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ABSTRACT 

We have proposed a new method for illumination suppression in hyperspectral image data. This involves transforming 
the data into a hyperspherical coordinate system, segmenting the data cloud into a large number of classes according to 
the radius dimension, and then demeaning each class, thereby eliminating the distortion introduced by differential 
absorption in shaded regions. This method was evaluated against two other illumination-suppression methods using two 
metrics: visual assessment and spectral similarity of similar materials in shaded and fully illuminated regions. The 
proposed method shows markedly superior performance by each of these metrics.     
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1. INTRODUCTION 
Airborne hyperspectral imaging sensors are being increasingly used for wide-area classification and target detection 
applications. For example, hyperspectral imaging is used to map mineral deposits [1] [2], agricultural or forest health [3], 
and seagrass and coral reef health [4]. Spectral classification and target-detection algorithms for visible and short-wave 
infrared (SWIR) sensors rely on the ability to separate materials based on the spectral shape of their reflectivities. 
However, airborne sensors do not measure reflectivity directly, but instead measure spectral radiance at the aircraft 
altitude. Therefore, in order to apply classification algorithms, one must either attempt to model the atmosphere well 
enough to convert radiance-at-the-sensor to reflectance-at-the-ground or apply the algorithms directly to radiance-at-the-
sensor data. We generally believe that is better to work directly with radiance data because of the difficulties with 
atmospheric correction methods; however, some adjustments should be made to the data to account for changes in 
illumination conditions. 

 Large-scale changes in the illumination conditions (due to changes in time of day, atmospheric conditions, or sensor 
altitude) can be accounted for using a linear transformation of the data referred to as the Covariance Equalization 
Method [5]. However, this approach, in its typical form, does not account for local variations in illumination due to 
shadows. Therefore, shadows from trees and buildings can have a severely adverse effect on scene classification 
algorithms.  

The presence of shadows does not simply lower the overall magnitude of the radiance spectrum being measured; it also 
causes a change in spectral shape, due to the fact that the color of the light illuminating a shadowed region is different 
from that illuminating a sunny region. 

The objective of the work presented here is to develop a practical method for identifying shadows in a scene and 
appropriately adjusting the illumination level and color of these areas to more closely match similar materials in the non-
shadowed regions. Our proposed method is described in Section 2, some results are presented in Section 3, and our 
conclusions are given in Section 4. 

2. METHODS 
Varying levels of illumination due to shadows, varying cloud cover, etc. are a known problem for many hyperspectral 
segmentation and targeting algorithms.  The simplest approach to this problem is to normalize the magnitude of all 
spectral vectors in a data cube.  This process does not take into account the fact that shading does not affect different 
regions of the spectrum uniformly.  It also reduces the effective dimensionality of the data cloud by 1 without reducing 
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the actual number of dimensions, causing severe problems for any algorithm that is reliant on covariance matrix 
inversion. 
 

A second approach is to convert the data from Cartesian space to a hyperspherical coordinate system.  Each N-
dimensional spectral vector is converted to an N-1 dimensional spectral angle.  However, this approach does not account 
for the differential interference provided by shading.  
 

Our approach is to convert the data from Cartesian space to a hyperspherical coordinate system.  In this transformation, 
each N-dimensional spectral vector is converted to N-1 dimensional spectral angles and a magnitude value according to: 
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where is  is the spectral angle for band i, and iv is the Cartesian coordinate for band i. The N dimension hyperspherical 
transformation above creates N-1 angles and one scalar magnitude or radius in the Nth band.  In terms of hyperspectral 
imagery this magnitude is the illumination value of the spectra. Figure 1 shows the two dimensional equivalent, where 
we have one angle θ and one magnitude r. 

 

 
Figure 1: Polar coordinates  

 

Similar material will have similar angles.  Differences in illumination will be described mostly by the radial distance or 
magnitude of the hypersphere and occupy the last band in the data cube. However, it still does not account for the 
differential interference provided by shading.  

The next step is to segment the spectra using the K-means algorithm.  The resulting segmentation is largely dependent 
on the illumination band so a shadow map can be created by selecting the class that has the lowest magnitude values.   

The edges of the shadows tend to be mixture pixels and don’t need the full correction so we create a weight map that is 
simply the shadow map with a 3 by 3 mean filter run across it.  In this way the amount of correction placed on the edges 
can be controlled. 

The first-stage coarse correction is as follows: Let =ijx  current pixel, Sµ  = mean vector for all shadow pixels, NSµ  = 

mean vector for all non-shadow pixels, ijw  = weight mask at pixel ij with values 1 (shadow) thru 0 (non-shadow). The 
corrected pixel is given by 
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the correction will be applied in ratio to the weight map. 

 

The main motivation for the coarse correction is to be able to better classify the shadow pixels.  Each shadow pixel is 
assigned to one of the non-shadow classes through a simple squared error distortion measure.  The second stage 
correction will finely adjust the shadow pixel by using the class mean of the non-shadow and shadow class.  The idea is 
to use the angles for a particular material in non-shadow areas to guide the correction for the same material inside the 
shadows.   

The second stage correction is applied similarly to the first stage correction: Let =ijcx  current pixel with classification 

c, Scµ  = mean vector for all shadow pixels in class c, NScµ  = mean vector for all non-shadow pixels in class c, ijw  = 
weight mask at pixel (i,j) with values 1 (shadow) thru 0 (non-shadow), the corrected pixel is given by 
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edges the correction will be applied in ratio to the weight map as before. 

 

Now that the shadow pixels are properly corrected in the shadows for illumination they can be converted back to 
Cartesian coordinates. The transformation is as follows: 
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Where R is the illumination value for each pixel, is  is the spectral angle for band i, and iv is the Cartesian coordinate for 
band i.   
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3. RESULTS 
Figure 1 shows the original image with two pixels of very similar material.  One pixel is in the shadow and one is in the 
open.  This figure highlights the problem of using spectral-based signature detection.  The spectra are vastly different in 
and out of shadow. 

 
Fig. 1. Intensity spectra for shadow and non-shadow pixels and locations on image 

 

                       
Fig. 2. Spectral signature of grass in shadow and in the open. 

 
Figure 2 shows the spectra of the two pixels in Figure 1.  Figure 3 shows the illumination image and a shadow map 
created by segmenting the illumination image.  
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Fig. 3. Illumination image and shadow map  

Figure 4 shows the results of the transformation to hypersphical coordinates [Eq. (1)]. It can be seen that the angles for 
the two pixels are beginning to look similar.  A correction is applied to bring the shadow pixels closer to the same angles 
as the non-shadow pixels.  The residuals of shadows can still be seen in the hyperspherical image.  In the corrected 
image most the shadows and residuals are gone.   

 

 
 

Fig. 4. Hyperspherical image and hyperspherical image with correction 

  
Fig. 5. Spectral angles for grass pixels in and out of shadows, before and after correction 

Figure 5 shows the spectral angles of the two grass pixels in and out of shadow after hyperspherical conversion and after 
hyperspherical conversion with correction.  The correction allows the angles of the similar material to line up very close.  
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The Normalized Root Mean Square (NRMS) error was computed between the two pixels for each method.  The 
transformation only value was 0.0198, after applying the correction it was down to 0.00970.  
 
Figure 6 shows the result of normalizing the magnitude of all spectral vectors in the data cube and the results of the 
corrected hyperspherical coordinates converted back to Cartesian coordinates.  The shadow residuals can be seen as well 
as distortions in the image resulting from the loss of one dimension.  The corrected image still looks realistic with the 
shadows removed. 
 

 
 

Fig. 6. Images after normalizing the magnitude of spectral vectors and image after conversion to Cartesian coordinates 

 

 
Fig. 7 Spectra resulting from normalizing the magnitude of all spectral vectors and the spectra resulting from the conversion 

back to Cartesian coordinates after angle correction 

 
Figure 7 show the spectra resulting from the normalizing the magnitude of all spectral vectors and the spectra resulting 
from the conversion back to Cartesian coordinates after angle correction.  The NRMS value calculated for the 
normalized magnitude method is 0.147 compared to 0.0948 for the proposed method.  The signatures are closer to each 
other using the proposed method and we don’t have the negative side effect of losing a dimension.   

Figure 8 shows a blow up of the original image and the illumination-suppressed image.  The tree shadows are removed 
with natural grass visible underneath.  The entire parking lot is now visible where before it is partially in shadow.  There 
are still some effects around the edges that need to be softened.  The edge of the shadow region is being smeared out.  
We are currently working on these edge challenges. 
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Fig. 8. Original image and illumination suppressed image 

4. CONCLUSIONS 
 
The goal of this work was to develop a method for removing the effects of shadows in hyperspectral imagery. Our 
proposed method is to (1) convert the data to hyperspherical coordinates [Eq. (1)]; (2) classify the scene, where one of 
the classes defines the shadowed regions; (3) assign each pixel in the shadowed regions to one of the other classes; and 
(4) transform the shadowed spectra based on the means of the shadowed and unshadowed data within each class. Some 
care is made to account for the variation in the depth of the shade. 

In our preliminary tests we found the proposed method to do a good job at correcting spectra inside shadows.  This 
method gave better results than the two simpler methods that we tested it against.  The two stage correction should 
ensure that materials in the shadows are corrected coarsely even if a similar material does not exist outside of shadows.  
These materials will not be corrected by the “fine tuning” second stage and it is yet to be determined what the detriment 
in detection will be. No method can completely remove the effects of shadows since the effective S/N is degraded and in 
deep shade the data could be unusable.  However, we believe that we can do a good job of correcting for the apparent 
change in color and reflectivity caused by light shade. 

A comprehensive detection study is needed to verify the proper correction of spectra. We also need to determine how to 
tell the difference between shadows and dark objects and what the impact is. We are also looking at the possibility of 
improving the algorithm by including spatial processing.   
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