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Purpose  of this  paper  is to  design  coefficients  of a PID  controller  to  achieve  a controller  to optimize
system’s  behavior.  Krill  Herd  algorithm  is a  new  evolutionary  algorithm  in swarm  intelligence  field.  In
this  paper  we’ve  tried  to  determine  optimized  controller  coefficients  using  combination  of Chaos  theory

 

 

eywords:
ID controller
volutionary optimization
haotic Krill Herd optimization

and  Improved  Krill  Herd  algorithm  (ICKH).  In this  work,  the  goal  will  be  minimizing  the weighted  sum  of
maximum  overshoot,  reverse  distance  of  nearest  pole  from  imaginary  axis  and  settling  time  of  a  closed-
loop system.  Indeed  the  cost  function  has been  formulated  as  a single-objective  problem.  Later  some
illustrative  examples  will  be  presented.  Simulation  results  compare  proposed  algorithm  (ICKH)  with
other  algorithms  e.g.  GA  and PSO  etc.

© 2016  Elsevier  GmbH.  All  rights  reserved.
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. Introduction

Mankind has always been looking for best possible solution of
roblems in environment around himself. According to the situ-
tion these answers could be whether smallest or biggest answer
ossible. Nowadays in engineering problems, achieving the answer
ith the lowest possible price, is one of the designers’ distur-

ances. Former methods to solve optimization problems require
normous computational efforts, which tend to fail as the problem
ize increases. This is the motivation for employing bio-inspired
tochastic optimization algorithms as computationally efficient
lternatives to deterministic approach [1]. Observation in nature
or inspiration was one the old interests of scientists to achieve opti-

ization methods. Therefore many optimization algorithms such
s ACO [2], PSO [3], GA [4] etc. have been designed with nature-
nspired and animals’ behavior.

Recently a new evolutionary algorithm had been proposed by
lavi and Gandomi, inspired by herding behavior of Antarctic krill

5]. Antarctic krill is one of the best-studied species of marine ani-
al. The Krill Herds are aggregations with no parallel orientation

xisting on time scales of hours to days and space scales of 10 s to
Please cite this article in press as: S. Yaghoobi, H. Mojallali, Tuning of a 
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00 s of meters. One of the main characteristics of this specie is its
bility to form large swarms [6,7]. Conceptual models have been
roposed to explain the observed formation of the Krill Herds [8].
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The time-dependent position of an individual krill in 2D surface is
governed by the following three main actions [9]:

(i) Movement induced by other krill individuals;
(ii) Foraging activity; and

(iii) Random diffusion

Krill Herd algorithm nevertheless its powerful skill in solv-
ing optimization enigmas it has the problem of trapping in local
optima. Confronting this problem using Chaos theory and its map-
pings would be suggested in Krill Herd algorithm. Chaos can
be described as a bounded nonlinear system with deterministic
dynamic behavior that has stochastic properties [10]. In what is
called the “butterfly effect”, small variations of an initial variable
will result in huge differences in the solutions after some iteration.
Mathematically, chaos is random and unpredictable, yet it also pos-
sesses an element of regularity [11]. Chaotic Krill Herd algorithm
using logistic mapping is suggested to solve the problem of trapping
in local optima. Later, proposed algorithm will be used to determine
coefficients of a PID controller and then simulation results will be
compared with other optimization algorithms.

Proportional–Integral–Derivative controller or in extenuating
words; PID are the most widely used and the most popular con-
trollers in industrial means in order of ease of design and low cost
[12,13]. But the problem is there is no (neither) precise and (nor)
optimized method for tuning coefficients of a PID controller. In var-
ious books and papers evolutionary algorithms such as PSO [14], DE
PID controller using improved chaotic Krill Herd algorithm, Optik
6.01.055

[15], GA [16] etc. has been used to appoint PID’s coefficients.
Surveying the operation of a closed-loop system parameters

which generally would be considered are maximum overshoot,
settling time, steady state error, and rise time. In this paper
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aximum overshoot, distance of nearest pole from imaginary axis,
nd settling time would be examined as indicators of system’s per-
ormance. Desirable systems have short settling time, distance of
heir nearest pole from imaginary axis is approximately long and
heir maximum overshoot is about zero. Thus the goal is to mini-

ize the weighted sum of maximum overshoot, settling time and
istance of nearest pole from imaginary axis.

. Krill Herd algorithm

Krill Herd (KH) algorithm is a new bio-inspired swarm intelli-
ence, that is based on herding conduct of krill and formulating
heir swarm movement. The herding of the krill individuals is a

ulti-objective process including two main goals: (I) increasing
rill density, and (II) reaching food. In the present study, this process
s taken into account to propose a new metaheuristic algorithm for
olving global optimization problems. Density-dependent attrac-
ion of krill (increasing density) and finding food (areas of high
ood concentration) are used as objectives which can finally lead
he krill to herd around the global minima. In this process, an indi-
idual krill moves toward the best solution when it searches for the
ighest density and food [5].

The position of a krill in a 2D surface is determines by the fol-
owing three actions [9–1]:

(i) Movement induced by other krill individuals;
(ii) Foraging activity; and
iii) Random diffusion

Therefore, the following Lagrangian model is generalized to an
 dimensional decision space:

dXi

dt
= Ni + Fi + Di

here Ni is the movement induced by other krill, Fi the is foraging
ovement and Di is the physical diffusion of ith krill.
Direction of Ni which is called ˛i, is affected by local density and

osition of the best krill. Ni can be – with following formula:

new
i = Nmax˛i + ωnNold

i

here

i = ˛local
i + ˛target

i

nd Nmax is the maximum induced speed, ωn is the inertia weight
f the motion induced in the range [0,1], Nold

i
is the last motion

nduced, ˛local
i

is the local effect provided by the neighbors and
target
i

is the target direction effect provided by the best krill individ-
al. According to the measurements the maximum induced speed
9], it is taken 0.01 (ms−1).

In KH algorithm the effect of neighbors (˛i
local) is formulated as

ollows:

local
i =

NN∑
j=1

K̂i,jX̂i,j

ˆ i,j = Xi − Xj

||Xi − Xj|| + ε

ˆ i,j = Kj − Kj
Please cite this article in press as: S. Yaghoobi, H. Mojallali, Tuning of a 
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Kworst − Kbest

here Kbest and Kworst are the best and the worst fitness values of
he krill individuals so far; Ki represents the fitness or the objec-
ive function value of the ith krill individual; Kj is th fitness of jth
 PRESS
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(j = 1,2,. . .,NN)  neighbor; X represents the related positions; and NN
is the number of the neighbors.

For choosing neighbors at the first hand the sensing distance of
each krill must be calculated with following formula:

ds,i = 1
5N

N∑
j=1

||Xi − Xj||

If the distance of two krill individuals is less than the defined
sensing distance, then they would be neighbors [5].

The best krill effects on others by ˛i
target which is given by:

˛target
i

= CbestK̂i,bestX̂i,best

and

Cbest = 2
(

rand + I

Imax

)

The foraging motion (Fi) is estimated by the two main compo-
nents. One is the food location and the other would be the prior
knowledge about the food location. For the ith krill individual, this
motion can be approximately formulated as follows: [17]

Fi = Vf ˇi + ωf Fold
i

where

ˇi = ˇfood
i + ˇbest

i

Vf is the foraging speed, ωf is the inertia weight of the foraging
motion and it’s a number in range [0,1], Fi

old is the last foraging
motion. In this paper we set Vf to 0.02 [18].

The physical diffusion of the krill individuals is considered to be
a random process. It can be formulated as follows:

Di = Dmaxı

where Dmax is the maximum diffusion speed, and ı is the ran-
dom directional vector, and its arrays are random values in range
of [−1,1]. The better the position of the krill is, the less random
the motion is. Furthermore, another term would be added to the
physical diffusion formula to consider this effect. This term linearly
decreases the random speed with the time (iterations):

Di = Dmax
(

1 − I

Imax

)
ı

According to three main actions mentioned above, velocity of
each krill can be calculated. The new position of each krill from t to
t + �t  is formulated as below:

Xi (t + �t) = Xi (t) + �t
dXi

dt

�t  is a very important parameter which determines the effect of
velocity on the new position of krill. This parameter is extremely
affected by search space, so that it can be as the following equation:

�t  = Ct

NV∑
j=1

(
UBj − LBj

)
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where NV is the number variables and LBj and UBj are lower and
upper limits of the jth variable. Ct’s variability would be about [0,2].
It is obvious small values of Ct results precisely search in the search
space.

158

159

160

161 

dx.doi.org/10.1016/j.ijleo.2016.01.055


 IN PRESSG Model
I

li / Optik xxx (2016) xxx–xxx 3

3

3

i
t
e

−

(

w

o
e
w

X

3

m
s
i
q
b
t
s
b
[
o
t
s
m
g

x

i
s
w

controller is equal to the proportional gain (Kp) times the mag-
nitude of the error plus the integral gain (Ki) times the integral of

Generating  x(0) 

Fitness Evaluatio n 

Motion Calculation (Ni, Di, Fi) 

Applying Velocity Limits 

Updating Position 

Start

Initiali zing

162

163

164

165

166
167

168

169

170

171

172

173

174
175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191
192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

 

 

ARTICLEJLEO 57165 1–5

S. Yaghoobi, H. Mojalla

. Improved chaotic Krill Herd optimization (ICKH)

.1. Applying limits for velocity and position

To control and improve the Krill Herd algorithm, their veloc-
ty and range of movement could be limited. In order to apply
hese limits, velocity of each krill could be limited as the following
quation:

(
dXi

dt

)
max

<
∣∣∣dXi

dt

∣∣∣ <
(

dXi

dt

)
max

dXi

dt

)
max

= ˛
(

UBj − LBj

)

dXi

dt
= min

{
max

(
dXi

dt
,  −

(
dXi

dt

)
max

)
,
(

dXi

dt

)
max

}

here ˛’s value has been empirically estimated about 0.1.
Sometimes according to the calculated velocity, new position

f the krill could be somewhere out of the search space. To avoid
xiting krill form the search space their position could be limited
ith equation below:

i = min
{

max
(

Xi, LBj

)
, UBj

}

.2. Chaotic Krill Herd

Chaos theory studies the behavior of systems that follow deter-
inistic laws but appear random and unpredictable or we can

ay a dynamical system that has a sensitive dependence on its
nitial conditions; small changes in those conditions can lead to
uite different outcomes [19]. The chaotic system can be described
y a phenomenon, in which a small change in the initial condi-
ion will lead to nonlinear change in future behavior, besides the
ystem exhibits distinct behaviors under different phases, e.g. sta-
le fixed points, periodic oscillations, bifurcations, and periodicity
20]. Due to these characteristics, chaos theory can be applied in
ptimization. In KH algorithm Di and Ni parameters which con-
ain random numbers can be modified with chaos mappings. Our
uggestion would be using the successions made by the logistic
apping instead of above-mentioned random numbers. Sequences

enerated by the logistic mapping are formulated as below:

(t  + 1) = 4 × x(t) × (1 − x(t))

In Eq. (?) x(0) is created randomly between 0 and 1 for every
Please cite this article in press as: S. Yaghoobi, H. Mojallali, Tuning of a 
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teration. Notice that x(0) should not be 0, 0.25, 0.5, 0.75 or 1. Fig. 1
hows the chaotic x(t) value using a logistic map  for 50 iterations
here x(0) = 0.2. So flowchart of ICKH is like Fig. 3.

Fig. 1. Chaotic x(t) using logistic mapping.
Fig. 2. Block diagram of a simple controlled feedback system.

4. PID controller

PID is an acronym for Proportional–Integral–Derivative,  referring
to the three terms operating on the error signal to produce a con-
trol signal. PID control is one of the earlier control strategies [21]. Its
early implementation was  in pneumatic devices, followed by vac-
uum and solid state analog electronics, before arriving at today’s
digital implementation of microprocessors. Since many process
plants controlled by PID controllers have similar dynamics, it has
been found possible to set satisfactory controller parameters from
less plant information than a complete mathematical model [21].
Consider the following unity feedback system:

In PID controlling strategy the signal (u) which just past the
PID controller using improved chaotic Krill Herd algorithm, Optik
6.01.055

Applying Position Limits 

Stop Crite ria 
Reached?

Best Ans wer 

Finish

NO

YES 

Fig. 3. Flowchart of Improved Chaotic Krill Herd algorithm. 
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Fig. 4. A system controlled with regular PID controller.

Table 1
Effect of each PID coefficient on system’s performance indicators.

Rise time Overshoot Settling time

Kp Decrease Increase Small change
K Decrease Increase Increase

t
e

u

Q2

s

t

f

Kp = 39.709, Ki = 27.03,  Kd = 10

With population of 20 and 30 iterations the step response
indicators of PIDs designed by each algorithm are shown in

T
P

212
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214
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216
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221

222
223

224
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226

227

228

229

230

231

232

233

234

235

236
237

238

239

240
i

Kd Small change Decrease Decrease

he error plus the derivative gain (Kd) times the derivative of the
rror.

(t) = Kpe (t) +  Ki

t∫

0

e(�)d� + Kd
d
dt

e(t)

So Fig. 2 can be edited like Fig. 4.
The effect of each part (proportional, integral and derivative) in

tep respond of the system is shown in Table 1.
To optimize system’s behavior the cost function which is going

o be minimized is given by following equation:
Please cite this article in press as: S. Yaghoobi, H. Mojallali, Tuning of a 
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 = Ts + 2MP  + SI

able 2
erformance indicators of each algorithm with step response for the system of Example 2

MP  (%) Rise time (s) Settlin

ICKH 0.15 0.68 1.01 

IKH  0.06 0.9 1.32 

GA  0 0.95 1.39 

PSO  0 1.14 1.67 

ZN  66.2 0.26 5.1 

Uncontrolled system 0 2.24 4.12 

Fig. 5. Step response 
 PRESS
tik xxx (2016) xxx–xxx

where Ts would be settling time of the step response, MP  would
be maximum overshoot, and SI is stability index, which is defined
as:

SI = −1
min (max (real (poles (G))) , 0)

and G is the closed-loop system’s transfer function. In order to this
equation the big real pole part causes small SI.

5. Illustrative examples

In this section two examples are given to illustrate the proposed
algorithm. Later we’re going to compare this algorithm with other
algorithms such as KH, GA, PSO, CPSO and Ziegler–Nichols tuning
method [22]. The lower and upper bounds of variables (coefficients)
are: Kp: [0,100], Ki: [0,100], Kd: [0,10].

Example 1. Consider the following third order system (plant of a
DC motor):

G (s) = 1
s3 + 9s2 + 23s + 15

Utilizing the optimization method presented in this paper, the
three parameters of PID controller are tuned as follows:
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Table 2.
Fig. 5 shows the step response of the plant, controlled with

designed PIDs by each algorithm and uncontrolled system.

.

g time (s) Peak time (s) SI Cost function

1.39 0.84 2.15
2.02 1 2.44
2.1 1.05 3.49

11.59 1.52 2.66
0.75 1.86 139.36
7.34 1.62 5.74

of the system 1.

241

242
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Table  3
Performance indicators of each algorithm with step response for the system of Example 2.

MP  (%) Rise time (s) Settling time (s) Peak time (s) SI Cost function

ICKH 8 × 10−4 ≈ 0 0.15 0.21 0.28 0.36 0.57
IKH  0.01 0.206 0.28 0.39 0.55 0.85
GA  0 0.24 0.34 1.19 0.47 0.81
PSO  0 0.15 0.53 0.28 0.53 1.06
ZN  62 0.06 2.02 0.15 0.72 126.74
Uncontrolled system 0 1.01 1.84 3.34 0.48 2.32
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Fig. 6. Step resp

xample 2. As the second experiment, consider a second order
ystem with transfer function as below (this is a DC motor plant
oo):

(s) = 0.01

(0.01s  + 0.1)(0.5s + 1)(0.01)2

Using the ICKH optimization algorithm, the three parameters of
ID controller are calculated as follows:

p = 47.48,  Ki = 81.86,  Kd = 4.06

nd Table 3 shows the controlled system’s indicators in comparison.
Fig. 6 shows the step response of the uncontrolled system and

ystem with PIDs designed by various algorithms.

. Conclusions and future work

A recently developed bio-inspired meta-heuristic algorithm
alled Krill Herd has been developed with Chaos theory and some
ther improvements and became Improved Chaotic Krill Herd
ICKH). Proposed algorithm (ICKH) applied for the design of PID
ontrollers, harvesting better performance in indicators such as
aximum overshoot, rise time, settling time, peak time, and sta-

ility index than other algorithms.
Our future purpose is to delineate parameters of a Fractional

rder PID with presented algorithm and demonstrate that the con-
roller designed with this algorithm has less cost and more benefits
gainst other algorithms.
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