate shuffle argument schemes are the best option in elec-
tions where the Mixing Party is composed of a large amount of Mix-
ing Elements (which is very good for privacy). These systems keep
the cost at verifiers independent of the number of Mixing Elements.
Such a scheme was first proposed in [1]. The more recent proposal
[12] presents a lower cost than [1]. Being k the number of Mixing Ele-
ments, the drawback of [12] is that although the cost for verifiers is
10n (independent of k), this is not the case for the Mixing Elements
that have to compute, respectively, 28n and 13nðk� 1Þ exponentia-
tions for proving the correctness of its shuffling and verifying the
correctness of shuffling of all other mixers. Regarding conceptual
complexity, this is rather high in [12] due to the use of complicated
zero-knowledge proofs. The system in [15] also accomplishes the
aggregate shuffle argument property. It is a very fast hash-based pro-
posal (similar to the one presented in this paper) that does not re-
quire zero-knowledge proofs. Unfortunately, it contains several
security failures reported in [33].

Other proposals permitting the mixing of long messages [14] or
secure against manipulation in the voting terminal or during vote
transmission [22] exist in the literature.
3. Preliminaries

3.1. ElGamal cryptosystem

ElGamal [9] is a widely known public key cryptosystem whose
security holds on the difficulty of solving the discrete logarithm
problem. It is composed of four algorithms:
� Set up: A large cyclic group G of prime order q generated by g is
chosen. Then, G, g and q are published.

� Key generation: Alice chooses x 2 Z�q at random and computes
y ¼ gx. Alice’s secret key, x, is kept secret while her public key,
y, is published.

� Encryption: So as to encrypt message m using Alice’s public key,
Bob converts message m into an element of G and chooses a ran-
dom r 2 Z�q. Next, Bob computes c ¼ gr and d ¼ m � yr . The cryp-
togram is the tuple ðc; dÞ.

� Decryption: Alice decrypts ðc; dÞ using her private key x by com-
puting m ¼ d

cx in G. Note that d
cx ¼ m�yr

grx ¼ m�grx

grx ¼ m.

3.2. Verifiable decryption of an ElGamal ciphertext

In [5], a method is presented that permits a Prover to prove in
zero knowledge that, given a tuple ðg;u; y;vÞ, she knows a secret
value x satisfying x ¼ loggy ¼ loguv . Given a one-way hash function
H, the non-interactive version of this proof is as follows:

1. The Prover chooses s 2 Z�q at random and computes the tuple
ða; bÞ ¼ ðgs;usÞ.

2. The Prover computes e ¼HðakbÞ (operator k denotes concate-
nation).

3. The Prover computes r ¼ sþ ex and sends ða; b; rÞ to the Verifier.

We will denote CPðg;u; y; vÞ (Chaum–Pedersen’s proof) the tu-
ple ða; b; rÞ sent by the Prover to the Verifier. This proof is verified
as follows:

1. The Verifier computes e ¼HðakbÞ.
2. The Verifier checks whether gr ¼ aye and ur ¼ bve.

Given a publicly known cryptogram ðc; dÞ encrypted under
Alice’s public key, she can verifiably decrypt it by publishing the
cleartext m and CPðg; c; y; d

mÞ. A verifier that succeeds in checking
CPðg; c; y; d

mÞ is convinced that ðc; dÞ is an encryption of m under
public key y.

3.3. Homomorphic property of ElGamal

Given two ElGamal ciphertexts (under the same public key y)
ðc1; d1Þ ¼ ðgr1 ;m1 � yr1 Þ and ðc2; d2Þ ¼ ðgr2 ;m2 � yr2 Þ encrypting clear-
texts m1 and m2, respectively, it is easy to see that ðc; dÞ ¼
ðc1 � c2; d1 � d2Þ ¼ gr1þr2 ;m1 �m2 � yr1þr2ð Þ is an encryption of m1 �m2.
In this sense, ElGamal has a multiplicative homomorphism
property.

3.4. Remasking an ElGamal ciphertext

Given an ElGamal encryption of m under public key y,
ðc; dÞ ¼ ðgr ;m � yrÞ, this cryptogram can be transformed into a dif-
ferent cryptogram ðc0; d0Þ by choosing r0 2 Z�q at random and com-
puting ðc0; d0Þ ¼ ðc � gr0 ; d � yr0 Þ. The cleartext of ðc0; d0Þ is m. Under
the Decisional Diffie–Hellman assumption, a third party cannot
determine whether the cleartext of ðc; dÞ and ðc0; d0Þ are the same,
i.e. ElGamal cryptosystem is semantically secure.

3.5. Cryptography over elliptic curves

A public key cryptosystem can be constructed over a prime or-
der subgroup of the group of points of an elliptic curve [17]. An
elliptic curve E over a finite field Zp is defined by an equation of
the form

y2 ¼ x3 þ axþ b
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where a; b 2 Zp, with 4a3 þ 27b2–0 ðmod pÞ. The set of points
ðx; yÞ 2 Zp � Zp satisfying this equation together with a point at
infinity is the set of points of the curve, denoted EðZpÞ. An addition
operation given by the chord-tangent method endows the set of
points of the curve E with a group structure where the discrete log-
arithm problem is believed to be hard.

Its great advantage is that the Index-Calculus algorithm [31] for
solving the discrete logarithm cannot be applied here. As a conse-
quence, the same security of a public key defined over Z�p, with p
being a 3072 bits long prime, can be achieved over an elliptic curve
defined over a 256 bits long finite field.

Given an elliptic curve E and a subgroup of EðZpÞ of primer order
q generated by P, we encrypt message m under public key QE ¼ xEP
(xE is the private key) using the following variant of ECIES [17]
(elliptic curve integrated encryption scheme) that makes use of
the RC4 stream cipher:

1. Take r 2 Z�q at random.
2. Compute point R ¼ rQ E ¼ ðxR; yRÞ.
3. Compute point Z ¼ rP ¼ ðxZ ; yZÞ.
4. Let K ¼ xR ðmod 2128Þ.
5. Compute C ¼ RC4KðmÞ.
6. The resulting ciphertext is EQE ðmÞ ¼ ðxZ ; byZ

;CÞ.

Value byZ
is a bit indicating whether yZ P �yZ . Note that for a

curve defined over Zp, being p a 256 bits long prime, EQE ðmÞ is
ð257þ lmÞ bits long (value lm denotes the bitlength of m).

Decryption of EQE ðmÞ ¼ ðxZ ; byZ
;CÞ is done as follows:

1. From xZ and byZ
, obtain Z ¼ ðxZ ; yZÞ.

2. Using private key xE, compute R ¼ xEZ ¼ ðxR; yRÞ.
3. Compute K ¼ xR ðmod 2128Þ.
4. Compute m ¼ RC4�1

K ðCÞ.

Verifiable decryption is done by publishing point R and the
zero-knowledge proof CPðP; Z;QE;RÞ (see Section 3.2) constructed
over the subgroup generated by P. This proof permits to verify
the correctness of R. After that, the verifier can compute K and de-
crypt C by itself.

4. Our proposal

Our voting system is composed of the following parties:

� Polling Station. This is the central element that coordinates the
system. At the beginning, it collects the votes of participants
and, at the end, it publishes the result of the election. When nec-
essary, the Polling Station requires the participation of the Key
Storage and Mixing parties. It implements a publicly accessible
bulletin board where information is published in an authenti-
cated manner (for every piece of published data, all parties can
verify its integrity and the identity of its publisher). This can
be achieved by using digital signatures.

� Key Storage Trusted Party. This trusted party is proprietary of two
private/public key pairs, x=y; xE=QE, that have been generated
for this election. Keys generated for one election should never
be used in other elections. Public key y is defined over a multi-
plicative prime order subgroup of Z�p, while QE is defined over
a prime order subgroup of the group of points of an elliptic curve
E. Both public keys are known and accepted by all the parties
(they may be certified). This party securely stores the corre-
sponding private keys, x and xE.

� Mixing Party. This is the party that performs the mixing of votes.
It is composed of one or several Mixing Elements. We will
assume that at least one of these elements is honest. The others
may be corrupted and act dishonestly by trying to replace some
cast votes by fraudulent ones or by revealing how they per-
formed the mixing.

� Participants. These are the entities that cast a vote.

We will assume all parties have a certified public/private key
pair that permits them to send authenticated data. This key pair
will be used to sign the data they publish on the bulletin board.

Our voting system is composed of the following stages:

1. Set up. At this preliminary phase, the Key Storage Trusted Party
publishes the parameters of the groups where its public keys, y
and QE, are defined. It also publishes the description of a hash
function H generating lH-bits digests. The Polling Station ini-
tializes the bulletin board.

2. Voting. Each participant Pi generates a ciphertext encrypting her
vote v i. This encrypted vote is signed and sent to the Polling
Station. The Polling Station (and the other participants) will
check the electoral roll for authentication and vote unicity. If
this checking is successful, the encrypted vote will be published
(authenticated by its signature by Pi) on the publicly accessible
bulletin board.

3. Mixing. The Mixing Party takes the encrypted votes from the
bulletin board and shuffles and remasks them. The resulting
ciphertexts are sent to the Polling Station where they will be
published. During this phase, some additional data required
for verification is published.

4. Opening. At the end, the Key Storage Trusted Party verifies the
mixing (supervised by all participants) and then decrypts
the mixed encrypted votes. The output of this final stage is the
anonymous list of cast ballots.

These stages are next presented in more detail.

4.1. Setup

Key Storage Trusted Party publishes the parameters where its
public key y is defined. These are two large primes p and q satisfy-
ing p ¼ 2qþ 1. Key y is defined over the subgroup of Z�p generated
by an element g having order q. It is easy to see that this subgroup
corresponds to the set of quadratic residues of Z�p. This property is
useful because, given an element m 2 Z�p, its belonging to the sub-
group generated by g can easily be verified by checking if its Legen-
dre symbol is 1, i.e. m

p

� �
¼ 1. We assume this property is checked

by parties prior to performing any operation over the components
of an ElGamal ciphertext.

Function H is taken as the lH least significant bits of some cryp-
tographic hash function such as SHA256 [10].

The Key Storage Trusted Party also publishes the parameters of
the elliptic curve cryptosystem where its public key QE is defined.

Finally, its public keys y and Q E are published.

4.2. Voting

Next, we detail how participant Pi casts her vote v i. This is done
as follows:

1. Given vote v i; Pi first encrypts it under public key
QE; Vi ¼ EQE ðv iÞ, computes hi ¼HðViÞ and then encodes it as a
vote-message

mi ¼ Vikhikbi:

Value bi is chosen so that mi is a quadratic residue of Z�p.
2. Next, Pi encrypts mi under public key y, obtaining the ciphertext

Ci ¼ ðci; diÞ.
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3. Finally, Pi digitally signs Ci and sends Ci and its digital signature
sigPi
ðCiÞ to the Polling Station where it will be published on the

publicly accessible bulletin board.
4. All participants must check the validity of this digital signature.

They must also check that Pi has not cast any other encrypted
vote and her presence in the electoral roll.
4.3. Vote mixing

Once all n votes have been collected, the bulletin board contains

a set composed of the n signed votes Ci; sigPi
ðCiÞ

n o
06i<n

. Each en-

crypted vote corresponds to an ElGamal tuple Ci ¼ ðci; diÞ. Then,

1. The Key Storage Trusted Party computes and publishes the
cryptogram

Ccheck ¼
Yn�1

i¼0

Ci ¼
Yn�1

i¼0

ci;
Yn�1

i¼0

di

 !
:

Note that, any one having access to the set of votes can verify
that this computation has been performed correctly. All partic-
ipants must verify it. Ccheck is a cryptogram that can be de-
crypted using the secret key x returning (see Section 3.3),

mcheck ¼
Yn�1

i¼0

mi:

2. The first Mixing Element, ME1, generates s ElGamal cipher-
texts encrypting (under public key y) different randomly gen-
erated dummy messages m̂1;1; . . . ; m̂1;s

� �
. Let us denote them

Cnþk for 0 6 k < s.
3. ME1 publishes the following list on the bulletin board:bH1 ¼ SHA256 m̂1;1ð Þ; . . . ; SHA256 m̂1;sð Þ

� �
:

4. Next, ME1 generates a secret nþ s elements permutation p1

and computes a new list of shuffled and remasked ciphertexts
(including dummies) as

C 0i ¼ ðc0i;d
0
iÞ ¼ cp1ðiÞ � g

r0
i ;dp1ðiÞ � y

r0
i

� �
; 0 6 i < nþ s:

Each value r0i 2 Z�q is randomly chosen. If there are no more
Mixing Elements, ME1 publishes the set C0i

� �
06i<nþs on the bul-

letin board and the mixing procedure finishes here.
5. If the Mixing Party is composed of k, k > 1, Mixing Elements,

ME1 will send its resulting set of ciphertexts to ME2 who will
take it as input and will perform the same operation (dummy
addition, shuffling and remasking). This process will be carried
out sequentially by all Mixing Elements. The last one, MEk will
publish its output on the bulletin board. At the end, the bulle-
tin board will contain k lists bH1; . . . ; bHk and a set of nþ sk
mixed ciphertexts, C0i

� �
06i<nþsk (containing n encrypted votes

and sk dummy ciphertexts).
4.4. Vote opening

The Key Storage Trusted Party does:

1. Decrypt each ciphertext C0i ¼ ðc0i; d
0
iÞ using private key x and pub-

lish the set m̂0i
� �

06i<nþsk on the bulletin board (this set contains
sk dummies).

2. Remove from the set of decrypted messages, those m̂0i satisfying
that SHA256 m̂0i

� �
2 bH1. This operation must remove exactly s dif-

ferent elements. If this condition is not satisfied, the procedure
stops. The same operation is carried out for the remaining listsbH2; . . . ; bHk. Let us denote m0i

� �
06i<n the set of the n remaining mes-

sages once dummies have been removed. These removings are
supervised by all participants.
3. Decrypt Ccheck ¼ ðccheck; dcheckÞ using private key x, and publish
mcheck and its proof of correct decryption

CP g; ccheck; y;
dcheck

mcheck

� 	
:

After this is done, all parties check:

1. The correctness of the verifiable decryption of mcheck.
2. The product of decrypted messages m0check ¼

Qn�1
i¼0 m0i equals

mcheck.
3. All messages m0i ¼ V 0ikh

0
ikb
0
i satisfy that h0i ¼HðV 0iÞ.

4. All messages m0i are different.

Note that if the shuffling and remasking operations have been
done correctly, then it follows that mcheck ¼ m0check. The reverse
implication is not necessarily true.

If some of the previous checkings failed, the privacy of the elec-
tion would not be compromised because the vote opening proce-
dure would be interrupted at a point in which elliptic curve
ciphertexts V 0i

� �
06i<n have not been decrypted yet.

If all these checkings are satisfied, then,

1. The Key Storage Trusted Party verifiably decrypts each
V 0i ¼ EQE ðv 0iÞ publishing its plaintext v 0i and the corresponding
proof of correct decryption.

2. All participants verify the correctness of these decryption proofs.

If all these checkings are satisfied, the set v 0i
� �

06i<n is taken as
the result of the election.

5. Security

5.1. Authentication and Unicity

These security properties state that only voters in the electoral
roll can vote. Furthermore each voter can only cast a single vote.

In our system, the encrypted votes collected by the Polling Station
are signed (we assume participants’ public keys are properly certi-
fied by some trusted Certification Authority) by the participant
who casts it. The encrypted vote and its signature are made publicly
available. In this way, all participants can check that each collected
vote is signed by a different participant. Moreover, if the electoral roll
is public, participants can also check each voter appears in the list (if
this is not the case, they should rely this checking is done by the Poll-
ing Station). If identity of voters should be kept secret, pseudonyms
could be used for anonymous authentication.

5.2. Privacy

The privacy property requires that at the end of the voting pro-
cedure, no ballot can be linked to the identity of the voter who has
cast it. The following lemmas address it.

Lemma 1. Assuming the Key Storage Trusted Party only decrypts
Ccheck and cryptograms C0i

� �
06i<nþsk and the Mixing Party does not

reveal the permutation it applied, the probability of correctly linking a
vote v 0i with the identity of the participant who cast it is at most 1=n.

Proof. In our system, each ciphertext Ci can be linked to the par-
ticipant who cast it (it is signed). After vote opening, it is also pos-
sible to link each C0i to its vote v 0i (we consider dummies have
already been removed).

The ElGamal cryptosystem is semantically secure under the
Decisional Diffie–Hellman assumption. This means that it is not
possible to determine whether two different cryptograms will result
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or not in the same plaintext once decrypted. From semantic security
of ElGamal, assuming the permutation relating fCig06i<n and
fC0ig06i<n (after dummies removal) is not revealed, a ciphertext C0i
can only be linked to its corresponding Ci by random guessing,
whose probability of success is 1=n.

So, given a participant, the probability of correctly linking her
with a decrypted mixed vote is 1=n. h

Note that cryptography cannot avoid information disclosure in
situations where, for instance, all votes have the same value. In these
cases, privacy can only be provided by participant anonymity.

Next we will address the security of the mixing process. The
permutation relating the initial cast votes fCig06i<n and the list of
decrypted votes fv 0ig06i<n depends on the permutation applied by
each Mixing Element. As long as at least one of the Mixing Ele-
ments keeps its permutation secret, the overall permutation will
not be known. In this case, as stated by Lemma 1, the only way
to relate identities and decrypted votes is random guessing. So, a
procedure permitting to verify that all Mixing Elements have con-
tributed to this permutation will ensure its secrecy. This is equiv-
alent to proving that no Mixing Element has been bypassed
during the mixing process.

We will consider the worst case in which only one Mixing Ele-
ment is honest. Next lemma addresses how difficult it is for a coa-
lition of malicious mixers to bypass this honest Mixing Element.

Lemma 2. In a voting with n participants, the probability of not
detecting that a honest Mixing Element has been bypassed is upper
bounded by s

n

� �s.

Proof. During the mixing procedure, each Mixing Element sequen-
tially participates by adding s dummy ciphertexts to the set of
cryptograms and then applying a secret permutation to the whole
set. At vote opening, the dummy messages introduced by each
mixer are identified and removed. If some of them are missing,
the vote opening phase is interrupted. So, a cheating coalition that
tries to bypass a honest Mixing Element will only succeed if they
manage to locate the dummy ciphertexts of the Mixing Element
they wish to bypass and introduce them in the set of votes they
are mixing dishonestly.

Since the content and location of the dummies at the output of
the honest Mixing Element is not known by the coalition, they
must randomly guess which are the dummy ciphertexts. These
ciphertexts will be taken and inserted in the ‘‘dishonest” set of
votes they are producing.

Assuming the honest mixer performs in the jth position, the
attackers will succeed if they randomly guess which are the s
dummies out of a list of nþ js ciphertexts. This will happen with
probability

s! ðnþ ðj� 1ÞsÞ!
ðnþ jsÞ! 6

s! n!

ðnþ sÞ! <
s
n

� �s
�

5.3. Integrity

This property is related to verifiability. In fact, we will next
prove that, when all checks carried out in our voting system are
satisfied, the output of the vote opening stage is integral. This
means that the output list of votes fv 0ig06i<n is a permutation of
those cast by participants, fv ig06i<n. As we will see our system is
universally verifiable, i.e. any party (including those that have not
taken part in it) can check the correctness of the whole procedure.
This integrity property depends on parameter lH and it is achieved
when 2lH is an overwhelming large value. The proof of integrity
will lean on some lemmas that are next presented.
Lemma 1 shows that, in our voting protocol, two sets of vote-
messages satisfying mcheck ¼ m0check (property checked by partici-
pants during vote opening at step 2), cannot differ in a single
vote-message. This means that they can only differ in zero, two
or more elements.

Without loss of generality, the lemma is formulated assuming
the sets have been sorted so that the first ðn� 1Þ elements are pair-
wise equal.

Lemma 3. Let us assume two sets of vote-messages L ¼ fm0; . . . ;

mn�1g and L0 ¼ fm00; . . . ;m0n�1g satisfying:

1. 8i; 0 6 i < n� 1; mi ¼ m0i, and
2. mcheck ¼ m0check

Qn�1
i¼0 mi ¼

Qn�1
i¼0 m0i

� �
Then, mn�1 ¼ m0n�1.

Proof. From condition 2 we have that

mn�1 �
Yn�2

i¼0

mi ¼ m0n�1 �
Yn�2

i¼0

m0i:

From condition 1 we have that
Qn�2

i¼0 mi ¼
Qn�2

i¼0 m0i. Then, we con-
clude mn�1 ¼ m0n�1. h

Next, we will prove that an element of G generated by some
procedure that does not query H is a vote-message with probabil-
ity 2�lH .

Lemma 4. Given m 2 G, where m is parsed as x ¼ Vkhkb, if m was
generated without querying H providing V as input, the probability
that m is a vote-message is 2�lH .

Proof. Given m 2 G, so as for m ¼ Vkhkb to be a vote-message, it
must satisfy h ¼HðVÞ. Given V, if h was computed without query-
ing H providing V as input, then h will match HðVÞ with probabil-
ity 2�lH . h

Next we will study the complexity of obtaining two sets of vote-
messages differing in two or more elements that satisfy all chec-
kings of the protocol. The proof will be done under the assumption
that the attacker knows the (plaintext) vote-messages from the ini-
tial list she is trying to replace by fraudulent ones. When the vote-
messages to be replaced are encrypted and unknown to the attack-
er, the complexity can only increase since this fact reduces the
information the attacker has.

The following lemma proves the temporal cost of computing
two sets of vote-messages differing in two or more elements.

Without loss of generality, the lemma is formulated assuming
the two sets have been sorted so that the elements to be replaced
are located at the first k, k > 1, positions.

Lemma 5. Given a set containing n vote-messages L ¼ fm0; . . . ;

mn�1g, computing another set of vote-messages L0 ¼ fm00; . . . ;m0n�1g
satisfying:

1. mi ¼ m0i; 8k 6 i < n, and
2. mcheck ¼ m0check

Qn�1
i¼0 mi ¼

Qn�1
i¼0 m0i

� �
and

3. mi–m0j for all 0 6 i; j < k

requires at least an expected Oð2lH Þ temporal cost.

Proof. Let us denote A ¼ m0 � . . . �mk�1. The objective is to find a
list of vote-messages m00; . . . ;m0k�1 satisfying m00 � . . . �m0k�1 ¼ A.
Trivial solutions where m00 ¼ mpð0Þ; . . . ;m0k�1 ¼ mpðk�1Þ for some per-
mutation p are discarded by condition 3.

From the above condition, we have that m00 ¼ A=ðm01 � . . . �m0k�1Þ.
Then, from several seeds V 01; . . . ;V 0k�1 we compute (calling H) the
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vote-messages m01; . . . ;m0k�1 that encode V 01; . . . ;V 0k�1. By denoting
A0 ¼ m01 � . . . �m0k�1, we compute m00 as m00 ¼ A=A0.

Since during the computation of m00 ¼ V 00kh
0
0kb

0
0 no call to H

with input V 00 is done, from Lemma 4 we know that the probability
that m00 is a vote-message is 2�lH .

Note that any other procedure not starting from V 01; . . . ;V 0k�1
and next calling H to generate m01; . . . ;m0k�1 will succeed with
probability at most 2�lH in obtaining all m01; . . . ;m0k�1 being vote-
messages.

So, the only strategy that can be followed to generate
m00; . . . ;m0k�1 consists of successively trying different initial seeds
V 01; . . . ;V 0k�1 until m00 satisfies the condition needed to be a vote-
message. Since the probability of success of each trial is 2�lH , the
expected amount of trials before succeeding is 2lH . This gives the
expected Oð2lH Þ temporal cost. h

Next, we present the concluding theorem that states the com-
putational security of the integrity of the voting system.

Theorem 1. If all checks performed in the voting system are satisfied,
a corrupted Mixing Party whose output is a set of encrypted votes that
once decrypted are not a permutation of the initially cast votes has
spent at least an expected Oð2lH Þ time in it.
Proof. Lemma 3 proves that a corrupted Mixing Party cannot mod-
ify the value of a single vote. Next, in Lemma 5 it is proven that
modifying two or more votes requires exponential time in
lH; Oð2lH Þ. h
1 Computing a full length modular exponentiation in Z�p , being p an n bits long
prime requires an average of 1.5n products. In our case, where n ¼ 3072, we will
consider the cost of a product negligible with respect to the cost of an exponentiation.
5.4. Uncoercity and fairness

Our system satisfies uncoercity in the sense that a voter does
not keep any receipt proving she voted in a particular way. Fairness
is provided as long as the Key Storage Trusted Party does not de-
crypt any vote until the end of the election.

6. Parameter choice

Prior to deployment, some parameters of the system have to be
defined. We will tune them so as to provide a 128 bits computa-
tional security level. According to [24], this is the long term (be-
yond 2030) recommended security level for unclassified
applications.

So as for integrity to be guaranteed, the bitlength of h; lH, must
be chosen large enough so that 2lH is an overwhelming large value.
Taking lH ¼ 128 provides our desired security level.

Regarding b, its bitlength lb has to be chosen so that once V and
h are given, there exists at least one value for b so that
m ¼ Vkhkb 2 Z�p is a quadratic residue. Since half of the elements
of Z�p are quadratic residues, given lb the probability that none of
its values results in m being a quadratic residue is 2�2lb . Taking
an appropriate length for b makes this probability negligible. For
instance, if b is 8 bits long, this probability is as low as 2�256.

Regarding the elliptic curve public key QE, it shall be defined
over a prime field whose cardinal is 256 bits long [24]. In this case,
the length of ciphertext V ¼ EQE ðvÞ is 257þ lv bits. Prime number p
must be 3072 bits long [24].

Under this parameter configuration, the bits of m left for repre-
senting the vote v are 2678 ðlv ¼ jpj � 1� jV j � lH � lbÞ. If this is not
enough to encase v, the length of p; jpj, has to be taken larger.

Regarding parameter s that tunes the probability of success of a
Mixing Element bypassing, its value depends on n. For instance, for
n ¼ 1024, taking s ¼ 4 provides a probability of success below

1
256

� �4 ¼ 2�32. Note that in this case we are not providing computa-
tional security. Since a coalition can only perform a single trial, this
probability is low enough so as to ensure that any attempt to by-
pass a Mixing Element will surely be detected.
The number of Mixing Elements, k, has to be taken so that it is
difficult that all of them are corrupted at the same time. For in-
stance, in a national election, each political party could include
its own Mixing Element.

7. Computational cost analysis

In a remote voting system, verifiability of the vote shuffling and
remasking procedure is not enough. Integrity and authenticity of
input ciphertexts must also be guaranteed, otherwise, cast ballots
could be replaced by fraudulent ones before the mixing begins.
At the vote opening phase, decryption of mixed ciphertexts must
be done verifiably so as to avoid the result of the election being fal-
sified at this point.

We claim that authenticating (using digital signature or any
other method) the input ciphertexts and verifiably decrypting the
mixed ciphertexts is mandatory in any remote voting system. So,
we will not consider its cost as part of the proof of correct mixing.

In this section, we will analyse the computational cost of our
system in an election where n participants take part. We will con-
sider the parameters tuned for a 128 bits security level as detailed
in Section 6.

According to [25], the cost of elliptic curve cryptography over a
256 bits finite field is 10 times lower than the cost of ElGamal cryp-
tosystem over Z�p, being p a 3072 bits long prime. Our analysis will
consider this ratio.

7.1. Vote casting

In any voting system, each participant casts her vote and veri-
fies the vote cast by all other participants. So, the cost at this stage
is dominated by the ðn� 1Þ signature verifications performed by
each participant. The cost of generating her own (and unique) vote
can be completely neglected.

7.2. Vote opening

For verifiable decryption of n ciphertexts, systems that separate
the proof of mixing and the proof of decryption (like [26]) should
perform:1

1. Decryption of n ElGamal ciphertexts over Z�p.
2. Prove the correct decryption of those n ciphertexts.

This requires the Key Storage Trusted Party to perform 1 expo-
nentiation for each decryption plus 2 exponentiations for generat-
ing each proof. Thereby, the overall amount of modular
exponentiations is 3n. The participants verifying these decryptions
will perform 4n modular exponentiations.

Our system follows a slightly different paradigm requiring:

1. Decryption of nþ sk ciphertexts over Z�p.
2. Decryption of n elliptic curve ciphertexts.
3. Proof of correct decryption of n elliptic curve ciphertexts.

The extra sk decryptions due to dummy messages are intro-
duced for proving the correctness of the mixing process and will
be considered in the next section. So, our system requires the
Key Storage Trusted Party to perform n modular exponentiations
at step 1 plus n and 2n elliptic curve exponentiations at steps 2
and 3, respectively. Each verifier will compute 4n elliptic curve
exponentiations while verifying the proofs at step 3.
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Due to the lower cost of elliptic curve operations, our system
approximately permits a 50% computational cost reduction for
the Key Storage Trusted Party and a 90% reduction for provers at
this stage with respect to systems like [26].

7.3. Verification of correct mixing

The operations required for verifying a mixing are next summa-
rized (the Mixing Party does not take part in them):

1. Computation of 2ðn� 1Þmodular products for computing Ccheck.
2. Verifiable decryption of Ccheck (only done by the Key Storage

Trusted Party).
3. Checking the proof of correct decryption of Ccheck (done by the

Participants).
4. Decryption of sk dummy ElGamal ciphertexts (only done by the

Key Storage Trusted Party).
5. Computation of 2nþ sk hash functions (nþ sk during the iden-

tification and removal of dummy messages and n while check-
ing that each m0i satisfies the vote-message property).

6. Computation of ðn� 1Þ modular products during the computa-
tion of m0check.

Taking into account all operations but modular exponentiations
are negligible, our system requires the Key Storage Trusted Party to
compute 4þ sk exponentiations (at steps 2 and 4). Considering the
values chosen at Section 6 ðn ¼ 1024; s ¼ 4Þ and k ¼ 5 (number of
Mixing Elements), the total amount of exponentiations is 24. The
cost for verifiers is reduced to four exponentiations at step 3. This
clearly outperforms other mix-type proposals reviewed in Section
2 whose cost grows linearly with n.

The extra cost for Mixing Elements is only caused by the addi-
tion of dummy ciphertexts. Since parameter s takes small values,
this causes a negligible overhead when n is large.
8. Communication cost analysis

In this section, we analyse the amount of bits transmitted be-
tween each Participant and the bulletin board located at the Polling
Station. We will not consider some extra bits required for authen-
tication of data published on the bulletin board or other secondary
transmissions such as public key certificates, etc.

8.1. Vote casting

Each Participant casts her encrypted vote together with its dig-
ital signature on it and verifies the signature of the ciphertexts sent
by the other ðn� 1Þ Participants. So, each Participant participates
in the communication of n signed ciphertexts. Considering the
parameters chosen at Section 6, each ElGamal ciphertext is
2 � 3072 bits long. If signatures were computed over an elliptic
curve cryptosystem (for instance, ECDSA [17]), each signature
would be 2 � 256 bits long. Summarizing, each participant is in-
volved in the transmission of 6656n bits during this stage.

As justified in the previous section, verifiability requires submit-
ted data to be authenticated. So, the cost detailed here is mandatory
for any remote voting system where cast votes are encrypted using
ElGamal.

8.2. Vote opening

At this stage, each Participant must receive:

1. The set of cleartexts m̂0i
� �

06i<nþsk (ciphertexts fC0ig06i<nþsk are not
required).
2. C0check; m0check and its proof of decryption.
3. Verifiable decryption of fV 0ig06i<n.

Like in the previous section, the extra sk cleartexts due to dum-
my messages will be considered as part of the proof of mixing.
Then, step 1 requires transmission of 3072n bits. Step 2 requires
6 � 3072 bits (2 � 3072 bits for C0check, 3072 bits for m0check plus
3 � 3072 bits for the proof of correct decryption). For each verifi-
able decryption, step 3 requires transmission of 257 bits for the
(compressed) elliptic curve point R (see Section 3.5) plus
2 � 257 + 256 for the decryption proof. The overall transmission
at step 3 is (3 � 257 + 256)n bits.

Summarizing, the total amount of transferred bits at the vote
opening stage is 4099n + 18,432.

For systems requiring verifiable decryption of n ElGamal mixed
ciphertexts (those that separate the proof of mixing and the proof
of decryption), the communication cost would be (6 � 3072) =
18,432n bits (in this case, ciphertexts fC0ig06i<n have to be
transferred).

Comparing both methods, for large n, our system permits a
reduction in 78% of transferred bits at this phase. This saving
comes from the fact that in our system, the large ElGamal cipher-
texts do not need to be transferred and the proof of correct decryp-
tion is done over the (smaller) elliptic curve cryptosystem instead
of the (larger) ElGamal one.

8.3. Verification of correct mixing

Extra data transferred due to mixing verification is next
summarized:

1. The sk dummy cleartexts contained in set m̂0i
� �

06i<nþsk (not
dummy ones have been computed in previous subsection).

2. The sets of hash values bH1; . . . ; bHk.

Step 1 requires transmission 3072� sk bits while step 2 re-
quires 256� sk.

Considering the values chosen at Section 6 ðn ¼ 1024; s ¼ 4Þ
and k ¼ 5 (number of Mixing Elements), the total amount of trans-
ferred bits for mixing verification is 66,560. This clearly outper-
forms other mix-type proposals reviewed in Section 2 whose cost
grows linearly with n.

9. Conclusion

In this paper, a novel mix-type remote voting scheme has been
presented. Its great contribution is given by its simplicity and low
computational and communication cost required to verify the cor-
rectness of vote mixing. All statements about the security and effi-
ciency of the system have been properly proven.
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